JP6714455B2 - Ground capacitance measuring device and ground capacitance measuring method - Google Patents

Ground capacitance measuring device and ground capacitance measuring method Download PDF

Info

Publication number
JP6714455B2
JP6714455B2 JP2016128180A JP2016128180A JP6714455B2 JP 6714455 B2 JP6714455 B2 JP 6714455B2 JP 2016128180 A JP2016128180 A JP 2016128180A JP 2016128180 A JP2016128180 A JP 2016128180A JP 6714455 B2 JP6714455 B2 JP 6714455B2
Authority
JP
Japan
Prior art keywords
ground
ratio
capacitance
voltage signal
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016128180A
Other languages
Japanese (ja)
Other versions
JP2018004329A (en
Inventor
山本 達也
達也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toenec Corp
Original Assignee
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toenec Corp filed Critical Toenec Corp
Priority to JP2016128180A priority Critical patent/JP6714455B2/en
Publication of JP2018004329A publication Critical patent/JP2018004329A/en
Application granted granted Critical
Publication of JP6714455B2 publication Critical patent/JP6714455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、電気設備の低圧側電路全体の合計対地静電容量および前記低圧側電路の下流側で分岐された複数の下流側分岐電路それぞれの対地静電容量を測定可能な対地静電容量測定装置および対地静電容量測定方法に関する。 The present invention is capable of measuring the total ground electrostatic capacity of the entire low-voltage side electric circuit of an electric equipment and the ground electrostatic capacity of each of a plurality of downstream side branch electric circuits branched on the downstream side of the low-voltage side electric circuit. The present invention relates to a device and a method for measuring capacitance to ground.

特開2014−92386号公報(特許文献1)には、上流側が受電変圧器を介して高圧側電路に接続されると共に、下流側が複数系統に分岐されて負荷装置に接続された低圧側電路の対地絶縁抵抗を測定する対地絶縁抵抗測定装置が記載されている。当該装置は、受電変圧器のB種接地線に監視信号としての電圧信号を重畳すると共に当該交流電圧に起因してB種接地線に流れる漏れ電流を検出して対地絶縁抵抗を測定するように構成された固定型計測装置と、低圧側電路の所望位置を流れる電流を検出すると共に当該電流と固定型計測装置から送信される電圧信号とに基づき当該電流に含まれる抵抗成分を測定するように構成された可搬型計測装置と、を備えている。 In Japanese Unexamined Patent Application Publication No. 2014-92386 (Patent Document 1), an upstream side is connected to a high-voltage side electric circuit via a power receiving transformer, and a downstream side is divided into a plurality of systems to connect to a load device. A ground insulation resistance measuring device for measuring a ground insulation resistance is described. The device superimposes a voltage signal as a monitoring signal on the class B ground line of the power receiving transformer and detects the leakage current flowing in the class B ground line due to the AC voltage to measure the ground insulation resistance. A fixed type measuring device configured to detect a current flowing through a desired position of the low-voltage side electric circuit and to measure a resistance component included in the current based on the current and the voltage signal transmitted from the fixed type measuring device. And a portable measuring device configured.

当該対地絶縁抵抗測定装置では、固定型計測装置から可搬型計測装置に電圧信号が送信されるため、可搬型計測装置で電圧を検出する必要がなく、対地絶縁抵抗を測定するにあたって接続用のクリップを電線に接続する等の煩雑な作業が不要となる。また、可搬型計測装置によってどの系統に絶縁抵抗の劣化が発生しているのかを簡易かつ迅速に知ることができる。 In the earth insulation resistance measuring device, since the voltage signal is transmitted from the fixed measuring device to the portable measuring device, it is not necessary to detect the voltage by the portable measuring device, and the clip for connection is used to measure the earth insulating resistance. There is no need for complicated work such as connecting the cable to an electric wire. Further, it is possible to know the deterioration of the insulation resistance to any lineage by the portable measuring device that you are generated easily and quickly.

特開2014−92386号公報JP, 2014-92386, A

ところで、近年、低圧側電路は長大になっており、また、コンデンサを構成素子とするラインフィルタ等を内蔵した電子機器が負荷として接続されることが多いため、低圧側電路の対地静電容量が大きくなってきている。このように、低圧側電路の対地静電容量が大きくなると、漏洩電流が流れ漏電遮断器や漏電警報器が作動してしまうため、対地静電容量の測定に対する要望が高まってきている。 By the way, in recent years, the low-voltage side electric circuit has become long, and since an electronic device having a built-in line filter or the like having a capacitor as a constituent element is often connected as a load, the capacitance to ground of the low-voltage side electric circuit is reduced. It's getting bigger. As described above, when the capacitance to ground of the low-voltage side electric path becomes large, a leakage current flows and the leak breaker or the leak alarm operates, so there is an increasing demand for measurement of capacitance to ground.

そこで上述した公報に記載の対地絶縁抵抗測定装置を利用して低圧側電路の所望位置(低圧側電路側の各下流側分岐電路)における対地静電容量を測定することが考えられる。しかしながら、対地静電容量は、低圧側電路の下流側分岐電路に接続された負荷の作動状況(設備の動作モードや冷暖房器具のオンオフなど)などによって簡単に変動するため、対地静電容量を測定中に当該対地静電容量に変動が生じた場合には、上述した公報に記載の測定装置の構成では正確な測定を行うことができない。 Therefore, it is conceivable to measure the ground capacitance at a desired position of the low-voltage side electric circuit (each downstream branch electric circuit on the low-voltage side electric circuit side) using the ground insulation resistance measuring device described in the above-mentioned publication. However, the capacitance to ground varies easily depending on the operating conditions of the load connected to the branch circuit on the downstream side of the low-voltage side circuit (operation mode of equipment, on/off of heating and cooling equipment, etc.), so the capacitance to ground is measured. In the case where the capacitance to ground is varied, accurate measurement cannot be performed with the configuration of the measuring device described in the above publication.

本発明は、上記に鑑みてなされたものであり、低圧側電路側の下流側分岐電路における対地静電容量を正確かつ簡易な構成で測定することができる対地静電容量測定装置および対地静電容量測定方法を提供することを目的とする。 The present invention has been made in view of the above, and a ground capacitance measuring device and a ground electrostatic capacitance measuring device capable of measuring the ground capacitance in a downstream branch electric circuit on the low voltage side electric circuit side with an accurate and simple configuration. It is an object to provide a capacity measuring method.

本発明に係る対地静電容量測定装置の好ましい形態によれば、電気設備の低圧側電路全体の合計対地静電容量および低圧側電路の下流側で分岐された複数の下流側分岐電路それぞれの対地静電容量を測定可能な対地静電容量測定装置が構成される。当該対地静電容量測定装置は、送信機兼主受信器と、副受信器と、を備えている。送信機兼主受信器は、低圧側電路のB種接地線に設置され当該B種接地線に商用周波数とは異なる周波数の電圧信号を印加すると共に、当該電圧信号に起因して低圧側電路および大地を介してB種接地線に環流する漏れ電流を所定時間毎に検出するように構成されている。また、送信器兼主受信器は、電圧信号および検出した漏れ電流に基づいて合計対地静電容量を算定する合計対地静電容量算定手段と、算定に用いた漏れ電流と合計対地静電容量との比である第1比を算定する第1比算定手段と、所定の条件が成立したか否かを判定する判定手段と、所定の条件が成立したときに検出した漏れ電流および電圧信号に基づいて合計対地静電容量を再算定する合計対地静電容量再算定手段と、再算定に用いた漏れ電流と再算定した合計対地静電容量との比である第2比を算定する第2比算定手段と、印加する電圧信号を第1比と第2比との比に基づいて補正する電圧信号補正手段と、を備えている。そして、送信機兼主受信器は、所定の条件が成立したときには、電圧信号に変えて電圧信号補正手段によって補正された補正電圧信号をB種接地線に印加するように構成されている。また、副送信機は、複数の下流側分岐電路のいずれかに設置されて当該下流側分岐電路を流れる漏れ電流の分流成分である分流電流を検出可能に構成されている。そして、当該副受信器は、検出した分流電流と、第1比および第2比の比と、に基づいて下流側分岐電路の対地静電容量を算定するように構成されている。 According to the preferred embodiment of the ground capacitance measuring device according to the present invention, the total ground capacitance of the entire low-voltage side electric path of the electrical equipment and a plurality of downstream branch electric paths branched on the downstream side of the low-voltage side electric path A ground capacitance measuring device capable of measuring the capacitance is configured. The ground capacitance measuring device includes a transmitter and main receiver and a sub receiver. The transmitter/main receiver is installed on the B-type ground line of the low-voltage side electric line, applies a voltage signal having a frequency different from the commercial frequency to the B-type ground line, and causes the low-voltage side electric line and the It is configured to detect a leakage current circulating through the ground to the class B ground line at predetermined time intervals. The transmitter/main receiver also calculates the total capacitance to ground on the basis of the voltage signal and the detected leakage current, and the leakage current used for the calculation and the total capacitance to ground. Based on the leakage current and the voltage signal detected when the predetermined condition is satisfied, the first ratio calculating means for calculating the first ratio which is the ratio of the Second ratio for calculating the second ratio which is the ratio of the leakage current used for the recalculation and the recalculated total capacitance to ground, and the total ground capacitance recalculation means for recalculating the total capacitance to ground The calculation means and the voltage signal correction means for correcting the applied voltage signal based on the ratio of the first ratio and the second ratio are provided. Then, the transmitter/main receiver is configured to apply the corrected voltage signal corrected by the voltage signal correcting means to the class B ground line instead of the voltage signal when a predetermined condition is satisfied. Further, the sub transmitter is installed in any of the plurality of downstream branch electric circuits, and is configured to detect a shunt current that is a shunt component of the leakage current flowing through the downstream branch electric circuit. Then, the sub-receiver is configured to calculate the ground capacitance of the downstream branch electric circuit based on the detected shunt current and the ratio of the first ratio and the second ratio.

ここで、本発明における「複数の下流側分岐電路のいずれかに設置」される態様としては、副受信器が複数の下流側分岐電路のいずれか一つのみに設置される態様の他、複数の下流側分岐電路の一つ以上を含むように副受信器が設置される態様を好適に包含する。 Here, in the aspect of "installed in any of the plurality of downstream branch electric paths" in the present invention, in addition to the aspect in which the sub-receiver is installed only in any one of the plurality of downstream branch electric paths, Preferably, the sub-receiver is installed so as to include one or more of the downstream branch electric circuits.

本発明者は、B種接地線に環流される漏れ電流と下流側分岐電路で測定される分流電流との比が、低圧側電路全体の合計対地静電流容量と当該下流側分岐電路の対地静電容量との比に等しいことに着目し、下流側分岐電路における対地静電容量を測定する際には、B種接地線に環流される漏れ電流と合計対地静電流容量との比が常に略同じ値となるように、印加する電圧信号を補正する構成とした。これにより、いずれかの下流側分岐電路に接続された負荷の作動状況(設備の動作モードや冷暖房器具のオンオフなど)が変更されるなどして、当該下流側分岐電路における対地静電容量の測定中に当該対地静電容量に変動が生じた場合であっても、当該下流側分岐電路における対地静電容量を正確に測定することができる。また、当該下流側分岐電路を流れる分流電流と、B種接地線に環流される漏れ電流および合計対地静電流容量の比と、に基づいて当該下流側分岐電路の対地静電容量を算定するのみであるため、極めて短い時間、かつ、簡易に当該下流側分岐電路の対地静電容量を算定することができる。 The present inventor has found that the ratio of the leakage current circulated to the class B grounding wire to the shunt current measured in the downstream branch circuit is such that the total static current capacity of the entire low-voltage side circuit and the static current of the downstream branch circuit. Paying attention to the fact that it is equal to the ratio to the capacitance, when measuring the capacitance to ground in the downstream branch circuit, the ratio of the leakage current circulated to the class B ground line and the total static current capacity is always approximately The voltage signal to be applied is corrected so as to have the same value. As a result, the operating status of the load connected to one of the downstream branch circuits (such as the operation mode of the equipment and the on/off of cooling/heating equipment) is changed, and the capacitance to ground is measured on the downstream branch circuit. Even when the capacitance to ground changes, the capacitance to ground in the downstream branch circuit can be accurately measured. In addition, the ground capacitance of the downstream branch circuit is only calculated based on the shunt current flowing in the downstream branch circuit and the ratio of the leakage current circulating in the class B ground line and the total static current capacity. Therefore, it is possible to easily calculate the capacitance to ground of the downstream branch electric circuit in a very short time.

本発明に係る対地静電容量測定装置の更なる形態によれば、送信器兼主受信器は、電圧信号として商用周波数よりも高い周波数の高周波電圧信号をB種接地線に印加するように構成されている。 According to a further embodiment of the ground capacitance measuring device of the present invention, the transmitter/main receiver is configured to apply a high-frequency voltage signal having a frequency higher than the commercial frequency to the class B ground line as a voltage signal. Has been done.

本形態によれば、低圧側電路全体の絶縁抵抗と合計対地静電容量とのインピーダンス比によって当該絶縁抵抗にほとんど漏れ電流を流さないようにすることができるため、対地静電容量を算定するに際して当該絶縁抵抗を無視することができる。これにより、対地静電容量の算定をより簡易にすることができ、測定時間をより一層短縮することができる。また、送信機兼主受信器にクランプタイプのものを使用する場合にあっては、鉄心の径を小さくすることができるため装置のコンパクト化や低コスト化を図ることができる。 According to the present embodiment, it is possible to make almost no leakage current flow through the insulation resistance due to the impedance ratio of the insulation resistance of the entire low-voltage side electric circuit and the total capacitance to ground. The insulation resistance can be ignored. As a result, the calculation of the capacitance to ground can be simplified and the measurement time can be further shortened. Further, when a clamp type is used for the transmitter and the main receiver, the diameter of the iron core can be reduced, so that the device can be made compact and the cost can be reduced.

本発明に係る対地静電容量測定方法の好ましい形態によれば、電気設備の低圧側電路全体の合計対地静電容量および前記低圧側電路の下流側で分岐された複数の下流側分岐電路それぞれの対地静電容量を測定する対地静電容量測定方法が構成される。当該対地静電容量測定方法は、送信機兼主受信器と、副受信器と、を備えている。そして、送信機兼主受信器は、低圧側電路のB種接地線に設置され当該B種接地線に商用周波数とは異なる周波数の電圧信号を印加すると共に、当該電圧信号に起因して低圧側電路および大地を介してB種接地線に環流する漏れ電流を所定時間毎に検出するように構成されている。また、副受信器は、複数の下流側分岐電路のいずれかに設置され当該下流側分岐電路を流れる漏れ電流の分流成分である分流電流を検出可能に構成されている。そして、当該対地静電容量測定方法では、(a)電圧信号および検出した漏れ電流に基づいて合計対地静電容量を算定し、(b)算定に用いた漏れ電流と合計対地静電容量との比である第1比を算定し、(c)所定の条件が成立したか否かを判定し、(d)所定の条件が成立したときには、当該所定の条件が成立したときに検出した漏れ電流および電圧信号に基づいて合計対地静電容量を再算定すると共に、再算定に用いた漏れ電流と再算定した合計対地静電容量との比である第2比を算定し、(e)印加する電圧信号を第1比と第2比との比に基づいて補正すると共に、電圧信号に変えて補正された補正電圧信号をB種接地線に印加し、(f)副受信器によって検出した分流電流と、第1比および第2比の比と、に基づいて下流側分岐電路の対地静電容量を算定する。 According to a preferred embodiment of the ground capacitance measuring method according to the present invention, the total ground capacitance of the entire low-voltage side electric path of the electrical equipment and a plurality of downstream branch electric paths branched on the downstream side of the low-voltage side electric path. A ground capacitance measuring method for measuring a ground capacitance is configured. The ground capacitance measuring method includes a transmitter and main receiver and a sub receiver. The transmitter/main receiver is installed on the B-type ground line of the low-voltage side electric line, applies a voltage signal of a frequency different from the commercial frequency to the B-type ground line, and causes the low-voltage side due to the voltage signal. It is configured to detect the leakage current flowing back to the type B ground wire via the electric path and the ground every predetermined time. The sub-receiver is installed in any of the plurality of downstream branch circuits and is configured to detect a shunt current that is a shunt component of the leakage current flowing through the downstream branch circuit. In the ground capacitance measuring method, (a) the total ground capacitance is calculated based on the voltage signal and the detected leakage current, and (b) the leakage current used for the calculation and the total ground capacitance. A first ratio, which is a ratio, is calculated, and (c) it is determined whether or not a predetermined condition is satisfied, and (d) when the predetermined condition is satisfied, the leakage current detected when the predetermined condition is satisfied. And recalculate the total capacitance to ground based on the voltage signal, and calculate the second ratio, which is the ratio of the leakage current used for recalculation and the recalculated total capacitance to ground, and apply (e). The voltage signal is corrected based on the ratio of the first ratio and the second ratio, and the corrected voltage signal which is changed into the voltage signal is applied to the class B ground line, and (f) the shunt current detected by the sub-receiver. The capacitance to ground of the downstream branch electric circuit is calculated based on the current and the ratio of the first ratio and the second ratio.

ここで、本発明における「複数の下流側分岐電路のいずれかに設置」される態様としては、副受信器が複数の下流側分岐電路のいずれか一つのみに設置される態様の他、複数の下流側分岐電路の一つ以上を含むように副受信器が設置される態様を好適に包含する。 Here, in the aspect of "installed in any of the plurality of downstream branch electric paths" in the present invention, in addition to the aspect in which the sub-receiver is installed only in any one of the plurality of downstream branch electric paths, Preferably, the sub-receiver is installed so as to include one or more of the downstream branch electric circuits.

本発明者は、B種接地線に環流される漏れ電流と下流側分岐電路で測定される分流電流との比が、低圧側電路全体の合計対地静電流容量と当該下流側分岐電路の対地静電容量との比に等しいことに着目し、下流側分岐電路における対地静電容量を測定する際には、B種接地線に環流される漏れ電流と合計対地静電流容量との比が常に略同じ値となるように、印加する電圧信号を補正する構成とした。これにより、いずれかの下流側分岐電路に接続された負荷の作動状況(設備の動作モードや冷暖房器具のオンオフなど)が変更されるなどして、当該下流側分岐電路における対地静電容量の測定中に当該対地静電容量に変動が生じた場合であっても、当該下流側分岐電路における対地静電容量を正確に測定することができる。また、当該下流側分岐電路を流れる分流電流と、B種接地線に環流される漏れ電流および合計対地静電流容量の比と、に基づいて当該下流側分岐電路の対地静電容量を算定するのみであるため、極めて短い時間、かつ、簡易に当該下流側分岐電路の対地静電容量を算定することができる。 The present inventor has found that the ratio of the leakage current circulated to the class B grounding wire to the shunt current measured in the downstream branch circuit is such that the total static current capacity of the entire low-voltage side circuit and the static current of the downstream branch circuit. Paying attention to the fact that it is equal to the ratio to the capacitance, when measuring the capacitance to ground in the downstream branch circuit, the ratio of the leakage current circulated to the class B ground line and the total static current capacity is always approximately The voltage signal to be applied is corrected so as to have the same value. As a result, the operating status of the load connected to one of the downstream branch circuits (such as the operation mode of the equipment and the on/off of cooling/heating equipment) is changed, and the capacitance to ground is measured on the downstream branch circuit. Even when the capacitance to ground changes, the capacitance to ground in the downstream branch circuit can be accurately measured. In addition, the ground capacitance of the downstream branch circuit is only calculated based on the shunt current flowing in the downstream branch circuit and the ratio of the leakage current circulating in the class B ground line and the total static current capacity. Therefore, it is possible to easily calculate the capacitance to ground of the downstream branch electric circuit in a very short time.

本発明に係る対地静電容量測定方法の更なる形態によれば、送信器兼主受信器は、電圧信号として商用周波数よりも高い周波数の高周波電圧信号をB種接地線に印加するように構成されている。 According to a further aspect of the method for measuring the capacitance to ground according to the present invention, the transmitter/main receiver is configured to apply a high-frequency voltage signal having a frequency higher than the commercial frequency as a voltage signal to the B-type ground line. Has been done.

本形態によれば、低圧側電路全体の絶縁抵抗と合計対地静電容量とのインピーダンス比によって当該絶縁抵抗にほとんど漏れ電流を流さないようにすることができるため、対地静電容量を算定するに際して当該絶縁抵抗を無視することができる。これにより、対地静電容量の算定をより簡易にすることができ、測定時間をより一層短縮することができる。また、送信機兼主受信器にクランプタイプのものを使用する場合にあっては、鉄心の径を小さくすることができるため装置のコンパクト化や低コスト化を図ることができる。 According to this embodiment, it is possible to make almost no leakage current flow through the insulation resistance due to the impedance ratio of the insulation resistance of the entire low-voltage side electric circuit and the total capacitance to ground. The insulation resistance can be ignored. As a result, the calculation of the capacitance to ground can be simplified and the measurement time can be further shortened. Further, when a clamp type is used for the transmitter and the main receiver, the diameter of the iron core can be reduced, so that the device can be made compact and the cost can be reduced.

本発明によれば、低圧側電路側の下流側分岐電路における対地静電容量を正確かつ簡易な構成で測定することができる。 According to the present invention, it is possible to measure the capacitance to ground in the downstream branch circuit on the low voltage side circuit side accurately and with a simple configuration.

本発明の実施の形態に係る対地静電容量測定装置1を用いて電気設備80の低圧側電路70における合計対地静電容量Ca,Cpを測定する様子を示す説明図である。It is explanatory drawing which shows a mode that the total earth capacitance Ca, Cp in the low voltage side electric circuit 70 of the electric equipment 80 is measured using the earth capacitance measuring device 1 which concerns on embodiment of this invention. 送信器兼主受信器10の構成の概略を示すブロック図である。FIG. 3 is a block diagram showing a schematic configuration of a transmitter/main receiver 10. 副受信器30の構成の概略を示すブロック図である。3 is a block diagram showing a schematic configuration of a sub receiver 30. FIG. 低圧側電路7における合計対地静電容量Caを求めるための模擬回路を示す模擬回路図である。5 is a simulation circuit diagram showing a simulation circuit for obtaining a total ground capacitance Ca in the low voltage side electric circuit 7. FIG. 低圧側電路7における合計対地静電容量Caを求めるための等価回路を示す等価回路図である。5 is an equivalent circuit diagram showing an equivalent circuit for obtaining a total ground capacitance Ca in the low voltage side electric circuit 7. FIG. 送信器兼主受信器10の制御ユニット22により実行される電圧信号補正処理の一例を示すフローチャートである。7 is a flowchart showing an example of voltage signal correction processing executed by the control unit 22 of the transmitter/main receiver 10. 副受信器30の制御ユニット42により実行される対地静電容量算定処理の一例を示すフローチャートである。6 is a flowchart showing an example of a ground capacitance calculating process executed by a control unit 42 of the sub receiver 30. 電圧信号V、漏れ電流Ig、合計対地静電容量Caの両端の電位差Vcおよび合成接地抵抗Reのベクトル関係を表すベクトル図である。It is a vector diagram showing the vector relationship of the voltage signal V, the leak current Ig, the potential difference Vc between both ends of the total ground capacitance Ca, and the synthetic ground resistance Re.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。 Next, the best mode for carrying out the present invention will be described using embodiments.

本発明の実施の形態に係る対地静電容量測定装置1は、図1に示すように、受電変圧器90,92を挟んで電気設備80の低圧側に配された低圧側電路70における電路全体の合計対地静電容量Caを測定可能に構成された送信器兼主受信器10と、低圧側電路70の下流側で分岐された複数の下流側分岐電路72それぞれにおける対地静電容量CPを測定可能に構成された副受信器30と、を備えている。 As shown in FIG. 1, the ground capacitance measuring device 1 according to the embodiment of the present invention includes an entire electric path in a low-voltage side electric path 70 arranged on the low-voltage side of an electric facility 80 with a power receiving transformer 90, 92 interposed therebetween. Of the transmitter/main receiver 10 configured to be able to measure the total ground capacitance Ca of the above, and the ground capacitance CP of each of the plurality of downstream branch electric paths 72 branched on the downstream side of the low voltage side electric path 70. And a sub-receiver 30 configured as possible.

なお、受電変圧器90,92の2次巻線の中性点は、接地線L1を介してB種接地極EBに接続されている。また、複数の下流側分岐電路72の下流側には、図示は省略しているが様々な負荷(例えば、パソコンや冷暖房器具、加工装置、照明器具など)が接続されている共に、接地線L2を介してD種接地極EDに接続されている。 The neutral point of the secondary windings of the power receiving transformers 90 and 92 is connected to the type B ground electrode EB via the ground line L1. Further, although not shown, various loads (for example, a personal computer, a heating/cooling device, a processing device, a lighting device, etc.) are connected to the downstream side of the plurality of downstream branch electric paths 72, and the ground line L2. Is connected to the D-type ground electrode ED via.

送信器兼主受信器10は、図2に示すように、B種接地極EBに接続された接地線L1にクランプされる信号注入クランプ12およびクランプセンサ14と、信号注入クランプ12に電気的に接続された信号出力部16と、クランプセンサ14に電気的に接続されたフィルタ18と、フィルタ18に電気的に接続されたA/Dコンバータ20と、信号出力部16およびA/Dコンバータ20に電気的に接続された制御ユニット22と、制御ユニット22に電気的に接続された操作部24、表示部26および通信部28と、から主に構成されており、例えば、配電盤室等に設置される。 As shown in FIG. 2, the transmitter/main receiver 10 electrically connects to the signal injection clamp 12 and the clamp sensor 14 which are clamped to the ground line L1 connected to the type B ground electrode EB, and the signal injection clamp 12. The signal output unit 16 connected to the clamp sensor 14, the filter 18 electrically connected to the clamp sensor 14, the A/D converter 20 electrically connected to the filter 18, the signal output unit 16 and the A/D converter 20. The control unit 22 is electrically connected to the control unit 22, and the operation unit 24, the display unit 26, and the communication unit 28 electrically connected to the control unit 22 are mainly configured. For example, the control unit 22 is installed in a switchboard room or the like. It

信号注入クランプ12は、信号出力部16から出力される電圧信号VをB種接地極EBに接続された接地線L1に印加することができるように構成されている。図1に示すように、複数の受電変圧器90,92の接地線90a,92aが共通の接地線L1を介してB種接地極EBに接続されている場合には、各接地線90a,92aが結合されているB種接地極EB直近の接地線L1に信号注入クランプ12を設置することが望ましい。クランプセンサ14は、低圧側電路70に流れる電流信号(大地を環流する電流)を検出することができるように構成されている。フィルタ18は、クランプセンサ14で検出される電流信号から電圧信号Vの周波数成分の電流信号、即ち、B種接地極EBに接続された接地線L1に電圧信号Vを印加したことに起因して低圧側電路70に流れる漏れ電流Ig相当の信号を取り出すように構成されている。A/Dコンバータ20は、当該漏れ電流Ig相当の信号をデジタル値に変換するように構成されている。また、操作部24は、電源をオンオフするためのスイッチや、B種接地極EBに接続された接地線L1に印加する電圧信号Vの値を設定するための操作ボタンなどを有している。 The signal injection clamp 12 is configured so that the voltage signal V output from the signal output unit 16 can be applied to the ground line L1 connected to the type B ground electrode EB. As shown in FIG. 1, when the ground lines 90a and 92a of the plurality of power receiving transformers 90 and 92 are connected to the B-type ground electrode EB via the common ground line L1, the ground lines 90a and 92a are connected. It is desirable to install the signal injection clamp 12 on the ground line L1 in the immediate vicinity of the type B grounding electrode EB to which is coupled. The clamp sensor 14 is configured to be able to detect a current signal (current circulating in the ground) flowing in the low voltage side electric circuit 70. The filter 18 is caused by applying the voltage signal V 0 to the current signal of the frequency component of the voltage signal V 0 from the current signal detected by the clamp sensor 14, that is, the ground line L1 connected to the type B ground electrode EB. Then, a signal corresponding to the leakage current Ig 0 flowing in the low voltage side electric circuit 70 is taken out. The A/D converter 20 is configured to convert a signal corresponding to the leakage current Ig 0 into a digital value. Further, the operation unit 24 has a switch for turning on/off the power supply, an operation button for setting the value of the voltage signal V 0 applied to the ground line L1 connected to the type B ground electrode EB, and the like. ..

制御ユニット22は、図示しないCPUを中心とするマイクロプロセッサとして構成されており、CPUの他に処理プログラムを記憶するROMと、データを一時的に記憶するRAMと、図示しない入出力ポートと、を備えている。制御ユニット22には、操作部24からの電源オンオフ信号や電圧信号V0、A/Dコンバータ20からの漏れ電流Ig相当のデジタル信号などが入力ポートを介して入力されている。ここで、電圧信号V0の周波数は、本実施の形態では、商用周波数(50Hzないし60Hz)よりも高い周波数、例えば、100Hz〜500Hzの範囲から選択して設定される構成とした。このように電圧信号Vの周波数を高周波数に設定する理由は以下の理由による。 The control unit 22 is constructed as a microprocessor including a CPU, not shown Figure, a ROM for storing the processing programs of the CPU, a RAM that temporarily stores data, input and output ports (not shown), Is equipped with. A power supply ON/OFF signal from the operation unit 24, a voltage signal V 0 , a digital signal corresponding to the leakage current Ig from the A/D converter 20, and the like are input to the control unit 22 via an input port. Here, in the present embodiment, the frequency of the voltage signal V 0 is set to a frequency higher than the commercial frequency (50 Hz to 60 Hz), for example, selected from the range of 100 Hz to 500 Hz. The reason for setting the frequency of the voltage signal V to a high frequency in this way is as follows.

本実施の形態の低圧側電路70は、図4に示すように、当該低圧側電路70全体の対地静電容量Cpの合計である合計対地静電容量Caと、当該低圧側電路70全体の絶縁抵抗の全並列絶縁抵抗合成値Rと、が並列に接続された並列回路部52を有する構成となっているが、B種接地極EBに接続された接地線L1に印加する電圧信号Vの周波数を上述したような高周波数に設定することにより、合計対地静電容量Caと全並列絶縁抵抗合成値Rとのインピーダンス比により全並列絶縁抵抗合成値Rにはほとんど漏れ電流Igが流れなくなるため当該全並列絶縁抵抗合成値Rを無視することができる。これにより、本実施の形態の低圧側電路70は、図5に示すように、合計対地静電容量Caと、B種接地抵抗RebおよびD種接地抵抗Redの直列合成絶縁抵抗Reと、が直列接続されたのみの等価回路に置換し得る。このように全並列絶縁抵抗合成値Rを無視することができるため、合計対地静電容量Caの算定を簡易なものとすることができる。 As shown in FIG. 4, the low-voltage side electric path 70 of the present embodiment has a total ground electrostatic capacity Ca that is the sum of the ground electrostatic capacity Cp of the entire low-voltage side electric path 70 and the insulation of the entire low-voltage side electric path 70. Although the total parallel insulation resistance combined value R of the resistors and the parallel circuit portion 52 connected in parallel are provided, the voltage signal V 0 applied to the ground line L1 connected to the type B ground electrode EB Since the frequency is set to the high frequency as described above, the leakage current Ig hardly flows through the total parallel insulation resistance combined value R due to the impedance ratio between the total ground capacitance Ca and the total parallel insulation resistance combined value R. The total parallel insulation resistance combined value R can be ignored. As a result, in the low voltage side electric circuit 70 of the present embodiment, as shown in FIG. 5, the total ground capacitance Ca and the series combined insulation resistance Re of the B type ground resistance Reb and the D type ground resistance Red are connected in series. It can be replaced with an equivalent circuit that is only connected. Since the total parallel insulation resistance combined value R can be ignored in this way, the calculation of the total ground capacitance Ca can be simplified.

また、制御ユニット22からは、表示部26への表示信号などが出力ポートを介して出力されている。なお、送信器兼主受信器10は、通信部28を介して副受信器30と無線により各種データや各種信号のやりとりを行っている。具体的には、送信器兼主受信器10には、通信部28を介して、副受信器30からの後述する電源オンオフ信号が入力されると共に、後述する基準比kが副受信器30に向けて出力されている。 In addition, the control unit 22 outputs a display signal to the display unit 26 through an output port. The transmitter/main receiver 10 wirelessly exchanges various data and various signals with the sub receiver 30 via the communication unit 28. Specifically, the transmitter/main receiver 10 receives a power-on/off signal, which will be described later, from the sub-receiver 30 via the communication unit 28, and the reference ratio k 0 , which will be described later, is set to the sub-receiver 30. Is being output to.

副受信器30は、図3に示すように、低圧側電路70(図1参照)の複数の下流側分岐電路72のいずれかにクランプされるクランプセンサ32と、クランプセンサ32に電気的に接続されたフィルタ34と、フィルタ34に電気的に接続されたA/Dコンバータ36と、A/Dコンバータ36に電気的に接続された制御ユニット38と、制御ユニット38に電気的に接続された操作部40、表示部42および通信部44と、から主に構成されており、下流側分岐電路72の対地静電容量Cpを測定する測定者が持ち歩き可能なように構成されている。 As shown in FIG. 3, the sub-receiver 30 is electrically connected to the clamp sensor 32, which is clamped in any of the plurality of downstream branch electric paths 72 of the low voltage side electric path 70 (see FIG. 1 ), and the clamp sensor 32. Filter 34, A/D converter 36 electrically connected to filter 34, control unit 38 electrically connected to A/D converter 36, and operation electrically connected to control unit 38 The unit 40, the display unit 42, and the communication unit 44 are mainly configured, and are configured so that a measurer who measures the ground capacitance Cp of the downstream branch electric path 72 can be carried around.

クランプセンサ32は、低圧側電路70に流れる電流信号(大地を環流する電流)の分流成分として下流側分岐電路72に流れる分流電流信号を検出することができるように構成されている。フィルタ34は、クランプセンサ32で検出される分流電流信号から電圧信号Vの周波数成分の電流信号、即ち、漏れ電流Igの分流成分である分流電流Igp相当の信号を取り出すように構成されている。A/Dコンバータ36は、当該分流電流Igp相当の信号をデジタル値に変換するように構成されている。操作部40は、電源をオンオフするためのスイッチなどを有している。 The clamp sensor 32 is configured so as to be able to detect a shunt current signal flowing in the downstream branch electric path 72 as a shunt component of the current signal flowing in the low voltage side electric path 70 (current circulating in the ground). The filter 34 is configured to extract a current signal having a frequency component of the voltage signal V 0 , that is, a signal corresponding to the shunt current Igp which is a shunt component of the leakage current Ig, from the shunt current signal detected by the clamp sensor 32. .. The A/D converter 36 is configured to convert a signal corresponding to the shunt current Igp into a digital value. The operation unit 40 has a switch for turning the power on and off.

制御ユニット38は、図示しないCPUを中心とするマイクロプロセッサとして構成されており、CPUの他に処理プログラムを記憶するROMと、データを一時的に記憶するRAMと、図示しない入出力ポートと、を備えている。制御ユニット38には、操作部40からの電源オンオフ信号や、A/Dコンバータ36からの分流電流Igp相当のデジタル信号などが入力ポートを介して入力されている。また、制御ユニット38からは、表示部42への表示信号などが出力ポートを介して出力されている。なお、副受信器10は、通信部44を介して送信器兼主受信器10と無線により各種データや各種信号のやりとりを行っている。具体的には、副受信器30には、通信部44を介して、送信器兼主受信器10からの後述する基準比k0が入力されると共に、操作部40からの電源オンオフ信号が送信器兼主受信器10に向けて出力されている。
The control unit 38 is constructed as a microprocessor including a CPU, not shown Figure, a ROM for storing the processing programs of the CPU, a RAM that temporarily stores data, input and output ports (not shown), Is equipped with. A power on/off signal from the operation unit 40, a digital signal corresponding to the shunt current Igp from the A/D converter 36, and the like are input to the control unit 38 via an input port. Further, the control unit 38 outputs a display signal or the like to the display unit 42 via the output port. The sub receiver 10 wirelessly exchanges various data and various signals with the transmitter/main receiver 10 via the communication unit 44. Specifically, the sub receiver 30 receives a reference ratio k 0 described later from the transmitter/main receiver 10 via the communication unit 44, and transmits a power on/off signal from the operation unit 40. It is output to the device/main receiver 10.

次に、こうして構成された対地静電容量測定装置1の動作、特に、電気設備80の低圧側電路70における下流側分岐電路72の対地静電容量Cpを測定する際の動作について説明する。図6は、送信器兼主受信器10の制御ユニット22により実行される電圧信号補正処理の一例を示すフローチャートであり、図7は、副受信器30の制御ユニット38により実行される対地静電容量算定処理の一例を示すフローチャートである。これらの処理は送信器兼主受信器10および副受信器30の電源がいずれもオンされたときに実行される。まず、送信器兼主受信器10による電圧信号補正処理について説明し、その後、副受信器30による対地静電容量算定処理について説明する。 Next, an operation of the ground capacitance measuring apparatus 1 thus configured, particularly, an operation when measuring the ground capacitance Cp of the downstream side branch electric path 72 in the low voltage side electric path 70 of the electric equipment 80 will be described. FIG. 6 is a flowchart showing an example of the voltage signal correction process executed by the control unit 22 of the transmitter/main receiver 10, and FIG. 7 is a flowchart showing the electrostatic grounding process executed by the control unit 38 of the sub receiver 30. It is a flow chart which shows an example of capacity calculation processing. These processes are executed when both the transmitter/main receiver 10 and the sub receiver 30 are powered on. First, the voltage signal correction process by the transmitter/main receiver 10 will be described, and then the ground capacitance calculation process by the sub receiver 30 will be described.

電圧信号補正処理が実行されると、送信器兼主受信器10の制御ユニット22のCPUは、まず、信号注入クランプ12を介してB種接地極EBに接続された接地線L1に電圧信号Vを印加する(ステップS100)。そして、当該電圧信号Vに起因して低圧側電路70に流れる漏れ電流Igをクランプセンサ14によって検出すると共に、電圧信号Vおよび当該検出した漏れ電流Igに基づいて位相差θ、合計対地静電容量Caおよび直列合成絶縁抵抗Reを算定する(ステップS102)。 When the voltage signal correction processing is executed, the CPU of the control unit 22 of the transmitter/main receiver 10 first applies the voltage signal V to the ground line L1 connected to the type B ground electrode EB via the signal injection clamp 12. 0 is applied (step S100). Then, the leakage current Ig 0 flowing through the low-pressure side path 70 due to the voltage signal V 0 and detects by the clamp sensor 14, a phase difference based on the voltage signal V 0 and the detected leakage current Ig 0 theta 0, The total capacitance to ground Ca 0 and the series combined insulation resistance Re 0 are calculated (step S102).

即ち、電圧信号V、漏れ電流Ig、合計対地静電容量Caの両端の電位差Vcおよび直列合成絶縁抵抗Reの両端の電位差Vrの関係は、図8に示す通りであるため、次式(1),(2),(3),(4)によって位相差θ、電位差Vc,Vr,合計対地静電容量Caおよび直列合成絶縁抵抗Reを求めるのである。なお、電圧信号Vおよび検出した漏れ電流Igに基づいて合計対地静電容量Ca算定するステップS102の処理を実行する制御ユニット22は、本発明における「合計対地静電容量算定手段」に対応する実施構成の一例である。 That is, the relationship between the voltage signal V, the leakage current Ig, the potential difference Vc at both ends of the total ground capacitance Ca, and the potential difference Vr at both ends of the series combined insulation resistance Re is as shown in FIG. , (2), (3), and (4), the phase difference θ 0 , the potential differences Vc and Vr, the total ground capacitance Ca 0, and the series combined insulation resistance Re 0 are obtained. The control unit 22 that executes the process of step S102 for calculating the total ground capacitance Ca 0 based on the voltage signal V 0 and the detected leakage current Ig 0 is the “total ground capacitance calculating means” of the present invention. It is an example of a corresponding implementation configuration.

(数1)
Vr=V・Cosθ・・・(1)
Vc=V・sinθ・・・(2)
Ca=Ig/(2πf・Vc・sinθ)・・・(3)
Re=Vr・cosθ/Ig・・・(4)
(Equation 1)
Vr=V·Cos θ (1)
Vc=V·sin θ (2)
Ca=Ig/(2πf·Vc·sin θ) (3)
Re=Vr·cos θ/Ig (4)

そして、検出した漏れ電流Igおよび算定した合計対地静電容量Ca、直列合成絶縁抵抗Reを表示部26に表示すると共に(ステップS104)、副受信器30からの電源オン信号を受信したか否かの判定を行う処理を実行する(ステップS106)。ここで、副受信器30からの電源オン信号は、送信器兼主受信器10の通信部28に入力される。なお、副受信器30から電源オン信号が送信されたということは、副受信器30による下流側分岐電路72における対地静電容量Cpの測定が開始されたことを意味する。なお、副受信器30からの電源オン信号を受信したか否かの判定を行うステップS106の処理を実行する制御ユニット22は、本発明における「判定手段」に対応する実施構成の一例である。 Then, the detected leak current Ig 0, the calculated total ground capacitance Ca 0 , and the series combined insulation resistance Re 0 are displayed on the display unit 26 (step S104), and the power-on signal from the sub receiver 30 is received. A process of determining whether or not it is executed (step S106). Here, the power-on signal from the sub receiver 30 is input to the communication unit 28 of the transmitter/main receiver 10. The fact that the power-on signal is transmitted from the sub-receiver 30 means that the measurement of the ground capacitance Cp in the downstream branch electric circuit 72 by the sub-receiver 30 has started. The control unit 22 that executes the process of step S106 for determining whether or not the power-on signal from the sub-receiver 30 is received is an example of an implementation configuration corresponding to the “determination unit” in the present invention.

送信器兼主受信器10が副受信器30からの電源オン信号を受信していない場合には、送信器兼主受信器10が副受信器30からの電源オン信号を受信するまでステップS102からステップ106までの処理を繰り返し実行する。一方、送信器兼主受信器10が副受信器30からの電源オン信号を受信した場合、即ち、副受信器30による下流側分岐電路72における対地静電容量Cpの測定が開始された場合には、漏れ電流Igと合計対地静電容量Caとの基準比k(k=Ig/Ca)を算定する処理を実行すると共に(ステップS108)、算定した基準比kを副受信器30に向けて送信する(ステップS110)。なお、送信器兼主受信器10が副受信器30からの電源オン信号を受信したとき、即ち、副受信器30による下流側分岐電路72における対地静電容量Cpの測定が開始されたときは、本発明における「所定の条件が成立したとき」に対応する実施構成の一例である。また、漏れ電流Igと合計対地静電容量Caとの基準比kを算定するステップS108の処理を実行する制御ユニット22は、本発明における「第1比算定手段」に対応し、基準比kは、本発明における「第1比」に対応する実施構成の一例である。 If the transmitter/main receiver 10 has not received the power-on signal from the sub-receiver 30, from step S102 until the transmitter/main receiver 10 receives the power-on signal from the sub-receiver 30. The processes up to step 106 are repeatedly executed. On the other hand, when the transmitter/main receiver 10 receives the power-on signal from the sub receiver 30, that is, when the measurement of the ground capacitance Cp in the downstream branch electric path 72 by the sub receiver 30 is started. Performs a process of calculating a reference ratio k 0 (k 0 =Ig 0 /Ca 0 ) between the leakage current Ig 0 and the total capacitance Ca 0 to ground (step S108), and also calculates the calculated reference ratio k 0 . It transmits to the sub receiver 30 (step S110). When the transmitter/main receiver 10 receives the power-on signal from the sub-receiver 30, that is, when the measurement of the ground capacitance Cp in the downstream branch electric path 72 by the sub-receiver 30 is started. 2 is an example of an implementation configuration corresponding to “when a predetermined condition is satisfied” in the present invention. The control unit 22 that performs step S108 to calculate the baseline ratio k 0 of the leakage current Ig 0 total earth capacitance Ca 0 corresponds to a "first ratio calculating means" in the present invention, reference The ratio k 0 is an example of an implementation configuration corresponding to the “first ratio” in the present invention.

続いて、信号注入クランプ12を介してB種接地極EBに接続された接地線L1に電圧信号Vを印加する処理を実行する(ステップS112)。ここで、ステップS112の処理を行うのが初めての場合にはn=0となっているため、接地線L1には電圧信号Vが印加される。そして、当該電圧信号Vに起因して低圧側電路70に流れる漏れ電流Ign+1をクランプセンサ14によって検出すると共に、電圧信号Vおよび当該検出した漏れ電流Ign+1に基づいて位相差θn+1、合計対地静電容量Can+1および直列合成絶縁抵抗Ren+1を算定する(ステップS114)。なお、電圧信号Vおよび当該検出した漏れ電流Ign+1に基づいて合計対地静電容量Can+1を算定するステップS114の処理を実行する制御ユニット22は、本発明における「合計対地静電容量再算定手段」に対応する実施構成の一例である。 Subsequently, a process of applying the voltage signal V n to the ground line L1 connected to the type B ground electrode EB via the signal injection clamp 12 is executed (step S112). Here, when the process of step S112 is performed for the first time, since n=0, the voltage signal V 0 is applied to the ground line L1. Then, the leakage current Ig n + 1 flows to the low pressure side path 70 due to the voltage signal V 0 and detects by the clamp sensor 14, a phase difference theta n + 1 on the basis of the leakage current Ig n + 1 which is the voltage signal V 0 and the detection, The total ground capacitance Ca n+1 and the series combined insulation resistance Re n+1 are calculated (step S114). The control unit 22 that executes the process of step S114 for calculating the total ground capacitance Ca n+1 based on the voltage signal V 0 and the detected leakage current Ig n+1 is “total ground capacitance recalculation” in the present invention. 2 is an example of an implementation configuration corresponding to "means".

続いて、漏れ電流Ign+1と合計対地静電容量Can+1との比kn+1(kn+1=Ign+1/Can+1)を算定する処理を実行すると共に(ステップS116)、ステップS108で算定した基準比kと今回算定した比kn+1との比に電圧信号Vを乗じることにより補正電圧信号Vn+1(Vn+1=(k/kn+1)・V)を算定する(ステップS118)。なお、漏れ電流Ign+1と合計対地静電容量Can+1との比kn+1を算定するステップS116の処理を実行する制御ユニット22は、本発明における「第2比算定手段」に対応し、比kn+1は、本発明における「第2比」に対応する実施構成の一例である。また、基準比kと比kn+1との比に電圧信号Vを乗じることにより補正電圧信号Vn+1を算定するステップS118の処理を実行する制御ユニット22は、本発明における「電圧信号補正手段」に対応する実施構成の一例である。 Subsequently, a process of calculating a ratio k n+1 (k n+1 =Ig n+1 /C n+1 ) of the leakage current Ig n+1 and the total capacitance C n+1 to the ground is executed (step S116), and the reference ratio calculated in step S108. The corrected voltage signal V n+1 (V n+1 =(k 0 /k n+1 )·V 0 ) is calculated by multiplying the ratio of k 0 and the ratio k n+1 calculated this time by the voltage signal V 0 (step S118). The control unit 22 that executes the process of step S116 for calculating the ratio k n+1 of the leakage current Ig n+1 and the total capacitance C n+1 to ground corresponds to the “second ratio calculating means” in the present invention, and the ratio k. n+1 is an example of an implementation configuration corresponding to the “second ratio” in the present invention. Further, the control unit 22 that executes the process of step S118 of calculating the correction voltage signal V n+1 by multiplying the ratio of the reference ratio k 0 and the ratio k n+1 by the voltage signal V 0 is the “voltage signal correction means” in the present invention. It is an example of the implementation structure corresponding to.

このように電圧信号Vを補正するのは、下流側分岐電路72に接続された図示しない負荷(例えば、パソコンや冷暖房器具、加工装置、照明器具など)の作動状況(パソコンや冷暖房器具、照明器具などの電源のオンオフ、加工装置などの設備の動作モード変更)が変更されるなどして、当該下流側分岐電路72における対地静電容量Cpの測定中に当該対地静電容量Cpに変動が生じた場合であっても、B種接地極EBに接続された接地線L1に環流される漏れ電流Igと合計対地静電容量Caとの基準比kを略同じ値に維持して、下流側分岐電路72における対地静電容量Cpの測定を正確に行うことができるようにするためである。 In this way, the voltage signal V 0 is corrected by operating conditions (PC, cooling/heating equipment, lighting, etc.) of a load (for example, PC, cooling/heating equipment, processing device, lighting equipment, etc.) not shown connected to the downstream branch electric circuit 72. The on/off of the power supply of the equipment, the change of the operation mode of the equipment such as the processing device) is changed, and thus the ground capacitance Cp varies during the measurement of the ground capacitance Cp in the downstream branch electric path 72. Even if it occurs, the reference ratio k 0 between the leakage current Ig circulated in the ground line L1 connected to the type-B grounding electrode EB and the total ground capacitance Ca is maintained at substantially the same value, and the downstream is maintained. This is so that the ground capacitance Cp in the side branch electric path 72 can be accurately measured.

こうして補正電圧信号Vn+1が算定されると、制御ユニット22のCPUは、副受信器30からの電源オン信号の受信が維持されているか否かを判定する(ステップS120)。即ち、副受信器30による下流側分岐電路72における対地静電容量Cpの測定が継続中であるか否かを判定する。副受信器30による下流側分岐電路72における対地静電容量Cpの測定が継続中である場合には、値nを値1だけインクリメントすると共に(ステップS122)、算定した補正電圧信号Vn+1を信号注入クランプ12を介してB種接地極EBに接続された接地線L1に印加するべくステップS112に戻り、その後、副受信器30からの電源オン信号の受信がなくなるまで、即ち、副受信器30による下流側分岐電路72における対地静電容量Cpの測定が停止されるまで、ステップS112からステップS122までのステップを繰り返し実行する。 When the correction voltage signal V n+1 is calculated in this way, the CPU of the control unit 22 determines whether or not the reception of the power-on signal from the sub receiver 30 is maintained (step S120). That is, it is determined whether or not the measurement of the ground capacitance Cp in the downstream branch electric circuit 72 by the sub receiver 30 is being continued. When the measurement of the ground capacitance Cp in the downstream branch electric path 72 by the sub-receiver 30 is continuing, the value n is incremented by 1 (step S122), and the calculated correction voltage signal V n+1 is signaled. The process returns to step S112 to apply to the ground line L1 connected to the type-B grounding electrode EB via the injection clamp 12, and thereafter, until the power-on signal is not received from the sub-receiver 30, that is, the sub-receiver 30. The steps from step S112 to step S122 are repeatedly executed until the measurement of the ground capacitance Cp in the downstream branch electric circuit 72 is stopped.

一方、ステップS120において電源オン信号の受信が維持されていない場合、即ち、副受信器30による下流側分岐電路72における対地静電容量Cpの測定が停止された場合には、値nを値0にセットすると共に(ステップS124)、ステップS100に戻って上記した処理(ステップS100〜S124)を繰り返し実行する。 On the other hand, when the reception of the power-on signal is not maintained in step S120, that is, when the measurement of the ground capacitance Cp in the downstream branch electric path 72 by the sub-receiver 30 is stopped, the value n is set to 0. (Step S124), the process returns to step S100 and the above-described processing (steps S100 to S124) is repeatedly executed.

次に、副受信器30による下流側分岐電路72における対地静電容量Cpの測定について説明する。下流側分岐電路72における対地静電容量Cpの測定を開始するべく副受信器30の電源をオンにすると対地静電容量算定処理が実行される。電対地静電容量算定処理が実行されると、副受信器30の制御ユニット38のCPUは、まず、電源オン信号を送信器兼主受信器10に送信すると共に当該送信器兼主受信器10から基準比kを受信する処理を実行する(ステップS200)。 Next, the measurement of the ground capacitance Cp in the downstream branch electric path 72 by the sub-receiver 30 will be described. When the power of the sub-receiver 30 is turned on in order to start the measurement of the ground capacitance Cp in the downstream branch electric path 72, the ground capacitance calculation process is executed. When the electrostatic capacitance calculation process is executed, the CPU of the control unit 38 of the sub receiver 30 first transmits a power-on signal to the transmitter/main receiver 10 and also the transmitter/main receiver 10 concerned. The process of receiving the reference ratio k 0 from is executed (step S200).

続いて、下流側分岐電路72を流れる分流電流Igp(漏れ電流Igの分流成分)をクランプセンサ32によって検出すると共に(ステップS202)、当該検出した分流電流Igpと受信した基準比kに基づいて下流側分岐電路72の対地静電容量Cpを算定する(ステップS204)。対地静電容量Cpは、検出した分流電流Igpを基準比kで除することにより求めることができる(Cp=Igp/k)。これは、B種接地極BEに接続された接地線L1に環流される漏れ電流Igと下流側分岐電路72で測定される分流電流Igpとの比が、低圧側電路70全体の合計対地静電容量Caと下流側分岐電路72の対地静電容量Cpとの比に等しいことに基づいている。 Subsequently, the shunt current Igp (shunt component of the leakage current Ig) flowing through the downstream branch electric path 72 is detected by the clamp sensor 32 (step S202), and based on the detected shunt current Igp and the received reference ratio k 0. The ground capacitance Cp of the downstream branch electric circuit 72 is calculated (step S204). The ground capacitance Cp can be obtained by dividing the detected shunt current Igp by the reference ratio k 0 (Cp=Igp/k 0 ). This is because the ratio of the leakage current Ig circulated to the ground line L1 connected to the type-B grounding electrode BE and the shunt current Igp measured in the downstream side branch circuit 72 is the total electrostatic capacitance to ground of the entire low voltage side circuit 70. It is based on the fact that it is equal to the ratio of the capacitance Ca to the electrostatic capacitance Cp of the downstream side branch circuit 72.

こうして算定した対地静電容量Cpを表示部42に表示すると共に(ステップS206)、ステップ202に戻って副受信器30の電源がオフされるまで、即ち、副受信器30による下流側分岐電路72における対地静電容量Cpの測定が停止されるまでステップS202からステップ206の処理を繰り返し実行する。 The calculated ground capacitance Cp is displayed on the display unit 42 (step S206), and the process returns to step 202 until the power of the sub receiver 30 is turned off, that is, the downstream branch electric circuit 72 by the sub receiver 30. The processing from step S202 to step 206 is repeatedly executed until the measurement of the ground capacitance Cp at is stopped.

以上説明した本実施の形態に係る本発明の対地静電容量測定装置1によれば、B種接地極BEに接続された接地線L1に環流される漏れ電流Igと下流側分岐電路72で測定される分流電流Igpとの比が、低圧側電路70全体の合計対地静電容量Caと下流側分岐電路72の対地静電容量Cpとの比に等しいことに着目して、分流電流Igpを、漏れ電流Igと合計対地静電容量Caとの比である基準比kで除することにより対地静電容量Cpを求める構成であるため、極めて短い時間、かつ、簡易に対地静電容量Cpを測定できる。しかも、基準比kが常に略同じ値となるように、印加する電圧信号Vを補正する構成であるため、いずれかの下流側分岐電路72に接続された負荷の作動状況(設備の動作モードや冷暖房器具のオンオフなど)が変更されるなどして、当該下流側分岐電路72における対地静電容量Cpの測定中に当該対地静電容量Cpに変動が生じた場合であっても、当該下流側分岐電路72における対地静電容量Cpを正確に測定することができる。 According to the electrostatic capacitance measuring device 1 of the present invention according to the present embodiment described above, the leakage current Ig circulated in the ground line L1 connected to the B-type ground electrode BE and the downstream branch electric path 72 are measured. Paying attention to the fact that the ratio of the divided current Igp to the divided current Igp is equal to the ratio of the total electrostatic capacitance Ca of the entire low voltage side electric circuit 70 to the electrostatic capacitance Cp of the downstream branch electric circuit 72, Since the ground capacitance Cp is obtained by dividing by the reference ratio k 0 which is the ratio of the leakage current Ig 0 and the total ground capacitance Ca 0 , the ground capacitance Cp can be easily calculated in a very short time. Cp can be measured. Moreover, since the voltage signal V 0 to be applied is corrected so that the reference ratio k 0 is always substantially the same value, the operating condition of the load connected to any of the downstream branch electric circuits 72 (operation of equipment) Even if a change occurs in the ground electrostatic capacitance Cp during the measurement of the ground electrostatic capacitance Cp in the downstream side branch electric circuit 72 due to a change in the mode or the ON/OFF of the cooling/heating equipment). It is possible to accurately measure the electrostatic capacitance Cp to the ground in the downstream branch electric circuit 72.

また、本実施の形態に係る本発明の対地静電容量測定装置1によれば、電圧信号Vの周波数を商用周波数(50Hzないし60Hz)よりも高い周波数、例えば、100Hz〜500Hzの範囲から選択して設定する構成であるため、全並列絶縁抵抗合成値Rを無視することができ、低圧側電路70を簡易な等価回路に置換し得る。これにより、合計対地静電容量Caの算定を簡易なものとすることができると共に、測定時間をより一層短縮することができる。また、信号注入クランプ12の鉄心の径を小さくすることができるため装置のコンパクト化や低コスト化を図ることができる。 Further, according to the ground capacitance measuring apparatus 1 of the present invention according to the present embodiment, the frequency of the voltage signal V 0 is selected from frequencies higher than the commercial frequency (50 Hz to 60 Hz), for example, 100 Hz to 500 Hz. Since the configuration is set as described above, the total parallel insulation resistance combined value R can be ignored, and the low voltage side electric circuit 70 can be replaced with a simple equivalent circuit. As a result, the calculation of the total ground capacitance Ca can be simplified, and the measurement time can be further shortened. Further, since the diameter of the iron core of the signal injection clamp 12 can be reduced, the device can be made compact and the cost can be reduced.

本実施の形態では、電圧信号Vの周波数を商用周波数(50Hzないし60Hz)よりも高い周波数、例えば、100Hz〜500Hzの範囲から選択して設定する構成としたが、周波数はこれに限らない。例えば、100Hzよりも低い周波数であっても良いし、500Hzよりも高い周波数であっても良い。また、50Hzよりも低い周波数であっても構わない。 In the present embodiment, the frequency of the voltage signal V 0 is set to a frequency higher than the commercial frequency (50 Hz to 60 Hz), for example, 100 Hz to 500 Hz, but the frequency is not limited to this. For example, the frequency may be lower than 100 Hz or higher than 500 Hz. Further, the frequency may be lower than 50 Hz.

本実施の形態では、信号注入クランプ12を用いて信号出力部16から出力される電圧信号VをB種接地極EBに接続された接地線L1に印加する構成としたが、これに限らない。例えば、信号注入クランプ12に変えて、B種接地極EBに接続された接地線L1とD種接地極EDに接続された接地線L2とをケーブル等により接続し、当該ケーブル等に信号出力部16から出力される電圧信号Vを直接印加する構成としても良い。 In the present embodiment, the signal injection clamp 12 is used to apply the voltage signal V output from the signal output unit 16 to the ground line L1 connected to the type B ground electrode EB, but the present invention is not limited to this. For example, instead of the signal injection clamp 12, the ground line L1 connected to the B type ground electrode EB and the ground line L2 connected to the D type ground electrode ED are connected by a cable or the like, and the signal output unit is connected to the cable or the like. The voltage signal V output from 16 may be directly applied.

本実施形態は、本発明を実施するための形態の一例を示すものである。したがって、本発明は、本実施形態の構成に限定されるものではない。なお、本実施形態の各構成要素と本発明の各構成要素の対応関係を以下に示す。 The present embodiment shows an example of a mode for carrying out the present invention. Therefore, the present invention is not limited to the configuration of this embodiment. The correspondence relationship between each component of this embodiment and each component of the present invention is shown below.

1 対地静電容量測定装置(対地静電容量測定装置)
10 送信器兼主受信器(送信器兼主受信器)
12 信号注入クランプ
14 クランプセンサ
16 信号出力部
18 フィルタ
20 A/Dコンバータ
22 制御ユニット(合計対地静電容量算定手段、第1比算定手段、判定手段、
合計対地静電容量再算定手段、第2比算定手段、電圧信号補正手段
24 操作部
26 表示部
28 通信部
30 副受信器(副受信器)
32 クランプセンサ
34 フィルタ
36 A/Dコンバータ
38 制御ユニット
40 操作部
42 表示部
44 通信部
52 並列回路部
70 低圧側電路(低圧側電路)
72 下流側分岐電路(下流側分岐電路)
80 電気設備(電気設備)
90 受電変圧器
90a 接地線
92 受電変圧器
92a 接地線
Ca 合計対地静電容量(合計対地静電容量)
Cp 対地静電容量(対地静電容量)
R 全並列絶縁抵抗合成値
Reb B種接地抵抗
Red D種接地抵抗
Re 直列合成絶縁抵抗
L1 接地線(B種接地線)
L2 接地線
EB B種接地極
ED D種接地極
電圧信号(電圧信号)
n+1 補正電圧信号(補正電圧信号)
Ig 漏れ電流(漏れ電流)
基準比(第1比)
n+1 比(第2比)
1 Ground capacitance measurement device (ground capacitance measurement device)
10 Transmitter and main receiver (transmitter and main receiver)
12 signal injection clamp 14 clamp sensor 16 signal output section 18 filter 20 A/D converter 22 control unit (total ground capacitance calculating means, first ratio calculating means, determining means,
Total capacitance recalculation means, second ratio calculation means, voltage signal correction means 24 Operation unit 26 Display unit 28 Communication unit 30 Sub receiver (sub receiver)
32 clamp sensor 34 filter 36 A/D converter 38 control unit 40 operation unit 42 display unit 44 communication unit 52 parallel circuit unit 70 low voltage side electric line (low voltage side electric line)
72 Downstream branch circuit (downstream branch circuit)
80 electrical equipment (electrical equipment)
90 Power receiving transformer 90a Grounding wire 92 Power receiving transformer 92a Grounding wire Ca Total capacitance to ground (total capacitance to ground)
Cp capacitance to ground (capacitance to ground)
R Total parallel insulation resistance combined value Reb Class B ground resistance Red Class D ground resistance Re Series combined insulation resistance L1 Ground wire (class B ground wire)
L2 Ground wire EB Class B ground pole ED Class D ground pole V 0 Voltage signal (voltage signal)
V n+1 correction voltage signal (correction voltage signal)
Ig 0 leakage current (leakage current)
k 0 reference ratio (first ratio)
k n+1 ratio (second ratio)

Claims (4)

電気設備の低圧側電路全体の合計対地静電容量および前記低圧側電路の下流側で分岐された複数の下流側分岐電路それぞれの対地静電容量を測定可能な対地静電容量測定装置であって、
前記低圧側電路のB種接地線に設置され該B種接地線に商用周波数とは異なる周波数の電圧信号を印加すると共に、該電圧信号に起因して前記低圧側電路および大地を介して前記B種接地線に環流する漏れ電流を所定時間毎に検出するよう構成された送信器兼主受信器と、
複数の前記下流側分岐電路のいずれかに設置され該下流側分岐電路を流れる前記漏れ電流の分流成分である分流電流を検出可能に構成された副受信器と、
を備え、
前記送信器兼主受信器は、
前記電圧信号および検出した前記漏れ電流に基づいて前記合計対地静電容量を算定
する合計対地静電容量算定手段と、
算定に用いた前記漏れ電流と前記合計対地静電容量との比である第1比を算定する
第1比算定手段と、
所定の条件が成立したか否かを判定する判定手段と、
前記所定の条件が成立したときに検出した前記漏れ電流および前記電圧信号に基づ いて前記合計対地静電容量を再算定する合計対地静電容量再算定手段と、
再算定に用いた前記漏れ電流と再算定した前記合計対地静電容量との比である第2
比を算定する第2比算定手段と、
印加する前記電圧信号を前記第1比と前記第2比との比に基づいて補正する電圧信
号補正手段と、
を備え、
前記所定の条件が成立したときには、前記電圧信号に変えて前記電圧信号補正手段によって補正された補正電圧信号を前記B種接地線に印加するよう構成されており、
前記副受信器は、検出した前記分流電流と、前記第1比および前記第2比の比と、に基づいて前記下流側分岐電路の対地静電容量を算定するよう構成されている
対地静電容量測定装置。
A ground capacitance measuring device capable of measuring the total ground capacitance of the entire low-voltage side electric circuit of an electric facility and the ground capacitance of each of a plurality of downstream side branch electric circuits branched on the downstream side of the low-voltage side circuit. ,
The voltage signal having a frequency different from the commercial frequency is installed on the type B ground wire of the low-voltage side electric line, and the voltage B is applied to the type B ground line via the low-voltage side electric line and ground due to the voltage signal. A transmitter/main receiver configured to detect a leakage current circulating in the seed ground wire at predetermined time intervals;
A sub-receiver that is installed in any of the plurality of downstream branch circuits and is configured to be able to detect a shunt current that is a shunt component of the leakage current flowing through the downstream branch circuit,
Equipped with
The transmitter and main receiver are
Total ground capacitance calculating means for calculating the total ground capacitance based on the voltage signal and the detected leakage current;
A first ratio calculating means for calculating a first ratio which is a ratio of the leakage current used for the calculation and the total capacitance to ground;
Determination means for determining whether or not a predetermined condition is satisfied,
Total ground capacitance recalculation means for recalculating the total ground capacitance based on the leakage current and the voltage signal detected when the predetermined condition is satisfied,
The ratio of the leakage current used for recalculation and the recalculated total capacitance to ground
A second ratio calculating means for calculating a ratio,
Voltage signal correction means for correcting the applied voltage signal based on the ratio of the first ratio and the second ratio,
Equipped with
When the predetermined condition is satisfied, the voltage signal is converted into the voltage signal and the correction voltage signal corrected by the voltage signal correction unit is applied to the B-type ground line.
The sub-receiver is configured to calculate a ground capacitance of the downstream side branch circuit based on the detected shunt current and a ratio of the first ratio and the second ratio. Capacity measuring device.
前記送信器兼主受信器は、前記電圧信号として前記商用周波数よりも高い周波数の高周波電圧信号を前記B種接地線に印加するよう構成されている
請求項1に記載の対地静電容量測定装置。
The ground capacitance measuring device according to claim 1, wherein the transmitter/main receiver is configured to apply, as the voltage signal, a high frequency voltage signal having a frequency higher than the commercial frequency to the class B ground line. ..
電気設備の低圧側電路全体の合計対地静電容量および前記低圧側電路の下流側で分岐された複数の下流側分岐電路それぞれの対地静電容量を測定する対地静電容量測定方法であって、
前記低圧側電路のB種接地線に設置され該B種接地線に商用周波数とは異なる周波数の電圧信号を印加すると共に、該電圧信号に起因して前記低圧側電路および大地を介して前記B種接地線に環流する漏れ電流を所定時間毎に検出するよう構成された送信器兼主受信器と、
複数の前記下流側分岐電路のいずれかに設置され該下流側分岐電路を流れる前記漏れ電流の分流成分である分流電流を検出可能に構成された副受信器と、
を備え、
(a)前記電圧信号および検出した前記漏れ電流に基づいて前記合計対地静電容量を算定し、
(b)算定に用いた前記漏れ電流と前記合計対地静電容量との比である第1比を算定し、
(c)所定の条件が成立したか否かを判定し、
(d)前記所定の条件が成立したときには、該所定の条件が成立したときに検出した前記漏れ電流および前記電圧信号に基づいて前記合計対地静電容量を再算定すると共に、再算定に用いた前記漏れ電流と再算定した前記合計対地静電容量との比である第2比を算定し、
(e)印加する前記電圧信号を前記第1比と前記第2比との比に基づいて補正すると共に、前記電圧信号に変えて補正された補正電圧信号を前記B種接地線に印加し、
(f)前記副受信器によって検出した前記分流電流と、前記第1比および前記第2比の比と、に基づいて前記下流側分岐電路の対地静電容量を算定する
対地静電容量測定方法。
A ground capacitance measuring method for measuring the total ground capacitance of the entire low-voltage side electric path of the electrical equipment and a plurality of downstream side branch electric paths branched on the downstream side of the low-voltage side electric path,
The voltage signal having a frequency different from the commercial frequency is installed on the type B ground wire of the low-voltage side electric line, and the voltage B is applied to the type B ground line via the low-voltage side electric line and ground due to the voltage signal. A transmitter/main receiver configured to detect a leakage current circulating in the seed ground wire at predetermined time intervals;
A sub-receiver that is installed in any of the plurality of downstream branch circuits and is configured to be able to detect a shunt current that is a shunt component of the leakage current flowing through the downstream branch circuit
Equipped with
(A) calculating the total capacitance to ground based on the voltage signal and the detected leakage current,
(B) calculating a first ratio, which is a ratio of the leakage current used for the calculation and the total capacitance to ground,
(C) It is determined whether or not a predetermined condition is satisfied,
(D) When the predetermined condition is satisfied, the total ground capacitance is recalculated based on the leak current and the voltage signal detected when the predetermined condition is satisfied, and used for recalculation. Calculating a second ratio which is the ratio of the leakage current and the recalculated total capacitance to ground;
(E) The applied voltage signal is corrected based on the ratio of the first ratio and the second ratio, and the corrected voltage signal converted into the voltage signal is applied to the type B ground line,
(F) A ground capacitance measuring method for calculating a ground capacitance of the downstream side branch circuit based on the shunt current detected by the sub-receiver and the ratio of the first ratio and the second ratio. ..
前記送信器兼主受信器は、前記電圧信号として前記商用周波数よりも高い周波数の高周波電圧信号を前記B種接地線に印加するよう構成されている
請求項3に記載の対地静電容量測定方法。
The grounding capacitance measuring method according to claim 3, wherein the transmitter/main receiver is configured to apply, as the voltage signal, a high-frequency voltage signal having a frequency higher than the commercial frequency to the class B ground line. ..
JP2016128180A 2016-06-28 2016-06-28 Ground capacitance measuring device and ground capacitance measuring method Active JP6714455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128180A JP6714455B2 (en) 2016-06-28 2016-06-28 Ground capacitance measuring device and ground capacitance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128180A JP6714455B2 (en) 2016-06-28 2016-06-28 Ground capacitance measuring device and ground capacitance measuring method

Publications (2)

Publication Number Publication Date
JP2018004329A JP2018004329A (en) 2018-01-11
JP6714455B2 true JP6714455B2 (en) 2020-06-24

Family

ID=60948645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128180A Active JP6714455B2 (en) 2016-06-28 2016-06-28 Ground capacitance measuring device and ground capacitance measuring method

Country Status (1)

Country Link
JP (1) JP6714455B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992490B (en) * 2021-09-24 2024-01-05 中盈优创资讯科技有限公司 Circuit automatic discovery method and device based on IGP

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272404B2 (en) * 1992-06-24 2002-04-08 東洋通信機株式会社 Current transformer sensitivity compensation method and apparatus
JP3355905B2 (en) * 1995-02-13 2002-12-09 三菱電機株式会社 Insulation monitoring system
JP2001050997A (en) * 1999-08-16 2001-02-23 Toenec Corp Measuring device for capacitance to ground and measuring method thereof
JP4527346B2 (en) * 2002-01-21 2010-08-18 光商工株式会社 Insulation state monitoring method and device
KR100817890B1 (en) * 2006-08-16 2008-03-31 김보경 Insulation monitoring system & Insulation detecting method for electric power supply system

Also Published As

Publication number Publication date
JP2018004329A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US20150088438A1 (en) Ratio metric current measurement
KR102050255B1 (en) Method and test device for testing wiring of transducers
TWI557412B (en) Leakage current calculation device and leakage current calculation method
KR20080093169A (en) Method of leakage current break and measurement leakage current use phase calculation
JP2021175983A (en) Leakage current detection device, method, and program for detecting leakage current
KR20130090776A (en) Apparatus and method for measuring the dissipation factor of an insulator
TWI553318B (en) Grounding resistance measurement apparatus and method of operating the same
JP2001242206A (en) Measuring method of grounding resistance
CN105359365B (en) Method and apparatus for complexity, common ground error protection in high pressure electric system
CN109406880A (en) A kind of detection system and method for insulation resistance
JP4652236B2 (en) Ground resistance measuring device
JP6714455B2 (en) Ground capacitance measuring device and ground capacitance measuring method
JP5475316B2 (en) Ground resistance measurement method
JP4993728B2 (en) Effective leakage current measuring instrument
US11364810B2 (en) Monitoring device for leakage currents
CN102466751A (en) Current measuring apparatus
RU140217U1 (en) DEVICE FOR MEASURING EARTH RESISTANCE
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
US20180120356A1 (en) Current measuring method and system thereof
CN109782055B (en) Method and device for measuring capacitance current of ungrounded neutral system
KR100831021B1 (en) A method and an apparatus for extracting active leakage current
KR101887348B1 (en) Accurate power measuring method for power delivery system
JP7023138B2 (en) Insulation monitoring system
US9772355B2 (en) Busbar current sensor
KR20130090777A (en) Apparatus and method for measuring the dissipation factor of an insulator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6714455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250