JP2019150846A - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP2019150846A
JP2019150846A JP2018037743A JP2018037743A JP2019150846A JP 2019150846 A JP2019150846 A JP 2019150846A JP 2018037743 A JP2018037743 A JP 2018037743A JP 2018037743 A JP2018037743 A JP 2018037743A JP 2019150846 A JP2019150846 A JP 2019150846A
Authority
JP
Japan
Prior art keywords
welding
softened layer
heat
region
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018037743A
Other languages
Japanese (ja)
Other versions
JP7069838B2 (en
Inventor
理敬 小島
Michitaka Kojima
理敬 小島
井藤 勝弘
Katsuhiro Ito
勝弘 井藤
竹内 昭伸
Akinobu Takeuchi
昭伸 竹内
竜平 重久
Ryuhei Shigehisa
竜平 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018037743A priority Critical patent/JP7069838B2/en
Publication of JP2019150846A publication Critical patent/JP2019150846A/en
Application granted granted Critical
Publication of JP7069838B2 publication Critical patent/JP7069838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a welding method that can prevent a softened layer from being generated on a surface of a metal mold to suppress abrasion and breakage.SOLUTION: A welding method according to one embodiment comprises: a step of obtaining an actual measured value relating to hardness of a cross section of a welded part and specifying a phase transformation region appearance condition from a relation between exposure time and a temperature at which the actual measured value can be obtained; a step of predicting generation of a softened layer, assuming that the softened layer is generated in a heat-affected part, when the heat-affected part of the welded part is included in a phase transformation region appearance condition; a step of determining whether welding quality is good or not on the basis of a predicted result of the generation of the softened layer; and a step of changing a welding condition on the basis of a determined result of whether the welding quality is good or not.SELECTED DRAWING: Figure 1

Description

本発明は、工具鋼の溶接技術に関する。   The present invention relates to a welding technique for tool steel.

従来から、溶接品質(例えば、機械的強度、残留応力、溶接変形)を判定する技術が種々提案されている(例えば、特許文献1〜5)。特許文献1では、画像データから溶融池・熱影響部の表面温度分布の特徴値を抽出し、該特徴値に基づいて溶融池を形成する入熱量を推定して、表面温度分布の特徴値、入熱量及び各種データベースから溶融池・熱影響部の温度変化(冷却速度)を推定する。そして、この温度変化に基づいて溶接部の微細組織に基づく材料物性を推定し、該材料物性と負荷応力データベースとから溶接品質の良否を判定している。   Conventionally, various techniques for determining welding quality (for example, mechanical strength, residual stress, welding deformation) have been proposed (for example, Patent Documents 1 to 5). In Patent Document 1, a feature value of the surface temperature distribution of the molten pool / heat-affected zone is extracted from the image data, and the amount of heat input that forms the molten pool is estimated based on the feature value. Estimate temperature change (cooling rate) of weld pool and heat affected zone from heat input and various databases. And based on this temperature change, the material physical property based on the microstructure of a welding part is estimated, and the quality of welding quality is determined from this material physical property and a load stress database.

特許文献2では、レーザー光が照射された溶接部付近の温度変化を検出し、該温度変化に基づいて溶接部の溶接の良否を判定している。また、特許文献3では、被加工部の品質が良品となる、該被加工部の放射温度の平均値における範囲を記憶し、放射温度計によって測定された被加工部の放射温度の平均値が記憶された範囲内であるときに、被加工部の品質が良品であると判定する技術が開示されている。   In Patent Document 2, a temperature change in the vicinity of a welded portion irradiated with laser light is detected, and whether or not the welded portion is welded is determined based on the temperature change. Moreover, in patent document 3, the range in the average value of the radiant temperature of the to-be-processed part which the quality of a to-be-processed part becomes a good product is memorize | stored, and the average value of the radiated temperature of the to-be-processed part measured by the radiation thermometer is A technique for determining that the quality of a processed part is a non-defective product when it is within the stored range is disclosed.

特許文献4には、複数の部材を溶接した際の各部材の温度をコンピュータによるシミュレーションによって解析する溶接解析方法が開示されている。また、特許文献5には、有限要素解析モデルを用いて、熱影響部を含む構造体の数値的シミュレーションを行う技術が開示されている。   Patent Document 4 discloses a welding analysis method in which the temperature of each member when a plurality of members are welded is analyzed by computer simulation. Patent Document 5 discloses a technique for performing a numerical simulation of a structure including a heat affected zone using a finite element analysis model.

特開2016−198805号公報JP-A-2006-198805 特開平05−337662号公報Japanese Patent Laid-Open No. 05-337662 特開2017−217675号公報JP 2017-217675 A 特開2006−247746号公報JP 2006-247746 A 特開2013−246830号公報JP 2013-246830 A

自動車のボディ等に用いられる製品は、プレス金型を用いて鋼板をプレス加工することにより生産される。また、エンジンブロックなどの鋳造製品は、鋳型を用いて鋳造加工により生産される。プレス金型や鋳型等の各種金型は長時間連続して使用されるため、その成形面、特にエッジ部や強圧部といった高負担部において摩耗や破損が生じる場合がある。金型の成形面に摩耗や破損が発生すると、表面に傷が生じて製品の品質が低下する。   Products used for automobile bodies and the like are produced by pressing a steel plate using a press die. Further, casting products such as engine blocks are produced by casting using a mold. Since various molds such as a press mold and a mold are used continuously for a long time, wear or breakage may occur on the molding surface, particularly on a high load part such as an edge part or a strong pressure part. When wear or breakage occurs on the molding surface of the mold, the surface is scratched and the quality of the product is degraded.

このような金型のコストを低減させるため、金型の損傷部を溶接で補修して再生する技術が知られている。金型の補修は、補修箇所に溶接材を肉盛り溶接して溶接部を形成し、その後、機械加工により切削して元の形状に加工する。しかし、溶接では、HAZ(Heat Affected Zone:熱影響部)に軟化層が発生するという問題がある。機械加工後の金型の表面に溶接部の軟化層が出現すると、補修後の金型の摩耗・破損の新たな原因となる虞がある。また、溶接技術を用いて新たな金型を作成する際にも同様に、金型表面の軟化層出現による不具合が懸念される。また、ドリルやフライス等の刃具、ハンマー等の打撃工具の溶接部に軟化層が発生した場合にも同様の問題が起こりうる。   In order to reduce the cost of such a mold, a technique for repairing and repairing a damaged portion of the mold by welding is known. In the repair of the mold, the welded material is welded and welded to the repaired portion to form a welded portion, and then machined to cut into the original shape. However, welding has a problem that a softened layer is generated in a HAZ (Heat Affected Zone). If a softened layer of the welded portion appears on the surface of the mold after machining, there is a possibility that it becomes a new cause of wear and breakage of the mold after repair. Similarly, when a new mold is created using a welding technique, there is a concern about problems due to the appearance of a softened layer on the mold surface. The same problem may occur when a softened layer is generated in a welded portion of a cutting tool such as a drill or a milling cutter or a hammering tool.

そこで、溶接部における軟化層の発生を予測して、溶接条件に反映させることが求められる。軟化層の発生はHAZで生じる相変態が原因と考えられているため、溶接部の相変態を検証して微細組織を推定し、軟化層の発生を予測する方法が考えられる。特許文献1では、溶接部の微細組織を推定するために、熱影響部の冷却速度を用いている。しかし、各領域の形状や冷却速度を逐一検証/演算しなければならず、演算量が膨大であり、時間がかかるという問題がある。   Therefore, it is required to predict the occurrence of a softened layer in the weld and reflect it in the welding conditions. Since the generation of the softened layer is considered to be caused by the phase transformation occurring in the HAZ, a method of estimating the microstructure by verifying the phase transformation of the welded portion and predicting the generation of the softened layer is conceivable. In patent document 1, in order to estimate the microstructure of a welded part, the cooling rate of the heat affected zone is used. However, the shape and cooling rate of each region must be verified / calculated one by one, and there is a problem that the calculation amount is enormous and takes time.

本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、短時間で溶接部の熱影響部における軟化層の発生を予測し、溶接条件を決定・変更することが可能な溶接方法を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to predict the occurrence of a softened layer in a heat-affected zone of a welded part in a short time, and to determine and change welding conditions. It is to provide a possible welding method.

本発明の一態様に係る溶接方法は、溶接部の断面の硬さに関する実測値を取得し、前記実測値が得られる曝露時間と温度との関係から相変態領域出現条件を特定する工程と、溶接部の熱影響部が前記相変態領域出現条件に含まれる場合に、前記熱影響部に軟化層が発生するものとみなして軟化層の発生を予測する工程と、前記軟化層の発生予測結果に基づいて、溶接品質の良否を判定する工程と、前記溶接品質の良否判定結果に基づいて、溶接条件を変更する工程とを有する。   The welding method according to an aspect of the present invention includes a step of acquiring an actual measurement value related to the hardness of a cross section of a welded portion, and specifying a phase transformation region appearance condition from a relationship between exposure time and temperature at which the actual measurement value is obtained; When the heat affected zone of the welded portion is included in the phase transformation region appearance condition, a process of predicting the generation of the softened layer on the assumption that the softened layer is generated in the heat affected zone, and the predicted generation result of the softened layer And determining the quality of the welding quality, and changing the welding conditions based on the quality determination result of the welding quality.

本発明によれば、短時間で溶接部の熱影響部における軟化層の発生を予測し、溶接条件を決定・変更することが可能な溶接方法を提供することが可能となる。   According to the present invention, it is possible to provide a welding method capable of predicting the occurrence of a softened layer in a heat-affected zone of a welded portion in a short time and determining and changing welding conditions.

実施の形態に係る溶接方法を示すフローチャートである。It is a flowchart which shows the welding method which concerns on embodiment. 演算領域を決定する方法を説明する図である。It is a figure explaining the method of determining a calculation area | region. 演算領域を決定する方法を説明する図である。It is a figure explaining the method of determining a calculation area | region. レーザーの曝露時間と溶接部の断面の温度との関係を示す図である。It is a figure which shows the relationship between the exposure time of a laser, and the temperature of the cross section of a welding part. 工具鋼の連続冷却変態線図である。It is a continuous cooling transformation diagram of tool steel.

以下、図面を参照して本発明の実施形態について説明する。各図における同等の構成要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Equivalent components in each drawing are denoted by the same reference numerals, and redundant description is omitted.

本発明は、刃具、打撃工具等の工具、各種金型に用いられる工具鋼の溶接技術に関する。実施の形態に係る溶接方法の概略は、溶接条件の初期設定を行い、溶接部の機械的性質を低下させる軟化層の発生を予測し、その軟化層の発生を抑制するような溶接条件に変更するものである。   The present invention relates to a welding technique for tool steel used for tools such as cutting tools and impact tools, and various dies. The outline of the welding method according to the embodiment is the initial setting of the welding conditions, the occurrence of a softened layer that reduces the mechanical properties of the welded portion is predicted, and the welding condition is changed to suppress the occurrence of the softened layer. To do.

例えば、金型の補修を行う場合、金型の摩耗や破損を受けた損傷部に溶接材を肉盛り溶接して溶接部を形成し、当該溶接部を切削加工して補修する。金型の損傷部をTIG溶接で補修する場合、TIG溶接は入熱量が大きいため、熱影響部(Heat Affected Zone:HAZ)が軟化するという問題がある。   For example, when repairing a mold, weld material is welded to a damaged part of the mold that has been worn or damaged to form a welded part, and the welded part is cut and repaired. When repairing a damaged part of a mold by TIG welding, there is a problem that heat affected zone (Heat Affected Zone: HAZ) is softened because TIG welding has a large heat input.

一方、レーザークラッド溶接は、総熱量や溶融箇所がコントロールしやすいため、TIG溶接より軟化層の発生を低減できると考えられるものの、軟化層の発生自体をなくすことは難しい。そこで、実施の形態では、短時間で簡易的に溶接部の熱影響部における軟化層の発生を予測し、溶接条件を決定・変更する。   On the other hand, in laser clad welding, since it is easy to control the total amount of heat and the melting point, it is considered that the generation of the softened layer can be reduced as compared with TIG welding, but it is difficult to eliminate the generation of the softened layer itself. Therefore, in the embodiment, the occurrence of the softened layer in the heat-affected zone of the welded portion is easily predicted in a short time, and the welding conditions are determined and changed.

図1は、実施の形態に係る溶接方法を説明するフローチャートである。図1では、溶接条件の決定方法が示されている。なお、図1では、便宜的にフローチャートを用いて溶接条件の決定方法を図示しているが、「方法」としての工程/手順が示されており、溶接を行う溶接装置が自動制御である否か等は限定されるものではない。   FIG. 1 is a flowchart for explaining a welding method according to an embodiment. FIG. 1 shows a method for determining welding conditions. In FIG. 1, for convenience, a method for determining welding conditions is illustrated using a flowchart. However, a process / procedure as a “method” is illustrated, and whether or not a welding apparatus for performing welding is automatically controlled. It is not limited.

図1を参照して、金型の溶接条件の決定方法の全体の流れを説明する。図1に示すように、まず、溶接条件の初期設定が行われる(S1)。溶接条件の初期設定では、例えば、従来値、経験値、ノウハウ値、実験値、シミュレーション値等、既知又は標準的な溶接条件が設定される。レーザークラッド溶接の場合、レーザー出力、走査位置/パターン、材料供給量/速度等が設定される。   With reference to FIG. 1, the overall flow of a method for determining the welding conditions of a mold will be described. As shown in FIG. 1, first, welding conditions are initially set (S1). In the initial setting of the welding conditions, for example, known or standard welding conditions such as conventional values, experience values, know-how values, experimental values, simulation values, and the like are set. In the case of laser clad welding, laser output, scanning position / pattern, material supply amount / speed, etc. are set.

次に、軟化層の発生予測を行う対象である、演算領域を決定する(S2)。軟化層の発生予測を全ての領域で逐一検証/演算して溶接条件にフィードバックすると非常に時間がかかるため、実施の形態では演算を行う領域を限定している。演算領域の決定工程には、熱エネルギー安定領域の決定(S21)、硬化領域の決定(S22)が含まれる。なお、図2では、S21、S22の順番で各処理が実行されるように記載されているが、これらの処理はいずれから行ってもよく、同時に実行されてもよい。   Next, a calculation area that is a target for which the occurrence of the softened layer is predicted is determined (S2). Since it takes a very long time to verify / calculate the generation prediction of the softened layer one by one in all regions and feed back to the welding conditions, the embodiment limits the region in which the computation is performed. The calculation region determination step includes determination of a thermal energy stable region (S21) and determination of a curing region (S22). In FIG. 2, it is described that the respective processes are executed in the order of S21 and S22. However, these processes may be performed from either, or may be performed simultaneously.

まず、熱エネルギー安定領域の決定(S21)について、図2を参照して説明する。図2は、溶接部の入熱量が最大となる位置の断面を示している。母材10に溶接が行われると、溶融境界から母材10に向かって、その材料の融点に近い温度に加熱される領域からほとんど熱の影響を受けない領域まで連続的に温度が変化する。この領域内で顕微鏡組織に変化が生じたところを熱影響部11という。溶接部13は溶けて固まった溶接金属(溶融領域)12と溶接の熱で組織変化の生じた熱影響部11から成る。溶接金属12は、溶接材と母材10とが混合した組成となる。   First, determination of the thermal energy stable region (S21) will be described with reference to FIG. FIG. 2 shows a cross section at a position where the heat input amount of the welded portion becomes maximum. When welding is performed on the base material 10, the temperature continuously changes from a region heated from the melting boundary toward the base material 10 to a temperature close to the melting point of the material to a region hardly affected by heat. A place where a change occurs in the microstructure in this region is referred to as a heat affected zone 11. The welded portion 13 includes a weld metal (melted region) 12 that has been melted and solidified, and a heat-affected zone 11 in which a structural change has occurred due to the heat of welding. The weld metal 12 has a composition in which the weld material and the base material 10 are mixed.

図2に示すように、母材10には溶接金属12が肉盛りされた溶接部13が形成されている。母材10の溶接金属12に接触する領域が、熱影響部11となる。レーザークラッド溶接では、溶接の開始直後と終了直前においてレーザーの熱エネルギーが不安定となる。このため、母材10に形成された溶接部13のうち、溶接開始直後と終了直前の領域を軟化層の発生予測の演算領域から除外する除外領域14とし、熱エネルギーが安定する安定領域15を演算領域とする。   As shown in FIG. 2, the base material 10 is formed with a welded portion 13 in which a weld metal 12 is built up. A region in contact with the weld metal 12 of the base material 10 becomes the heat affected zone 11. In laser clad welding, the thermal energy of the laser becomes unstable immediately after the start and immediately before the end of welding. For this reason, in the welded portion 13 formed on the base material 10, the region immediately after the start of welding and the region immediately before the end are set as the excluded region 14 that is excluded from the calculation region for the prediction of occurrence of the softened layer, and the stable region 15 in which the thermal energy is stabilized. The calculation area.

次に、硬化領域の決定について、図3を参照して説明する。一般に、軟化層11aは、母材10の熱影響部11に形成される。従って、溶接部13のうち溶接金属12からなる溶融領域は、軟化層の発生予測を行う演算領域から除外する。また、図3に示すように、レーザークラッド溶接等では、溶融領域が1500℃ほどの高温になるため、熱影響部11は軟化層11aと焼き入れ効果による硬化領域11bの2層構造となる。従って、溶接部13のうち硬化領域11bについても、軟化層の発生予測を行う演算領域から除外する。   Next, the determination of the curing region will be described with reference to FIG. In general, the softened layer 11 a is formed on the heat affected zone 11 of the base material 10. Therefore, the melting region made of the weld metal 12 in the welded portion 13 is excluded from the calculation region in which the generation prediction of the softened layer is performed. Further, as shown in FIG. 3, in laser cladding welding or the like, the melting region becomes a high temperature of about 1500 ° C., so that the heat affected zone 11 has a two-layer structure of a softened layer 11a and a hardened region 11b due to a quenching effect. Accordingly, the hardened region 11b of the welded portion 13 is also excluded from the calculation region in which the occurrence of the softened layer is predicted.

そして、S2で決定された演算領域について、相変態を検証して微細組織を推定し、軟化層の発生を予測する(S3)。軟化層の発生予測には、例えば、軟化層の材質や発生領域の予測が含まれる。実施の形態では、演算量を減少させるために、溶接部の冷却速度を用いずに、過去の実測値を用いて簡易的に軟化層の発生を予測する。軟化層の発生予測については、後に詳述する。   And about the calculation area | region determined by S2, phase transformation is verified, a micro structure is estimated, and generation | occurrence | production of a softening layer is estimated (S3). The generation prediction of the softened layer includes, for example, prediction of the material and generation region of the softened layer. In the embodiment, in order to reduce the calculation amount, the generation of the softened layer is simply predicted using the past actual measurement value without using the cooling rate of the welded portion. The generation prediction of the softened layer will be described in detail later.

その後、S3において得られた軟化層の発生予測に基づいて、当該溶接部の溶接品質の良否を判定する(S4)。溶接品質の良否は、例えば、軟化層の発生量や厚み、これらに基づく溶接部の予想硬さ等によって判定される。   Thereafter, whether the weld quality of the welded portion is good or not is determined based on the predicted generation of the softened layer obtained in S3 (S4). The quality of the weld quality is determined by, for example, the amount and thickness of the softened layer, the expected hardness of the weld based on these, and the like.

溶接品質に問題がない場合(S4、YES)、溶接条件の決定方法は終了し、S1で設定された初期条件が、その後行われる溶接の条件となる。一方、溶接品質に問題がある場合(S4、NO)、軟化層の発生を抑制するようにS1で設定された初期条件が変更される(S5)。   When there is no problem in the welding quality (S4, YES), the welding condition determination method ends, and the initial condition set in S1 becomes a condition for welding performed thereafter. On the other hand, when there is a problem in the welding quality (S4, NO), the initial conditions set in S1 are changed so as to suppress the generation of the softened layer (S5).

ここで、S3の軟化層の発生予測工程について詳細に説明する。
実施の形態について説明する前に、図5を参照して、軟化層の発生を予測する方法の比較例について説明する。図5は、溶接部の断面の温度履歴を工具鋼の一例であるSKD61のCCT(Continuous Cooling Transformation:連続冷却変態)線図に重ねた模式図である。図5において、破線がSKD61を示しており、実線が溶接部の断面の温度履歴を示している。図5において、縦軸が温度(℃)、横軸が最高到達温度1030℃からの冷却時間(min)を示している。図5中、B、P、Mはそれぞれベイナイト相、パーライト相、マルテンサイト相が生成する温度−時間領域である。
Here, the generation | occurrence | production prediction process of the softening layer of S3 is demonstrated in detail.
Before describing the embodiment, a comparative example of a method for predicting the occurrence of a softened layer will be described with reference to FIG. FIG. 5 is a schematic diagram in which the temperature history of the cross section of the welded portion is superimposed on a CCT (Continuous Cooling Transformation) diagram of SKD61, which is an example of tool steel. In FIG. 5, the broken line shows SKD61, and the continuous line has shown the temperature history of the cross section of a welding part. In FIG. 5, the vertical axis represents temperature (° C.), and the horizontal axis represents cooling time (min) from the maximum attained temperature of 1030 ° C. In FIG. 5, B, P, and M are temperature-time regions in which a bainite phase, a pearlite phase, and a martensite phase are generated, respectively.

軟化層はHAZで生じる相変態が原因で発生すると考えられている。このため、図5に示されるような、CCT線図から「冷却速度」求め、相変態を検証して溶接部の微細組織を推定し、軟化層の発生を予測する方法が考えられる。しかし、各領域の形状や冷却速度を逐一検証/演算しなければならず、演算に時間がかかる。   It is believed that the softened layer is caused by a phase transformation that occurs in HAZ. For this reason, as shown in FIG. 5, a method of obtaining the “cooling rate” from the CCT diagram, verifying the phase transformation, estimating the microstructure of the weld, and predicting the occurrence of the softened layer is conceivable. However, the shape and cooling rate of each region must be verified / calculated one by one, and the computation takes time.

そこで、実施の形態では、溶接部の冷却速度を用いずに、過去の実測値を用いて簡易的に軟化層の発生を予測する。図4は、レーザーの「曝露時間」と溶接部の断面の「温度」との関係を示す図である。図4において、横軸は時間を示しており、縦軸は温度を示している。   Therefore, in the embodiment, the generation of the softened layer is simply predicted using the past actual measurement value without using the cooling rate of the welded portion. FIG. 4 is a diagram showing the relationship between the “exposure time” of the laser and the “temperature” of the cross section of the weld. In FIG. 4, the horizontal axis represents time, and the vertical axis represents temperature.

例えば、母材を合金工具鋼SKDとしたレーザー溶接においては、入熱エネルギーが大きいため、熱影響部でパーライト相が層状組織から粒状組織へと変化することで、軟化層が形成される。そこで、母材を合金工具鋼SKDとしたレーザークラッド溶接においては、熱影響部にパーライト相が出現することをもって、軟化層が発生するものとみなす。   For example, in laser welding in which the base material is alloy tool steel SKD, since the heat input energy is large, the softened layer is formed by changing the pearlite phase from a layered structure to a granular structure in the heat-affected zone. Therefore, in laser clad welding in which the base material is alloy tool steel SKD, the appearance of a pearlite phase in the heat-affected zone is considered to generate a softened layer.

まず、溶接部の断面の硬さに関する実測値が取得される。そして、当該実測値が得られる曝露時間と温度との関係から相変態領域出現条件が特定され、実測データベースに保存される。例えば、母材を合金工具鋼SKDとしたレーザークラッド溶接では、熱影響部にパーライト相が出現する条件を、熱影響部の温度が500〜600℃の範囲であると特定することができる。この相変態領域出現条件を満たすことで、ビッカース硬さHv60以下の軟化層が発生するものとみなされる。   First, an actual measurement value relating to the hardness of the cross section of the welded portion is acquired. Then, the phase transformation region appearance condition is specified from the relationship between the exposure time and the temperature at which the actual measurement value is obtained, and stored in the actual measurement database. For example, in laser clad welding in which the base material is alloy tool steel SKD, the condition that the pearlite phase appears in the heat affected zone can be specified as the temperature of the heat affected zone in the range of 500 to 600 ° C. By satisfying this phase transformation region appearance condition, it is considered that a softened layer having a Vickers hardness of Hv 60 or less is generated.

図4において、一点鎖線で囲まれている領域が、パーライト相が出現するパーライト相変態領域を表している。熱影響部の軟化層の発生を予測するとき、実測DBを参照して、相変態領域出現条件として特定した500〜600℃の温度範囲に含まれる熱影響部の領域が、軟化層であるとみなされる。なお、実施の形態では、フェライト相やマルテンサイト相等の他の相変態領域については、演算を行わない。このように、演算量を抑えることで、短時間で軟化層の発生予測を行うことが可能となる。   In FIG. 4, a region surrounded by an alternate long and short dash line represents a pearlite phase transformation region where a pearlite phase appears. When predicting the occurrence of a softened layer in the heat affected zone, referring to the measured DB, the region of the heat affected zone included in the temperature range of 500 to 600 ° C. specified as the phase transformation region appearance condition is a softened layer It is regarded. In the embodiment, the calculation is not performed for other phase transformation regions such as a ferrite phase and a martensite phase. In this way, by suppressing the amount of calculation, it is possible to predict the occurrence of a softened layer in a short time.

なお、入熱エネルギーがレーザーに比べて小さいアーク溶接などにおいては、軟化層発生に関して、熱影響部でのフェライトの組織変化の影響が大きくなる場合がある。この場合、溶接部の断面の硬さに関する実測値、曝露時間、温度との相関関係に基づき、フェライト相が出現する相変態領域出現条件についても、実測DBに保存することができる。   Note that, in arc welding or the like where the heat input energy is smaller than that of a laser, the influence of the change in the structure of the ferrite in the heat-affected zone may become greater with respect to the generation of the softened layer. In this case, the phase transformation region appearance condition in which the ferrite phase appears can also be stored in the measurement DB based on the correlation between the measured value regarding the hardness of the cross section of the weld, the exposure time, and the temperature.

軟化層の発生により、S4で溶接品質に問題があると判定された場合は、S5において、軟化層の発生を抑制するように溶接条件が変更される。例えば、レーザークラッド溶接においては、軟化層の発生を抑制するため、粉末材料が溶融状態になっている時間・量を低減させ、溶融領域の冷却速度を速めることができる。そのためには、「レーザー照射径を絞る」、「走査速度を高速化する」などの溶接条件の変更を行うことができる。   If it is determined in S4 that there is a problem in welding quality due to the generation of the softened layer, the welding conditions are changed in S5 so as to suppress the generation of the softened layer. For example, in laser clad welding, in order to suppress the generation of a softened layer, the time and amount that the powder material is in a molten state can be reduced, and the cooling rate of the molten region can be increased. For this purpose, it is possible to change welding conditions such as “narrowing the laser irradiation diameter” and “increasing the scanning speed”.

このように、実施の形態によれば、演算量が多い冷却速度演算を使用せずに、溶接部の断面の硬さ、温度、曝露時間から直接的に軟化層の発生を予測することができ、多くの時間を要することなく、溶接品質の良否を判定して溶接条件を変更することが可能となる。さらに、軟化層の発生予測を行う演算領域を限定することで、軟化層の発生予測の演算量を低減し、検証/演算にかかる時間を低減することができる。   As described above, according to the embodiment, it is possible to predict the occurrence of the softened layer directly from the hardness, temperature, and exposure time of the cross section of the weld without using the cooling rate calculation with a large amount of calculation. It is possible to determine the quality of the welding quality and change the welding conditions without requiring much time. Furthermore, by limiting the calculation area in which the generation prediction of the softened layer is limited, the calculation amount of the generation prediction of the softened layer can be reduced, and the time required for verification / calculation can be reduced.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

10 母材
11 熱影響部
12 溶接金属
13 溶接部
14 除外領域
15 安定領域
11a 軟化層
11b 硬化領域
DESCRIPTION OF SYMBOLS 10 Base material 11 Heat affected zone 12 Weld metal 13 Weld zone 14 Exclusion zone 15 Stable zone 11a Softening layer 11b Hardening zone

Claims (1)

溶接部の断面の硬さに関する実測値を取得し、前記実測値が得られる曝露時間と温度との関係から相変態領域出現条件を特定する工程と、
溶接部の熱影響部が前記相変態領域出現条件に含まれる場合に、前記熱影響部に軟化層が発生するものとみなして軟化層の発生を予測する工程と、
前記軟化層の発生予測結果に基づいて、溶接品質の良否を判定する工程と、
前記溶接品質の良否判定結果に基づいて、溶接条件を変更する工程と、
を有する、
溶接方法。
Obtaining a measured value related to the hardness of the cross section of the weld, and identifying a phase transformation region appearance condition from the relationship between the exposure time and temperature at which the measured value is obtained;
When the heat-affected zone of the weld zone is included in the phase transformation region appearance condition, assuming that a softened layer is generated in the heat-affected zone, predicting the occurrence of a softened layer;
A step of determining whether the welding quality is good or not based on the predicted generation result of the softened layer;
Based on the quality determination result of the welding quality, changing the welding conditions;
Having
Welding method.
JP2018037743A 2018-03-02 2018-03-02 Welding method Active JP7069838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037743A JP7069838B2 (en) 2018-03-02 2018-03-02 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037743A JP7069838B2 (en) 2018-03-02 2018-03-02 Welding method

Publications (2)

Publication Number Publication Date
JP2019150846A true JP2019150846A (en) 2019-09-12
JP7069838B2 JP7069838B2 (en) 2022-05-18

Family

ID=67947688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037743A Active JP7069838B2 (en) 2018-03-02 2018-03-02 Welding method

Country Status (1)

Country Link
JP (1) JP7069838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441684B2 (en) 2020-03-10 2024-03-01 浜松ホトニクス株式会社 Laser processing equipment and laser processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136530A (en) * 1994-11-14 1996-05-31 Sumitomo Metal Ind Ltd Method for predicting quality of welding metal
JP2004004034A (en) * 2002-04-26 2004-01-08 Kobe Steel Ltd Method of predicting quality of material for welded part
US20100133247A1 (en) * 2008-11-21 2010-06-03 Jyoti Mazumder Monitoring of a welding process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198805A (en) 2015-04-13 2016-12-01 株式会社日立製作所 Welding quality determination method and welding equipment comprising welding quality determination mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136530A (en) * 1994-11-14 1996-05-31 Sumitomo Metal Ind Ltd Method for predicting quality of welding metal
JP2004004034A (en) * 2002-04-26 2004-01-08 Kobe Steel Ltd Method of predicting quality of material for welded part
US20100133247A1 (en) * 2008-11-21 2010-06-03 Jyoti Mazumder Monitoring of a welding process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7441684B2 (en) 2020-03-10 2024-03-01 浜松ホトニクス株式会社 Laser processing equipment and laser processing method

Also Published As

Publication number Publication date
JP7069838B2 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
Kattire et al. Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications
Jhavar et al. Causes of failure and repairing options for dies and molds: A review
Capello et al. Repairing of sintered tools using laser cladding by wire
Lamikiz et al. Laser polishing of parts built up by selective laser sintering
Li et al. Repairing surface defects of metal parts by groove machining and wire+ arc based filling
Woo et al. Control of directed energy deposition process to obtain equal-height rectangular corner
JP7069838B2 (en) Welding method
Petrat et al. Build-up strategies for temperature control using laser metal deposition for additive manufacturing
Hiren et al. Experimental investigation and analysis of dimensional accuracy of laser-based powder bed fusion made specimen by application of response surface methodology
Payne et al. Remanufacturing H13 steel moulds and dies using laser metal deposition
Nikam et al. Laser-based repair of damaged dies, molds, and gears
Scharf-Wildenhain et al. Heat control and design-related effects on the properties and welding stresses in WAAM components of high-strength structural steels
Tian et al. Numerical simulation of hardfacing remanufacturing for large-scale damaged grinding roller
Schuchardt et al. Remanufacturing of die casting dies made of hot-work steels by using the wire-based electron-beam welding with an in situ heat treatment
JP2010201491A (en) Method for repairing heat-resistant steel casting by welding and heat resistant steel casting having part repaired by welding
JP6373303B2 (en) Repair method for continuous casting mold
Ha et al. Phenomenological Modeling of Distortions and Residual Stresses in Direct Energy Deposition of AISI M4 High Speed Tool Steel on D2 Substrate
Cortina et al. Thermomechanical analysis of additively manufactured bimetallic tools for hot stamping
Sakhvadze Finite element simulation of hybrid additive technology using laser shock processing
Anand et al. Integration of Additive Fabrication with High-Pressure Die Casting for Quality Structural Castings of Aluminium Alloys; Optimising Energy Consumption
Sifullah et al. Laser cutting of square blanks in stainless steel-304 sheets: HAZ and thermal stress analysis
JP2019130541A (en) Welding method
JP6135661B2 (en) Mold holder and repair method of the mold holder
Egner-Walter et al. Using stress simulation to tackle distortion and cracking in castings
JP6255656B2 (en) Mold repair method and mold repaired by the mold repair method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7069838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151