JP2019152811A - Optical fiber, coated optical fiber, and optical transmission system - Google Patents

Optical fiber, coated optical fiber, and optical transmission system Download PDF

Info

Publication number
JP2019152811A
JP2019152811A JP2018039355A JP2018039355A JP2019152811A JP 2019152811 A JP2019152811 A JP 2019152811A JP 2018039355 A JP2018039355 A JP 2018039355A JP 2018039355 A JP2018039355 A JP 2018039355A JP 2019152811 A JP2019152811 A JP 2019152811A
Authority
JP
Japan
Prior art keywords
optical fiber
core
refractive index
coating layer
resin coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018039355A
Other languages
Japanese (ja)
Inventor
雄揮 川口
Yuki Kawaguchi
雄揮 川口
欣章 田村
Yasuaki Tamura
欣章 田村
洋宇 佐久間
Hirotaka Sakuma
洋宇 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018039355A priority Critical patent/JP2019152811A/en
Priority to US16/286,879 priority patent/US11280958B2/en
Priority to EP19160500.5A priority patent/EP3537192B1/en
Priority to CN201910167510.0A priority patent/CN110231676A/en
Publication of JP2019152811A publication Critical patent/JP2019152811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

To provide an optical fiber capable of easily attaining enlargement of an effective cross-sectional area and an improvement in bending loss characteristics.SOLUTION: An optical fiber 1A comprises: a glass fiber 2A including a core 10 and a cladding 20; a first resin covering layer 31 being in contact with and surrounding the glass fiber 2A; and a second resin covering layer 32 surrounding the first resin covering layer 31 and having a Young's modulus larger than a Young's modulus of the first resin covering layer 31. An effective cross-sectional area at a wavelength of 1550 nm is 110 μmor more and 180 μmor less, a cable cutoff wavelength is 1530 nm or less, and a thickness deviation free ratio of the first resin covering layer 31 is 60% or more and 80% or less.SELECTED DRAWING: Figure 1

Description

本発明は、光ファイバ、光ファイバ心線および光伝送システムに関するものである。   The present invention relates to an optical fiber, an optical fiber core, and an optical transmission system.

信号光を伝送する光伝送路として光ファイバを用いる光伝送システムにおいて、信号対雑音比(SN比)を改善するため、光ファイバは低損失かつ低非線形性であることが要求される。光ファイバの非線形性を低減するためには、光ファイバの実効断面積を大きくすることが有効である。一方で、光ファイバの実効断面積を拡大するためにコア径を拡大すると、高次モードが伝搬してしまう。そこで、モード間の干渉による信号劣化を防ぐため、ITU-T G.650.1に記載されるケーブルカットオフ波長は、信号光波長以下であることが要求され、例えばCバンド(1530nm〜1565nm)の信号光を伝搬させる場合には1530nm以下であることが要求される。   In an optical transmission system using an optical fiber as an optical transmission line for transmitting signal light, the optical fiber is required to have low loss and low nonlinearity in order to improve a signal-to-noise ratio (SN ratio). In order to reduce the nonlinearity of the optical fiber, it is effective to increase the effective area of the optical fiber. On the other hand, if the core diameter is increased in order to increase the effective cross-sectional area of the optical fiber, higher-order modes are propagated. Therefore, in order to prevent signal degradation due to interference between modes, the cable cutoff wavelength described in ITU-T G.650.1 is required to be equal to or less than the signal light wavelength, for example, C band (1530 nm to 1565 nm). In the case of propagating the signal light, it is required to be 1530 nm or less.

1530nm以上の波長において実効的にシングルモードにするとともに実効断面積を拡大することができる光ファイバの屈折率分布として、W型またはトレンチ型の屈折率分布が知られている。これらの屈折率分布では、単純なステップ型屈折率分布と比較して、高次モードの曲げ損失のみ大きくすることができるので、所望のカットオフ波長を維持しつつ実効断面積を拡大することができる。   A W-type or trench-type refractive index distribution is known as an optical fiber refractive index distribution capable of effectively making a single mode at a wavelength of 1530 nm or more and enlarging an effective cross-sectional area. In these refractive index distributions, only the bending loss of higher-order modes can be increased compared to a simple step-type refractive index distribution, so that the effective area can be increased while maintaining a desired cutoff wavelength. it can.

従来では、実効断面積の拡大および曲げ損失特性の向上は、光ファイバの屈折率分布の設計・調整によりなされていた(非特許文献1,2を参照)。   Conventionally, the effective area has been increased and the bending loss characteristics have been improved by designing and adjusting the refractive index distribution of the optical fiber (see Non-Patent Documents 1 and 2).

T. Kato et al., Electron. Lett.,vol.35. pp.1615-1617, 1999.T. Kato et al., Electron. Lett., Vol. 35. pp. 1615-1617, 1999. M. Bigot-Astruc, et al., ECOC’08,paper Mo.4.B.1M. Bigot-Astruc, et al., ECOC’08, paper Mo.4.B.1

光ファイバの屈折率分布の設計・調整により実効断面積の拡大および曲げ損失特性の向上を図る場合には、光ファイバ構造が複雑化し、量産性(製造トレランス)が悪化する場合がある。本発明者らは、鋭意研究を行った結果、コアおよびクラッドを含むガラスファイバを取り囲む樹脂被覆層を適切な断面形状とすることで、光ファイバの実効断面積の拡大および曲げ損失特性の向上を図ることができることを見出した。   When the effective cross-sectional area is increased and the bending loss characteristics are improved by designing and adjusting the refractive index distribution of the optical fiber, the structure of the optical fiber becomes complicated and mass productivity (manufacturing tolerance) may deteriorate. As a result of diligent research, the inventors have made the resin coating layer surrounding the glass fiber including the core and the cladding into an appropriate cross-sectional shape, thereby increasing the effective cross-sectional area of the optical fiber and improving the bending loss characteristics. I found out that I can plan.

本発明は、上記問題点を解消する為になされたものであり、実効断面積の拡大および曲げ損失特性の向上を容易に図ることができる光ファイバおよび光ファイバ心線を提供することを目的とする。また、本発明は、このような光ファイバを信号光伝送路として備えSN比を向上することができる光伝送システムを提供することをも目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical fiber and an optical fiber core wire that can easily increase the effective cross-sectional area and improve the bending loss characteristics. To do. Another object of the present invention is to provide an optical transmission system that includes such an optical fiber as a signal light transmission line and can improve the SN ratio.

本発明の光ファイバは、コアと、前記コアを取り囲み前記コアの屈折率より低い屈折率を有するクラッドと、を含むガラスファイバと、前記ガラスファイバに接して前記ガラスファイバを取り囲む第1樹脂被覆層と、前記第1樹脂被覆層を取り囲み前記第1樹脂被覆層のヤング率より大きいヤング率を有する第2樹脂被覆層と、を備える。さらに、本発明の光ファイバでは、波長1550nmにおける実効断面積が110μm以上180μm以下であり、ケーブルカットオフ波長が1530nm以下であり、前記第1樹脂被覆層の無偏肉率が60%以上80%以下である。 An optical fiber of the present invention includes a glass fiber including a core, a clad surrounding the core and having a refractive index lower than the refractive index of the core, and a first resin coating layer surrounding the glass fiber in contact with the glass fiber And a second resin coating layer surrounding the first resin coating layer and having a Young's modulus greater than the Young's modulus of the first resin coating layer. Furthermore, in the optical fiber of the present invention, the effective area at the wavelength of 1550nm is at 110 [mu] m 2 or more 180 [mu] m 2 or less, the cable cutoff wavelength is less than or equal 1530 nm, no uniform wall thickness ratio of the first resin coating layer 60% 80% or less.

本発明の光ファイバは、実効断面積の拡大および曲げ損失特性の向上を容易に図ることができる。   The optical fiber of the present invention can easily increase the effective area and improve the bending loss characteristics.

図1は、光ファイバ1Aの断面および屈折率分布を示す図である。FIG. 1 is a diagram showing a cross section and a refractive index distribution of the optical fiber 1A. 図2は、第1樹脂被覆層31の無偏肉率とケーブルカットオフ波長との間の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the ununiform thickness rate of the first resin coating layer 31 and the cable cutoff wavelength. 図3は、第1樹脂被覆層31の無偏肉率と波長1550nmにおける伝送損失との間の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the ununiform thickness ratio of the first resin coating layer 31 and the transmission loss at a wavelength of 1550 nm. 図4は、光ファイバ1Bの断面および屈折率分布を示す図である。FIG. 4 is a diagram showing a cross section and a refractive index distribution of the optical fiber 1B. 図5は、光ファイバ心線1Cの断面を示す図である。FIG. 5 is a view showing a cross section of the optical fiber core wire 1C. 図6は、光伝送システム100の構成を示す図である。FIG. 6 is a diagram illustrating a configuration of the optical transmission system 100.

本発明の光ファイバは、コアと、前記コアを取り囲み前記コアの屈折率より低い屈折率を有するクラッドと、を含むガラスファイバと、前記ガラスファイバに接して前記ガラスファイバを取り囲む第1樹脂被覆層と、前記第1樹脂被覆層を取り囲み前記第1樹脂被覆層のヤング率より大きいヤング率を有する第2樹脂被覆層と、を備える。さらに、本発明の光ファイバでは、波長1550nmにおける実効断面積が110μm以上180μm以下であり、ケーブルカットオフ波長が1530nm以下であり、前記第1樹脂被覆層の無偏肉率が60%以上80%以下である。 An optical fiber of the present invention includes a glass fiber including a core, a clad surrounding the core and having a refractive index lower than the refractive index of the core, and a first resin coating layer surrounding the glass fiber in contact with the glass fiber And a second resin coating layer surrounding the first resin coating layer and having a Young's modulus greater than the Young's modulus of the first resin coating layer. Furthermore, in the optical fiber of the present invention, the effective area at the wavelength of 1550nm is at 110 [mu] m 2 or more 180 [mu] m 2 or less, the cable cutoff wavelength is less than or equal 1530 nm, no uniform wall thickness ratio of the first resin coating layer 60% 80% or less.

本発明の光ファイバでは、波長1550nmにおける伝送損失が0.174dB/km以下であるのが好適である。前記クラッドが、前記コアを取り囲み前記コアの屈折率より低い屈折率を有する内クラッドと、前記内クラッドを取り囲み前記コアの屈折率より低く前記内クラッドの屈折率より高い屈折率を有する外クラッドと、を含むのが好適である。前記コアが、中心に設けられたディプレストと、前記ディプレストを取り囲み前記ディプレストの屈折率より高い屈折率を有するリングコアと、を含むのが好適である。   In the optical fiber of the present invention, it is preferable that the transmission loss at a wavelength of 1550 nm is 0.174 dB / km or less. An inner cladding that surrounds the core and has a refractive index lower than the refractive index of the core; and an outer cladding that surrounds the inner cladding and has a refractive index lower than the refractive index of the core and higher than the refractive index of the inner cladding. Are preferably included. It is preferable that the core includes a depressed provided at a center, and a ring core surrounding the depressed and having a refractive index higher than that of the depressed.

本発明の光ファイバ心線は、上記の本発明の光ファイバと、前記光ファイバの前記第2樹脂被覆層を取り囲む着色層とを備え、前記着色層の外径が180μm以上210μm以下である。本発明の光伝送システムは、上記の本発明の光ファイバを光伝送路として備える。   The optical fiber core of the present invention includes the above-described optical fiber of the present invention and a colored layer surrounding the second resin coating layer of the optical fiber, and an outer diameter of the colored layer is not less than 180 μm and not more than 210 μm. The optical transmission system of the present invention includes the optical fiber of the present invention as an optical transmission line.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

図1は、光ファイバ1Aの断面および屈折率分布を示す図である。光ファイバ1Aは、シリカガラスを主成分とするガラスファイバ2Aと、このガラスファイバ2Aを取り囲む第1樹脂被覆層31と、この第1樹脂被覆層31を取り囲む第2樹脂被覆層32と、を備える。第1樹脂被覆層31および第2樹脂被覆層32は、紫外線硬化型樹脂からなる。第2樹脂被覆層32のヤング率は、第1樹脂被覆層31のヤング率より大きい。   FIG. 1 is a diagram showing a cross section and a refractive index distribution of the optical fiber 1A. The optical fiber 1A includes a glass fiber 2A mainly composed of silica glass, a first resin coating layer 31 surrounding the glass fiber 2A, and a second resin coating layer 32 surrounding the first resin coating layer 31. . The first resin coating layer 31 and the second resin coating layer 32 are made of an ultraviolet curable resin. The Young's modulus of the second resin coating layer 32 is larger than the Young's modulus of the first resin coating layer 31.

ガラスファイバ2Aは、コア10と、このコア10を取り囲むクラッド20と、を含む。クラッド20の屈折率は、コア10の屈折率より低い。クラッド20は、コア10を取り囲む内クラッド21と、内クラッド21を取り囲む外クラッド22と、を含むW型屈折率分布の構成であってもよい。この場合、内クラッド21の屈折率は、コア10の屈折率より低い。外クラッド22の屈折率は、コア10の屈折率より低く、内クラッド21の屈折率より高い。   The glass fiber 2 </ b> A includes a core 10 and a clad 20 that surrounds the core 10. The refractive index of the clad 20 is lower than the refractive index of the core 10. The clad 20 may have a W-type refractive index profile including an inner clad 21 surrounding the core 10 and an outer clad 22 surrounding the inner clad 21. In this case, the refractive index of the inner cladding 21 is lower than the refractive index of the core 10. The refractive index of the outer cladding 22 is lower than the refractive index of the core 10 and higher than the refractive index of the inner cladding 21.

このようなガラスファイバ2Aの屈折率分布を実現するために、例えば、コア10は実質的に純シリカガラスからなり、クラッド20はフッ素を含むシリカガラスからなる。或いは、コア10はGeOを含むシリカガラスからなり、内クラッド21はフッ素を含むシリカガラスからなり、外クラッド22は実質的に純シリカガラスからなる。 In order to realize such a refractive index profile of the glass fiber 2A, for example, the core 10 is substantially made of pure silica glass, and the cladding 20 is made of silica glass containing fluorine. Alternatively, the core 10 is made of silica glass containing GeO 2 , the inner cladding 21 is made of silica glass containing fluorine, and the outer cladding 22 is substantially made of pure silica glass.

光ファイバ1Aに側方から外力(側圧)が付与されると、ガラスファイバ2Aの屈折率が微小に変化し、コア10を伝搬する光がクラッドモードに結合して漏洩損失が生じる。一般に、光ファイバ1Aの外周には2層以上の被覆(第1樹脂被覆層31、第2樹脂被覆層32)が設けられるが、ガラスファイバ2Aに隣接する第1樹脂被覆層31は、側圧によるガラスファイバ2Aの屈折率変動に与える影響が大きい。   When an external force (side pressure) is applied to the optical fiber 1A from the side, the refractive index of the glass fiber 2A changes minutely, and light propagating through the core 10 is coupled to the cladding mode, resulting in leakage loss. Generally, two or more coatings (first resin coating layer 31 and second resin coating layer 32) are provided on the outer periphery of the optical fiber 1A. The first resin coating layer 31 adjacent to the glass fiber 2A is caused by lateral pressure. The influence on the refractive index fluctuation of the glass fiber 2A is large.

伝搬モードとクラッドモードとの間の実効屈折率の差が小さいほど、伝搬モードからクラッドモードへの結合が生じやすくなる。伝搬モードのなかでも高次モードは、基底モードと比較して実効断面積が大きい。それ故、屈折率が低いクラッド20の影響でクラッドモードの実効屈折率は低くなり、伝搬モードとクラッドモードとの間の実効屈折率差は小さくなる。このことから、高次モードは第1樹脂被覆層31の形状変化による漏洩損失が生じやすいと言える。   The smaller the difference in effective refractive index between the propagation mode and the cladding mode, the easier the coupling from the propagation mode to the cladding mode occurs. Among the propagation modes, the higher-order mode has a larger effective area than the fundamental mode. Therefore, the effective refractive index of the cladding mode becomes low due to the influence of the cladding 20 having a low refractive index, and the effective refractive index difference between the propagation mode and the cladding mode becomes small. From this, it can be said that the high-order mode is likely to cause leakage loss due to the shape change of the first resin coating layer 31.

したがって、光ファイバ1Aの第1樹脂被覆層31の長手方向の形状を適切に制御することによって、基底モードの散乱損失を低く保ちつつ、高次モードの散乱損失を選択的に大きくすることができる。これにより、カットオフ波長を所望の範囲に維持しつつ、実効断面積を拡大することができる。第1樹脂被覆層31の長手方向の形状制御は、例えば、線引直後のガラスファイバに塗布した樹脂を硬化させる為に照射する紫外線の照射時間もしくはパワーの調整、または、紫外線照射により樹脂を硬化させた後の光ファイバをボビンに巻き取る際の条件の調整によって、容易に可能である。   Therefore, by appropriately controlling the shape of the first resin coating layer 31 of the optical fiber 1A in the longitudinal direction, it is possible to selectively increase the higher-order mode scattering loss while keeping the scattering loss of the fundamental mode low. . Thereby, an effective area can be expanded, maintaining a cutoff wavelength in a desired range. The shape control in the longitudinal direction of the first resin coating layer 31 is performed by, for example, adjusting the irradiation time or power of the ultraviolet light irradiated to cure the resin applied to the glass fiber immediately after drawing, or curing the resin by ultraviolet irradiation. This can be easily achieved by adjusting the conditions for winding the optical fiber after being wound around the bobbin.

図1に示される構造を有する光ファイバ1Aを製造してケーブルカットオフ波長および伝送損失を評価した。コア10の外径2aを12μmとし、内クラッド21の外径2bを36μmとした。内クラッド21に対し、コア10の比屈折率差Δ1を0.32%とし、外クラッド22の比屈折率差Δ2を0.06%とした。光ファイバ1Aの第1樹脂被覆層31の無偏肉率を様々な値とした。第1樹脂被覆層31の無偏肉率[%]は、ファイバ軸に垂直な断面における第1樹脂被覆層31の径方向の最小厚さ及び最大厚さに対し、(最小厚さ/最大厚さ)×100 で定義される。   An optical fiber 1A having the structure shown in FIG. 1 was manufactured, and the cable cutoff wavelength and transmission loss were evaluated. The outer diameter 2a of the core 10 was 12 μm, and the outer diameter 2b of the inner cladding 21 was 36 μm. For the inner cladding 21, the relative refractive index difference Δ1 of the core 10 was set to 0.32%, and the relative refractive index difference Δ2 of the outer cladding 22 was set to 0.06%. The uneven thickness ratio of the first resin coating layer 31 of the optical fiber 1A was set to various values. The uneven thickness ratio [%] of the first resin coating layer 31 is (minimum thickness / maximum thickness) with respect to the minimum thickness and the maximum thickness in the radial direction of the first resin coating layer 31 in the cross section perpendicular to the fiber axis. S) x100.

図2は、第1樹脂被覆層31の無偏肉率とケーブルカットオフ波長との間の関係を示すグラフである。図2に示されるように、第1樹脂被覆層31の無偏肉率が低くなると、ケーブルカットオフ波長が短くなる。図3は、第1樹脂被覆層31の無偏肉率と波長1550nmにおける伝送損失との間の関係を示すグラフである。図3に示されるように、第1樹脂被覆層31の無偏肉率がおよそ60%より低くなると、伝送損失が増加する。図2および図3から、第1樹脂被覆層31の無偏肉率をおおよそ60%以上80%とすることで、伝送損失の増加を抑制しつつ実効断面積の拡大が可能であることがわかる。   FIG. 2 is a graph showing the relationship between the ununiform thickness rate of the first resin coating layer 31 and the cable cutoff wavelength. As shown in FIG. 2, the cable cutoff wavelength is shortened when the uneven thickness ratio of the first resin coating layer 31 is decreased. FIG. 3 is a graph showing the relationship between the ununiform thickness ratio of the first resin coating layer 31 and the transmission loss at a wavelength of 1550 nm. As shown in FIG. 3, transmission loss increases when the uneven thickness ratio of the first resin coating layer 31 is lower than about 60%. 2 and 3, it can be seen that the effective area can be increased while suppressing an increase in transmission loss by setting the non-uniform wall thickness ratio of the first resin coating layer 31 to approximately 60% or more and 80%. .

光ファイバ1Aは、図1に示される構造を有し、波長1550nmにおける実効断面積が110μm以上180μm以下であり、ケーブルカットオフ波長が1530nm以下であり、第1樹脂被覆層31の無偏肉率が60%以上80%以下である。このような光ファイバ1Aは、実効断面積の拡大および曲げ損失特性の向上を容易に図ることができる。また、好適には、波長1550nmにおける伝送損失が0.174dB/km以下である。 Optical fiber 1A has a structure shown in FIG. 1, the effective area at the wavelength of 1550nm is at 110 [mu] m 2 or more 180 [mu] m 2 or less, the cable cutoff wavelength is less than or equal 1530 nm, non-polarization of the first resin coating layer 31 The meat percentage is 60% or more and 80% or less. Such an optical fiber 1A can easily increase the effective area and improve the bending loss characteristics. Preferably, the transmission loss at a wavelength of 1550 nm is 0.174 dB / km or less.

以上では、一例としてW型屈折率分布を有する光ファイバについて説明をしたが、屈折率分布の形状はこれに限られない。例えば、単純なステップ型、トレンチ型または空孔付与型などの屈折率分布を有する光ファイバにおいても、本手法の適用が可能である。また、図4に示される構造を有する光ファイバ1Bであってもよい。   The optical fiber having the W-type refractive index distribution has been described above as an example, but the shape of the refractive index distribution is not limited to this. For example, the present technique can be applied to an optical fiber having a refractive index distribution such as a simple step type, a trench type, or a hole providing type. Moreover, the optical fiber 1B which has a structure shown by FIG. 4 may be sufficient.

図4は、光ファイバ1Bの断面および屈折率分布を示す図である。この図に示される光ファイバ1Bでは、ガラスファイバ2Bのコア10は、ディプレスト11およびリングコア12を含む。リングコア12は、中心に設けられたディプレスト11を取り囲む。ディプレスト11の屈折率は、外クラッド22の屈折率より高い。リングコア12の屈折率は、ディプレスト11の屈折率より高い。   FIG. 4 is a diagram showing a cross section and a refractive index distribution of the optical fiber 1B. In the optical fiber 1B shown in this figure, the core 10 of the glass fiber 2B includes a depressed 11 and a ring core 12. The ring core 12 surrounds the depressed 11 provided at the center. The refractive index of the depressed 11 is higher than the refractive index of the outer cladding 22. The refractive index of the ring core 12 is higher than the refractive index of the depressed 11.

このような構造を有する光ファイバ1Bにおいても、波長1550nmにおける実効断面積が110μm以上180μm以下であり、ケーブルカットオフ波長が1530nm以下であり、前記第1樹脂被覆層の無偏肉率が60%以上80%以下である。このような光ファイバ1Bも、実効断面積の拡大および曲げ損失特性の向上を容易に図ることができる。また、好適には、波長1550nmにおける伝送損失が0.174dB/km以下である。 In the optical fiber 1B having such a structure, the effective area at the wavelength of 1550nm is at 110 [mu] m 2 or more 180 [mu] m 2 or less, the cable cutoff wavelength is less than or equal 1530 nm, no uniform wall thickness ratio of the first resin coating layer It is 60% or more and 80% or less. Such an optical fiber 1B can also easily increase the effective area and improve the bending loss characteristics. Preferably, the transmission loss at a wavelength of 1550 nm is 0.174 dB / km or less.

また、このような構造を有する光ファイバ1Bは、モードフィールド径を維持しつつ、実効断面積を拡大することができる。つまり、光ファイバ1Bは、汎用シングルモード光ファイバとの接続損失の増加を抑制しつつ、非線形性を低くすることが可能となる。   Further, the optical fiber 1B having such a structure can increase the effective cross-sectional area while maintaining the mode field diameter. That is, the optical fiber 1B can reduce the nonlinearity while suppressing an increase in connection loss with the general-purpose single mode optical fiber.

図5は、光ファイバ心線1Cの断面を示す図である。この図に示される光ファイバ心線1Cは、図1に示された光ファイバ1Aにおいて第2樹脂被覆層32を取り囲む着色層33を備える。着色層33の外径は180μm以上210μm以下である。通常の光ファイバ心線は着色層も含めて外径がおよそ250μmであるが、近年では、光ファイバ心線を外径200μmまで細径化して、複数の光ファイバ心線を含む光ケーブルの高密度化が検討されている。このような細径化した光ファイバ心線では曲げ損失特性の向上が要求される。本実施形態の光ファイバ心線1Cは、細径化した場合であっても、曲げ損失特性の改善が可能である。   FIG. 5 is a view showing a cross section of the optical fiber core wire 1C. The optical fiber core 1C shown in this figure includes a colored layer 33 surrounding the second resin coating layer 32 in the optical fiber 1A shown in FIG. The outer diameter of the colored layer 33 is not less than 180 μm and not more than 210 μm. A normal optical fiber core including a colored layer has an outer diameter of about 250 μm. However, in recent years, an optical fiber core is thinned to an outer diameter of 200 μm to increase the density of an optical cable including a plurality of optical fiber cores. Consideration is being made. Such a thin optical fiber core wire is required to have improved bending loss characteristics. Even if the optical fiber core wire 1 </ b> C of the present embodiment is reduced in diameter, the bending loss characteristics can be improved.

図6は、光伝送システム100の構成を示す図である。この図に示される光伝送システム100では、光送信器110から送出された例えばCバンドの信号光は、光伝送路130により伝送されて、光受信器120により受信される。この光伝送システム100は本実施形態の光ファイバを光伝送路130として備え、その光伝送路130は低損失かつ低非線形性である。このことから、光伝送システム100は、SN比が改善され、長距離・大容量の信号光の伝送が可能である。   FIG. 6 is a diagram illustrating a configuration of the optical transmission system 100. In the optical transmission system 100 shown in this figure, for example, C-band signal light transmitted from the optical transmitter 110 is transmitted through the optical transmission path 130 and received by the optical receiver 120. The optical transmission system 100 includes the optical fiber according to the present embodiment as an optical transmission path 130, and the optical transmission path 130 has low loss and low nonlinearity. Thus, the optical transmission system 100 has an improved SN ratio and can transmit a long distance and large capacity signal light.

1A,1B…光ファイバ、1C…光ファイバ心線、2A,2B…ガラスファイバ、10…コア、11…ディプレスト、12…リングコア、20…クラッド、21…内クラッド、22…外クラッド、31…第1樹脂被覆層、32…第2樹脂被覆層、33…着色層、100…光伝送システム、110…光送信器、120…光受信器、130…光伝送路。   DESCRIPTION OF SYMBOLS 1A, 1B ... Optical fiber, 1C ... Optical fiber core wire, 2A, 2B ... Glass fiber, 10 ... Core, 11 ... Depressed, 12 ... Ring core, 20 ... Cladding, 21 ... Inner cladding, 22 ... Outer cladding, 31 ... 1st resin coating layer, 32 ... 2nd resin coating layer, 33 ... Colored layer, 100 ... Optical transmission system, 110 ... Optical transmitter, 120 ... Optical receiver, 130 ... Optical transmission line.

Claims (6)

コアと、前記コアを取り囲み前記コアの屈折率より低い屈折率を有するクラッドと、を含むガラスファイバと、
前記ガラスファイバに接して前記ガラスファイバを取り囲む第1樹脂被覆層と、
前記第1樹脂被覆層を取り囲み前記第1樹脂被覆層のヤング率より大きいヤング率を有する第2樹脂被覆層と、
を備え、
波長1550nmにおける実効断面積が110μm以上180μm以下であり、
ケーブルカットオフ波長が1530nm以下であり、
前記第1樹脂被覆層の無偏肉率が60%以上80%以下である、
光ファイバ。
A glass fiber comprising: a core; and a cladding surrounding the core and having a refractive index lower than that of the core;
A first resin coating layer surrounding the glass fiber in contact with the glass fiber;
A second resin coating layer surrounding the first resin coating layer and having a Young's modulus greater than the Young's modulus of the first resin coating layer;
With
Effective area at the wavelength of 1550nm is at 110 [mu] m 2 or more 180 [mu] m 2 or less,
The cable cutoff wavelength is 1530 nm or less,
The uneven thickness ratio of the first resin coating layer is 60% or more and 80% or less,
Optical fiber.
波長1550nmにおける伝送損失が0.174dB/km以下である、
請求項1に記載の光ファイバ。
The transmission loss at a wavelength of 1550 nm is 0.174 dB / km or less.
The optical fiber according to claim 1.
前記クラッドが、前記コアを取り囲み前記コアの屈折率より低い屈折率を有する内クラッドと、前記内クラッドを取り囲み前記コアの屈折率より低く前記内クラッドの屈折率より高い屈折率を有する外クラッドと、を含む、
請求項1または2に記載の光ファイバ。
An inner cladding that surrounds the core and has a refractive index lower than the refractive index of the core; and an outer cladding that surrounds the inner cladding and has a refractive index lower than the refractive index of the core and higher than the refractive index of the inner cladding. ,including,
The optical fiber according to claim 1 or 2.
前記コアが、中心に設けられたディプレストと、前記ディプレストを取り囲み前記ディプレストの屈折率より高い屈折率を有するリングコアと、を含む、
請求項1〜3の何れか1項に記載の光ファイバ。
The core includes a depressed provided in the center, and a ring core surrounding the depressed and having a refractive index higher than that of the depressed.
The optical fiber of any one of Claims 1-3.
請求項1〜4の何れか1項に記載の光ファイバと、前記光ファイバの前記第2樹脂被覆層を取り囲む着色層と、を備え、
前記着色層の外径が180μm以上210μm以下である、
光ファイバ心線。
The optical fiber according to any one of claims 1 to 4, and a colored layer surrounding the second resin coating layer of the optical fiber,
The outer diameter of the colored layer is 180 μm or more and 210 μm or less,
Optical fiber core.
請求項1〜5の何れか1項に記載の光ファイバを光伝送路として備える光伝送システム。   An optical transmission system comprising the optical fiber according to claim 1 as an optical transmission line.
JP2018039355A 2018-03-06 2018-03-06 Optical fiber, coated optical fiber, and optical transmission system Pending JP2019152811A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018039355A JP2019152811A (en) 2018-03-06 2018-03-06 Optical fiber, coated optical fiber, and optical transmission system
US16/286,879 US11280958B2 (en) 2018-03-06 2019-02-27 Optical fiber, colored optical fiber, and optical transmission system
EP19160500.5A EP3537192B1 (en) 2018-03-06 2019-03-04 Optical fiber, colored optical fiber, and optical transmission system
CN201910167510.0A CN110231676A (en) 2018-03-06 2019-03-06 Optical fiber, colored optical fiber and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039355A JP2019152811A (en) 2018-03-06 2018-03-06 Optical fiber, coated optical fiber, and optical transmission system

Publications (1)

Publication Number Publication Date
JP2019152811A true JP2019152811A (en) 2019-09-12

Family

ID=65685239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039355A Pending JP2019152811A (en) 2018-03-06 2018-03-06 Optical fiber, coated optical fiber, and optical transmission system

Country Status (4)

Country Link
US (1) US11280958B2 (en)
EP (1) EP3537192B1 (en)
JP (1) JP2019152811A (en)
CN (1) CN110231676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162406A1 (en) * 2019-02-05 2020-08-13 古河電気工業株式会社 Optical fiber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120894A (en) * 2018-01-11 2019-07-22 住友電気工業株式会社 Optical fiber, coated optical fiber, and optical transmission system
CN112162348B (en) * 2020-09-27 2022-12-13 西北工业大学 Few-mode optical fiber and preparation method thereof
JPWO2022085245A1 (en) * 2020-10-19 2022-04-28
CN115097566B (en) * 2022-07-13 2024-04-12 中国科学院上海光学精密机械研究所 Bend-sensitive stimulated raman scattering-inhibited ring structured optical fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038066A (en) * 2002-07-08 2004-02-05 Sumitomo Electric Ind Ltd Coated optical fiber, method of manufacturing same, coated optical fiber tape using same, and optical fiber cable
JP2011197667A (en) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd Optical fiber, and optical communication system including the same
JP2012027392A (en) * 2010-07-27 2012-02-09 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber ribbon and manufacturing apparatus
JP2013061620A (en) * 2011-08-25 2013-04-04 Sumitomo Electric Ind Ltd Optical fiber
US20170017032A1 (en) * 2015-05-29 2017-01-19 Corning Incorporated Optical fiber with macrobend loss mitigating layer
WO2017122589A1 (en) * 2016-01-12 2017-07-20 住友電気工業株式会社 Optical fiber core wire and optical fiber tape core wire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2229280A1 (en) * 1997-02-12 1998-08-12 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
JP3471271B2 (en) 1999-08-12 2003-12-02 株式会社フジクラ Optical fiber and optical transmission system
JP2003004995A (en) * 2001-06-26 2003-01-08 Fujikura Ltd Dispersion-compensated optical fiber and dispersion- compensated optical fiber module
JP2005017694A (en) 2003-06-26 2005-01-20 Furukawa Electric Co Ltd:The Optical fiber and optical fiber cable
CN102193140B (en) * 2010-02-26 2015-03-04 住友电气工业株式会社 Optical fiber and optical communication system comprising the same
US8731357B2 (en) 2011-09-23 2014-05-20 Sumitomo Electric Industries, Ltd. Optical fiber
JP6459215B2 (en) 2014-05-14 2019-01-30 住友電気工業株式会社 Optical fiber and optical fiber evaluation method
JP2016012123A (en) 2014-06-05 2016-01-21 住友電気工業株式会社 Optical fiber
EP3480905A4 (en) * 2016-06-30 2020-01-15 Fujikura Ltd. Optical fiber for amplification, and laser device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004038066A (en) * 2002-07-08 2004-02-05 Sumitomo Electric Ind Ltd Coated optical fiber, method of manufacturing same, coated optical fiber tape using same, and optical fiber cable
JP2011197667A (en) * 2010-02-26 2011-10-06 Sumitomo Electric Ind Ltd Optical fiber, and optical communication system including the same
JP2012027392A (en) * 2010-07-27 2012-02-09 Sumitomo Electric Ind Ltd Manufacturing method of optical fiber ribbon and manufacturing apparatus
JP2013061620A (en) * 2011-08-25 2013-04-04 Sumitomo Electric Ind Ltd Optical fiber
US20170017032A1 (en) * 2015-05-29 2017-01-19 Corning Incorporated Optical fiber with macrobend loss mitigating layer
WO2017122589A1 (en) * 2016-01-12 2017-07-20 住友電気工業株式会社 Optical fiber core wire and optical fiber tape core wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020162406A1 (en) * 2019-02-05 2020-08-13 古河電気工業株式会社 Optical fiber
JPWO2020162406A1 (en) * 2019-02-05 2021-12-16 古河電気工業株式会社 Optical fiber
US11719879B2 (en) 2019-02-05 2023-08-08 Furukawa Electric Co., Ltd. Optical fiber

Also Published As

Publication number Publication date
US20190278020A1 (en) 2019-09-12
EP3537192B1 (en) 2024-06-05
US11280958B2 (en) 2022-03-22
EP3537192A1 (en) 2019-09-11
CN110231676A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
JP2019152811A (en) Optical fiber, coated optical fiber, and optical transmission system
JP5684109B2 (en) Multi-core optical fiber
US9964697B2 (en) Optical fiber
WO2011114795A1 (en) Multi-core optical fibre and production method for same
JP6397898B2 (en) Low-mode optical fiber for space division multiplexing.
JP2000356724A (en) Optical fiber in which color dispersion is compensated
US7773845B2 (en) Optical fiber and optical-fiber transmission line
WO2012017764A1 (en) Optical fibre
KR102638033B1 (en) Optical fiber
US20210356657A1 (en) Optical fiber
KR100342711B1 (en) Dispersion shifted fiber with triple clad
WO2016031901A1 (en) Optical fiber and optical fiber transmission path
CN112099132A (en) Severing a moving optical fibre
US10989864B2 (en) Optical fiber, coated optical fiber, and optical transmission system
JP3725523B2 (en) Optical fiber and optical transmission system
JP2009008850A (en) Dual guide optical fiber
JP4568485B2 (en) Single mode optical fiber and optical communication system
US11860407B2 (en) Optical fiber
EP2362251B1 (en) Optical fibers with truncated cores
WO2023012879A1 (en) Photonic crystal fiber
US20190346621A1 (en) Non-zero dispersion shifted fiber with low cut off wavelength and large effective area
JP4750678B2 (en) Negative dispersion optical fiber, broadband optical transmission line and optical transmission system
JP2003307632A (en) Photonic crystal optical fiber
JP5228063B2 (en) Holey fiber
JP2004021075A (en) Dispersion compensating optical fiber and optical transmission path using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220524