JP2019152495A - Insulation monitoring system - Google Patents

Insulation monitoring system Download PDF

Info

Publication number
JP2019152495A
JP2019152495A JP2018036823A JP2018036823A JP2019152495A JP 2019152495 A JP2019152495 A JP 2019152495A JP 2018036823 A JP2018036823 A JP 2018036823A JP 2018036823 A JP2018036823 A JP 2018036823A JP 2019152495 A JP2019152495 A JP 2019152495A
Authority
JP
Japan
Prior art keywords
current
suppression
phase
load
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018036823A
Other languages
Japanese (ja)
Other versions
JP7023138B2 (en
Inventor
弘晶 荻原
Hiroaki Ogiwara
弘晶 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIDORI DENSHI KK
Original Assignee
MIDORI DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIDORI DENSHI KK filed Critical MIDORI DENSHI KK
Priority to JP2018036823A priority Critical patent/JP7023138B2/en
Publication of JP2019152495A publication Critical patent/JP2019152495A/en
Application granted granted Critical
Publication of JP7023138B2 publication Critical patent/JP7023138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

To provide an insulation monitoring system with which it is possible to perform highly accurate monitoring of insulation based on a weak zero-phase current without being affected by a residual current.SOLUTION: Provided is an insulation monitoring system 1 for monitoring the insulation state of an electrical circuit, in which a current detection unit 11 includes an annular core penetrating through a load electric wire 300 for sending a load current Il from an AC power supply to a load and a suppression electric wire 400 for sending a suppression current Is, and detects a residual current Id from the load current Il flowing to the load electric wire 300, and a suppression current output unit 12 generates a suppression current Is of the same phase and same level as the detected residual current Id, and sends a suppression current Is in a direction opposite the residual current Id to the suppression electric wire 400 so that the suppression current Is cancels out the residual current Id, whereby the problem is resolved.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁監視システムに関する。さらに詳しくは、微弱な零相電流に基づいた精度の良い絶縁監視を、残留電流の影響を受けずに行う絶縁監視システムに関する。   The present invention relates to an insulation monitoring system. More specifically, the present invention relates to an insulation monitoring system that performs accurate insulation monitoring based on a weak zero-phase current without being affected by a residual current.

電路や電気機器の絶縁不良は、電気火災や感電事故等の重大な事故を引き起こす可能性がある。このため、電路及び電気機器の絶縁状態を調べることを目的とした様々な手法が存在する。例えば、絶縁抵抗計を用いて電路及び電気機器の絶縁状態を調べる手法があるが、測定のために対象となる電路及び電気機器を一時的に停電させる必要があるため、24時間連続稼動が前提となる現代のシステムに対応することができない。   Poor insulation of electrical circuits and electrical equipment can cause serious accidents such as electric fires and electric shocks. For this reason, there are various methods for the purpose of examining the insulation state of the electric circuit and the electric equipment. For example, there is a method to check the insulation state of electrical circuits and electrical equipment using an insulation resistance meter. However, it is necessary to operate the electrical circuit and electrical equipment to be temporarily interrupted for measurement. It cannot cope with the modern system that becomes.

このような問題に対し、無停電で電路及び電気機器の絶縁状態を調べる手法が一般的に用いられるようになった。例えば、特許文献1で提案されている絶縁監視装置を用いた手法は、無停電で電路及び電気機器の絶縁状態を調べるものとして一般的に用いられている手法である。この手法で用いられる絶縁監視装置は、電路の電圧の位相と、接地線に流れる電流(以下「漏洩電流」と呼ぶ)とを検出し、この漏洩電流から、送電路の電圧の位相と同成分の成分(以下「抵抗成分」と呼ぶ)のみを取り出し、この抵抗成分に基づいて電路及び電気機器の絶縁状態を判定する、とされる。   In order to deal with such a problem, a technique for examining the insulation state of electric circuits and electric devices without a power failure has been generally used. For example, a technique using an insulation monitoring device proposed in Patent Document 1 is a technique that is generally used as a means for examining the insulation state of electric circuits and electrical devices without a power failure. The insulation monitoring device used in this method detects the phase of the voltage of the electric circuit and the current flowing through the ground line (hereinafter referred to as “leakage current”), and from this leakage current, the same component as the phase of the voltage of the transmission line Only the component (hereinafter referred to as “resistance component”) is taken out, and the insulation state of the electric circuit and the electric device is determined based on this resistance component.

すなわち、従来からある絶縁監視装置は、漏洩電流を検出するために零相変流器が用いられている。零相変流器によって検出される漏洩電流は、抵抗成分と、電路の電圧に対して位相が90°進む成分(以下「静電容量成分」と呼ぶ)とがベクトル合算されたものである。静電容量成分は、電路の絶縁状態に影響を及ぼすことはなく、抵抗成分のみが電路の絶縁状態に影響を及ぼす。つまり、従来からある絶縁監視装置は、零相変流器によって検出された漏洩電流から、さらに抵抗成分のみを検出して、絶縁状態を判定するものである。   In other words, a conventional insulation monitoring device uses a zero-phase current transformer to detect leakage current. The leakage current detected by the zero-phase current transformer is a vector sum of a resistance component and a component whose phase advances by 90 ° with respect to the voltage of the electric circuit (hereinafter referred to as “capacitance component”). The capacitance component does not affect the insulation state of the electric circuit, and only the resistance component affects the insulation state of the electric circuit. In other words, the conventional insulation monitoring device determines the insulation state by detecting only the resistance component from the leakage current detected by the zero-phase current transformer.

特開2008−8823号公報JP 2008-8823 A

しかしながら、特許文献1で提案されている技術を含め、従来からある絶縁監視装置では、微弱な零相電流を検出することができない。例えば、絶縁抵抗値が1MΩ(メガオーム)である場合には、200μA(マイクロアンペア)程度の微弱な零相電流を検出する必要があるが、従来からある絶縁監視装置では、このような微弱な零相電流を検出することができない。これは、零相変流器は、コア材料の透磁率、コアの磁気飽和、一次側導体の位置、二次側導体の巻き回され方や配置などの影響により、絶縁監視とは関係のない残留電流と呼ばれる零相電流が流れることがあり、このような残留電流が、精度の良い絶縁監視を行う際の障害となるからである。   However, the conventional insulation monitoring device including the technique proposed in Patent Document 1 cannot detect a weak zero-phase current. For example, when the insulation resistance value is 1 MΩ (mega ohms), it is necessary to detect a weak zero-phase current of about 200 μA (microamperes). However, in a conventional insulation monitoring device, such a weak zero current is required. The phase current cannot be detected. This is not related to insulation monitoring because the zero-phase current transformer is affected by the permeability of the core material, the magnetic saturation of the core, the position of the primary conductor, the winding and arrangement of the secondary conductor, etc. This is because a zero-phase current called a residual current may flow, and such a residual current becomes an obstacle when performing accurate insulation monitoring.

これに対して、電子機器の小型化、微細化が進む現代において、市場に出回っている電子機器の中には、このような微弱な零相電流を検出可能とする精度の良い絶縁監視を要求するものが多く存在する。   On the other hand, in the present age when electronic devices are becoming smaller and finer, some of the electronic devices on the market require accurate insulation monitoring that can detect such a weak zero-phase current. There are many things to do.

本発明の目的は、微弱な零相電流に基づいた精度の良い絶縁監視を、残留電流の影響を受けずに行うことができる絶縁監視システムを提供することにある。   An object of the present invention is to provide an insulation monitoring system capable of performing accurate insulation monitoring based on a weak zero-phase current without being affected by a residual current.

上記課題を解決するための本発明に係る絶縁監視システムは、電路の絶縁状態を監視する絶縁監視システムであって、交流電源から負荷に負荷電流を流すための負荷電線と、抑圧電流を流す抑圧電線とを貫通させる環状のコアを有し、貫通された前記負荷電線に流れる負荷電流から残留電流を検出する電流検出手段と、検出された前記残留電流と同相かつ同レベルの抑圧電流を生成し、前記抑圧電流が前記残留電流を相殺するように、前記抑圧電線に前記残留電流とは逆向きの前記抑圧電流を流す抑圧電流出力手段と、を備えることを特徴とする。   In order to solve the above problems, an insulation monitoring system according to the present invention is an insulation monitoring system for monitoring an insulation state of an electric circuit, including a load wire for flowing a load current from an AC power source to a load, and a suppression for flowing a suppression current An annular core that penetrates the electric wire, and a current detecting means for detecting a residual current from a load current flowing through the penetrated load electric wire, and generating a suppression current in phase and at the same level as the detected residual current And a suppression current output means for causing the suppression current to flow in the direction opposite to the residual current to the suppression piezoelectric wire so that the suppression current cancels the residual current.

この発明によれば、電流検出手段によって検出された残留電流と同相かつ同レベルの抑圧電流を生成し、生成された抑圧電流が残留電流を相殺するように、抑圧電線に残留電流とは逆向きに流されるので、残留電流が低減化された好適な監視環境を整えることができる。   According to the present invention, a suppression current having the same phase and level as the residual current detected by the current detection means is generated, and the generated suppression current cancels the residual current. Therefore, it is possible to prepare a suitable monitoring environment in which the residual current is reduced.

本発明に係る絶縁監視システムにおいて、前記交流電源は3相交流電源であり、前記負荷は3相負荷であり、前記電流検出手段は零相変流器である、ことが好ましい。この発明によれば、零相変流器は、3相の負荷電線の各相に流れる電流を合算した零相電流を残留電流として検出し、この残留電流と同相かつ同レベルの抑圧電流が生成され、この抑圧電流が残留電流を相殺するように、抑圧電線に残留電流とは逆向きに流されるので、残留電流が低減化された好適な監視環境を整えることができる。   In the insulation monitoring system according to the present invention, it is preferable that the AC power source is a three-phase AC power source, the load is a three-phase load, and the current detection means is a zero-phase current transformer. According to the present invention, the zero-phase current transformer detects a zero-phase current obtained by adding the currents flowing through the respective phases of the three-phase load cable as a residual current, and generates a suppressed current having the same phase and the same level as the residual current. Since the suppressed current is made to flow in the direction opposite to the residual current so as to cancel out the residual current, a suitable monitoring environment in which the residual current is reduced can be prepared.

本発明に係る絶縁監視システムにおいて、前記電流検出手段は、さらに、前記負荷電線を流れる負荷電流から零相電流を検出し、検出された前記零相電流の値に基づいて、前記電路の絶縁状態が良好か否かを判定する絶縁状態判定手段をさらに備える、ことが好ましい。本発明によれば、残留電流が低減化された好適な監視環境の下で、微弱な零相電流に基づいた精度の良い絶縁監視を、残留電流の影響を受けることなく行うことができる。   In the insulation monitoring system according to the present invention, the current detection means further detects a zero-phase current from a load current flowing through the load wire, and based on the detected value of the zero-phase current, the insulation state of the electric circuit It is preferable to further include an insulation state determination means for determining whether or not the resistance is good. According to the present invention, accurate insulation monitoring based on a weak zero-phase current can be performed without being affected by the residual current under a suitable monitoring environment in which the residual current is reduced.

本発明によれば、微弱な零相電流に基づいた精度の良い絶縁監視を、残留電流の影響を受けずに行うことができる。   According to the present invention, accurate insulation monitoring based on a weak zero-phase current can be performed without being affected by a residual current.

本発明の第1実施形態に係る絶縁監視システムを含む電路の構成を示す図である。It is a figure which shows the structure of the electrical circuit containing the insulation monitoring system which concerns on 1st Embodiment of this invention. 図1の絶縁監視システムを用いた残留電流低減化試験の内容と結果とを示す図である。It is a figure which shows the content and result of a residual current reduction test using the insulation monitoring system of FIG. 本発明の第2実施形態及び第3実施形態に係る絶縁監視システムを含む高電圧電路の構成を示す図である。It is a figure which shows the structure of the high voltage electric circuit containing the insulation monitoring system which concerns on 2nd Embodiment and 3rd Embodiment of this invention. 図3の絶縁監視システムの構成を示すブロック図である。It is a block diagram which shows the structure of the insulation monitoring system of FIG. 図4の絶縁監視システムにより測定される電圧信号と漏洩電流との位相差を示すベクトル図である。It is a vector diagram which shows the phase difference of the voltage signal measured by the insulation monitoring system of FIG. 4, and leakage current. 本発明の第3実施形態に係る絶縁監視システムの構成を示すブロック図である。It is a block diagram which shows the structure of the insulation monitoring system which concerns on 3rd Embodiment of this invention.

以下、本発明に係る絶縁監視システムについて図面を参照しつつ説明する。なお、本発明は図示の実施形態に限定されるものではない。   Hereinafter, an insulation monitoring system according to the present invention will be described with reference to the drawings. The present invention is not limited to the illustrated embodiment.

[第1実施形態]
本発明の第1実施形態に係る絶縁監視システム1は、3相電路の絶縁状態を監視するシステムであって、図1に示すように、CPU(Central Processing Unit)10と、電流検出部11と、抑圧電流出力部12と、絶縁状態判定部13とを備える。絶縁監視システム1は、3相の負荷電線300から残留電流Idを検出し、検出された残留電流Idと同相かつ同レベルの抑圧電流Isを生成し、抑圧電流Isが残留電流Idを相殺するように、抑圧電線400に残留電流Idとは逆向きの抑圧電流Isを流す。そして、絶縁監視システム1は、負荷電線300を流れる負荷電流Ilから零相電流Izを検出し、検出された零相電流Izの値に基づいて、電路の絶縁状態が良好か否かを判定する。
[First Embodiment]
The insulation monitoring system 1 according to the first embodiment of the present invention is a system that monitors the insulation state of a three-phase electric circuit. As shown in FIG. 1, a CPU (Central Processing Unit) 10, a current detection unit 11, and The suppression current output unit 12 and the insulation state determination unit 13 are provided. The insulation monitoring system 1 detects the residual current Id from the three-phase load cable 300, generates a suppression current Is having the same phase and level as the detected residual current Id, and the suppression current Is cancels the residual current Id. In addition, a suppression current Is having a direction opposite to the residual current Id is passed through the suppression piezoelectric wire 400. Then, the insulation monitoring system 1 detects the zero-phase current Iz from the load current Il flowing through the load wire 300, and determines whether or not the insulation state of the electric circuit is good based on the detected value of the zero-phase current Iz. .

以下、絶縁監視システム1の各構成要素を詳しく説明する。   Hereinafter, each component of the insulation monitoring system 1 will be described in detail.

(CPU)
CPU10は、電流検出部11、抑圧電流出力部12、及び絶縁状態判定部13によって実行される各種処理の制御を行う。
(CPU)
The CPU 10 controls various processes executed by the current detection unit 11, the suppressed current output unit 12, and the insulation state determination unit 13.

(電流検出部)
本実施形態における電流検出部11は、環状のコア(図示せず)と、コアに巻き回された導体(図示せず)と、コアと導体とを収納する外装ケース(図示せず)からなる零相変流器(ZCTともいう)であり、負荷電線300に流れる電流を検出する。電流検出部11を構成するコアは、3相交流電源から3相負荷200に負荷電流Ilを流すための3相の負荷電線300と、抑圧電流Isを流す抑圧電線400とを貫通させる。電流検出部11のコアに貫通された負荷電線300に負荷電流Ilが流れると、3相の負荷電線300にそれぞれ流れる負荷電流Ilが合算された零相電流Izが導体に流れる。すなわち、正常時は、各相に流れる負荷電流Ilの大きさはいずれも同じであり、つり合った状態となっているため、零相電流Izの大きさはゼロになる。このため、例えば地絡や漏電のような異常が発生していない正常時は、導体に電流(零相電流Iz)が流れることはない。
(Current detector)
The current detection unit 11 in the present embodiment includes an annular core (not shown), a conductor wound around the core (not shown), and an outer case (not shown) that houses the core and the conductor. It is a zero-phase current transformer (also referred to as ZCT) and detects the current flowing through the load wire 300. The core constituting the current detection unit 11 penetrates the three-phase load wire 300 for flowing the load current Il from the three-phase AC power source to the three-phase load 200 and the suppression piezoelectric wire 400 for flowing the suppression current Is. When the load current Il flows through the load wire 300 penetrating through the core of the current detection unit 11, the zero-phase current Iz obtained by adding the load currents Il flowing through the three-phase load wires 300 flows through the conductor. That is, in the normal state, the magnitudes of the load currents I1 flowing through the respective phases are the same and are in a balanced state, and thus the magnitude of the zero-phase current Iz is zero. For this reason, for example, current (zero-phase current Iz) does not flow through the conductor in a normal state where no abnormality such as ground fault or electric leakage occurs.

しかしながら、電流検出部11は、コア材料の透磁率、コアの磁気飽和、負荷電線300の位置、導体の巻き回され方や配置などの影響により、絶縁監視とは関係のない残留電流と呼ばれる零相電流が流れることがある。このような残留電流Idは、精度の良い絶縁監視を行う際の障害となる。このため、絶縁監視システム1は、後述する抑圧電流出力部12により生成される抑圧電流Isを用いて残留電流Idを相殺させる。これにより、残留電流Idを低減化させることができる。なお、抑圧電流Isを用いて残留電流Idを低減化させる具体的手法は後述する。   However, the current detection unit 11 has a zero current called a residual current that is not related to insulation monitoring due to the influence of the magnetic permeability of the core material, the magnetic saturation of the core, the position of the load wire 300, the manner in which the conductor is wound and the arrangement, etc. Phase current may flow. Such a residual current Id becomes an obstacle when performing accurate insulation monitoring. For this reason, the insulation monitoring system 1 cancels the residual current Id using the suppression current Is generated by the suppression current output unit 12 described later. Thereby, the residual current Id can be reduced. A specific method for reducing the residual current Id using the suppression current Is will be described later.

電流検出部11のコアの大きさは、負荷電線300と抑圧電線400とを貫通させることができる大きさであれば特に限定されない。コアの材質は、特に限定されず、パーマロイ(登録商標)、ファインメット(登録商標)等、コアの素材として一般的に用いられるものを採用することができる。なお、本実施形態では、パーマロイの平板を積層させたコアとしている。導体は、コアに巻き回される導体である。なお、導体の材質は特に限定されず、導体として一般的に用いられる絶縁被覆銅線等を用いることができる。   The magnitude | size of the core of the electric current detection part 11 will not be specifically limited if it is a magnitude | size which can penetrate the load electric wire 300 and the suppression piezoelectric wire 400. FIG. The material of the core is not particularly limited, and those generally used as the core material, such as Permalloy (registered trademark) and Finemet (registered trademark), can be employed. In the present embodiment, the core is formed by laminating permalloy flat plates. The conductor is a conductor wound around the core. In addition, the material of a conductor is not specifically limited, The insulation coating copper wire etc. which are generally used as a conductor can be used.

(抑圧電流出力部)
抑圧電流出力部12は、同期信号検出治具121と、正弦波生成器122と、パワーアンプ123と、位相差計124とで構成される。抑圧電流出力部12は、電流検出部11により検出された残留電流Idと同相かつ同レベルの抑圧電流Isを生成し、抑圧電流Isが残留電流Idを相殺するように、抑圧電線400に残留電流Idとは逆向きの抑圧電流Isを流す。すなわち、抑圧電線400に流された抑圧電流Isが残留電流Idを打ち消すように働くので、残留電流が低減化された好適な監視環境を整えることができる。
(Suppression current output part)
The suppression current output unit 12 includes a synchronization signal detection jig 121, a sine wave generator 122, a power amplifier 123, and a phase difference meter 124. The suppression current output unit 12 generates a suppression current Is having the same phase and the same level as the residual current Id detected by the current detection unit 11, and the residual current Id in the suppression piezoelectric wire 400 so that the suppression current Is cancels the residual current Id. A suppression current Is in the direction opposite to Id is supplied. That is, since the suppression current Is passed through the suppression piezoelectric wire 400 works so as to cancel the residual current Id, it is possible to prepare a suitable monitoring environment in which the residual current is reduced.

同期信号検出治具121は、フィルタと、アンプと、SCF(スイッチト・キャパシタ・フィルタ)とで構成される。フィルタ(図示せず)は、図1に示す電路に生じる電圧信号Vaを検出し、検出した電圧信号Vaからノイズ成分を除去する。アンプ(図示せず)は、フィルタから出力される電圧信号Vaを増幅する。SCFは、電圧信号Vaのうち、遮断周波数よりも低い周波数の成分についてはほとんど減衰させずに、遮断周波数よりも高い周波数の成分を低減させるローパスフィルタとしての機能を備えるとともに、予め決められたクロック周波数に基づいて、アンプから出力される電圧信号Vaの位相を調整する。   The synchronization signal detection jig 121 includes a filter, an amplifier, and an SCF (switched capacitor filter). The filter (not shown) detects the voltage signal Va generated in the electric circuit shown in FIG. 1, and removes a noise component from the detected voltage signal Va. An amplifier (not shown) amplifies the voltage signal Va output from the filter. The SCF has a function as a low-pass filter that reduces a component having a frequency higher than the cutoff frequency while hardly attenuating a component having a frequency lower than the cutoff frequency in the voltage signal Va, and has a predetermined clock. Based on the frequency, the phase of the voltage signal Va output from the amplifier is adjusted.

正弦波生成器122は、同期信号検出治具121のSCFから出力される電圧信号Vaのレベル及び位相の調整を行い、正弦波を生成する。   The sine wave generator 122 adjusts the level and phase of the voltage signal Va output from the SCF of the synchronization signal detection jig 121 to generate a sine wave.

パワーアンプ123は、正弦波生成器122により生成された正弦波を増幅して、残留電流Idと同相かつ同レベルの抑圧電流Isを生成し、抑圧電流Isが残留電流Idを相殺するように、抑圧電線400に残留電流Idとは逆向きの抑圧電流Isを流す。これにより、電流検出部11では、相殺の結果残存した残留電流Idのみが検出されることになるので、残留電流を低減化させることができる。その結果、絶縁監視における好適な監視環境を整えることができる。   The power amplifier 123 amplifies the sine wave generated by the sine wave generator 122 to generate a suppression current Is having the same phase and level as the residual current Id, and the suppression current Is cancels the residual current Id. A suppression current Is in the direction opposite to the residual current Id is passed through the suppression piezoelectric wire 400. Thereby, in the current detection part 11, only the residual current Id remaining as a result of cancellation is detected, so that the residual current can be reduced. As a result, a suitable monitoring environment in insulation monitoring can be prepared.

位相差計124は、負荷電流Ilの位相と抑圧電流Isの位相とを測定し、両者の差を検出する計器である。位相差計124によって負荷電流Ilの位相と抑圧電流Isの位相との差が検出されるので、パワーアンプ123は、残留電流Idと同相の抑圧電流Isを生成することができる。   The phase difference meter 124 is an instrument that measures the phase of the load current Il and the phase of the suppression current Is and detects the difference between the two. Since the phase difference meter 124 detects the difference between the phase of the load current Il and the phase of the suppression current Is, the power amplifier 123 can generate the suppression current Is in phase with the residual current Id.

(絶縁状態判定部)
絶縁状態判定部13は、残留電流測定器131と、測定値表示端末132とで構成される。絶縁状態判定部13は、電流検出部11により検出された零相電流Izの値に基づいて、図1に示す電路の絶縁状態が良好か否かを判定する。
(Insulation state determination unit)
The insulation state determination unit 13 includes a residual current measuring device 131 and a measured value display terminal 132. The insulation state determination unit 13 determines whether or not the insulation state of the electric circuit shown in FIG. 1 is good based on the value of the zero-phase current Iz detected by the current detection unit 11.

残留電流測定器131は、電流検出部11により検出された零相電流Izの値を測定し、この零相電流Izの値が予め設定した閾値を上回った場合に、電路の絶縁状態が劣化したものと判断し、警報を発する。これにより、絶縁状態の劣化をいち早く操作者に知らせることができる。   The residual current measuring device 131 measures the value of the zero-phase current Iz detected by the current detector 11, and when the value of the zero-phase current Iz exceeds a preset threshold value, the insulation state of the electric circuit has deteriorated. Judgment is made and a warning is issued. Thereby, it is possible to promptly notify the operator of the deterioration of the insulation state.

測定値表示端末132は、電流検出部11により検出された零相電流Izの値をディスプレイ(図示せず)に表示する。操作者はこの表示を見ることにより、図1に示す電路の絶縁状態を認識することができる。   The measured value display terminal 132 displays the value of the zero-phase current Iz detected by the current detector 11 on a display (not shown). The operator can recognize the insulation state of the electric circuit shown in FIG. 1 by viewing this display.

図1の絶縁監視システム1を用いた場合、残留電流がどの程度低減化されるのかについて、下記の条件の下に試験を行った。
[試験1]
(内容)
負荷電流が、R相(100A)、S相(100A)、T相(100A)であり、残留電流Idが845μA(位相差は67.8deg)である場合に、同レベルかつ同相の抑圧電流Isを生成して、抑圧電流Isを流した場合に、残留電流Idにどのような変化が生じるかを確認した。試験は同じ条件で4回行った。
When the insulation monitoring system 1 of FIG. 1 is used, a test was performed under the following conditions as to how much the residual current is reduced.
[Test 1]
(Content)
When the load current is the R phase (100 A), the S phase (100 A), and the T phase (100 A) and the residual current Id is 845 μA (the phase difference is 67.8 deg), the suppression current Is of the same level and the same phase And the change in the residual current Id is confirmed when the suppression current Is is supplied. The test was performed four times under the same conditions.

(結果)
抑圧電流を流した結果、残存した残留電流は、1回目の平均値が2.09μA、2回目の平均値が3.81μA、3回目の平均値が3.12μA、4回目の平均値が4.72μAとなった。つまり、抑圧電流を流すことにより、845μAの残留電流を2.09μA〜4.72μA程度まで劇的に低減化させることができた。
(result)
As a result of flowing the suppression current, the residual current remaining is 2.09 μA for the first time, 3.81 μA for the second time, 3.12 μA for the third time, 4 for the fourth time. 72 μA. That is, by flowing the suppression current, the residual current of 845 μA could be dramatically reduced to about 2.09 μA to 4.72 μA.

[試験2]
(内容)
負荷電流が、R相(100A)、S相(130A)、T相(100A)であり、残留電流Idが845μA(位相差は67.8deg)である場合に、同レベルかつ同相の抑圧電流Isを生成して、抑圧電流Isを流した場合に、残留電流Idにどのような変化が生じるかを確認した。試験は同じ条件で4回行った。
[Test 2]
(Content)
When the load current is the R phase (100 A), the S phase (130 A), and the T phase (100 A) and the residual current Id is 845 μA (the phase difference is 67.8 deg), the suppression current Is of the same level and the same phase And the change in the residual current Id is confirmed when the suppression current Is is supplied. The test was performed four times under the same conditions.

(結果)
抑圧電流を流した結果、残存した残留電流は、1回目の平均値が242μA、2回目の平均値が243μA、3回目の平均値が244μA、4回目の平均値が243μAとなった。抑圧電流Isを流すことで残留電流Idを低減化させることはできるが、試験1の結果のような劇的な低減化は起こらなかった。つまり、特定の相(S相)における負荷電流が100Aから130Aに変動すると、残留電流Idは、レベル及び位相ともに変化することがわかった。
(result)
As a result of flowing the suppression current, the remaining residual current was 242 μA for the first average, 243 μA for the second time, 244 μA for the third time, 243 μA for the fourth time, and 243 μA for the fourth time. Although the residual current Id can be reduced by flowing the suppression current Is, a dramatic reduction like the result of Test 1 has not occurred. That is, it was found that when the load current in a specific phase (S phase) fluctuates from 100 A to 130 A, the residual current Id changes in both level and phase.

[試験3]
(内容)
負荷電流が、R相(130A)、S相(100A)、T相(130A)であり、残留電流Idが845μA(位相差は67.8deg)である場合に、同レベルかつ同相の抑圧電流Isを生成して、抑圧電流Isを流した場合に、残留電流Idにどのような変化が生じるかを確認した。試験は同じ条件で4回行った。
[Test 3]
(Content)
When the load current is the R phase (130 A), the S phase (100 A), and the T phase (130 A), and the residual current Id is 845 μA (the phase difference is 67.8 deg), the suppression current Is of the same level and the same phase And the change in the residual current Id is confirmed when the suppression current Is is supplied. The test was performed four times under the same conditions.

(結果)
抑圧電流を流した結果、残存した残留電流は、1回目の平均値が127μA、2回目の平均値が125μA、3回目の平均値が122μA、4回目の平均値が121μAとなった。抑圧電流Isを流すことで残留電流Idを低減化させることはできるが、試験2のときと同様に、試験1の結果のような劇的な低減化は起こらなかった。つまり、特定の相(R相及びT相)における負荷電流が100Aから130Aに変動すると、残留電流Idは、レベル及び位相ともに変化することがわかった。
(result)
As a result of flowing the suppression current, the remaining residual current was 127 μA for the first average, 125 μA for the second time, 122 μA for the third time, 121 μA for the fourth time, and 121 μA for the fourth time. Although the residual current Id can be reduced by flowing the suppression current Is, as in the case of the test 2, the dramatic reduction like the result of the test 1 did not occur. That is, it was found that when the load current in a specific phase (R phase and T phase) fluctuates from 100 A to 130 A, the residual current Id changes in both level and phase.

[試験4]
(内容)
上記試験2の結果として残存した残留電流Idに対し、再調整した抑圧電流Isを生成して流すことで残留電流Idにどのような変化が生じるかを確認した。試験は同じ条件で4回行った。
[Test 4]
(Content)
With respect to the residual current Id remaining as a result of the test 2, it was confirmed what kind of change occurs in the residual current Id by generating and flowing a readjusted suppression current Is. The test was performed four times under the same conditions.

(結果)
再調整した抑圧電流Isを流した結果、残存した残留電流Idは、1回目の平均値が7.16μA、2回目の平均値が6.57μA、3回目の平均値が6.96μA、4回目の平均値が6.95μAとなった。つまり、再調整した抑圧電流Isを流すことで残留電流Idを低減化させることができることわかった。
(result)
As a result of flowing the readjusted suppression current Is, the remaining residual current Id is 7.16 μA for the first average, 6.57 μA for the second, 6.96 μA for the third, and 4.96 μA for the third. The average value was 6.95 μA. That is, it was found that the residual current Id can be reduced by flowing the readjusted suppression current Is.

[試験5]
(内容)
上記試験3の結果として残存した残留電流Idに対し、再調整した抑圧電流Isを生成して流すことで残留電流Idにどのような変化が生じるかを確認した。試験は同じ条件で4回行った。
[Test 5]
(Content)
As to the residual current Id remaining as a result of the test 3, it was confirmed what kind of change occurs in the residual current Id by generating and flowing the readjusted suppression current Is. The test was performed four times under the same conditions.

(結果)
再調整した抑圧電流Isを流した結果、残存した残留電流Idは、1回目の平均値が1.30μA、2回目の平均値が3.70μA、3回目の平均値が2.85μA、4回目の平均値が2.28μAとなった。つまり、再調整した抑圧電流Isを流すことで残留電流Idを低減化させることができることわかった。
(result)
As a result of flowing the readjusted suppression current Is, the remaining residual current Id is 1.30 μA for the first average, 3.70 μA for the second, 2.85 μA for the third, and 4.85 μA for the fourth. The average value was 2.28 μA. That is, it was found that the residual current Id can be reduced by flowing the readjusted suppression current Is.

[第2実施形態]
本発明の第2実施形態に係る絶縁監視システム2は、高電圧電路Wの絶縁状態を監視するシステムである。高電圧電路Wは、図3に示すように、高圧受電線より受電される高電圧(例えば、6600V)を商用電圧(例えば、110V)に変圧する変圧器TR1を有しており、変圧器TR1の低圧側は、送電路500及び501を経由して負荷200に接続されている。送電路501は、B種接地線(以下「接地線」と呼ぶ)600を経由してグランドに接地されている。送電路500とグランドとの間には、対地絶縁抵抗R0と、対地静電容量(浮遊容量)C0とを合成した対地インピーダンスZ0が存在する。このため、接地線600には、対地インピーダンスZ0を経由して流れる電流と同一の電流が流れている。絶縁監視システム2は、図3に示すように、接地線600を貫通させるとともに、送電路500及び501に接続された状態で配置されている。
[Second Embodiment]
The insulation monitoring system 2 according to the second embodiment of the present invention is a system that monitors the insulation state of the high-voltage electric circuit W. As shown in FIG. 3, the high-voltage electric circuit W includes a transformer TR1 that transforms a high voltage (for example, 6600V) received from a high-voltage power receiving line into a commercial voltage (for example, 110V). Is connected to the load 200 via power transmission lines 500 and 501. The power transmission path 501 is grounded via a B-type ground line (hereinafter referred to as “ground line”) 600. Between the power transmission path 500 and the ground, there exists a ground impedance Z0 obtained by combining the ground insulation resistance R0 and the ground capacitance (floating capacitance) C0. For this reason, the same current as the current flowing through the ground impedance Z0 flows through the ground line 600. As shown in FIG. 3, the insulation monitoring system 2 is disposed in a state where it penetrates the ground line 600 and is connected to the power transmission paths 500 and 501.

絶縁監視システム2は、図4に示すように、CPU20と、電流検出部21と、漏洩電流増幅部22と、抑圧電流出力部23と、情報提示部60とを備える。絶縁監視システム2は、電流検出部21に接地線600と抑圧用電線700とを貫通させた状態で、接地線600に流れる漏洩電流I0と等大で逆向きとなる抑圧電流Isを抑圧用電線700に流す。そして、電流検出部21により検出される零相電流Izがゼロになったときに、抑圧電流Isを構成する成分のうち電圧信号Vaと同相となる成分(以下「同相成分」と呼ぶ)を認識し、この同相成分に基づいて高電圧電路Wの絶縁状態が良好か否かを判定する。   As shown in FIG. 4, the insulation monitoring system 2 includes a CPU 20, a current detection unit 21, a leakage current amplification unit 22, a suppression current output unit 23, and an information presentation unit 60. The insulation monitoring system 2 is configured to suppress the suppression current Is that is equal to and opposite to the leakage current I0 flowing through the ground line 600 with the ground wire 600 and the suppression wire 700 passed through the current detection unit 21. Flow to 700. Then, when the zero-phase current Iz detected by the current detector 21 becomes zero, a component (hereinafter referred to as “in-phase component”) that is in phase with the voltage signal Va among the components constituting the suppression current Is is recognized. Then, based on this in-phase component, it is determined whether or not the insulation state of the high voltage electric circuit W is good.

以下、絶縁監視システム2の各構成要素を詳しく説明する。   Hereinafter, each component of the insulation monitoring system 2 will be described in detail.

(CPU20)
本実施形態におけるCPU20は、電流検出部21、漏洩電流増幅部22、抑圧電流出力部23、及び情報提示部60により実行される各種処理の制御を行う。例えばCPU20は、基準信号調整部37により生成された基準信号と、電流検出部21で検出される漏洩電流I0に基づいて、図5に示すように、電流I0の位相角θを求める。CPU20は、位相角θに基づいて、電流I0の抵抗成分I0rと、電流I0の静電容量成分I0cとを求める。CPU20は、抵抗成分I0rと、静電容量成分I0cとに基づいて、Ir調整信号と、Ic調整信号とを生成し、これらの調整信号を、Ir抑圧信号発生器38と、Ic抑圧信号発生器40とにそれぞれ出力する。すなわち、CPU20は、送電路500と501との間に生じる電圧の位相を検出する位相検出手段として機能する。
(CPU 20)
The CPU 20 in this embodiment controls various processes executed by the current detection unit 21, the leakage current amplification unit 22, the suppression current output unit 23, and the information presentation unit 60. For example, the CPU 20 obtains the phase angle θ of the current I0 based on the reference signal generated by the reference signal adjustment unit 37 and the leakage current I0 detected by the current detection unit 21, as shown in FIG. The CPU 20 obtains a resistance component I0r of the current I0 and a capacitance component I0c of the current I0 based on the phase angle θ. The CPU 20 generates an Ir adjustment signal and an Ic adjustment signal based on the resistance component I0r and the capacitance component I0c, and outputs these adjustment signals to the Ir suppression signal generator 38 and the Ic suppression signal generator. 40 and output respectively. That is, the CPU 20 functions as a phase detection unit that detects the phase of the voltage generated between the power transmission lines 500 and 501.

CPU20は、電流検出部21で検出される漏洩電流I0の抵抗成分I0rと、静電容量成分I0cとが共にゼロになるように、Ir調整信号と、Ic調整信号とを生成し、抵抗成分I0rと、静電容量成分I0cとが共にゼロになったときのIr調整信号を、漏洩電流I0の抵抗成分I0rであるものと認識する。すなわち、CPU20は、抑圧電流Isを流すことにより、電流検出部21で検出された電流値がゼロになったときの同相成分に基づいて、送電路500及び501の絶縁状態が良好であるか否かを判定する絶縁状態判定手段としても機能する。   The CPU 20 generates an Ir adjustment signal and an Ic adjustment signal so that the resistance component I0r of the leakage current I0 detected by the current detection unit 21 and the capacitance component I0c are both zero, and the resistance component I0r. Then, the Ir adjustment signal when both the electrostatic capacitance component I0c becomes zero is recognized as the resistance component I0r of the leakage current I0. That is, the CPU 20 determines whether the insulation state of the power transmission lines 500 and 501 is good based on the in-phase component when the current value detected by the current detection unit 21 becomes zero by flowing the suppression current Is. It also functions as an insulation state determination means for determining whether or not.

(電流検出部)
本実施形態における電流検出部21は、環状のコア(図示せず)と、コアに巻き回された導体(図示せず)と、コアと導体とを収納する外装ケース(図示せず)からなる零相変流器(ZCT)である。電流検出部21は、接地線600と、後述する抑圧用電線700とを貫通させる。電流検出部21を構成するコアが、接地線600と抑圧用電線700とを貫通させるので、電流検出部21は、接地線600に流れる漏洩電流I0と、抑圧用電線700に流れる抑圧電流Isとの差分となる零相電流Izを検出することができる。なお、電流検出部21を構成するコアの大きさや材質等の特徴、及び導体の材質等の特徴については、上述の第1実施形態と同様であるため説明を省略する。
(Current detector)
The current detection unit 21 according to the present embodiment includes an annular core (not shown), a conductor wound around the core (not shown), and an outer case (not shown) that houses the core and the conductor. Zero phase current transformer (ZCT). The current detection unit 21 penetrates the ground wire 600 and a suppression wire 700 described later. Since the core constituting the current detection unit 21 penetrates the ground line 600 and the suppression wire 700, the current detection unit 21 includes the leakage current I 0 flowing through the ground line 600 and the suppression current Is flowing through the suppression wire 700. Can be detected. Note that the characteristics such as the size and material of the core constituting the current detection unit 21 and the characteristics such as the material of the conductor are the same as those in the first embodiment, and thus the description thereof is omitted.

(漏洩電流増幅部)
漏洩電流増幅部22は、ヘッドアンプ32と、フィルタ33とで構成される。ヘッドアンプ32は、電流検出部21により検出された漏洩電流I0を増幅する。フィルタ33は、ヘッドアンプ32により増幅された漏洩電流I0からノイズ成分を除去し、ノイズ成分が除去された漏洩電流I0をCPU20に供給する。
(Leakage current amplifier)
The leakage current amplification unit 22 includes a head amplifier 32 and a filter 33. The head amplifier 32 amplifies the leakage current I0 detected by the current detection unit 21. The filter 33 removes a noise component from the leakage current I0 amplified by the head amplifier 32, and supplies the leakage current I0 from which the noise component has been removed to the CPU 20.

(抑圧電流出力部)
抑圧電流出力部23は、フィルタ34と、アンプ35と、SCF(スイッチト・キャパシタ・フィルタ)36と、基準信号調整部37と、Ir抑圧信号発生器38と、位相シフト回路39と、Ic抑圧信号発生器40と、パワーアンプ41とで構成される。
(Suppression current output part)
The suppression current output unit 23 includes a filter 34, an amplifier 35, an SCF (switched capacitor filter) 36, a reference signal adjustment unit 37, an Ir suppression signal generator 38, a phase shift circuit 39, and Ic suppression. A signal generator 40 and a power amplifier 41 are included.

フィルタ34は、2本の送電路500と501との間に生じる電圧信号Vaを検出し、検出した電圧信号Vaからノイズ成分を除去する。アンプ35は、フィルタ34から出力された電圧信号Vaを増幅する。SCF36は、ローパスフィルタとして機能するとともに、予め決められたクロック周波数に基づいて、アンプ35から出力された電圧信号Vaの位相を調整する。基準信号調整部37は、SCF36から出力された電圧信号Vaに対してレベル調整を行い、基準信号を生成する。Ir抑圧信号発生器38は、SCF36から出力された電圧信号Vaと同相の信号であり、かつ、Ir調整信号に基づいて決定されたレベルの信号であるIr抑圧信号を生成する。位相シフト回路39は、SCF36にから出力された電圧信号Vaの位相を90°進める。Ic抑圧信号発生器40は、位相シフト回路39により90°進められた位相の信号であり、かつ、Ic調整信号によって決定されたレベルの信号であるIc抑圧信号を生成する。パワーアンプ41は、Ir抑圧信号発生器38で生成されたIr抑圧信号と、Ic抑圧信号発生器40で生成されたIc抑圧信号とを合成して増幅させた抑圧電流Isを生成し、生成した抑圧電流Isを抑圧用電線700に供給する。すなわち、パワーアンプ41は、電流検出部21により検出される電流I0を、CPU20により検出された位相と同相の成分(同相成分)と、位相が90°進められた成分(以下「位相進み成分」と呼ぶ)とに分解し、これら2つの成分からなる抑圧電流Isを生成して、この抑圧電流Isを、接地線600に流れる電流と逆向きとなるように抑圧用電線700に流す電流生成手段として機能する。   The filter 34 detects the voltage signal Va generated between the two power transmission lines 500 and 501, and removes a noise component from the detected voltage signal Va. The amplifier 35 amplifies the voltage signal Va output from the filter 34. The SCF 36 functions as a low-pass filter and adjusts the phase of the voltage signal Va output from the amplifier 35 based on a predetermined clock frequency. The reference signal adjustment unit 37 performs level adjustment on the voltage signal Va output from the SCF 36 to generate a reference signal. The Ir suppression signal generator 38 generates an Ir suppression signal which is a signal in phase with the voltage signal Va output from the SCF 36 and which is a level determined based on the Ir adjustment signal. The phase shift circuit 39 advances the phase of the voltage signal Va output from the SCF 36 by 90 °. The Ic suppression signal generator 40 generates an Ic suppression signal that is a signal having a phase advanced by 90 ° by the phase shift circuit 39 and a signal having a level determined by the Ic adjustment signal. The power amplifier 41 generates and generates a suppression current Is obtained by combining and amplifying the Ir suppression signal generated by the Ir suppression signal generator 38 and the Ir suppression signal generated by the Ic suppression signal generator 40. The suppression current Is is supplied to the suppression wire 700. That is, the power amplifier 41 converts the current I0 detected by the current detector 21 into a component in phase with the phase detected by the CPU 20 (in-phase component) and a component whose phase is advanced by 90 ° (hereinafter “phase advance component”). And generating a suppression current Is composed of these two components, and causing the suppression current Is to flow in the suppression wire 700 so as to be opposite to the current flowing in the ground line 600. Function as.

(情報提示部)
情報提示部60は、絶縁監視システム2の操作者に対し、各種の情報の提供を行う。情報提示部60は、ディスプレイ51と、警報装置52とで構成される。ディスプレイ51は、送電路500及び501の絶縁状態等の各種の情報を表示する。警報装置52は、絶縁抵抗が劣化したと判断された場合に警報を発する。
(Information presentation part)
The information presentation unit 60 provides various types of information to the operator of the insulation monitoring system 2. The information presentation unit 60 includes a display 51 and an alarm device 52. The display 51 displays various information such as the insulation state of the power transmission paths 500 and 501. The alarm device 52 issues an alarm when it is determined that the insulation resistance has deteriorated.

上述した構成を有する絶縁監視システム2は、電流検出部21が接地線600と抑圧用電線700とを貫通させて、電流検出部21により検出される漏洩電流I0がゼロになるように、抑圧用電線700に流す抑圧電流Isを制御する。そして、電流検出部21により検出された漏洩電流I0がゼロになったときのIr調整信号が、漏洩電流I0の抵抗成分I0rであるものと認識し、この抵抗成分I0rが予め設定された閾値を上回った場合に、送電路500及び501の絶縁状態が劣化したものと判断し、操作者に対し警報を発する。その結果、操作者は、送電路500及び501の絶縁状態の劣化を早期に知ることができる。   In the insulation monitoring system 2 having the above-described configuration, the current detection unit 21 passes through the ground wire 600 and the suppression wire 700, and the leakage current I0 detected by the current detection unit 21 is zero. The suppression current Is flowing through the electric wire 700 is controlled. Then, the Ir adjustment signal when the leakage current I0 detected by the current detection unit 21 becomes zero is recognized as the resistance component I0r of the leakage current I0, and the threshold value for which the resistance component I0r is set in advance is recognized. If it exceeds, it is determined that the insulation state of the transmission lines 500 and 501 has deteriorated, and an alarm is issued to the operator. As a result, the operator can quickly know the deterioration of the insulation state of the power transmission paths 500 and 501.

本実施形態では、漏洩電流I0を相殺する抑圧電流Isを生成し、抑圧電流Isの抵抗成分を漏洩電流I0の抵抗成分I0rとして検出するので、電流検出部21による検出の精度にばらつきが存在する場合や、周囲に磁界が発生している場合であっても、抵抗成分I0rを高精度に測定して送電路500及び501の絶縁状態を監視することが可能となる。   In the present embodiment, the suppression current Is that cancels the leakage current I0 is generated, and the resistance component of the suppression current Is is detected as the resistance component I0r of the leakage current I0. Therefore, the detection accuracy of the current detection unit 21 varies. Even in the case where a magnetic field is generated in the surroundings, it is possible to monitor the insulation state of the transmission lines 500 and 501 by measuring the resistance component I0r with high accuracy.

[第3実施形態]
本発明の第3実施形態に係る絶縁監視システム3は、図6に示すように、上述の第2実施形態に係る絶縁監視システム2と対比して、Ir抑圧信号発生器38を設けていない点と、CPU20がIr抑圧信号発生器38に供給するためのIr調整信号を生成しない点とが相違する。第3実施形態に係る絶縁監視システム3のCPU20は、電流検出部21で検出された漏洩電流I0を抵抗成分I0rと静電容量成分I0cに分離し、静電容量成分I0cをゼロにするためのIc調整信号を生成して出力する。そして、静電容量成分I0cがゼロになったときの抵抗成分I0rを、漏洩電流I0の抵抗成分I0rとして認識する。なお、それ以外の構成は、図4に示す構成と同様であるので、同一符号を付して構成の説明を省略する。
[Third Embodiment]
As shown in FIG. 6, the insulation monitoring system 3 according to the third embodiment of the present invention does not include the Ir suppression signal generator 38 as compared with the insulation monitoring system 2 according to the second embodiment described above. The CPU 20 is different in that it does not generate an Ir adjustment signal to be supplied to the Ir suppression signal generator 38. The CPU 20 of the insulation monitoring system 3 according to the third embodiment separates the leakage current I0 detected by the current detection unit 21 into a resistance component I0r and a capacitance component I0c, and sets the capacitance component I0c to zero. An Ic adjustment signal is generated and output. Then, the resistance component I0r when the capacitance component I0c becomes zero is recognized as the resistance component I0r of the leakage current I0. Since the other configuration is the same as that shown in FIG. 4, the same reference numerals are given and description of the configuration is omitted.

上述した構成を有する絶縁監視システム3は、電流検出部21に接地線600と抑圧用電線700とを貫通させて、電流検出部21により検出される漏洩電流I0の静電容量成分I0cがゼロになるように、抑圧用電線700に流す電流(抑圧電流Is)を制御する。そして、電流検出部21により検出された電流の静電容量成分がゼロになったときの抵抗成分I0rを、漏洩電流I0の抵抗成分I0rであるものと認識し、抵抗成分I0rが予め設定した閾値を上回った場合に、送電路500及び501の絶縁状態が劣化したものと判断し、操作者に対し警報を発する。その結果、操作者は、送電路500及び501の絶縁状態の劣化を早期に知ることができる。   In the insulation monitoring system 3 having the above-described configuration, the ground line 600 and the suppression wire 700 are passed through the current detection unit 21 so that the capacitance component I0c of the leakage current I0 detected by the current detection unit 21 becomes zero. Thus, the current (suppression current Is) flowing through the suppression wire 700 is controlled. Then, the resistance component I0r when the capacitance component of the current detected by the current detection unit 21 becomes zero is recognized as the resistance component I0r of the leakage current I0, and the threshold value set in advance by the resistance component I0r. Is exceeded, it is determined that the insulation state of the transmission lines 500 and 501 has deteriorated, and an alarm is issued to the operator. As a result, the operator can quickly know the deterioration of the insulation state of the power transmission paths 500 and 501.

1,2,3 絶縁監視システム
10,20 CPU
11,21 電流検出部
12 抑圧電流出力部
13 絶縁状態判定部
22 漏洩電流増幅部
23 抑圧電流出力部
32 ヘッドアンプ
33,34 フィルタ
35 アンプ
36 SCF(スイッチト・キャパシタ・フィルタ)
37 基準信号調整部
38 Ir抑圧信号発生器
39 位相シフト回路
40 Ic抑圧信号発生器
41 パワーアンプ
51 ディスプレイ
52 警報装置
60 情報提示部
121 同期信号検出治具
122 正弦波生成器
123 パワーアンプ
124 位相差計
131 残留電流測定器
132 測定値表示端末
200 負荷
300 負荷電線
400 抑圧電線
500,501 送電路
600 接地線
700 抑圧用電線
C0 浮遊容量
I0 漏洩電流
I0c 静電容量成分
I0r 抵抗成分
Id 残留電流
Il 負荷電流
Is 抑圧電流
Iz 零相電流
TR1 変圧器
R0 対地絶縁抵抗
R 相
S 相
T 相
Va 電圧信号
W 高電圧電路
Z0 インピーダンス
1,2,3 Insulation monitoring system 10,20 CPU
11, 21 Current detection unit 12 Suppressed current output unit 13 Insulation state determination unit 22 Leakage current amplification unit 23 Suppressed current output unit 32 Head amplifier 33, 34 Filter 35 Amplifier 36 SCF (switched capacitor filter)
37 Reference signal adjustment unit 38 Ir suppression signal generator 39 Phase shift circuit 40 Ic suppression signal generator 41 Power amplifier 51 Display 52 Alarm device 60 Information presentation unit 121 Synchronization signal detection jig 122 Sine wave generator 123 Power amplifier 124 Phase difference Total 131 Residual current measuring device 132 Measured value display terminal 200 Load 300 Load electric wire 400 Suppression piezoelectric wire 500,501 Transmission line 600 Ground wire 700 Suppression wire C0 Floating capacitance I0 Leakage current I0c Capacitance component I0r Resistance component Id Residual current Il Current Is Suppressed current Iz Zero phase current TR1 Transformer R0 Ground insulation resistance R phase S phase T phase Va Voltage signal W High voltage circuit Z0 Impedance

Claims (3)

電路の絶縁状態を監視する絶縁監視システムであって、
交流電源から負荷に負荷電流を流すための負荷電線と、抑圧電流を流す抑圧電線とを貫通させる環状のコアを有し、貫通された前記負荷電線に流れる負荷電流から残留電流を検出する電流検出手段と、
検出された前記残留電流と同相かつ同レベルの抑圧電流を生成し、前記抑圧電流が前記残留電流を相殺するように、前記抑圧電線に前記残留電流とは逆向きの前記抑圧電流を流す抑圧電流出力手段と、
を備えることを特徴とする絶縁監視システム。
An insulation monitoring system for monitoring an insulation state of an electric circuit,
Current detection for detecting a residual current from the load current flowing through the load wire that has passed through the load wire for flowing a load current from the AC power source and a piezoelectric wire for passing the suppression current through the load core. Means,
A suppression current that generates a suppression current having the same phase and level as the detected residual current, and causes the suppression current to flow in the direction opposite to the residual current through the suppression piezoelectric line so that the suppression current cancels the residual current. Output means;
An insulation monitoring system comprising:
前記交流電源は3相交流電源であり、前記負荷は3相負荷であり、前記電流検出手段は零相変流器である、
請求項1に記載の絶縁監視システム。
The AC power supply is a three-phase AC power supply, the load is a three-phase load, and the current detection means is a zero-phase current transformer.
The insulation monitoring system according to claim 1.
前記電流検出手段は、さらに、前記負荷電線を流れる負荷電流から零相電流を検出し、
検出された前記零相電流の値に基づいて、前記電路の絶縁状態が良好か否かを判定する絶縁状態判定手段をさらに備える、
請求項1又は2に記載の絶縁監視システム。
The current detection means further detects a zero-phase current from a load current flowing through the load wire,
Further comprising an insulation state determination means for determining whether or not the insulation state of the electric circuit is good based on the detected value of the zero-phase current.
The insulation monitoring system according to claim 1 or 2.
JP2018036823A 2018-03-01 2018-03-01 Insulation monitoring system Active JP7023138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018036823A JP7023138B2 (en) 2018-03-01 2018-03-01 Insulation monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036823A JP7023138B2 (en) 2018-03-01 2018-03-01 Insulation monitoring system

Publications (2)

Publication Number Publication Date
JP2019152495A true JP2019152495A (en) 2019-09-12
JP7023138B2 JP7023138B2 (en) 2022-02-21

Family

ID=67948788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036823A Active JP7023138B2 (en) 2018-03-01 2018-03-01 Insulation monitoring system

Country Status (1)

Country Link
JP (1) JP7023138B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214003A (en) * 1988-02-22 1989-08-28 Hikari Shoko Kk Split-type zero-phase current transformer
JPH0919046A (en) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp Insulation-degradation diagnostic apparatus
JP2010062419A (en) * 2008-09-05 2010-03-18 Tokyo Electric Power Co Inc:The Zero-phase current transformer
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
JP2012088275A (en) * 2010-10-22 2012-05-10 Midori Anzen Co Ltd Insulation level monitoring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214003A (en) * 1988-02-22 1989-08-28 Hikari Shoko Kk Split-type zero-phase current transformer
JPH0919046A (en) * 1995-04-28 1997-01-17 Mitsubishi Electric Corp Insulation-degradation diagnostic apparatus
JP2010062419A (en) * 2008-09-05 2010-03-18 Tokyo Electric Power Co Inc:The Zero-phase current transformer
JP2010066162A (en) * 2008-09-11 2010-03-25 Midori Anzen Co Ltd Insulation monitoring apparatus
JP2012088275A (en) * 2010-10-22 2012-05-10 Midori Anzen Co Ltd Insulation level monitoring device

Also Published As

Publication number Publication date
JP7023138B2 (en) 2022-02-21

Similar Documents

Publication Publication Date Title
US10151790B2 (en) Insulation fault locating system using branch-selective feeding, and selective insulation fault monitoring system and method for determining a cross-connection impedance between two subsystems
US10522998B2 (en) Method for detecting an open-phase condition of a transformer
US10126348B2 (en) Combined on-line bushing monitoring and geo-magnetic induced current monitoring system
CA3012835A1 (en) Systems and methods for detecting turn-to-turn faults in transformer windings
CN111257652B (en) Magnetic field measurement device and method for detecting positioning current in a branched AC power supply system
EP2672282A1 (en) Earth fault detection in frequency converter
KR101406546B1 (en) Sinusoidal insulation monitoring apparatus having operation frequency setting function
JP2018072228A (en) Current detection device
JP6896592B2 (en) Open phase detection device and open phase detection system
JP2009069065A (en) Device for measuring effective leakage current
US9041383B2 (en) Method and device for linearizing a transformer
JP2002311061A (en) Processor for electric power
JP7023138B2 (en) Insulation monitoring system
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JP2012088275A (en) Insulation level monitoring device
WO2019142574A1 (en) Electric circuit failure detecting device
JP6809189B2 (en) Insulation resistance measurement method for DC power supply circuit
WO2018034260A1 (en) Open phase detecting system, open phase detecting device and open phase detecting method
JP2017204973A (en) Phase interruption detection system, phase interruption detection apparatus and phase interruption detection method
JP2011252780A (en) Detection method of partial discharge of electrical device using magnetic field probe
JPH04249778A (en) Electric cable monitor
JP6714455B2 (en) Ground capacitance measuring device and ground capacitance measuring method
JP7455400B2 (en) Clamp type earth resistance measuring device
JP2006010608A (en) Insulation level monitoring method for non-earthing electric line and device thereof
JP2013113632A (en) Ground fault detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220208

R150 Certificate of patent or registration of utility model

Ref document number: 7023138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150