JP2019151878A - Film deposition apparatus - Google Patents

Film deposition apparatus Download PDF

Info

Publication number
JP2019151878A
JP2019151878A JP2018036944A JP2018036944A JP2019151878A JP 2019151878 A JP2019151878 A JP 2019151878A JP 2018036944 A JP2018036944 A JP 2018036944A JP 2018036944 A JP2018036944 A JP 2018036944A JP 2019151878 A JP2019151878 A JP 2019151878A
Authority
JP
Japan
Prior art keywords
substrate
film
forming apparatus
film forming
shield plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018036944A
Other languages
Japanese (ja)
Other versions
JP6998239B2 (en
Inventor
宏樹 小林
Hiroki Kobayashi
宏樹 小林
達朗 露木
Tatsuro Tsuyuki
達朗 露木
木村 勲
Isao Kimura
勲 木村
神保 武人
Taketo Jinbo
武人 神保
新之介 間嶋
Shinnosuke Majima
新之介 間嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018036944A priority Critical patent/JP6998239B2/en
Publication of JP2019151878A publication Critical patent/JP2019151878A/en
Application granted granted Critical
Publication of JP6998239B2 publication Critical patent/JP6998239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a film deposition apparatus having a constitution suppressing a deviation of an in-plane temperature distribution of an object as well as suppressing a generation of a splash defect caused by wraparound of a sputtered particle.SOLUTION: This invention is a film deposition apparatus for forming a dielectric film on a substrate 100, the substrate 100 having a dielectric layer and a conductive layer laminated in order on one major surface side of the substrate. In a vacuum chamber, a shield plate (a second shield plate) is included, the shield plate being arranged such that an area E1 from a peripheral edge of the substrate to a predetermined distance to the substrate mounted on a support body 101. The shield plate (the second shield plate) consists of a first part 104A positioned close to the substrate, and a second part 104B positioned away from the first part seen from the substrate, the second part being positioned electrically apart from the first part when forming the dielectric film on the substrate.SELECTED DRAWING: Figure 3

Description

本発明は、成膜装置に関する。   The present invention relates to a film forming apparatus.

チタン酸ジルコン酸鉛(Pb(Zr,Ti)O:PZT)等の強誘電体を用いた圧電素子は、インクジェットヘッドや加速度センサ等のMEMS(Micro Electro Mechanical Systems)技術に応用されている。中でも、PZT膜は注目されており、各機関において盛んに研究されている。 Piezoelectric elements using ferroelectrics such as lead zirconate titanate (Pb (Zr, Ti) O 3 : PZT) are applied to MEMS (Micro Electro Mechanical Systems) technology such as inkjet heads and acceleration sensors. Among these, PZT films are attracting attention and are actively studied in various institutions.

従来、チタン酸ジルコン酸鉛等からなる強誘電体膜を形成する製造装置として、基板の一主面側に、第一導電層と、誘電体層と、第二導電層とが順に重ねて配された多層膜の製造装置であって、第一導電層を形成する成膜室αは、成膜室αの内部空間に、第一導電層の膜面形状を規制する第一開口部を有する第一部材を備え、誘電体層を形成する成膜室βは、成膜室βの内部空間に、誘電体層の膜面形状を規制する第二開口部を有する第二部材を備え、第二導電層を形成する成膜室γは、成膜室γの内部空間に、第二導電層の膜面形状を規制する第三開口部を有する第三部材を備えており、基板に第一導電層を形成した際に、基板の側端部より第一導電層の側端部が基板の内側に位置するように、第一開口部が配置されており、第一導電層の上に誘電体層を形成した際に、第一導電層の表面のうち外周端部領域に露呈部が生じるとともに、誘電体層の上に第二導電層を形成した際に、第二導電層が誘電体層とともに第一導電層の外周端部領域の露呈部も覆うように、第二開口部が、第一開口部および第三開口部に比べて小さい多層膜の製造装置が知られている(特許文献1)。   Conventionally, as a manufacturing apparatus for forming a ferroelectric film made of lead zirconate titanate or the like, a first conductive layer, a dielectric layer, and a second conductive layer are sequentially stacked on one main surface side of a substrate. In the multilayer film manufacturing apparatus, the film formation chamber α in which the first conductive layer is formed has a first opening for regulating the film surface shape of the first conductive layer in the internal space of the film formation chamber α. The film formation chamber β including the first member and forming the dielectric layer includes a second member having a second opening that regulates the film surface shape of the dielectric layer in the internal space of the film formation chamber β. The film forming chamber γ for forming the two conductive layers includes a third member having a third opening for regulating the film surface shape of the second conductive layer in the inner space of the film forming chamber γ, and the first member is provided on the substrate. When the conductive layer is formed, the first opening is disposed so that the side end of the first conductive layer is located on the inner side of the substrate from the side end of the substrate. When the electric conductor layer is formed, an exposed portion is generated in the outer peripheral edge region of the surface of the first conductive layer, and when the second conductive layer is formed on the dielectric layer, the second conductive layer is dielectric. An apparatus for producing a multilayer film is known in which the second opening is smaller than the first opening and the third opening so as to cover the exposed portion of the outer peripheral edge region of the first conductive layer as well as the body layer ( Patent Document 1).

このような多層膜の製造装置を用いた多層膜の成膜において、ターゲットが絶縁体である場合には、スパッタ粒子の回り込みによる絶縁体の化合物薄膜が堆積進行して膜表面がチャージアップし、スプラッシュ欠陥となることがあった。   In the formation of a multilayer film using such a multilayer film manufacturing apparatus, when the target is an insulator, the compound thin film of the insulator due to the wraparound of the sputtered particles progresses and the film surface is charged up, Splash defects could occur.

国際公開第2015/194453号International Publication No. 2015/194453

本発明は、上記の事情に鑑みてなされたもので、スパッタ粒子の回り込みによるスプラッシュ欠陥の発生を抑制するともに被処理体の面内温度分布の偏りを抑制する構成を含む成膜装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a film forming apparatus including a configuration that suppresses the occurrence of splash defects due to the wraparound of sputtered particles and suppresses the deviation of the in-plane temperature distribution of the object to be processed. For the purpose.

上記課題を解決するために、請求項1に記載の成膜装置は、基板の一主面側に、絶縁層と、導電層とが順に重ねて配された基体を用い、前記基体上に誘電体膜を形成する成膜装置であって、真空槽内において、支持体に載置された前記基体に対して、前記基体の外周端から所定距離までの領域を覆うように配置された防着板を備え、前記防着板は、前記基体の近傍に位置する第一部位、及び、前記基体から見て前記第一部位より遠方に位置する第二部位、から構成されており、前記基体上に前記誘電体膜を形成する際には、前記第一部位に対して前記第二部位を電気的に離間した位置に配置したことを特徴とする。   In order to solve the above-described problem, the film forming apparatus according to claim 1 uses a base body in which an insulating layer and a conductive layer are sequentially stacked on one main surface side of a substrate, and a dielectric is formed on the base body. A deposition apparatus for forming a body film, wherein the deposition is arranged in a vacuum chamber so as to cover an area from an outer peripheral end of the base to a predetermined distance with respect to the base placed on a support. A plate, and the anti-adhesion plate includes a first part located in the vicinity of the base and a second part located far from the first part when viewed from the base. When forming the dielectric film, the second portion is disposed at a position electrically separated from the first portion.

請求項2記載の発明は、請求項1記載の成膜装置において、前記第一部位は導電体であり、前記第二部位は絶縁体であることを特徴とする。   According to a second aspect of the present invention, in the film forming apparatus according to the first aspect, the first part is a conductor and the second part is an insulator.

請求項3記載の発明は、請求項1記載の成膜装置において、前記第一部位は金属であり、前記第二部位は非金属であることを特徴とする。   According to a third aspect of the present invention, in the film forming apparatus according to the first aspect, the first part is a metal and the second part is a nonmetal.

請求項4記載の発明は、請求項2記載の成膜装置において、前記第一部位は、前記第二部位と重なり合って前記第二部位の内周縁を覆うように配置されていることを特徴とする。   According to a fourth aspect of the present invention, in the film forming apparatus according to the second aspect, the first part is arranged so as to overlap the second part and cover an inner peripheral edge of the second part. To do.

本発明によれば、スパッタ粒子の回り込みによるスプラッシュ欠陥の発生を抑制すると共に不均一な加熱を抑制することができる。   According to the present invention, it is possible to suppress the occurrence of splash defects due to the wraparound of sputtered particles and to suppress uneven heating.

本実施形態に係る成膜装置の内部構成の全体を概略的に示す断面模式図。FIG. 2 is a schematic cross-sectional view schematically showing the entire internal configuration of the film forming apparatus according to the present embodiment. 図1における付近Aを示す要部断面模式図。The principal part cross-sectional schematic diagram which shows the vicinity A in FIG. 成膜装置の第二の防着板の構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the 2nd adhesion prevention board of a film-forming apparatus. 多層膜の一構成例を示す断面模式図。The cross-sectional schematic diagram which shows one structural example of a multilayer film. 比較例1に係る成膜装置の第二の防着板の構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the 2nd adhesion prevention board of the film-forming apparatus concerning the comparative example 1. FIG. 比較例2に係る成膜装置の第二の防着板の構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the 2nd adhesion prevention board of the film-forming apparatus concerning the comparative example 2. FIG. 比較例3に係る成膜装置の第二の防着板の構成を示す部分断面模式図。FIG. 9 is a partial cross-sectional schematic diagram illustrating a configuration of a second deposition preventing plate of a film forming apparatus according to Comparative Example 3.

次に図面を参照しながら、以下に実施形態及び実施例を挙げ、本発明を更に詳細に説明するが、本発明はこれらの実施形態及び実施例に限定されるものではない。
また、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, the present invention will be described in more detail with reference to the drawings with reference to embodiments and examples. However, the present invention is not limited to these embodiments and examples.
Also, in the description using the following drawings, it should be noted that the drawings are schematic and the ratio of each dimension and the like are different from the actual ones, and are necessary for the description for easy understanding. Illustrations other than the members are omitted as appropriate.

(1)成膜装置の全体構成及び動作
図1は成膜装置10の内部構成の全体を概略的に示す断面模式図、図2は図1における付近Aを示す要部断面模式図である。
成膜装置10は、真空槽11と、ターゲット21と、第一の支持部101(S1)と、温度制御部105、106(H1、H2)と、スパッタ電源13と、スパッタガス導入部14と、第一の防着板35と、第二の防着板104とを備えている。
(1) Overall configuration and operation of the film forming apparatus
FIG. 1 is a schematic cross-sectional view schematically showing the entire internal configuration of the film forming apparatus 10, and FIG.
The film forming apparatus 10 includes a vacuum chamber 11, a target 21, a first support unit 101 (S 1), temperature control units 105 and 106 (H 1 and H 2), a sputtering power supply 13, and a sputtering gas introduction unit 14. The first deposition preventing plate 35 and the second deposition preventing plate 104 are provided.

真空槽11の内部には、基体の一例としての処理基板100(W)の表面に成膜しようする膜の組成に応じて所定形状に作製されたターゲット21が配置されている。
第一の支持部101(S1)は、ターゲット21と対面する位置に配置され、処理基板100(W)が載置される。
また、第一の支持部101(S1)には処理基板100(W)を静電吸着する手段が内在されている(不図示)。第一の支持部101(S1)の表面101a(図2においては上面)に処理基板100(W)を載置し静電吸着させることにより、処理基板100(W)の裏面は第一の支持部101(S1)の表面に密着し、処理基板100(W)は第一の支持部101(S1)と熱的に接続される。
Inside the vacuum chamber 11, a target 21 made in a predetermined shape according to the composition of a film to be formed on the surface of a processing substrate 100 (W) as an example of a substrate is disposed.
The first support portion 101 (S1) is disposed at a position facing the target 21, and the processing substrate 100 (W) is placed thereon.
The first support portion 101 (S1) includes a means for electrostatically attracting the processing substrate 100 (W) (not shown). The processing substrate 100 (W) is placed on the front surface 101a (the upper surface in FIG. 2) of the first support portion 101 (S1) and electrostatically attracted, whereby the back surface of the processing substrate 100 (W) is supported by the first support. The processing substrate 100 (W) is in close contact with the surface of the portion 101 (S1), and is thermally connected to the first support portion 101 (S1).

処理基板100(W)が載置される第一の支持部101(S1)は、その外周域の底面が第二の支持部102(S2)によって保持され、第二の支持部102(S2)は支柱103を介して真空槽11の底面に固定されている。
第一の支持部101(S1)の外周は処理基板(W)の外周とほぼ同じ大きさで、第一の支持部101(S1)の表面101aはターゲット21の表面と対向するように配されている。これにより、第一の支持部101(S1)に載置された処理基板100(W)の被成膜面100aも、ターゲット21の表面21aと対向配置される。
The first support portion 101 (S1) on which the processing substrate 100 (W) is placed has its bottom surface in the outer peripheral area held by the second support portion 102 (S2), and the second support portion 102 (S2). Is fixed to the bottom surface of the vacuum chamber 11 via a support column 103.
The outer periphery of the first support portion 101 (S1) is substantially the same size as the outer periphery of the processing substrate (W), and the surface 101a of the first support portion 101 (S1) is arranged to face the surface of the target 21. ing. Thereby, the film-forming surface 100a of the processing substrate 100 (W) placed on the first support part 101 (S1) is also arranged to face the surface 21a of the target 21.

第一の支持部101(S1)は、外周域の底面101bが第二の支持部102(S2)によって保持され、第一の支持部101(S1)の裏面101c(図2においては下面)は、離間して配置された温度制御部105、106(H1、H2)と対向している。   In the first support portion 101 (S1), the bottom surface 101b of the outer peripheral area is held by the second support portion 102 (S2), and the back surface 101c (the lower surface in FIG. 2) of the first support portion 101 (S1) is The temperature control units 105 and 106 (H 1 and H 2) are spaced apart from each other.

温度制御部105、106(H1、H2)は、第一の支持部101(S1)に載置された処理基板100(W)を加熱/冷却して基体温度を調整する。スパッタ電源13は、ターゲット21に電圧を印加する。スパッタガス導入部14は、真空槽11内にスパッタガスを導入する。
第一の防着板35および第二の防着板104は、真空槽11内で、ターゲット21から放出された粒子が付着する位置に配置されている。
The temperature control units 105 and 106 (H1, H2) adjust the substrate temperature by heating / cooling the processing substrate 100 (W) placed on the first support unit 101 (S1). The sputtering power source 13 applies a voltage to the target 21. The sputtering gas introduction unit 14 introduces a sputtering gas into the vacuum chamber 11.
The first deposition plate 35 and the second deposition plate 104 are disposed in the vacuum chamber 11 at positions where particles emitted from the target 21 adhere.

真空槽11の上部壁面には、カソード電極22が絶縁部材28を介して配置されており、カソード電極22と真空槽11とは電気的に絶縁され、真空槽11は接地電位とされている。カソード電極22の一面側は局部的に真空槽11内に露出されている。ターゲット21はカソード電極22の一面側のうち露出された領域の中央部に密着して固定され、ターゲット21とカソード電極22とは電気的に接続されている。   A cathode electrode 22 is disposed on the upper wall surface of the vacuum chamber 11 via an insulating member 28. The cathode electrode 22 and the vacuum chamber 11 are electrically insulated, and the vacuum chamber 11 is at a ground potential. One surface side of the cathode electrode 22 is locally exposed in the vacuum chamber 11. The target 21 is fixed in close contact with the central portion of the exposed region on one side of the cathode electrode 22, and the target 21 and the cathode electrode 22 are electrically connected.

スパッタ電源13は真空槽11の外側に配置されている。スパッタ電源13は、カソード電極22と電気的に接続され、カソード電極22を介してターゲット21に交流電圧を印加可能となっている。
カソード電極22のターゲット21とは反対側、すなわちカソード電極22の他面側には磁石装置29が配置されている。磁石装置29はターゲット21の表面に磁力線を形成するように構成されている。
The sputtering power source 13 is disposed outside the vacuum chamber 11. The sputtering power supply 13 is electrically connected to the cathode electrode 22 and can apply an alternating voltage to the target 21 via the cathode electrode 22.
A magnet device 29 is disposed on the opposite side of the cathode electrode 22 from the target 21, that is, on the other surface side of the cathode electrode 22. The magnet device 29 is configured to form magnetic lines of force on the surface of the target 21.

温度制御部105、106(H1、H2)は、内蔵された発熱部材(不図示)と加熱用電源17とを有している。
発熱部材としては例えばSiCが用いられる。発熱部材は、第一の支持部101(S1)を挟んで処理基板100(W)とは反対側の位置に配されている。
The temperature controllers 105 and 106 (H 1 and H 2) have a built-in heat generating member (not shown) and a heating power source 17.
For example, SiC is used as the heat generating member. The heat generating member is disposed at a position opposite to the processing substrate 100 (W) with the first support portion 101 (S1) interposed therebetween.

加熱用電源17は発熱部材と電気的に接続されている。加熱用電源17から発熱部材に直流電流が供給されると、発熱部材が発する熱が、第一の支持部101(S1)を通して、第一の支持部101(S1)に載置された処理基板100(W)と第二の防着板104とへ伝わる。これにより、処理基板100(W)と第二の防着板104が同時に温度制御される。   The heating power source 17 is electrically connected to the heat generating member. When a direct current is supplied from the heating power supply 17 to the heat generating member, the heat generated by the heat generating member passes through the first support portion 101 (S1) and is placed on the first support portion 101 (S1). 100 (W) and the second protective plate 104. Thereby, the temperature of the processing substrate 100 (W) and the second deposition preventing plate 104 is controlled simultaneously.

また、温度制御部105、106に内蔵された発熱部材(不図示)を挟んで第一の支持部101(S1)とは反対側に、すなわち温度制御部105、106(H1、H2)の下方に、冷却部(不図示)を配置してもよい。たとえば、冷却部の内部に温度管理された冷却媒体を循環させるように構成することにより、発熱部材が発熱しても真空槽11の壁面の加熱を防止することができる。   Further, on the opposite side of the first support portion 101 (S1) across the heat generating member (not shown) built in the temperature control portions 105 and 106, that is, below the temperature control portions 105 and 106 (H1, H2). In addition, a cooling unit (not shown) may be arranged. For example, it is possible to prevent the wall surface of the vacuum chamber 11 from being heated even if the heat generating member generates heat, by configuring a cooling medium whose temperature is controlled to circulate inside the cooling unit.

スパッタガス導入部14は真空槽11内に接続され、真空槽11内にスパッタガスを導入できるように構成されている。   The sputter gas introduction unit 14 is connected to the inside of the vacuum chamber 11 and is configured so that the sputter gas can be introduced into the vacuum chamber 11.

(2)防着板
図3は第二の防着板104の構成を示す部分断面模式図である。
真空槽11内には、第一の防着板35と、第二の防着板104が配置されている。
第一の防着板35は、石英、アルミナ等のセラミックスからなり、図1に示すように、内周がターゲット21の外周や処理基板100(W)の外周よりも大きい筒状に形成されている。
(2) Prevention Plate FIG. 3 is a partial cross-sectional schematic diagram showing the configuration of the second prevention plate 104.
In the vacuum chamber 11, the 1st deposition board 35 and the 2nd deposition board 104 are arrange | positioned.
The first deposition preventing plate 35 is made of ceramics such as quartz and alumina, and as shown in FIG. 1, the inner periphery is formed in a cylindrical shape larger than the outer periphery of the target 21 and the outer periphery of the processing substrate 100 (W). Yes.

第一の防着板35は、第一の支持部101(S1)及び第二の支持部102(S2)とカソード電極22との間に配置されており、処理基板100(W)とターゲット21との間の空間の側方を取り囲むように構成されている。これにより、ターゲット21から放出された粒子の真空槽11の壁面に対する付着が防止される。   The first deposition preventing plate 35 is disposed between the first support portion 101 (S1) and the second support portion 102 (S2) and the cathode electrode 22, and the processing substrate 100 (W) and the target 21. It is comprised so that the side of the space between may be enclosed. Thereby, adhesion of the particles emitted from the target 21 to the wall surface of the vacuum chamber 11 is prevented.

第二の防着板104は、図3に示すように、処理基板100(W)の近傍に位置する第一部位104A、及び、処理基板100(W)から見て第一部位104Aより遠方に位置する第二部位104B、から構成されている。   As shown in FIG. 3, the second deposition plate 104 has a first part 104A located in the vicinity of the processing substrate 100 (W) and a distance from the first part 104A when viewed from the processing substrate 100 (W). It is comprised from the 2nd site | part 104B located.

第一部位104Aは、第一の支持部101(S1)の上面を覆うとともに、処理基板100(W)の外周端から所定距離(E1:図3参照)までの領域(エッジカット領域と呼ぶ)を覆う鍔部104Aaと、第二部位104Bの内周縁側を第二部位104Bと重なり合って覆う鍔部104Abからなり、鍔部104Aaがエッジカット部材として機能する。   104 A of 1st parts cover the upper surface of the 1st support part 101 (S1), and the area | region (referred to as an edge cut area | region) from the outer periphery edge of the process board | substrate 100 (W) to predetermined distance (refer E1: FIG. 3). 104Aa that covers the inner periphery of the second part 104B and the second part 104B that overlaps and covers the second part 104B. The collar part 104Aa functions as an edge cut member.

第一部位104Aは、導電性材料で形成されている。導電性材料としては、例えば、ステンレス(SUS)、鉄(Fe)等の金属材料が挙げられる。第一部位104Aが、導電性材料で形成されることで、エッジカット部材としての第一部位104Aの帯電による電荷は、第一の支持部101(S1)を介して除電され処理基板100(W)のチャージアップが抑制される。   104 A of 1st site | parts are formed with the electroconductive material. Examples of the conductive material include metal materials such as stainless steel (SUS) and iron (Fe). Since the first portion 104A is formed of a conductive material, the charge due to the charging of the first portion 104A as the edge cut member is eliminated through the first support portion 101 (S1), and the processed substrate 100 (W ) Is prevented from being charged up.

第二部位104Bは、第二の支持部102(S2)の上面を覆うように、第一部位104Aとは電気的に離間して配置されている。そのために、第二部位104Bは、絶縁性材料で形成されている。   The second part 104B is arranged to be electrically separated from the first part 104A so as to cover the upper surface of the second support portion 102 (S2). Therefore, the second portion 104B is made of an insulating material.

絶縁性材料としては、10[Ω/cm]以上の比抵抗を有するものが望ましく、具体的には、コージライト、石英、窒化ケイ素、炭化ケイ素、窒化アルミニウム、ムライト(酸化アルミニウムと二酸化ケイ素の化合物)、アルミナ(酸化アルミニウム)、イットリア、サファイア、ステアタイト(MgO−SiOの結晶が主体のセラミックス)、ジルコニアなどが挙げられる。
また、耐熱衝撃性に優れた材料が好ましく、200[℃]以上の耐熱衝撃性を有するものが望ましく、具体的には、コージライト、石英、窒化ケイ素、炭化ケイ素、窒化アルミニウム、ムライト、サファイア、ジルコニアなどが挙げられる。本実施形態の成膜装置10では、第二部位104Bを構成する部材として、石英が用いられている。
As the insulating material, a material having a specific resistance of 10 8 [Ω / cm] or more is desirable. Specifically, cordierite, quartz, silicon nitride, silicon carbide, aluminum nitride, mullite (of aluminum oxide and silicon dioxide). Compound), alumina (aluminum oxide), yttria, sapphire, steatite (ceramics mainly composed of MgO—SiO 2 crystals), zirconia, and the like.
Further, a material excellent in thermal shock resistance is preferable, and a material having thermal shock resistance of 200 [° C.] or higher is desirable. Specifically, cordierite, quartz, silicon nitride, silicon carbide, aluminum nitride, mullite, sapphire, Examples include zirconia. In the film forming apparatus 10 of this embodiment, quartz is used as a member constituting the second portion 104B.

特に、処理基板100(W)から見て第一部位104Aより遠方に位置する第二部位104Bが、金属製の第一部位104Aに対して、石英からなる絶縁性材料で構成されることで、その外周域の底面が第二の支持部(S2)102によって保持される第一の支持部101(S1)の表面101aに熱的に接続される処理基板100(W)の面内温度分布の偏りが抑制される。
[実験例]
In particular, the second portion 104B located far from the first portion 104A when viewed from the processing substrate 100 (W) is made of an insulating material made of quartz with respect to the first portion 104A made of metal, The in-plane temperature distribution of the processing substrate 100 (W) whose bottom surface in the outer peripheral area is thermally connected to the surface 101a of the first support portion 101 (S1) held by the second support portion (S2) 102. Bias is suppressed.
[Experimental example]

図4は多層膜の一構成例を示す断面模式図である。
以上説明した成膜装置10を用いて多層膜の成膜実験を行った結果を説明する。
[多層膜]
実験例において成膜実験を行った多層膜は、基板1の一主面側に、第一導電層3と、誘電体層4と、第二導電層5とが順に重ねて配された多層膜である。
具体的には、図7に模式的に示すように、最表面に熱酸化膜としてのSiO層2が形成されたシリコン(Si)からなる基板1の一主面側に、白金(Pt)からなる第一導電層3、誘電体層4、白金(Pt)からなる第二導電層5が順に配されている。
誘電体層4は、特に限定されるものではないが、例えば、チタン酸ジルコン酸鉛[Pb(ZrTi1−x)O :PZT]、PbTiO、BaTiO、PMM−PZT、PNN−PZT、PMN−PZT、PNN−PT、PLZT、PZTN、NBT、KNN等の強誘電体からなる。
FIG. 4 is a schematic cross-sectional view showing a configuration example of a multilayer film.
The results of a multilayer film deposition experiment using the film deposition apparatus 10 described above will be described.
[Multilayer film]
The multilayer film for which the film formation experiment was performed in the experimental example is a multilayer film in which the first conductive layer 3, the dielectric layer 4, and the second conductive layer 5 are sequentially stacked on one main surface side of the substrate 1. It is.
Specifically, as schematically shown in FIG. 7, platinum (Pt) is formed on one main surface side of the substrate 1 made of silicon (Si) having the SiO 2 layer 2 as a thermal oxide film formed on the outermost surface. The 1st conductive layer 3 which consists of, the dielectric material layer 4, and the 2nd conductive layer 5 which consists of platinum (Pt) are arranged in order.
The dielectric layer 4 is not particularly limited, for example, lead zirconate titanate [Pb (Zr x Ti 1- x) O 3: PZT], PbTiO 3, BaTiO 3, PMM-PZT, PNN- It consists of a ferroelectric material such as PZT, PMN-PZT, PNN-PT, PLZT, PZTN, NBT, KNN.

このような多層膜の成膜において、ターゲット21が絶縁体である場合に、スパッタ粒子の回り込みによる絶縁体の化合物薄膜が堆積進行すると、その膜表面においてチャージアップが起こり、ある一定の電位差が生じた時に膜の絶縁破壊が起こる。その結果、膜の絶縁破壊部分に過電流が流れ込むと、その熱で溶融された物質の一部が飛散してスプラッシュ欠陥となることがある。   In the formation of such a multilayer film, when the target 21 is an insulator and the compound thin film of the insulator is deposited due to the wraparound of the sputtered particles, the film surface is charged up and a certain potential difference is generated. Insulation breakdown of the film occurs. As a result, when an overcurrent flows into the dielectric breakdown portion of the film, a part of the material melted by the heat may scatter and become a splash defect.

本実験例においては、基板1として直径が200mm(8インチ)のSiウェハを用い、エッジカット量(E1)を20[mm]に設定して、Pt膜からなる第一導電層3を形成した。その後、第エッジカット量(E1)を20[mm]に固定し、PZT膜からなる誘電体層4を成膜した。   In this experimental example, a Si wafer having a diameter of 200 mm (8 inches) was used as the substrate 1, the edge cut amount (E1) was set to 20 [mm], and the first conductive layer 3 made of a Pt film was formed. . Thereafter, the first edge cut amount (E1) was fixed to 20 [mm], and the dielectric layer 4 made of a PZT film was formed.

[比較例1]
図6は、比較例1に係る成膜装置200の第二の防着板210の構成を示す部分断面模式図である。
成膜装置200の第二の防着板210は、絶縁性材料である石英から構成され、第二の防着板210の下方となる位置にあたる基板1の被成膜面1aは、スパッタ粒子から遮蔽されるので、スパッタ粒子の付着が防止される。一方、基板1のSiO層2にスプラッシュ欠陥が発生した。
[Comparative Example 1]
FIG. 6 is a partial cross-sectional schematic view showing the configuration of the second deposition preventing plate 210 of the film forming apparatus 200 according to Comparative Example 1.
The second deposition plate 210 of the deposition apparatus 200 is made of quartz, which is an insulating material, and the deposition surface 1a of the substrate 1 at a position below the second deposition plate 210 is made of sputtered particles. Since it is shielded, adhesion of sputtered particles is prevented. On the other hand, a splash defect occurred in the SiO 2 layer 2 of the substrate 1.

第二の防着板210は、絶縁性であるためにチャージアップし、ある一定の電位差が生じた時にSiO層2に絶縁破壊が起こったものと推察される。 Since the second deposition preventing plate 210 is insulative, it is presumed that the dielectric breakdown occurred in the SiO 2 layer 2 when it was charged up and a certain potential difference occurred.

[比較例2]
図6は、比較例2に係る成膜装置300の第二の防着板310の構成を示す部分断面模式図である。
成膜装置300の第二の防着板310は、図6に示すように、基板1の近傍に位置する第一部位310A、及び、基板1から見て第一部位310Aより遠方に位置する第二部位310B、から構成されている。第一部位310A及び第二部位310Bは、絶縁性材料である石英から構成され、第一部位310Aの下方となる位置にあたる基板1の被成膜面1aは、スパッタ粒子から遮蔽されるので、スパッタ粒子の付着が防止される。一方、基板1のSiO層2には目視では確認できないが、一般の光学顕微鏡では確認できるレベルのスプラッシュ欠陥が発生した。
[Comparative Example 2]
FIG. 6 is a partial cross-sectional schematic diagram showing the configuration of the second deposition preventing plate 310 of the film forming apparatus 300 according to Comparative Example 2.
As shown in FIG. 6, the second deposition plate 310 of the film forming apparatus 300 includes a first part 310A located near the substrate 1 and a first part 310A located far from the first part 310A when viewed from the substrate 1. It consists of two parts 310B. The first part 310A and the second part 310B are made of quartz, which is an insulating material, and the film-forming surface 1a of the substrate 1, which is located below the first part 310A, is shielded from sputtered particles. Particle adhesion is prevented. On the other hand, although not visually confirmed on the SiO 2 layer 2 of the substrate 1, splash defects of a level that can be confirmed with a general optical microscope occurred.

第二の防着板310は、基板1の近傍に位置する第一部位310Aと、第二部位310Bに分割され、エッジカット部材として機能する第一部位310Aが、比較例1の成膜装置200の第二の防着板210に比べて表面積が小さくなり、第一部位310Aのチャージアップが抑制されたためと推察される。   The second deposition plate 310 is divided into a first part 310A located in the vicinity of the substrate 1 and a second part 310B, and the first part 310A functioning as an edge cut member is the film forming apparatus 200 of Comparative Example 1. It is surmised that the surface area is smaller than that of the second deposition preventing plate 210, and the charge-up of the first portion 310A is suppressed.

[比較例3]
図7は、比較例3に係る成膜装置400の第二の防着板410の構成を示す部分断面模式図である。
成膜装置400の第二の防着板410は、図7に示すように、基板1の近傍に位置する第一部位410A、及び、基板1から見て第一部位410Aより遠方に位置する第二部位410B、から構成されている。第一部位410A及び第二部位410Bは、導電性材料であるステンレス(SUS)から構成され、第一部位410Aの下方となる位置にあたる基板1の被成膜面1aは、スパッタ粒子から遮蔽されるので、スパッタ粒子の付着が防止される。また、基板1のSiO層2にはスプラッシュ欠陥の発生は確認されなかった。
[Comparative Example 3]
FIG. 7 is a partial schematic cross-sectional view showing a configuration of the second deposition preventing plate 410 of the film forming apparatus 400 according to Comparative Example 3.
As shown in FIG. 7, the second deposition plate 410 of the film forming apparatus 400 includes a first part 410A located near the substrate 1 and a first part 410A located far from the first part 410A when viewed from the substrate 1. It consists of two parts 410B. The first portion 410A and the second portion 410B are made of stainless steel (SUS), which is a conductive material, and the deposition surface 1a of the substrate 1 that is located below the first portion 410A is shielded from the sputtered particles. Therefore, adhesion of sputtered particles is prevented. In addition, the occurrence of splash defects was not confirmed in the SiO 2 layer 2 of the substrate 1.

エッジカット部材として機能する第一部位410Aが、導電性材料であるステンレスで構成されているために、第一部位410Aの帯電による電荷は、第一の支持部101(S1)を介して除電され基板1のチャージアップが抑制されたためと推察される。   Since the first portion 410A that functions as an edge cut member is made of stainless steel, which is a conductive material, the charge due to the charging of the first portion 410A is eliminated through the first support portion 101 (S1). This is probably because the charge-up of the substrate 1 is suppressed.

一方、成膜された多層膜は、比較例1、2において成膜された多層膜に比べて、電気的特性や機械的特性、光学的特性などの均一な膜質が得られなかった。基板1の近傍に位置する第一部位410A、及び、基板1から見て第一部位410Aより遠方に位置する第二部位410Bがいずれも導電性材料であるステンレス(SUS)で構成され、第一の支持部101(S1)の熱が第二部位410Bを介して放熱され、第一の支持部101(S1)と熱的に接続される基板1の面内温度分布に偏りが発生したためと推察される。   On the other hand, compared with the multilayer film formed in Comparative Examples 1 and 2, the formed multilayer film could not obtain uniform film quality such as electrical characteristics, mechanical characteristics, and optical characteristics. The first part 410A located in the vicinity of the substrate 1 and the second part 410B located far from the first part 410A when viewed from the substrate 1 are both made of stainless steel (SUS) as a conductive material. The heat of the support part 101 (S1) is dissipated through the second part 410B, and it is assumed that the in-plane temperature distribution of the substrate 1 thermally connected to the first support part 101 (S1) is biased. Is done.

[実験例1]
実験例1においては、第二の防着板104は、図3に示すように、基板1の近傍に位置する第一部位104A、及び、基板1から見て第一部位104Aより遠方に位置する第二部位104B、から構成されている。
第一部位104Aは、ステンレス(SUS)からなる導電性材料で形成され、第二部位104Bは、石英からなる絶縁性材料で形成されている。
[Experiment 1]
In Experimental Example 1, as shown in FIG. 3, the second deposition-preventing plate 104 is located farther from the first part 104 </ b> A than the first part 104 </ b> A located near the substrate 1 and the substrate 1. It is comprised from the 2nd site | part 104B.
The first portion 104A is made of a conductive material made of stainless steel (SUS), and the second portion 104B is made of an insulating material made of quartz.

第一部位104Aの下方となる位置にあたる基板1の被成膜面1aは、スパッタ粒子から遮蔽されるので、スパッタ粒子の付着が防止される。また、基板1のSiO層2にはスプラッシュ欠陥の発生は確認されなかった。エッジカット部材として機能する第一部位104Aが、導電性材料であるステンレスで構成されているために、第一部位410Aの帯電による電荷は、第一の支持部101(S1)を介して除電され基板1のチャージアップが抑制されたためと推察される。 Since the film-forming surface 1a of the substrate 1 located below the first portion 104A is shielded from the sputtered particles, the sputtered particles are prevented from adhering. In addition, the occurrence of splash defects was not confirmed in the SiO 2 layer 2 of the substrate 1. Since the first portion 104A that functions as an edge cut member is made of stainless steel that is a conductive material, the charge due to the charging of the first portion 410A is eliminated through the first support portion 101 (S1). This is probably because the charge-up of the substrate 1 is suppressed.

成膜された多層膜は、比較例3において成膜された多層膜に比べて、電気的特性や機械的特性、光学的特性などの均一な膜質が得られた。基板1から見て第一部位104Aより遠方に位置する第二部位104Bが、石英からなる絶縁性材料で構成されることで、その外周域の底面が第二の支持部102(S2)によって保持される第一の支持部101(S1)と熱的に接続される処理基板100(W)の面内温度分布の偏りが抑制される。   Compared to the multilayer film formed in Comparative Example 3, the formed multilayer film had uniform film quality such as electrical characteristics, mechanical characteristics, and optical characteristics. The second portion 104B located far from the first portion 104A when viewed from the substrate 1 is made of an insulating material made of quartz, so that the bottom surface of the outer peripheral region is held by the second support portion 102 (S2). The bias of the in-plane temperature distribution of the processing substrate 100 (W) thermally connected to the first support portion 101 (S1) to be performed is suppressed.

以上、成膜装置10は、スパッタ粒子の回り込みによるスプラッシュ欠陥の発生を抑制するともに不均一加熱を抑制しながら多層膜を成膜するのに好適な成膜装置として説明したが、成膜装置10は、基板1の一主面側に、第一導電層3と、誘電体層4と、第二導電層5とが順に重ねて配された多層膜に限らず、最表面に絶縁層を有する基板に絶縁膜が配された多層膜の成膜にも好適に用いることができる。   As described above, the film forming apparatus 10 has been described as a film forming apparatus suitable for forming a multilayer film while suppressing generation of splash defects due to wraparound of sputtered particles and suppressing nonuniform heating. Is not limited to a multilayer film in which the first conductive layer 3, the dielectric layer 4, and the second conductive layer 5 are sequentially stacked on one main surface side of the substrate 1, and has an insulating layer on the outermost surface. It can also be suitably used for forming a multilayer film in which an insulating film is provided on a substrate.

1 基板、2 SiO層(絶縁層)、3 第一導電層(導電層)、4 誘電体層(誘電体膜)、5 第二導電層、10 成膜装置、11 真空槽、13 スパッタ電源、14 スパッタガス導入部、21 ターゲット、100 基体(W:処理基板)、101 第一の支持部(S1:支持体)、102 第二の支持部(S2)、35 第一の防着板、104 第二の防着板、104A 第一部位、104B 第二部位、105、106 温度制御部(H1、H2)。 DESCRIPTION OF SYMBOLS 1 Substrate, 2 SiO 2 layer (insulating layer), 3 First conductive layer (conductive layer), 4 Dielectric layer (dielectric film), 5 Second conductive layer, 10 Film forming device, 11 Vacuum chamber, 13 Sputtering power source , 14 Sputtering gas introduction part, 21 target, 100 substrate (W: treated substrate), 101 first support part (S1: support), 102 second support part (S2), 35 first deposition preventing plate, 104 2nd adhesion prevention board, 104A 1st site | part, 104B 2nd site | part, 105,106 Temperature control part (H1, H2).

Claims (4)

基板の一主面側に、絶縁層と、導電層とが順に重ねて配された基体を用い、前記基体上に誘電体膜を形成する成膜装置であって、
真空槽内において、支持体に載置された前記基体に対して、前記基体の外周端から所定距離までの領域を覆うように配置された防着板を備え、
前記防着板は、前記基体の近傍に位置する第一部位、及び、前記基体から見て前記第一部位より遠方に位置する第二部位、から構成されており、
前記基体上に前記誘電体膜を形成する際には、前記第一部位に対して前記第二部位を電気的に離間した位置に配置した、
ことを特徴とする成膜装置。
A film forming apparatus for forming a dielectric film on the base using a base on which an insulating layer and a conductive layer are sequentially stacked on one main surface side of the substrate,
In the vacuum chamber, with respect to the base placed on the support, provided with a deposition plate arranged to cover a region from the outer peripheral edge of the base to a predetermined distance,
The deposition preventing plate is composed of a first part located in the vicinity of the base, and a second part located far from the first part when viewed from the base.
When the dielectric film is formed on the substrate, the second part is disposed at a position electrically separated from the first part.
A film forming apparatus.
前記第一部位は導電体であり、前記第二部位は絶縁体である、
ことを特徴とする請求項1に記載の成膜装置。
The first part is a conductor, and the second part is an insulator.
The film forming apparatus according to claim 1.
前記第一部位は金属であり、前記第二部位は非金属である、
ことを特徴とする請求項1に記載の成膜装置。
The first part is a metal and the second part is a non-metal;
The film forming apparatus according to claim 1.
前記第一部位は、前記第二部位と重なり合って前記第二部位の内周縁を覆うように配置されている、
ことを特徴とする請求項1ないし3のいずれか1項に記載の成膜装置。
The first part is arranged to overlap the second part and cover the inner periphery of the second part,
The film forming apparatus according to claim 1, wherein the film forming apparatus is a film forming apparatus.
JP2018036944A 2018-03-01 2018-03-01 Film forming equipment Active JP6998239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018036944A JP6998239B2 (en) 2018-03-01 2018-03-01 Film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036944A JP6998239B2 (en) 2018-03-01 2018-03-01 Film forming equipment

Publications (2)

Publication Number Publication Date
JP2019151878A true JP2019151878A (en) 2019-09-12
JP6998239B2 JP6998239B2 (en) 2022-01-18

Family

ID=67948365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036944A Active JP6998239B2 (en) 2018-03-01 2018-03-01 Film forming equipment

Country Status (1)

Country Link
JP (1) JP6998239B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148837A (en) * 1988-05-23 1990-06-07 Lam Res Corp Device and method of clamping semiconductor wafer
JP2001192824A (en) * 1999-10-29 2001-07-17 Toshiba Corp Sputtering system and film deposition method
JP2002294441A (en) * 2001-03-30 2002-10-09 Anelva Corp Bias sputtering apparatus
JP2007081404A (en) * 2005-09-15 2007-03-29 Asm Japan Kk Plasma cvd deposition apparatus having mask
JP2008261047A (en) * 2007-01-29 2008-10-30 Applied Materials Inc Treatment kit for substrate treatment chamber
WO2015194453A1 (en) * 2014-06-20 2015-12-23 株式会社アルバック Multi-layer film, production method for same, and production apparatus for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148837A (en) * 1988-05-23 1990-06-07 Lam Res Corp Device and method of clamping semiconductor wafer
JP2001192824A (en) * 1999-10-29 2001-07-17 Toshiba Corp Sputtering system and film deposition method
JP2002294441A (en) * 2001-03-30 2002-10-09 Anelva Corp Bias sputtering apparatus
JP2007081404A (en) * 2005-09-15 2007-03-29 Asm Japan Kk Plasma cvd deposition apparatus having mask
JP2008261047A (en) * 2007-01-29 2008-10-30 Applied Materials Inc Treatment kit for substrate treatment chamber
WO2015194453A1 (en) * 2014-06-20 2015-12-23 株式会社アルバック Multi-layer film, production method for same, and production apparatus for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小風 豊、外 5名: "強誘電体MEMS用圧電素子成膜・エッチング技術の開発", ULVAC TECHNICAL JOURNAL, JPN6021033858, 2007, pages 13 - 19, ISSN: 0004583505 *

Also Published As

Publication number Publication date
JP6998239B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
EP2626442B1 (en) Dielectric film formation method
TWI357091B (en)
TWI762551B (en) Plasma processing apparatus
US20180108555A1 (en) Electrostatic chuck device
JP2012221979A (en) Plasma processing apparatus
WO2015194458A1 (en) Multilayer film and method for manufacturing same
JP7052735B2 (en) Electrostatic chuck device
JP6367331B2 (en) Multilayer film and manufacturing method thereof
WO2015137198A1 (en) Method for manufacturing multilayer film, and multilayer film
US9347128B2 (en) Method for forming dielectric thin film
JP6998239B2 (en) Film forming equipment
JP6410370B2 (en) MULTILAYER FILM, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
JP2019151879A (en) Film deposition apparatus
JP6497709B2 (en) Plasma CVD apparatus and method for manufacturing magnetic recording medium
JP2009242927A (en) Sputtering method and sputtering apparatus
JP7143127B2 (en) Multilayer structure, its manufacturing method, and its manufacturing apparatus
US20220190749A1 (en) Electrostatic chuck and substrate fixing device
JP2019160964A (en) Deposition method and deposition device of multilayer film
JP6082165B2 (en) Metal film and method for forming metal film
JP2008179894A (en) Film-forming apparatus, film-forming method, insulation film, dielectric film, piezoelectric film, ferroelectric film, piezoelectric element and liquid discharge device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150