JP2019152501A - Method for detecting electromagnetic wave and electromagnetic wave detector - Google Patents

Method for detecting electromagnetic wave and electromagnetic wave detector Download PDF

Info

Publication number
JP2019152501A
JP2019152501A JP2018037015A JP2018037015A JP2019152501A JP 2019152501 A JP2019152501 A JP 2019152501A JP 2018037015 A JP2018037015 A JP 2018037015A JP 2018037015 A JP2018037015 A JP 2018037015A JP 2019152501 A JP2019152501 A JP 2019152501A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
polarization
light
component
detection light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018037015A
Other languages
Japanese (ja)
Other versions
JP2019152501A5 (en
JP7007719B2 (en
Inventor
谷 正彦
Masahiko Tani
正彦 谷
英明 北原
Hideaki Kitahara
英明 北原
岳 古屋
Takeshi Furuya
岳 古屋
山本 晃司
Koji Yamamoto
晃司 山本
拓朗 安本
Takuro Yasumoto
拓朗 安本
大輝 後藤
Daiki Goto
大輝 後藤
加藤 博之
Hiroyuki Kato
博之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui NUC
Original Assignee
University of Fukui NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui NUC filed Critical University of Fukui NUC
Priority to JP2018037015A priority Critical patent/JP7007719B2/en
Publication of JP2019152501A publication Critical patent/JP2019152501A/en
Publication of JP2019152501A5 publication Critical patent/JP2019152501A5/ja
Application granted granted Critical
Publication of JP7007719B2 publication Critical patent/JP7007719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide an electromagnetic wave detector which can increase the sensitivity of the detection with an easy configuration.SOLUTION: The present invention relates to a method for detecting electromagnetic waves used for detecting detection lights with two different polarization components, using an EO sampling method. According to the method, the component part of a polarization state expression which shows the polarization state of the detection lights in which the intensity of the detected lights is 1/β(β<1) times is obtained by inserting the coefficient β into the polarization state expression. After that, polarization control is performed so that the polarization component for the component part is converted into β times.SELECTED DRAWING: Figure 2

Description

本発明は、電磁波を利用した非破壊検査装置等に用いられる電磁波検出方法及び電磁波検出装置に関する。   The present invention relates to an electromagnetic wave detection method and an electromagnetic wave detection apparatus used for a nondestructive inspection apparatus using electromagnetic waves.

電磁波を利用して非破壊的な検査を行う装置や方法が知られている。近年では、X線装置に代わる安全な検査手法として、テラヘルツ(THz)周波数帯の電磁波を用いた電気光学(EO)サンプリング法により非破壊的に検査等を行う技術が開発されている(例えば特許文献1,2参照)。
EOサンプリング法としては、例えば、上記した周波数帯の電磁波の電界が電気光学結晶に誘起する複屈折を、フェムト秒レーザーを光源とするプローブ光によりサンプリング検出するものが知られている。
Devices and methods for performing nondestructive inspection using electromagnetic waves are known. In recent years, as a safe inspection method that replaces an X-ray apparatus, a technique for non-destructive inspection using an electro-optic (EO) sampling method using electromagnetic waves in a terahertz (THz) frequency band has been developed (for example, patents). References 1 and 2).
As an EO sampling method, for example, a method is known in which the birefringence induced in the electro-optic crystal by the electromagnetic field in the frequency band is sampled and detected by probe light using a femtosecond laser as a light source.

図7は、EOサンプリング検出を行う電磁波検出装置の一例を示す概略図である。検出対象の電磁波と遅延時間をつけた十分短いレーザーパルス(プローブ光と称する。特に電磁波による変調を受けたあとは検出光と称する)とを同じ直線偏光にし、コリニアに電気光学結晶11に照射する。電気光学結晶11から出射された楕円偏光の検出光は、λ/4波長板12に入射されてその位相が90度シフト (位相バイアス)される。そして、λ/4波長板12から出射された偏光状態の検出光を偏光子(例えばWollaston Prism)13に入射することで、当該偏光を長軸側の縦方向の偏光成分と短軸側の横方向の偏光成分に分離し、それぞれの強度を光検出器14で検出する。   FIG. 7 is a schematic diagram illustrating an example of an electromagnetic wave detection device that performs EO sampling detection. A sufficiently short laser pulse (referred to as probe light, particularly referred to as detection light after being modulated by the electromagnetic wave) with a delay time and an electromagnetic wave to be detected is converted into the same linearly polarized light and irradiated to the electro-optic crystal 11 collinearly. . The elliptically polarized detection light emitted from the electro-optic crystal 11 is incident on the λ / 4 wave plate 12 and the phase thereof is shifted by 90 degrees (phase bias). Then, the detection light in the polarization state emitted from the λ / 4 wavelength plate 12 is incident on a polarizer (for example, Wollaston Prism) 13 so that the polarized light is converted into a longitudinal polarization component on the major axis side and a lateral polarization on the minor axis side. The polarization components of the direction are separated, and the respective intensities are detected by the photodetector 14.

特開2013−174513号公報JP 2013-174513 A 特許第3388319号公報Japanese Patent No. 3388319

ところで、テロ対策強化などの要求から、空港やイベント会場、会議場など人の集まる施設での手荷物検査や全身検査などでは、高精度かつ正確な透視検査が求められているが、現状において主流となっているX線透視検査では精度、正確性及び画像の鮮明性に限界があり、X線透視検査に代わる新たな技術の速やかな開発と普及が切望されている。
EOサンプリング法は、X線透視検査に代わる新たな電磁波検出技術として注目されているものの、上記した従来の電磁波検出方法及び電磁波検出装置では、高速でスキャンしてマッピングすることが困難で、未だその用途の範囲が限定されているという問題がある。
By the way, due to demands for strengthening countermeasures against terrorism, high precision and accurate fluoroscopic inspection is required for baggage inspection and whole body inspection at facilities where people gather, such as airports, event venues, and conference halls. X-ray fluoroscopy is limited in accuracy, accuracy, and image clarity, and the rapid development and popularization of a new technique to replace X-ray fluoroscopy is desired.
Although the EO sampling method is attracting attention as a new electromagnetic wave detection technique that replaces the fluoroscopic examination, the conventional electromagnetic wave detection method and the electromagnetic wave detection device described above are difficult to scan and map at high speed, and are still There is a problem that the range of applications is limited.

本発明は、EOサンプリング法の速やかな用途拡大を目的としてなされたもので、簡単かつ安価なコストで従来のEOサンプリング法による電磁波検出の感度を大幅に高めることができ、高速マッピングにも対応が可能な電磁波検出方法及び電磁波検出装置の提供を目的とする。   The present invention was made for the purpose of rapidly expanding the use of the EO sampling method, and can greatly increase the sensitivity of electromagnetic wave detection by the conventional EO sampling method at a simple and inexpensive cost, and can also be used for high-speed mapping. An object of the present invention is to provide a possible electromagnetic wave detection method and an electromagnetic wave detection device.

上記した従来のEOサンプリング法による電磁波検出装置では、λ/4波長板12によって直交する二つの偏光成分に位相差(光路差)を設けて検出光の偏光状態の変更を行っている。λ/4波長板12から出射される検出光は円偏光に近い状態に変換され、偏光子によって分離される縦方向の偏光成分と横方向の偏光成分を差分検出することで電磁波の電界に比例した信号を得ている。
この従来法によるEOサンプリングにおける信号強度(検出光の偏光変調度)σは、前記二方向の偏光成分における円偏光からのずれによる強度差をΔI、前記検出光の総強度をIとすると、σ=ΔI/Iと表すことができるが、この式は電気光学効果によって誘起される位相変化ΔΓ=ΔI/Iに対応している。
In the electromagnetic wave detection apparatus using the conventional EO sampling method described above, the polarization state of the detection light is changed by providing a phase difference (optical path difference) between two orthogonal polarization components by the λ / 4 wavelength plate 12. The detection light emitted from the λ / 4 wavelength plate 12 is converted to a state close to circularly polarized light, and is proportional to the electric field of the electromagnetic wave by detecting the difference between the longitudinal polarization component and the lateral polarization component separated by the polarizer. Getting the signal.
The signal intensity (polarization modulation degree of detection light) σ in the EO sampling according to this conventional method is expressed as follows: ΔI is an intensity difference due to deviation from the circularly polarized light in the polarization components in the two directions, and I 0 is the total intensity of the detection light. Although it can be expressed as σ = ΔI / I 0 , this equation corresponds to the phase change ΔΓ = ΔI / I 0 induced by the electro-optic effect.

具体的には、光検出器で検出される縦方向の偏光成分の光強度をIv、同横方向の偏光成分の光強度をIhとしたとき、信号強度σは(Iv−Ih)/(Iv+Ih)=ΔI/I=ΔΓで表すことができる。電気光学結晶を透過した直後の検出光の縦方向の偏光成分は、横方向の偏光成分よりもかなり大きいが、電気光学効果による信号は主に横方向の偏光成分に含まれている。そこで電気光学結晶を透過した直後の横方向の偏光成分と縦方向の偏光成分の比率を制御することができれば、信号強度σを増大させることができると期待できる。検出光の偏光制御によるEO信号強度σの変化率をαとしたときのEOサンプリングにおける信号強度を表す式を以下に示す。 Specifically, the signal intensity σ is (Iv−Ih) / (Iv + Ih) where Iv is the light intensity of the polarization component in the vertical direction detected by the photodetector and Ih is the light intensity of the polarization component in the horizontal direction. ) = ΔI / I 0 = ΔΓ. The longitudinal polarization component of the detection light immediately after passing through the electro-optic crystal is considerably larger than the lateral polarization component, but the signal due to the electro-optic effect is mainly contained in the lateral polarization component. Therefore, it can be expected that the signal intensity σ can be increased if the ratio between the lateral polarization component and the longitudinal polarization component immediately after passing through the electro-optic crystal can be controlled. An expression representing the signal intensity in EO sampling when the change rate of the EO signal intensity σ by the polarization control of the detection light is α is shown below.

Figure 2019152501
Figure 2019152501

この式から、係数αが1より大きくなるように偏光制御を行えば、信号強度σをα倍に増大できることがわかる。   From this equation, it can be seen that if the polarization control is performed so that the coefficient α is larger than 1, the signal intensity σ can be increased α times.

具体的に本発明の電磁波検出方法は、請求項1に記載するように、EOサンプリング法を利用して異なる二つの偏光成分の検出光を検出する電磁波検出方法において、前記検出光の偏光状態を表す偏光状態式の一部に係数βを挿入することで、前記検出光の信号強度がα(=1/β、β<1)倍となる前記偏光状態式の構成部分を求め、当該構成部分に相当する前記偏光成分を振幅でβ倍に変換するように偏光制御を行う構成としてある。   Specifically, the electromagnetic wave detection method according to the present invention is an electromagnetic wave detection method for detecting detection light of two different polarization components using an EO sampling method as described in claim 1, wherein the polarization state of the detection light is changed. By inserting a coefficient β into a part of the polarization state expression to be expressed, a component part of the polarization state expression in which the signal intensity of the detection light is α (= 1 / β, β <1) times is obtained, and the component part The polarization control is performed so that the polarization component corresponding to is converted to β times in amplitude.

電気光学結晶に入射された電磁波は楕円偏光の検出光として出射されるが、このような楕円偏光の検出光の縦方向の偏光成分は横方向の偏光成分よりかなり大きなものとなる。このような楕円偏光においては、請求項2に記載するように長軸側の偏光成分をβ倍に変換(減衰)することで、信号強度を1/β倍に増強することができる。   The electromagnetic wave incident on the electro-optic crystal is emitted as elliptically-polarized detection light, and the longitudinal polarization component of such elliptically-polarized detection light is considerably larger than the lateral polarization component. In such elliptically polarized light, the signal intensity can be enhanced to 1 / β times by converting (attenuating) the polarization component on the long axis side to β times as described in claim 2.

本発明は、検出光に含まれる和周波発生光成分と差周波発生光成分を空間的に分離し、もとの検出光成分との干渉効果を利用して電磁波検出を行うヘテロダイン形のEOサンプリング検出法にも同様に適用が可能である。すなわち、請求項3に記載するように、前記検出光を直交する二方向の偏光成分とした後、長軸側の偏光成分を減衰させ、和周波発生(SFG)光成分および差周波発生(DFG)光成分を含んだ短軸側の偏光成分について、前記検出光の信号強度が1/β(β=sinθ/cosθ:ここでθはあとで示す実施形態において、電気光学結晶に入射する際の検出光(プローブ光)の縦偏光からの傾き角である。)倍となるように偏光制御すればよい。
なお、前記偏光制御は、例えば請求項4に記載するように光学フィルタを用いて行うことができる。
前記係数βの値を小さくするほど信号強度を増強することができる。しかし、前記係数βの値が小さすぎるとノイズが大きくなって却って検出精度を低下させることから、請求項5に示すように、検出光の電界振幅をEとしたときの前記検出光の強度(|Eβ)がノイズ強度よりも大きい範囲内で前記係数βの値を決定するとよい。
The present invention spatially separates a sum frequency generation light component and a difference frequency generation light component contained in detection light, and performs heterodyne-type EO sampling that detects electromagnetic waves using an interference effect with the original detection light component. The same applies to the detection method. That is, as described in claim 3, after making the detection light into two orthogonal polarization components, the major axis polarization component is attenuated to generate a sum frequency generation (SFG) light component and a difference frequency generation (DFG). ) For the polarization component on the short axis side including the light component, the signal intensity of the detection light is 1 / β (β = sin θ / cos θ: where θ is the incident light incident on the electro-optic crystal in the embodiment described later. (The tilt angle of the detection light (probe light) from the longitudinal polarization.) The polarization may be controlled so as to be doubled.
The polarization control can be performed using an optical filter as described in claim 4, for example.
The signal intensity can be increased as the value of the coefficient β is decreased. However, if the value of the coefficient β is too small, noise will increase and the detection accuracy will be lowered. Therefore, as shown in claim 5, the intensity of the detection light when the electric field amplitude of the detection light is E 0. The value of the coefficient β may be determined within a range where (| E 0 | 2 β 2 ) is larger than the noise intensity.

上記の本発明の電磁波検出方法を利用した電磁波検出装置は、請求項6に記載するように、EOサンプリング法を利用して、異なる二つの偏光成分の検出光を検出する電磁波検出装置において、前記偏光成分のうち、長軸側の前記偏光成分を減衰させる偏光制御手段を、電気光学結晶の後に配置した構成としてある。前記偏光制御手段は、前記電気光学結晶から出射された前記検出光の楕円偏光のうち、長軸側の偏光成分を減衰させるものであってもよい。前記偏光制御手段としては前記長軸側の偏光成分を減衰させる光学フィルタを用いることができる。   The electromagnetic wave detection apparatus using the electromagnetic wave detection method of the present invention described above is an electromagnetic wave detection apparatus that detects detection light of two different polarization components using an EO sampling method, as described in claim 6, Of the polarization components, the polarization control means for attenuating the polarization component on the long axis side is arranged after the electro-optic crystal. The polarization control unit may attenuate a polarization component on the long axis side of the elliptically polarized light of the detection light emitted from the electro-optic crystal. As the polarization control means, an optical filter that attenuates the polarization component on the long axis side can be used.

本発明の電磁波検出装置は、電磁波を和周波発生光成分と差周波発生光成分を空間的に分離し、もとの検出光(プローブ光)成分との干渉効果を利用して検出を行うヘテロダイン形のEOサンプリング検出法にも適用が可能で、この場合前記偏光制御手段は、前記電気光学結晶から出射された前記検出光の偏光成分のうち、長軸側の偏光成分を減衰させ、和周波発生(SFG)光成分および差周波発生(DFG)光成分を含んだ短軸側の偏光成分を透過させるものとすればよい。
なお、本発明において用語「減衰」には、長軸側の偏光成分を完全に除去(カット)する場合も含まれる。
The electromagnetic wave detection apparatus of the present invention is a heterodyne that detects an electromagnetic wave by spatially separating a sum frequency generated light component and a difference frequency generated light component and utilizing an interference effect with the original detected light (probe light) component. In this case, the polarization control means attenuates the polarization component on the long axis side among the polarization components of the detection light emitted from the electro-optic crystal, and produces a sum frequency. The polarization component on the short axis side including the generated (SFG) light component and the difference frequency generated (DFG) light component may be transmitted.
In the present invention, the term “attenuation” includes a case where the polarization component on the long axis side is completely removed (cut).

本発明は上記のように構成されているので、検出光の直交する二方向の偏光成分のうちの一方について、当該偏光成分を相対的に減衰等させる制御を行うだけで感度を高めることができる。また、偏光制御手段として光学フィルタを用いることができ、既存の電磁波検出装置に市販の光学フィルタを挿入するだけで電磁波検出の感度を高めることができる。さらに、SN比との関係で減衰率には一定の制限があるものの、感度を飛躍的に高めることができるため電磁波検出信号の高速マッピングも可能になり、空港やイベント会場、会議場など人の集まる施設での手荷物や入場者の全身の透視検査など、適用範囲を広範に拡げることが可能になる。   Since the present invention is configured as described above, the sensitivity of one of the two orthogonal polarization components of the detection light can be increased by simply performing control such as relatively attenuating the polarization component. . Moreover, an optical filter can be used as the polarization control means, and the sensitivity of electromagnetic wave detection can be increased by simply inserting a commercially available optical filter into an existing electromagnetic wave detection device. Furthermore, although there is a certain limit on the attenuation rate in relation to the signal-to-noise ratio, the sensitivity can be dramatically increased, which enables high-speed mapping of electromagnetic wave detection signals, enabling people at airports, event venues, conference halls, etc. It will be possible to broaden the scope of application, such as baggage at facilities where people gather and fluoroscopy of the whole body of visitors.

以下、本発明の電磁波測定方法の好適な実施形態を詳細に説明する。
[本発明の原理]
電気光学結晶11(図7参照)に電磁波(THz波)とプローブ光(通常100fs程度の幅を持つ可視、近赤外域のパルス光)が入射すると、電磁波による電界が電気光学結晶中に非等方的な屈折率変化(複屈折)Δnを誘起する。このとき、電気光学結晶11中の伝搬距離をL、電気光学結晶11から出射される検出光の波長をλとすると、位相差ΔΓは、以下の式で表される。
Hereinafter, preferred embodiments of the electromagnetic wave measurement method of the present invention will be described in detail.
[Principle of the present invention]
When electromagnetic waves (THz waves) and probe light (visible, near-infrared pulsed light having a width of about 100 fs) are incident on the electro-optic crystal 11 (see FIG. 7), the electric field due to the electromagnetic waves is unequal in the electro-optic crystal. Induced refractive index change (birefringence) Δn. At this time, when the propagation distance in the electro-optic crystal 11 is L and the wavelength of the detection light emitted from the electro-optic crystal 11 is λ, the phase difference ΔΓ is expressed by the following equation.

Figure 2019152501
Figure 2019152501

この位相差ΔΓは通常は非常に小さく、電気光学結晶11から出射される検出光はごくわずかに楕円偏光(長軸は垂直方向)となるが、直線偏光に近い偏光状態である。この状態の検出光が1/4λ板を透過すると、検出光はほぼ円偏光となる。
ここで、縦方向の偏光成分の強度をIv、横方向の偏光成分の強度をIh、偏光を分離する前の検出光の強度をIとすると、それぞれは以下の式で与えられる。
This phase difference ΔΓ is usually very small, and the detection light emitted from the electro-optic crystal 11 is very slightly elliptically polarized (long axis is the vertical direction), but in a polarization state close to linearly polarized light. When the detection light in this state is transmitted through the ¼λ plate, the detection light is substantially circularly polarized.
Here, assuming that the intensity of the polarization component in the vertical direction is Iv, the intensity of the polarization component in the horizontal direction is Ih, and the intensity of the detection light before separating the polarization is I 0 , each is given by the following equations.

Figure 2019152501
Figure 2019152501

Figure 2019152501
Figure 2019152501

なお式3および式4において、最終項のΔΓ/2は、ΔΓが十分に小さいために、sinΔΓ/2を近似したものである。円偏光からのずれΔIは、縦偏光と横偏光の強度IvとIhの差Iv−Ihで与えられ、式3および式4を用いると   In Equations 3 and 4, ΔΓ / 2 in the final term approximates sin ΔΓ / 2 because ΔΓ is sufficiently small. The deviation ΔI from the circularly polarized light is given by the difference Iv−Ih between the longitudinally polarized light and the horizontally polarized light intensity Iv and Ih.

Figure 2019152501
Figure 2019152501

すなわち、 That is,

Figure 2019152501
Figure 2019152501

を得る。このことから、EOサンプリングの信号強度は、電磁波によって複屈折が誘起された結果生じる、直交する(この場合+/−45度)偏光成分間の位相差ΔΓに比例し、検出光のπ/2の位相バイアス後の円偏光からのずれに対応していることがわかる。
EOサンプリングの信号強度を高めるには、式6の分母のIを減衰させればよい。ただし、Iを減衰させればΔIも減衰することになる。そのため、ΔIの減衰率をIの減衰率よりも小さくして、EOサンプリングの信号強度ΔI/Iを効率よく増強させる必要がある。
Get. Thus, the signal intensity of EO sampling is proportional to the phase difference ΔΓ between orthogonal (in this case, +/− 45 degrees) polarization components generated as a result of induction of birefringence by electromagnetic waves, and π / 2 of the detection light. It can be seen that this corresponds to a deviation from circularly polarized light after the phase bias.
In order to increase the signal strength of EO sampling, I 0 in the denominator of Equation 6 may be attenuated. However, if I 0 is attenuated, ΔI is also attenuated. Therefore, it is necessary to efficiently increase the signal intensity ΔI / I 0 of EO sampling by making the attenuation rate of ΔI smaller than the attenuation rate of I 0 .

そこで本発明の発明者は、電気光学結晶から射出された直後の検出光を減衰させたあとの検出光強度をI′= β2とすることとした。すなわち、検出光の振幅をβ倍(検出光強度でβ2倍)に減衰させるようにする。このようにすると、ΔIも減衰するが、その減衰率をsとし、減衰後のΔIをΔI′とすると、ΔI′=sΔIと表され、このときのEOサンプリングの信号強度を表す式6は Therefore, the inventor of the present invention decided that the detected light intensity after attenuation of the detected light immediately after being emitted from the electro-optic crystal is I 0 ′ = β 2 I 0 . In other words, the amplitude of the detection light is attenuated by β times (β 2 times the detection light intensity). In this way, ΔI also attenuates, but when the attenuation rate is s and ΔI after attenuation is ΔI ′, ΔI ′ = sΔI, and Equation 6 representing the signal strength of EO sampling at this time is

Figure 2019152501
Figure 2019152501

と書き換えることができる。ここでα=s/β2とすると、α>1であれば信号強度は増強されることになる。この条件を満たすためにはs>β2(0≦β<1)であればよく、このとき分母Iを減衰させても分子ΔIは分母Iほどには減衰しないことになる。
このように検出光の偏光状態を制御することで、上記の式7を導出することができれば、EOサンプリングの信号強度を高めることができることになる。
Can be rewritten. Here, if α = s / β 2 , the signal intensity is enhanced if α> 1. In order to satisfy this condition, s> β 2 (0 ≦ β <1) may be satisfied. At this time, even if the denominator I 0 is attenuated, the numerator ΔI is not attenuated as much as the denominator I 0 .
By controlling the polarization state of the detection light in this way, if the above Equation 7 can be derived, the signal intensity of EO sampling can be increased.

この予測に基づき、電気光学結晶を透過した直後の検出光の偏光状態をどのように制御すれば、すなわち、偏光状態式のどの部分に係数βを挿入すれば式7のような結果を得ることができるかを求める。
電気光学結晶を透過した直後の検出光の偏光状態の式は、複屈折の長軸,短軸の方向がそれぞれ+45度、−45度であり、それぞれの位相差が+ΔΓ/2、−ΔΓ/2となることから、振幅をEとして以下の式で表すことができる。
Based on this prediction, how to control the polarization state of the detection light immediately after passing through the electro-optic crystal, that is, if the coefficient β is inserted into any part of the polarization state equation, the result shown in Equation 7 is obtained. Ask if you can.
The expression of the polarization state of the detection light immediately after passing through the electro-optic crystal is such that the major axis and minor axis directions of the birefringence are +45 degrees and −45 degrees, respectively, and the respective phase differences are + ΔΓ / 2, −ΔΓ / Therefore, the amplitude can be expressed by the following equation.

Figure 2019152501
Figure 2019152501

なお、式8において添え字は偏光成分の方向を示していて、添え字0は縦方向を、添え字90は横方向を示している。この式8から時間因子(exp(−iωt))を省略して書き換えると、   In Equation 8, the subscript indicates the direction of the polarization component, the subscript 0 indicates the vertical direction, and the subscript 90 indicates the horizontal direction. If the time factor (exp (−iωt)) is omitted from Equation 8,

Figure 2019152501
Figure 2019152501

となる。この式9では、縦方向の振幅がEcos(ΔΓ/2)、横方向の振幅が
90sin (ΔΓ/2)で、後者の位相が90度遅れて振動する楕円偏光であることを示している。
ここで今、式9の楕円偏光成分のうち、一方の構成部分(以下の例では長軸側である縦方向の偏光成分(添え字0の偏光成分))に係数βを挿入してみる。係数βの挿入により式9は以下のように書き換えることができる。

It becomes. In Equation 9, the vertical amplitude is E 0 cos (ΔΓ / 2), the horizontal amplitude is E 90 sin (ΔΓ / 2), and the latter phase is elliptically polarized light that oscillates with a delay of 90 degrees. Show.
Now, the coefficient β is inserted into one component of the elliptically polarized light component of Equation 9 (longitudinal polarized light component (polarized light component with subscript 0) in the following example). Equation 9 can be rewritten as follows by inserting the coefficient β.

Figure 2019152501
Figure 2019152501

ここでe+45とe−45は縦(鉛直)方向からそれぞれ+45度、−45度傾いた方向の単位ベクトルでeとe90の間には以下の関係がある。

Figure 2019152501
Here, e +45 and e −45 are unit vectors in directions inclined by +45 degrees and −45 degrees respectively from the vertical (vertical) direction, and there is the following relationship between e 0 and e 90 .
Figure 2019152501

式10にπ/2の位相バイアスを加え、-45度の偏光成分の位相を90度ずらすと、   When a phase bias of π / 2 is added to Equation 10 and the phase of the −45 degree polarization component is shifted by 90 degrees,

Figure 2019152501
Figure 2019152501

よって、   Therefore,

Figure 2019152501
Figure 2019152501

Figure 2019152501
Figure 2019152501

Figure 2019152501
Figure 2019152501

となる。これより、ΔIの減衰率s=βとなることが分かる。検出光の強度はI=E から、

Figure 2019152501
となるので、EOサンプリング信号は、 It becomes. From this, it can be seen that ΔI has an attenuation factor s = β. The intensity of the detection light is from I 0 = E 0 2
Figure 2019152501
Therefore, the EO sampling signal is

Figure 2019152501
Figure 2019152501

となる。
この式16は、EOサンプリングの信号強度を高めるための式7と比較するとα=1/βであることが分かる。このことから、電気光学結晶から出射された楕円偏光の検出光の偏光状態を表す偏光状態式のうち、一方の偏光成分を表す構成部分に係数βを挿入すれば、EOサンプリング信号の強度を増強できることがわかる。
ここで、EOサンプリング信号の強度を増強するには、係数βを1より小さく(β<1)する必要がある。すなわち式10の例に従えば、係数βを挿入する構成部分に相当するのは長軸側である縦方向の偏光成分であるから、縦方向の偏光成分を減衰させることで、EOサンプリング信号の強度を増強することができる。増強できる大きさは式7及び式15から1/β倍である。
It becomes.
This equation 16 is found to be α = 1 / β when compared with equation 7 for increasing the signal strength of EO sampling. Therefore, the intensity of the EO sampling signal can be increased by inserting a coefficient β into the component part representing one polarization component in the polarization state expression representing the polarization state of the elliptically-polarized detection light emitted from the electro-optic crystal. I understand that I can do it.
Here, in order to increase the intensity of the EO sampling signal, the coefficient β needs to be smaller than 1 (β <1). That is, according to the example of Equation 10, the component that inserts the coefficient β corresponds to the longitudinal polarization component on the long axis side. Therefore, by attenuating the polarization component in the longitudinal direction, the EO sampling signal Strength can be increased. The magnitude that can be increased is 1 / β times from Equation 7 and Equation 15.

なお、係数βを小さくすればするほど式15においてΔΓ/βの値は大きくなるが、実際には係数βを一定以下に小さくすると光強度が小さくなりすぎて、ノイズ成分が相対的に大きくなる。光学フィルタ等で減衰させたあとの検出光の強度|E β|がノイズ強度より小さくなるとSN比が劣化するので、電磁波照射部から出射された直後の検出光の強度、周波数、電気光学結晶の特性、λ/4波長板及び光学フィルタ等の性能などを総合的に勘案した上で、係数βの値を適切に選択する必要がある。 Note that the smaller the coefficient β, the larger the value of ΔΓ / β in Equation 15, but in practice, if the coefficient β is reduced below a certain value, the light intensity becomes too small and the noise component becomes relatively large. . When the intensity | E 0 2 β 2 | of the detection light attenuated by an optical filter or the like becomes smaller than the noise intensity, the SN ratio is deteriorated. Therefore, the intensity, frequency, and electricity of the detection light immediately after being emitted from the electromagnetic wave irradiation unit It is necessary to appropriately select the value of the coefficient β after comprehensively considering the characteristics of the optical crystal, the performance of the λ / 4 wavelength plate, the optical filter, and the like.

以下、この原理に基づく本発明の好適な実施形態を、図面を参照しながら詳細に説明する。
図1は、本発明の電磁波検出装置の具体的な装置構成を示す概略図、図2はその主要部の詳細を説明する概略図である。
図1に示すように、この実施形態の電磁波検出装置は、プローブ光を射出するフェムト秒レーザー装置24とプローブ光の偏光状態を制御する光学系23とを備えたプローブ光照射部と、プローブ光を射出するフェムト秒レーザー装置21(通常24と同一)とエミッタ22とを備えた、30GHzより大きく30THzより小さい周波数の電磁波を照射する電磁波照射部を有する。前記プローブ光照射部から照射されたプローブ光及び電磁波照射部から照射された電磁波(例えばTHz光)は、反射鏡25、凹面鏡27a、凹面鏡27bを経て光変調手段である電気光学結晶11に入射される。
なお、電気光学結晶11に入射される電磁波は、前記プローブ光照射部から照射されたプローブ光と電磁波照射部から照射されたTHz波などの電磁波とが結合されたものである。また電気光学結晶中で電気光学効果による変調をうけ、電気光学結晶11から出射されたプローブ光を、変調前のものと区別するため「検出光」と称するものとする。
Hereinafter, a preferred embodiment of the present invention based on this principle will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a specific device configuration of an electromagnetic wave detection device according to the present invention, and FIG. 2 is a schematic diagram illustrating details of a main part thereof.
As shown in FIG. 1, the electromagnetic wave detection apparatus of this embodiment includes a probe light irradiation unit including a femtosecond laser device 24 that emits probe light and an optical system 23 that controls the polarization state of the probe light, and probe light. An electromagnetic wave irradiation unit that emits an electromagnetic wave having a frequency larger than 30 GHz and smaller than 30 THz, and includes an emitter 22. The probe light irradiated from the probe light irradiation unit and the electromagnetic wave (for example, THz light) irradiated from the electromagnetic wave irradiation unit are incident on the electro-optic crystal 11 which is a light modulation unit through the reflecting mirror 25, the concave mirror 27a, and the concave mirror 27b. The
The electromagnetic wave incident on the electro-optic crystal 11 is a combination of the probe light irradiated from the probe light irradiation unit and the electromagnetic wave such as a THz wave irradiated from the electromagnetic wave irradiation unit. The probe light emitted from the electro-optic crystal 11 after being modulated by the electro-optic effect in the electro-optic crystal is referred to as “detection light” to distinguish it from the light before modulation.

上記の式10に基づき、図2に示すように、入射された電磁波を楕円偏光の検出光として出射する電気光学結晶11の直後であって、λ/4波長板12の手前に、前記楕円偏光のうち長軸側の偏光成分を減衰させる偏光制御手段としての光学フィルタ15を配置する。この光学フィルタ15は、長軸側の偏光成分(この実施形態では縦方向の偏光成分)を係数βだけ減衰させ、これと直交する短軸側の偏光成分についてはそのまま透過させるものである。
この光学フィルタ15を利用して、長軸側の偏光成分の振幅を例えば1/10(係数β=1/10)に減衰させると、式16にしたがって光検出器14で検出されるEOサンプリングの信号の強度は約10倍に増強されることになる。
但し、係数βを小さくしすぎるとプロ―プ光の強度が小さくなりすぎて、ノイズ成分が相対的に大きくなる。すなわち、縦方向の偏光成分を減衰したあとの電磁波の強度|Eβがノイズ強度より小さくなるとSN比が劣化するので、|Eβがノイズ強度以下にならないように係数βを選択するのが好ましい。係数βは1/100〜50/100を目安とすることができる。
Based on the above equation 10, as shown in FIG. Among them, an optical filter 15 is disposed as a polarization control means for attenuating the polarization component on the long axis side. This optical filter 15 attenuates the polarization component on the long axis side (vertical polarization component in this embodiment) by a coefficient β, and transmits the polarization component on the short axis side orthogonal to this as it is.
When the amplitude of the polarization component on the long axis side is attenuated to, for example, 1/10 (coefficient β = 1/10) by using this optical filter 15, the EO sampling detected by the photodetector 14 according to Equation 16 is performed. The intensity of the signal will be enhanced about 10 times.
However, if the coefficient β is too small, the intensity of the probe light becomes too small and the noise component becomes relatively large. That is, if the intensity | E 0 | 2 β 2 of the electromagnetic wave after attenuation of the polarization component in the vertical direction becomes smaller than the noise intensity, the SN ratio deteriorates, so that | E 0 | 2 β 2 does not become less than the noise intensity. The coefficient β is preferably selected. The coefficient β can be 1/100 to 50/100.

[実験1]
本発明の効果を実証するべく、本発明の発明者は電気光学結晶11として厚さ1mmの(001)面カットZnTe結晶を用い、周波数帯30GHz〜4THz、検出光の強度減衰率β=5%(β=0.22)として図1の装置で実験を行った。その結果を図3のグラフに示す。
図3(a)は信号強度のプローブ光の遅延時間を変化させたときの変位、すなわちTHz波の時間波形を示すグラフ、(b)はそれをフーリエ変換した信号強度と周波数との関係、すなわちパワースペクトルを示すグラフである。
図3(a)(b)のグラフでは、光学フィルタ15を設ける前を破線で、設けた後を実線で表している。図3(a)のグラフから、信号強度は光学フィルタ15を設ける前後で約2.5倍に増強されていることがわかる(なお、理論から期待される増強率は約4.5倍である)。また、図3(b)のグラフから、実験を行った周波数帯の全範囲で信号の増強が確認できた。
実験で用いた電磁波の周波数帯は30GHz〜4THzの範囲であるが、本発明は30THz程度の周波数までは好適に適用することができる。
[Experiment 1]
In order to verify the effect of the present invention, the inventor of the present invention uses a (001) plane-cut ZnTe crystal having a thickness of 1 mm as the electro-optic crystal 11, a frequency band of 30 GHz to 4 THz, and an intensity attenuation rate of detection light β 2 = 5 % (Β = 0.22) was used for the experiment in the apparatus of FIG. The result is shown in the graph of FIG.
FIG. 3A is a graph showing a displacement when the delay time of the probe light of the signal intensity is changed, that is, a time waveform of the THz wave, and FIG. 3B is a relationship between the signal intensity and the frequency obtained by Fourier transforming it, that is, It is a graph which shows a power spectrum.
In the graphs of FIGS. 3A and 3B, the optical filter 15 before being provided is indicated by a broken line, and after the optical filter 15 is provided by a solid line. From the graph of FIG. 3A, it can be seen that the signal intensity is enhanced about 2.5 times before and after the optical filter 15 is provided (the enhancement rate expected from the theory is about 4.5 times). ). Further, from the graph of FIG. 3B, signal enhancement could be confirmed over the entire frequency band in which the experiment was performed.
The frequency band of the electromagnetic wave used in the experiment is in the range of 30 GHz to 4 THz, but the present invention can be suitably applied up to a frequency of about 30 THz.

[他の実施形態]
本発明は、ヘテロダインEOサンプリング検出系にも同様に適用が可能である。
ヘテロダインEOサンプリング法は、THz波等の電磁波とプローブ光の電気光学結晶11内での非線形相互作用により生じた和周波発生(SFG)光および差周波発生(DFG)光が、もとのプローブ光と光波干渉することで検出光の強度変調を直接的に検出する手法である。
[Other Embodiments]
The present invention can be similarly applied to a heterodyne EO sampling detection system.
In the heterodyne EO sampling method, the sum frequency generation (SFG) light and the difference frequency generation (DFG) light generated by the nonlinear interaction in the electro-optic crystal 11 of the electromagnetic wave such as THz wave and the probe light are converted into the original probe light. In this method, the intensity modulation of the detection light is directly detected by the light wave interference.

ヘテロダインEOサンプリングで、電磁波照射部から照射された電磁波はプローブ光照射部から照射されたプローブ光に対して非共軸に電気光学結晶11に入射し、波数ベクトルの位相整合条件の違いから、和周波発生(SFG)光と差周波発生(DFG)光が、検出光(電気光学結晶11から出射され光検出器14で検出される電磁波を「検出光」と記載する)の中心軸に対して互いに反対方向に電気光学結晶11から出射される。またSFG光とDFG光の位相は反転しており、もとのプローブ光との干渉による強度変調は、互いに極性が反転する。この性質を利用して、SFG光とDFG光のヘテロダインEOサンプリングによる検出光の変調を検出器14で検出する。
電気光学結晶11に入射させるプローブ光は縦偏光からわずかに偏光方向に傾け(傾斜させる角度θとしては0.5〜5°程度が目安である)、縦方向の偏光成分Ecosθ(主たる偏光成分)とごく小さな横方向の偏光成分Esinθを持たせるようにする。
ここで、入射検出光の振幅をE0,その強度をI0=| E0|2,電磁波(THz光)とプローブ光の相互作用で発生するSFG光およびDFG光の振幅をESFG/DFGとすると、ヘテロダインEOサンプリング信号は次の式であらわされる。
In the heterodyne EO sampling, the electromagnetic wave irradiated from the electromagnetic wave irradiation unit is incident on the electro-optic crystal 11 non-coaxially with respect to the probe light irradiated from the probe light irradiation unit. Frequency generation (SFG) light and difference frequency generation (DFG) light are detected with respect to the central axis of detection light (an electromagnetic wave emitted from the electro-optic crystal 11 and detected by the photodetector 14 is referred to as “detection light”). The light is emitted from the electro-optic crystal 11 in opposite directions. In addition, the phases of the SFG light and the DFG light are reversed, and the polarity of the intensity modulation due to the interference with the original probe light is reversed. Using this property, the detector 14 detects the modulation of the detection light by the heterodyne EO sampling of the SFG light and the DFG light.
The probe light incident on the electro-optic crystal 11 is slightly tilted in the polarization direction from the vertically polarized light (the tilt angle θ is about 0.5 to 5 ° as a guide), and the vertically polarized component E 0 cos θ (main polarized light) Component) and a very small transverse polarization component E 0 sin θ.
Here, the amplitude of incident detection light is E 0 , its intensity is I 0 = | E 0 | 2 , and the amplitudes of SFG light and DFG light generated by the interaction of electromagnetic waves (THz light) and probe light are E SFG / DFG Then, the heterodyne EO sampling signal is expressed by the following equation.

Figure 2019152501
Figure 2019152501

式17において、noptはEO結晶の検出光に対する屈折率,rijはEO係数,ωoptは電磁波の角周波数,Lは相互作用長(EO結晶の厚さ),ETHzは電磁波の振幅,Im[g(ΔkL)]は位相不整合因子である。
この実施形態では、式17の右辺の分母にsinθ、分子にcosθを挿入する。これは電気光学結晶に入射するプローブ光を縦偏光からθだけ傾けたことにより、分母のSFG光およびDFG光と干渉するプローブ光の横偏光振幅がcosθ倍、SFG光およびDFG光の振幅がsinθ倍されることに対応する。この結果、式17は、
In Equation 17, n opt is the refractive index of the detection light of the EO crystal, r ij is the EO coefficient, ω opt is the angular frequency of the electromagnetic wave, L is the interaction length (the thickness of the EO crystal), E THz is the amplitude of the electromagnetic wave, Im [g (ΔkL)] is a phase mismatch factor.
In this embodiment, sin θ is inserted into the denominator on the right side of Equation 17 and cos θ is inserted into the numerator. This is because the probe light incident on the electro-optic crystal is tilted by θ from the longitudinal polarization, so that the transverse polarization amplitude of the probe light that interferes with the denominator SFG light and DFG light is cos θ times, and the amplitude of the SFG light and DFG light is sin θ. Corresponds to being doubled. As a result, Equation 17 becomes

Figure 2019152501
Figure 2019152501

となり、この式18の右辺を、β=sinθ/cosθとして書き換えると、   When the right side of Equation 18 is rewritten as β = sin θ / cos θ,

Figure 2019152501
Figure 2019152501

となる。この式19は、先の実施形態の式16と同じ形となり、プローブ光の偏光制御に対応した係数βを挿入する前と後では、EOサンプリング信号の強度が1/β(β<1)倍だけ増強されることになる。
図4は、本発明の第二の実施形態にかかる電磁波検出装置の具体的な装置構成を示す概略図、図5は図4の装置の主要部の詳細を説明する概略図である。
この実施形態のヘテロダインEOサンプリング検出系では、プローブ光をわずかな角度θだけ傾ける光学フィルタ(例えばλ/2波長板)16を、電気光学結晶11の前に配置する。そして、電気光学結晶11から出射された検出光の偏光成分のうち縦方向の偏光成分をカットする光学フィルタ15を電気光学結晶11の直後に配置する。これにより残った横方向の偏光成分は、SFG光およびDFG光と干渉して変調される。
It becomes. This equation 19 has the same form as equation 16 in the previous embodiment, and the intensity of the EO sampling signal is 1 / β (β <1) times before and after inserting the coefficient β corresponding to the polarization control of the probe light. Only will be strengthened.
FIG. 4 is a schematic diagram illustrating a specific device configuration of the electromagnetic wave detection device according to the second embodiment of the present invention, and FIG. 5 is a schematic diagram illustrating details of a main part of the device of FIG.
In the heterodyne EO sampling detection system of this embodiment, an optical filter (for example, a λ / 2 wavelength plate) 16 that tilts the probe light by a slight angle θ is disposed in front of the electro-optic crystal 11. Then, an optical filter 15 that cuts the longitudinal polarization component of the polarization components of the detection light emitted from the electro-optic crystal 11 is disposed immediately after the electro-optic crystal 11. Thus, the remaining lateral polarization component is modulated by interference with the SFG light and the DFG light.

ヘテロダインEOサンプリングにおいては、偏光制御により検出光の縦偏光からの傾きθを小さくすればするほど、1/βの値が大きくなり、信号の増倍率は上がることになる。
しかし、θを小さくしすぎると縦偏光成分をカットされたあとのプロ―プ光強度が小さくなりすぎて、相対的にノイズ成分が大きくなる。したがって、縦方向の偏光成分をカットしたあとの検出光の強度|Eβ(ただしcosθ≒1のときβ≒sinθであるから、この式は|Esinθと等価)がノイズ強度より小さくなると、SN比が劣化するので、θは、 横方向の偏光成分の強度|Esinθがノイズ強度と同程度になる値以下には小さくしないことが好ましい。
In heterodyne EO sampling, the value of 1 / β increases and the signal multiplication factor increases as the inclination θ from the longitudinal polarization of the detection light is reduced by polarization control.
However, if θ is made too small, the intensity of the probe light after the longitudinally polarized light component is cut becomes too small, and the noise component becomes relatively large. Therefore, the intensity of the detected light after cutting the polarization component in the vertical direction | E 0 | 2 β 2 (where β 2 ≈sin θ 2 when cos θ≈1, this equation is expressed as | E 0 | 2 sinθ 2 If (equivalent) becomes smaller than the noise intensity, the SN ratio deteriorates. Therefore, it is preferable not to reduce θ below the value at which the intensity | E 0 | 2 sinθ 2 of the polarization component in the horizontal direction becomes comparable to the noise intensity. .

[実験2]
この第二の実施形態について、実験1と同様に実験を行った。θを2.8°及びθ=0.87°とし、周波数帯30GHz〜4THzとして、図4の装置で実験を行った。その結果を図6のグラフに示す。
図6(a)は信号強度のプローブ光の遅延時間を変化させたときの変位、すなわちTHz波の時間波形を示すグラフ、(b)はそれをフーリエ変換した信号強度と周波数との関係、すなわちパワースペクトルを示すグラフである。
図6(a)(b)のグラフでは、光学フィルタ15を設ける前を破線で、設けた後を実線(θ=2.8°)及び一点鎖線(θ=0.87°)で表している。
図6(a)のグラフから、信号強度は光学フィルタ15を設ける前後でそれぞれ約20倍(θ=2.8°)及び66倍(θ=0.87°)に増強されていることがわかる。また、図6(b)のグラフから、実験を行った周波数帯の全範囲で信号の増強が確認できた。
しかし、θ=0.87°(一点鎖線)の場合はSN比が劣化し、実用的な結果は得られなかった。
[Experiment 2]
About this 2nd embodiment, it experimented similarly to the experiment 1. FIG. Experiments were performed using the apparatus shown in FIG. 4 with θ of 2.8 ° and θ = 0.87 °, and a frequency band of 30 GHz to 4 THz. The result is shown in the graph of FIG.
FIG. 6A is a graph showing the displacement when the delay time of the probe light of the signal intensity is changed, that is, the time waveform of the THz wave, and FIG. 6B is the relationship between the signal intensity and the frequency obtained by Fourier transforming it, that is, It is a graph which shows a power spectrum.
In the graphs of FIGS. 6A and 6B, the optical filter 15 is provided with a broken line before being provided, and the solid line (θ = 2.8 °) and the dashed line (θ = 0.87 °) after being provided. .
From the graph of FIG. 6A, it can be seen that the signal intensity is enhanced by about 20 times (θ = 2.8 °) and 66 times (θ = 0.87 °) before and after the optical filter 15 is provided. . Further, from the graph of FIG. 6 (b), it was confirmed that the signal was enhanced over the entire frequency band in which the experiment was performed.
However, in the case of θ = 0.87 ° (one-dot chain line), the SN ratio deteriorated, and practical results could not be obtained.

本発明の好適な実施形態について説明したが、本発明は上記の説明に限定されるものではない。
例えば、上記の説明で偏光制御手段の一例として光学フィルタ15を挙げたが、同様の作用を奏するのであれば他の手段を用いてもよい。
また、検出光の偏光状態を示す偏光状態式(例えば式10)においては、一つの構成部分に係数βを挿入し、他の構成部分には係数「1」を挿入していると解釈することができる。すなわち、係数βは他の構成部分の係数との関係で相対的なものであり、他の構成部分に1以外の係数(τ,τ・・・)を挿入することも可能である。例えば、上記の実施形態に従えば、式12の偏光状態式において短軸側の構成部分に係数τ(>1)を挿入して横方向の偏光成分を増幅すれば、相対的に長軸側の縦方向の偏光成分が減衰されることになり、式17と同じ結果を得ることができる。このように、他の構成部分に別の係数τ,τ・・・を挿入する場合は、これら係数τ,τ・・・との関係で相対的にβ<1となる係数τ,τ・・・及び係数βを選択すればよい。
Although a preferred embodiment of the present invention has been described, the present invention is not limited to the above description.
For example, the optical filter 15 has been described as an example of the polarization control means in the above description, but other means may be used as long as the same effect is obtained.
Further, in the polarization state equation (for example, Equation 10) indicating the polarization state of the detection light, it is interpreted that the coefficient β is inserted into one component and the coefficient “1” is inserted into the other component. Can do. That is, the coefficient β is relative in relation to the coefficients of other constituent parts, and it is possible to insert coefficients (τ 1 , τ 2 ...) Other than 1 into other constituent parts. For example, according to the above-described embodiment, if the lateral polarization component is amplified by inserting the coefficient τ 1 (> 1) into the constituent part on the short axis side in the polarization state formula of Expression 12, the relatively long axis The polarization component in the vertical direction on the side is attenuated, and the same result as Expression 17 can be obtained. As described above, when other coefficients τ 1 , τ 2, ... Are inserted into other components, a coefficient τ that satisfies β <1 in relation to these coefficients τ 1 , τ 2 ,. 1 , τ 2 ... And coefficient β may be selected.

本発明の電磁波検出装置及び電磁波検出方法は、ミリ波帯やギガヘルツ波帯の周波数帯でも適用が可能であるが、特に周波数30GHz〜30THz(波長10mm〜10μm)のテラヘルツ波帯での適用が好ましく、原理的には30THzを越える周波数帯の電磁波検出にも適用が可能である。
また、本発明の電磁波検出装置及び電磁波検出方法は、各種センシング装置やイメージング装置などに適用が可能である。
The electromagnetic wave detection device and electromagnetic wave detection method of the present invention can be applied even in the frequency band of millimeter wave band or gigahertz wave band, but is particularly preferably applied in the terahertz wave band of frequency 30 GHz to 30 THz (wavelength 10 mm to 10 μm). In principle, it can also be applied to electromagnetic wave detection in a frequency band exceeding 30 THz.
In addition, the electromagnetic wave detection device and the electromagnetic wave detection method of the present invention can be applied to various sensing devices and imaging devices.

本発明の電磁波検出装置の具体的な装置構成を示す概略図である。It is the schematic which shows the specific apparatus structure of the electromagnetic wave detection apparatus of this invention. 図1の装置の主要部の詳細を説明する概略図である。It is the schematic explaining the detail of the principal part of the apparatus of FIG. 第一の実施形態の電磁波検出装置の効果を説明するグラフで、図3(a)は信号強度のプローブ光の遅延時間を変化させたときの変位、すなわちTHz波の時間波形を示すグラフ、(b)はそれをフーリエ変換した信号強度と周波数との関係、すなわちパワースペクトルを示すグラフである。FIG. 3A is a graph for explaining the effect of the electromagnetic wave detection device of the first embodiment, and FIG. 3A is a graph showing a displacement when the delay time of the probe light of the signal intensity is changed, that is, a time waveform of a THz wave. b) is a graph showing the relationship between the signal intensity and frequency obtained by Fourier transform, that is, the power spectrum. 本発明の第二の実施形態にかかる電磁波検出装置の具体的な装置構成を示す概略図である。It is the schematic which shows the specific apparatus structure of the electromagnetic wave detection apparatus concerning 2nd embodiment of this invention. 図4の装置の主要部の詳細を説明する概略図である。It is the schematic explaining the detail of the principal part of the apparatus of FIG. 第二の実施形態の電磁波検出装置の効果を説明するグラフで、図6(a)は信号強度のプローブ光の遅延時間を変化させたときの変位、すなわちTHz波の時間波形を示すグラフ、(b)はそれをフーリエ変換した信号強度と周波数との関係、すなわちパワースペクトルを示すグラフである。FIG. 6A is a graph for explaining the effect of the electromagnetic wave detection device according to the second embodiment. FIG. 6A is a graph showing a displacement when the delay time of the probe light of the signal intensity is changed, that is, a time waveform of a THz wave. b) is a graph showing the relationship between the signal intensity and frequency obtained by Fourier transform, that is, the power spectrum. 本発明の従来例にかかり、EOサンプリング検出を行う電磁波検出装置の一例を示す概略図である。It is the schematic which shows an example of the electromagnetic wave detection apparatus concerning the prior art example of this invention which performs EO sampling detection.

11 電気光学結晶
12 λ/4波長板
13 偏光子
14 光検出器
15 光学フィルタ
16 光学フィルタ(λ/2波長板)
21 フェムト秒レーザー装置
22 エミッタ
23 レンズ
24 フェムト秒レーザー装置
25 反射鏡
11 Electro-optic crystal 12 λ / 4 wavelength plate 13 Polarizer 14 Photo detector 15 Optical filter 16 Optical filter (λ / 2 wavelength plate)
21 Femtosecond laser device 22 Emitter 23 Lens 24 Femtosecond laser device 25 Reflector

Claims (6)

EOサンプリング法を利用して異なる二つの偏光成分の検出光を検出する電磁波検出方法において、
前記検出光の偏光状態を表す偏光状態式の一部に係数βを挿入することで、前記検出光の信号強度が1/β(β<1)倍となる前記偏光状態式の構成部分を求め、
当該構成部分に相当する前記偏光成分をβ倍に変換するように偏光制御を行うこと、
を特徴とする電磁波検出方法。
In an electromagnetic wave detection method for detecting detection light of two different polarization components using an EO sampling method,
By inserting a coefficient β into a part of the polarization state expression representing the polarization state of the detection light, a component part of the polarization state expression in which the signal intensity of the detection light is 1 / β (β <1) times is obtained. ,
Performing polarization control so as to convert the polarization component corresponding to the component to β times,
An electromagnetic wave detection method characterized by the above.
請求項1に記載の電磁波検出方法において、前記検出光を楕円偏光とした後、前記楕円偏光のうち長軸側の偏光成分をβ倍に偏光制御すること、
を特徴とする電磁波検出方法。
The electromagnetic wave detection method according to claim 1, wherein after the detection light is elliptically polarized, the polarization component on the long axis side of the elliptically polarized light is controlled to be polarized by a factor of β.
An electromagnetic wave detection method characterized by the above.
請求項1に記載の電磁波検出方法において、前記検出光を直交する二方向の偏光成分とした後、長軸側の偏光成分を減衰させ、和周波発生(SFG)成分および差周波発生(DFG)成分を含んだ短軸側の偏光成分について、前記検出光の信号強度が1/β(β=sinθ/cosθ)倍となるように偏光制御したことを特徴とする電磁波検出方法。 2. The electromagnetic wave detection method according to claim 1, wherein after the detection light is made into two orthogonal polarization components, the polarization component on the long axis side is attenuated to generate a sum frequency generation (SFG) component and a difference frequency generation (DFG). A method of detecting an electromagnetic wave, wherein polarization of a short-axis side polarization component including a component is controlled so that a signal intensity of the detection light is 1 / β (β = sin θ / cos θ) times. 前記偏光制御を、光学フィルタを透過させることによって行うことを特徴とする請求項1〜3のいずれかに記載の電磁波検出方法。 The electromagnetic wave detection method according to claim 1, wherein the polarization control is performed by transmitting through an optical filter. 前記βの値が、前記検出光の電界振幅をEとしたときの前記検出光の強度(|Eβ)がノイズ強度よりも大きいことを特徴とする請求項1〜4のいずれかに記載の電磁波検出方法。 The value of the β is such that the intensity (| E 0 | 2 β 2 ) of the detection light when the electric field amplitude of the detection light is E 0 is larger than the noise intensity. The electromagnetic wave detection method in any one. EOサンプリング法を利用して異なる二つの偏光成分の検出光を検出する請求項1〜5のいずれかに記載の電磁波検出方法を用いた電磁波検出装置であって、
前記偏光成分のうち、長軸側の前記偏光成分を減衰させる偏光制御手段を、電気光学結晶の後に配置したこと、
を特徴とする電磁波検出装置。
An electromagnetic wave detection apparatus using the electromagnetic wave detection method according to any one of claims 1 to 5, wherein detection light of two different polarization components is detected using an EO sampling method,
Among the polarization components, the polarization control means for attenuating the polarization component on the long axis side is disposed after the electro-optic crystal,
An electromagnetic wave detection device characterized by the above.
JP2018037015A 2018-03-02 2018-03-02 Electromagnetic wave detection method and electromagnetic wave detection device Active JP7007719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037015A JP7007719B2 (en) 2018-03-02 2018-03-02 Electromagnetic wave detection method and electromagnetic wave detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037015A JP7007719B2 (en) 2018-03-02 2018-03-02 Electromagnetic wave detection method and electromagnetic wave detection device

Publications (3)

Publication Number Publication Date
JP2019152501A true JP2019152501A (en) 2019-09-12
JP2019152501A5 JP2019152501A5 (en) 2021-04-01
JP7007719B2 JP7007719B2 (en) 2022-02-10

Family

ID=67948802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037015A Active JP7007719B2 (en) 2018-03-02 2018-03-02 Electromagnetic wave detection method and electromagnetic wave detection device

Country Status (1)

Country Link
JP (1) JP7007719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063704A (en) * 2019-10-11 2021-04-22 国立研究開発法人物質・材料研究機構 Terahertz magneto-optic sensor, high-performance non-destructive inspection device and method using the same, and magneto-optical pickup sensor used in the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014580A1 (en) * 2003-04-17 2008-01-17 Alfano Robert R Detection of biological molecules using THz absorption spectroscopy
JP2008224452A (en) * 2007-03-13 2008-09-25 Hamamatsu Photonics Kk Device for measuring totally reflected terahertz wave
JP2011058892A (en) * 2009-09-08 2011-03-24 Olympus Corp Observation apparatus
US20120318983A1 (en) * 2010-03-04 2012-12-20 Canon Kabushiki Kaisha Terahertz-wave generating element, terahertz-wave detecting element, and terahertz time-domain spectroscopy device
JP2013174513A (en) * 2012-02-25 2013-09-05 Univ Of Fukui Method and apparatus for detecting electromagnetic waves
JP2014016303A (en) * 2012-07-11 2014-01-30 Univ Of Fukui Electromagnetic wave detection method and electromagnetic wave detection device
JP2017010062A (en) * 2010-03-04 2017-01-12 キヤノン株式会社 Terahertz wave generation element and terahertz time domain spectroscopy device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014580A1 (en) * 2003-04-17 2008-01-17 Alfano Robert R Detection of biological molecules using THz absorption spectroscopy
JP2008224452A (en) * 2007-03-13 2008-09-25 Hamamatsu Photonics Kk Device for measuring totally reflected terahertz wave
JP2011058892A (en) * 2009-09-08 2011-03-24 Olympus Corp Observation apparatus
US20120318983A1 (en) * 2010-03-04 2012-12-20 Canon Kabushiki Kaisha Terahertz-wave generating element, terahertz-wave detecting element, and terahertz time-domain spectroscopy device
JP2017010062A (en) * 2010-03-04 2017-01-12 キヤノン株式会社 Terahertz wave generation element and terahertz time domain spectroscopy device
JP2013174513A (en) * 2012-02-25 2013-09-05 Univ Of Fukui Method and apparatus for detecting electromagnetic waves
JP2014016303A (en) * 2012-07-11 2014-01-30 Univ Of Fukui Electromagnetic wave detection method and electromagnetic wave detection device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
後藤 大輝、ほか: "スペクトルフィルタリングによるテラヘルツ波のヘテロダイン電気光学サンプリングの感度増強", シンポジウム テラヘルツ科学の最先端III 講演要旨集, JPN6021049168, 2016, pages 96, ISSN: 0004658794 *
谷 正彦、ほか: "ヘテロダイン電気光学サンプリングによるテラヘルツパルス波の検出", 電気学会論文誌A, vol. 132, no. 9, JPN6021049169, 2012, pages 727 - 733, ISSN: 0004658793 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063704A (en) * 2019-10-11 2021-04-22 国立研究開発法人物質・材料研究機構 Terahertz magneto-optic sensor, high-performance non-destructive inspection device and method using the same, and magneto-optical pickup sensor used in the same
JP7297306B2 (en) 2019-10-11 2023-06-26 国立研究開発法人物質・材料研究機構 Terahertz magneto-optical sensor, high-performance non-destructive inspection device and method using the same, and magneto-optical imaging sensor used therefor

Also Published As

Publication number Publication date
JP7007719B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US10331010B2 (en) Terahertz-wave generating element terahertz-wave detecting element and terahertz time-domain spectroscopy device
JP5489906B2 (en) Terahertz wave transceiver and tomographic image acquisition device
US7488940B2 (en) Reflection type terahertz spectrometer and spectrometric method
US9488525B2 (en) Method and apparatus for femtosecond laser pulse measurement based on transient-grating effect
US8981303B2 (en) Sensor device
US10180619B2 (en) Terahertz wave generating element and terahertz wave detecting element
JP2004500582A (en) Terahertz transceiver and method for emission and detection of terahertz pulses using such a transceiver
JP6238058B2 (en) Terahertz spectroscopy system
US8759779B2 (en) Terahertz wave generation element, terahertz wave detection element, and terahertz time domain spectral device
US20150136987A1 (en) Terahertz wave generator, terahertz wave detector, and terahertz time domain spectroscopy device
JP6779937B2 (en) Terahertz wave generator and terahertz time region spectrometer
JP2010038809A (en) Terahertz spectroscopic device
JP2019152501A (en) Method for detecting electromagnetic wave and electromagnetic wave detector
JP5963080B2 (en) Electromagnetic wave detection method and electromagnetic wave detection device
JP2013174513A (en) Method and apparatus for detecting electromagnetic waves
US20160061728A1 (en) Plate-like member and measurement apparatus including the same
Goy et al. Electro-Optic Sampling of Terahertz Waves Under Brewster’s Angle
delos Santos et al. Metal-Coated< 100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness
RU2637182C2 (en) Operating node of pulsed terahertz radiation detector
Islam et al. Generation of a guided mode in a THz semiconductor waveguide using excitation by a tilted optical pulse front
Bowen et al. Sample-induced beam distortions in terahertz time domain spectroscopy and imaging systems

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7007719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150