JP2019130541A - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP2019130541A
JP2019130541A JP2018012655A JP2018012655A JP2019130541A JP 2019130541 A JP2019130541 A JP 2019130541A JP 2018012655 A JP2018012655 A JP 2018012655A JP 2018012655 A JP2018012655 A JP 2018012655A JP 2019130541 A JP2019130541 A JP 2019130541A
Authority
JP
Japan
Prior art keywords
welding
mold
processing
region
softened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018012655A
Other languages
Japanese (ja)
Inventor
理敬 小島
Michitaka Kojima
理敬 小島
井藤 勝弘
Katsuhiro Ito
勝弘 井藤
竹内 昭伸
Akinobu Takeuchi
昭伸 竹内
竜平 重久
Ryuhei Shigehisa
竜平 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018012655A priority Critical patent/JP2019130541A/en
Publication of JP2019130541A publication Critical patent/JP2019130541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

To provide a welding method which prevents a softening layer from being generated on a surface of a metal mold, to suppress abrasion and breakage.SOLUTION: Provided is a welding method according to an embodiment, that forms a weld zone to be processed by a metal mold of a predetermined shape according to a processing map. The welding method includes the steps of: setting an initial condition for welding; matching a cross section of the weld zone and the processing map, and setting a borderline region containing a processing borderline to become a surface of the metal mold after processing, in a calculation region; predicting occurrence of a softening layer concerning the calculation region; determining the quality of welding on the basis of an occurrence prediction result of the softening layer; and changing welding conditions in accordance with a quality determination result of the welding quality.SELECTED DRAWING: Figure 1

Description

本発明は、金型の作成や損傷部の補修を行う溶接技術に関する。   The present invention relates to a welding technique for making a mold and repairing a damaged part.

自動車のボディ等に用いられる製品は、プレス金型を用いて鋼板をプレス加工することにより生産される。また、エンジンブロックなどの鋳造製品は、鋳型を用いて鋳造加工により生産される。プレス金型や鋳型等の金型は長時間連続して使用されるため、その成形面、特にエッジ部や強圧部といった高負担部において摩耗や破損が生じる場合がある。金型の成形面に摩耗や破損が発生すると、表面に傷が生じて製品の品質が低下する。   Products used for automobile bodies and the like are produced by pressing a steel plate using a press die. Further, casting products such as engine blocks are produced by casting using a mold. Since a mold such as a press mold or a mold is used continuously for a long time, wear or breakage may occur on the molding surface, particularly on a high load portion such as an edge portion or a strong pressure portion. When wear or breakage occurs on the molding surface of the mold, the surface is scratched and the quality of the product is degraded.

そこで、特許文献1では、高負担部が所定の硬度となるプレス金型の製造方法が提案されている。この製造方法では、鉄系素材からなる成形部の高負担部に下地処理用の溶接材を溶接し、その上にハイス鋼からなる肉盛り溶接材で肉盛り溶接し、その肉盛り部分を所定の形状に加工している。   Therefore, Patent Document 1 proposes a method for manufacturing a press die in which a high-load portion has a predetermined hardness. In this manufacturing method, a welding material for base treatment is welded to a high-load portion of a formed part made of an iron-based material, and build-up welding is performed thereon with a build-up welding material made of high-speed steel, and the build-up part is predetermined. The shape is processed.

特開2014−208363号公報JP 2014-208363 A

金型のコストを低減させるため、金型の損傷部を溶接で補修して再生する技術が知られている。金型の補修は、補修箇所に溶接材を肉盛り溶接して溶接部を形成し、その後、機械加工により切削して元の形状に加工する。しかし、溶接では、HAZ(Heat Affected Zone:熱影響部)に軟化層が発生するという問題がある。機械加工後の金型の表面に溶接部の軟化層が出現すると、補修後の金型の摩耗・破損の新たな原因となる虞がある。また、溶接技術を用いて新たな金型を作成する際にも同様に、金型表面の軟化層出現による不具合が懸念される。   In order to reduce the cost of a mold, a technique for repairing and repairing a damaged portion of the mold by welding is known. In the repair of the mold, the welded material is welded and welded to the repaired portion to form a welded portion, and then machined to cut into the original shape. However, welding has a problem that a softened layer is generated in a HAZ (Heat Affected Zone). If a softened layer of the welded portion appears on the surface of the mold after machining, there is a possibility that it becomes a new cause of wear and breakage of the mold after repair. Similarly, when a new mold is created using a welding technique, there is a concern about problems due to the appearance of a softened layer on the mold surface.

本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、金型の表面に軟化層が発生することを防止し、摩耗・破損を抑制することが可能な溶接方法を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a welding method capable of preventing the occurrence of a softened layer on the surface of a mold and suppressing wear and breakage. Is to provide.

本発明の一態様に係る溶接方法は、加工マップに従って所定形状の金型に加工される溶接部を形成する溶接方法であって、溶接の初期条件を設定する工程と、前記溶接部の断面と前記加工マップとをマッチングし、加工後に前記金型の表面となる加工境界線を含む境界領域を演算領域に設定する工程と、前記演算領域について軟化層の発生を予測する工程と、前記軟化層の発生予測結果に基づいて、溶接品質の良否を判定する工程と、前記溶接品質の良否判定結果に基づいて、溶接条件を変更する工程とを有する。   A welding method according to an aspect of the present invention is a welding method for forming a welded portion that is processed into a mold having a predetermined shape according to a processing map, the step of setting initial conditions for welding, and a cross section of the welded portion. Matching the processing map, setting a boundary region including a processing boundary line that becomes the surface of the mold after processing as a calculation region, predicting generation of a softened layer in the calculation region, and the softening layer And a step of determining whether or not the welding quality is good based on the prediction result of the occurrence of welding, and a step of changing the welding conditions based on the result of the quality judgment of the welding quality.

本発明によれば、金型の表面に軟化層が発生することを防止し、摩耗・破損を抑制することが可能となる。   According to the present invention, it is possible to prevent the softening layer from being generated on the surface of the mold, and to suppress wear and breakage.

実施の形態に係る溶接方法を示すフローチャートである。It is a flowchart which shows the welding method which concerns on embodiment. 図1の演算領域決定工程を示すフローチャートである。It is a flowchart which shows the calculation area | region determination process of FIG. 演算領域を決定する方法を説明する図である。It is a figure explaining the method of determining a calculation area | region. 演算領域を決定する方法を説明する図である。It is a figure explaining the method of determining a calculation area | region. 実施の形態に係る溶接方法により溶接部が形成される金型の構成の一例を示す図である。It is a figure which shows an example of a structure of the metal mold | die in which a welding part is formed with the welding method which concerns on embodiment. 図5のVI−VI断面を示す図である。It is a figure which shows the VI-VI cross section of FIG. 溶接部の断面と加工マップとをマッチングした状態を説明する図である。It is a figure explaining the state which matched the cross section of the welding part, and the process map.

以下、図面を参照して本発明の実施形態について説明する。各図における同等の構成要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Equivalent components in each drawing are denoted by the same reference numerals, and redundant description is omitted.

本発明は、加工マップに従って所定形状の金型に加工される溶接部を形成する溶接方法に関する。実施の形態に係る溶接方法は、例えば、金型の損傷部に溶接材を溶接して溶接部を形成したり、新たな金型を作成する際に溶接部を形成したりする。金型の補修を行う場合、金型の摩耗や破損を受けた損傷部に溶接材を肉盛り溶接して溶接部を形成し、当該溶接部を加工マップに従って加工して補修する。金型の損傷部をTIG溶接で補修する場合、TIG溶接は入熱量が大きいため、熱影響部(Heat Affected Zone:HAZ)が軟化するという問題がある。   The present invention relates to a welding method for forming a welded portion that is processed into a mold having a predetermined shape according to a processing map. In the welding method according to the embodiment, for example, a welding material is welded to a damaged part of a mold to form a welded part, or a welded part is formed when a new mold is created. When repairing a mold, a welded material is formed on the damaged part of the mold that has been worn or damaged to form a welded part, and the welded part is processed and repaired according to a processing map. When repairing a damaged part of a mold by TIG welding, there is a problem that heat affected zone (Heat Affected Zone: HAZ) is softened because TIG welding has a large heat input.

一方、レーザークラッド溶接は、総熱量や溶融箇所がコントロールしやすいため、TIG溶接より軟化層の発生を低減できると考えられるものの、軟化層の発生自体をなくすことは難しい。軟化層は、新たな金型を作成するための溶接部にも同様に発生する。そこで、実施の形態では、加工後の金型の形状を考慮して軟化層の発生位置を予測して溶接条件を決定することで、金型の表面に軟化層が発生することを防止し、摩耗・破損を抑制する。   On the other hand, in laser clad welding, since it is easy to control the total amount of heat and the melting point, it is considered that the generation of the softened layer can be reduced as compared with TIG welding, but it is difficult to eliminate the generation of the softened layer itself. The softened layer is similarly generated in the welded portion for creating a new mold. Therefore, in the embodiment, by considering the shape of the mold after processing and predicting the generation position of the softened layer and determining the welding conditions, it is possible to prevent the softened layer from being generated on the surface of the mold, Suppresses wear and damage.

図1は、実施の形態に係る溶接方法を説明するフローチャートである。図1では、溶接条件の決定方法が示されている。図2は、図1の演算領域決定工程(S2)を示している。なお、図1、2では、便宜的にフローチャートを用いて溶接条件の決定方法を図示しているが、「方法」としての工程/手順が示されており、金型の損傷部へ溶接を行う溶接装置が自動制御である否か等は限定されるものではない。   FIG. 1 is a flowchart for explaining a welding method according to an embodiment. FIG. 1 shows a method for determining welding conditions. FIG. 2 shows the calculation area determination step (S2) of FIG. In FIGS. 1 and 2, for convenience, the method for determining the welding conditions is illustrated using a flowchart, but the process / procedure as a “method” is shown, and welding is performed on the damaged portion of the mold. Whether or not the welding apparatus is automatically controlled is not limited.

図1を参照して、金型の溶接条件の決定方法の全体の流れを説明する。図1に示すように、まず、溶接条件の初期設定が行われる(S1)。溶接条件の初期設定では、例えば、従来値、経験値、ノウハウ値、実験値、シミュレーション値等、既知又は標準的な溶接条件が設定される。レーザークラッド溶接の場合、レーザー出力、走査位置/パターン、材料供給量/速度等が設定される。   With reference to FIG. 1, the overall flow of a method for determining the welding conditions of a mold will be described. As shown in FIG. 1, first, welding conditions are initially set (S1). In the initial setting of the welding conditions, for example, known or standard welding conditions such as conventional values, experience values, know-how values, experimental values, simulation values, and the like are set. In the case of laser clad welding, laser output, scanning position / pattern, material supply amount / speed, etc. are set.

次に、軟化層の発生予測を行う対象である、演算領域を決定する(S2)。演算領域は、加工後の金型の形状を考慮して決定される。演算領域の決定方法については、後に詳述する。そして、S2で決定された演算領域について、軟化層の発生を予測する(S3)。軟化層の発生予測には、例えば、軟化層の材質や発生領域の予測が含まれる。軟化層の材質の予測は、例えば、特開2004−4034号公報に記載の方法で行うことが可能である。   Next, a calculation area that is a target for which the occurrence of the softened layer is predicted is determined (S2). The calculation area is determined in consideration of the shape of the mold after processing. The calculation area determination method will be described later in detail. And generation | occurrence | production of a softening layer is estimated about the calculation area | region determined by S2 (S3). The generation prediction of the softened layer includes, for example, prediction of the material and generation region of the softened layer. The material of the softened layer can be predicted by, for example, a method described in Japanese Patent Application Laid-Open No. 2004-4034.

その後、S3において得られた軟化層の発生予測に基づいて、当該溶接部の溶接品質の良否を判断する(S4)。溶接品質の良否は、加工後に金型表面となる箇所での軟化層の発生の有無により判断する。加工後に金型表面となる箇所に軟化層の発生が認められた場合は、溶接品質がNGであると判断される。   Thereafter, whether the weld quality of the welded portion is good or not is determined based on the predicted generation of the softened layer obtained in S3 (S4). The quality of the welding quality is judged by the presence or absence of the occurrence of a softened layer at the location that becomes the mold surface after processing. If the occurrence of a softened layer is observed at a location on the mold surface after processing, it is determined that the welding quality is NG.

溶接品質に問題がない場合(S4、YES)、溶接条件の決定方法は終了し、S1で設定された初期条件が、その後金型の損傷部に対して行われる溶接の条件となる。一方、溶接品質に問題がある場合(S4、NO)、軟化層の発生を抑制するようにS1で設定された初期条件が変更される(S5)。例えば、レーザークラッド溶接においては、軟化層の発生を抑制するため、粉末材料が溶融状態になっている時間を低減させ、溶融領域の冷却速度を速めることができる。そのためには、「レーザー照射径を絞る」、「走査速度を高速化する」などの溶接条件の変更を行うことができる。   When there is no problem in the welding quality (S4, YES), the welding condition determination method ends, and the initial condition set in S1 becomes the condition for welding performed on the damaged portion of the mold thereafter. On the other hand, when there is a problem in the welding quality (S4, NO), the initial conditions set in S1 are changed so as to suppress the generation of the softened layer (S5). For example, in laser clad welding, in order to suppress the generation of a softened layer, the time during which the powder material is in a molten state can be reduced and the cooling rate of the molten region can be increased. For this purpose, it is possible to change welding conditions such as “narrowing the laser irradiation diameter” and “increasing the scanning speed”.

ここで、図2、演算領域の決定工程について詳細に説明する。図2に示すように、演算領域の決定工程には、熱エネルギー安定領域の決定(S21)、硬化領域の決定(S22)、溶接部の断面形状と加工マップとのマッチング(S23)が含まれる。なお、図2では、S21からS23の順番で各処理が実行されるように記載されているが、これらの処理はいずれから行ってもよく、同時に実行されてもよい。   Here, FIG. 2 and the calculation region determining step will be described in detail. As shown in FIG. 2, the calculation region determination step includes determination of the thermal energy stable region (S 21), determination of the hardening region (S 22), and matching between the cross-sectional shape of the welded portion and the processing map (S 23). . In FIG. 2, it is described that each process is executed in the order of S21 to S23. However, these processes may be executed from any of them and may be executed simultaneously.

軟化層の発生予測を全ての領域で逐一検証/演算して溶接条件にフィードバックすると非常に時間がかかるため、実施の形態では、演算を行う領域を限定している(S21〜23)。また、S4において、溶接部を加工したときに軟化層が金型の表面に出現するか否かを判断するためには、加工後に金型の表面となる加工境界線を含む領域における軟化層の発生予測が必要である。そこで、S23では、加工後に金型の表面となる加工境界線を含む領域が演算領域に決定される。   Since it takes a very long time to verify / calculate the generation prediction of the softened layer one by one in all regions and feed back to the welding conditions, in the embodiment, the region in which the calculation is performed is limited (S21 to 23). In S4, in order to determine whether or not the softened layer appears on the surface of the mold when the welded portion is processed, the softened layer in the region including the processing boundary line that becomes the surface of the mold after processing is determined. Occurrence prediction is necessary. Therefore, in S23, a region including a processing boundary line that becomes the surface of the mold after processing is determined as a calculation region.

まず、熱エネルギー安定領域の決定(S21)について、図3を参照して説明する。図3は、溶接部の入熱量が最大となる位置の断面を示している。母材10に溶接が行われると、溶融境界から母材10に向かって、その材料の融点に近い温度に加熱される領域からほとんど熱の影響を受けない領域まで連続的に温度が変化する。この領域内で顕微鏡組織に変化が生じたところを熱影響部11という。溶接部13は溶けて固まった溶接金属(溶融領域)12と溶接の熱で組織変化の生じた熱影響部11から成る。溶接金属12は、溶接材と母材10とが混合した組成となる。   First, determination of the thermal energy stable region (S21) will be described with reference to FIG. FIG. 3 shows a cross-section at a position where the heat input amount of the welded portion is maximized. When welding is performed on the base material 10, the temperature continuously changes from a region heated from the melting boundary toward the base material 10 to a temperature close to the melting point of the material to a region hardly affected by heat. A place where a change occurs in the microstructure in this region is referred to as a heat affected zone 11. The welded portion 13 includes a weld metal (melted region) 12 that has been melted and solidified, and a heat-affected zone 11 in which a structural change has occurred due to heat of welding. The weld metal 12 has a composition in which the weld material and the base material 10 are mixed.

図3に示すように、母材10には溶接金属12が肉盛りされた溶接部13が形成されている。母材10の溶接金属12に接触する領域が、熱影響部11となる。レーザークラッド溶接では、溶接の開始直後と終了直前においてレーザーの熱エネルギーが不安定となる。このため、母材10に形成された溶接部13のうち、溶接開始直後と終了直前の領域を軟化層の発生予測の演算領域から除外する除外領域14とし、熱エネルギーが安定する安定領域15を演算領域とする。   As shown in FIG. 3, the base material 10 is formed with a welded portion 13 in which a weld metal 12 is built up. A region in contact with the weld metal 12 of the base material 10 becomes the heat affected zone 11. In laser clad welding, the thermal energy of the laser becomes unstable immediately after the start and immediately before the end of welding. For this reason, in the welded portion 13 formed on the base material 10, the region immediately after the start of welding and the region immediately before the end are set as the excluded region 14 that is excluded from the calculation region for the prediction of occurrence of the softened layer, and the stable region 15 in which the thermal energy is stabilized. The calculation area.

次に、硬化領域の決定について、図4を参照して説明する。一般に、軟化層11aは、母材10の熱影響部11に形成される。従って、溶接部13のうち溶接金属12からなる溶融領域は、軟化層の発生予測を行う演算領域から除外する。また、図5に示すように、レーザークラッド溶接等では、溶融領域が1500℃ほどの高温になるため、熱影響部11は軟化層11aと焼き入れ効果による硬化領域11bの2層構造となる。従って、溶接部13のうち硬化領域11bについても、軟化層の発生予測を行う演算領域から除外する。   Next, determination of the curing region will be described with reference to FIG. In general, the softened layer 11 a is formed on the heat affected zone 11 of the base material 10. Therefore, the melting region made of the weld metal 12 in the welded portion 13 is excluded from the calculation region in which the generation prediction of the softened layer is performed. Further, as shown in FIG. 5, in laser cladding welding or the like, the melting region becomes a high temperature of about 1500 ° C., so that the heat affected zone 11 has a two-layer structure of a softened layer 11a and a hardened region 11b due to a quenching effect. Accordingly, the hardened region 11b of the welded portion 13 is also excluded from the calculation region in which the occurrence of the softened layer is predicted.

最後に、溶接部の断面形状と加工マップとのマッチング(S23)について、図6〜8を参照して説明する。図5は、実施の形態に係る溶接方法により溶接部が形成される金型1の構成の一例を示す図である。図6は、図5のVI−VI断面を示す。VI−VI断面は、図5のXYZ直交座標系におけるX−Z平面にある。ここでは、金型1に損傷部2が形成されており、当該損傷部2に実施の形態に係る溶接方法で溶接部を形成する例について説明する。図6において、金型1の損傷部2が補修箇所となる。損傷部2に溶接材を肉盛り溶接して溶接部13を形成し、当該溶接部13を加工情報(加工マップ)に従って切削加工することにより元の形状に整形することで、金型1の補修が行われる。加工マップは、金型1のCAD/CAMデータから作成される。   Finally, matching (S23) between the cross-sectional shape of the welded portion and the processing map will be described with reference to FIGS. Drawing 5 is a figure showing an example of composition of metallic mold 1 in which a welding part is formed by a welding method concerning an embodiment. 6 shows a VI-VI cross section of FIG. The VI-VI cross section is in the XZ plane in the XYZ orthogonal coordinate system of FIG. Here, an example in which the damaged portion 2 is formed in the mold 1 and the welded portion is formed in the damaged portion 2 by the welding method according to the embodiment will be described. In FIG. 6, the damaged part 2 of the mold 1 is a repaired part. Repairing the mold 1 by shaping the welded portion 13 to the original shape by forming the welded portion 13 by overlay welding the damaged material to the damaged portion 2 and cutting the welded portion 13 according to the processing information (processing map). Is done. The processing map is created from CAD / CAM data of the mold 1.

図7は、溶接部13の断面と加工マップとをマッチングした状態を説明する図である。図7においては、溶接部13の断面が横方向にa〜l列、縦方向に1〜6行の72の領域に分割されている。加工境界線3が、加工後の金型1の表面となる。加工後に溶接部13の軟化層11aが金型1の表面に出現すると、補修後の金型1の摩耗・破損の新たな原因となる虞がある。   FIG. 7 is a diagram for explaining a state in which the cross section of the welded portion 13 and the processing map are matched. In FIG. 7, the cross section of the welded portion 13 is divided into 72 regions of a to l columns in the horizontal direction and 1 to 6 rows in the vertical direction. The processing boundary line 3 becomes the surface of the mold 1 after processing. If the softened layer 11a of the welded part 13 appears on the surface of the mold 1 after processing, it may become a new cause of wear and damage of the mold 1 after repair.

そこで、溶接部13(肉盛り箇所)の断面と加工マップとをマッチングさせ、加工後に金型1の表面となる加工境界線3を含む境界領域を、軟化層の発生予測を行う演算領域に設定する。図7に示す例では、分割された各領域のうち加工境界線3が通るa列6行、b列6行、c列5行、d列5行、e列4行、f列4行、g列4行、h列4行、i列4行、j列4行、k列3行、l列2行、l列1行の領域、境界領域となる。   Therefore, the cross section of the welded portion 13 (filled location) is matched with the processing map, and the boundary region including the processing boundary line 3 that becomes the surface of the mold 1 after processing is set as the calculation region for predicting the occurrence of the softened layer. To do. In the example shown in FIG. 7, among the divided areas, a column 6 rows, b column 6 rows, c column 5 rows, d column 5 rows, e column 4 rows, f column 4 rows through which the machining boundary line 3 passes. It is an area and a boundary area of g column 4 rows, h column 4 rows, i column 4 rows, j column 4 rows, k column 3 rows, l column 2 rows, l column 1 row.

また、溶接部13のうち、当該加工で除去される部分は、軟化層の発生予測を行う必要がない。そこで、溶接部13のうち、加工で除去される除去領域4を検証/演算が不要な領域として特定し、演算領域から除外する。図7においては、加工境界線3よりも上の領域が除去領域4として演算領域から除外される。除去領域4は、c列6行、d列6行、e列5〜6行、f列5〜6行、g列5〜6行、h列5〜6行、i列5〜6行、j列5〜6行、k列4〜6行、l列3〜6行となる。   Moreover, the part removed by the said process among the welding parts 13 does not need to perform generation | occurrence | production prediction of a softening layer. Therefore, the removal region 4 to be removed by processing is specified as a region that does not require verification / calculation, and is excluded from the computation region. In FIG. 7, the area above the machining boundary 3 is excluded from the calculation area as the removal area 4. The removal region 4 is c column 6 row, d column 6 row, e column 5-6 row, f column 5-6 row, g column 5-6 row, h column 5-6 row, i column 5-6 row, It becomes j column 5-6 row, k column 4-6 row, l column 3-6 row.

このように、実施の形態に係る溶接方法によれば、加工後の金型の形状を考慮して軟化層の発生位置を予測して溶接条件を決定することができる。これにより、加工後の金型の表面に軟化層が発生することを防止し、摩耗・破損を抑制することが可能となる。また、軟化層の発生予測を行う演算領域を限定することで、軟化層の発生予測の演算量を低減し、検証/演算にかかる時間を低減することができる。   Thus, according to the welding method according to the embodiment, it is possible to determine the welding condition by predicting the generation position of the softened layer in consideration of the shape of the mold after processing. Thereby, it is possible to prevent the softened layer from being generated on the surface of the mold after processing, and to suppress wear / breakage. Further, by limiting the calculation area in which the generation prediction of the softened layer is limited, the calculation amount of the generation prediction of the softened layer can be reduced, and the time required for verification / calculation can be reduced.

上述したように、S4の溶接品質の良否判断では、加工後に金型1の表面となる箇所に軟化層が出現していない場合に良品と判断される。すなわち、図7に示す加工境界線3に沿って、S3において予想された軟化層の発生の有無が特定される。例えば、図7d列5行の領域に軟化層の発生が認められた場合、S5において5行目全体の溶接条件が変更される。なお、溶接機の制御精度が向上すれば、予測された軟化層の発生領域に限定して溶接条件を変更することも可能である。   As described above, the quality determination of the welding quality in S4 is determined as a non-defective product when a softened layer does not appear at a location that becomes the surface of the mold 1 after processing. That is, the presence or absence of the softening layer expected in S3 is specified along the processing boundary 3 shown in FIG. For example, when the generation of the softened layer is recognized in the region of FIG. 7d column 5 rows, the welding conditions for the entire 5th row are changed in S5. If the control accuracy of the welder is improved, it is possible to change the welding conditions only in the predicted softened layer generation region.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

1 金型
2 損傷部
3 加工境界線
4 除去領域
10 母材
11 熱影響部
12 溶接金属
13 溶接部
14 除外領域
15 安定領域
11a 軟化層
11b 硬化領域
DESCRIPTION OF SYMBOLS 1 Metal mold | die 2 Damaged part 3 Process boundary line 4 Removal area | region 10 Base material 11 Heat affected zone 12 Weld metal 13 Welded zone 14 Exclusion zone 15 Stable zone 11a Softening layer 11b Hardening zone

Claims (1)

加工マップに従って所定形状の金型に加工される溶接部を形成する溶接方法であって、
溶接の初期条件を設定する工程と、
前記溶接部の断面と前記加工マップとをマッチングし、加工後に前記金型の表面となる加工境界線を含む境界領域を演算領域に設定する工程と、
前記演算領域について軟化層の発生を予測する工程と、
前記軟化層の発生予測結果に基づいて、溶接品質の良否を判定する工程と、
前記溶接品質の良否判定結果に基づいて、溶接条件を変更する工程と、
を有する、
溶接方法。
A welding method for forming a welded portion to be processed into a mold having a predetermined shape according to a processing map,
A process for setting initial welding conditions;
Matching the cross section of the weld and the processing map, and setting a boundary region including a processing boundary line to be the surface of the mold after processing as a calculation region;
Predicting the occurrence of a softened layer for the computation region;
A step of determining whether the welding quality is good or not based on the predicted generation result of the softened layer;
Based on the quality determination result of the welding quality, changing the welding conditions;
Having
Welding method.
JP2018012655A 2018-01-29 2018-01-29 Welding method Pending JP2019130541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018012655A JP2019130541A (en) 2018-01-29 2018-01-29 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012655A JP2019130541A (en) 2018-01-29 2018-01-29 Welding method

Publications (1)

Publication Number Publication Date
JP2019130541A true JP2019130541A (en) 2019-08-08

Family

ID=67545251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012655A Pending JP2019130541A (en) 2018-01-29 2018-01-29 Welding method

Country Status (1)

Country Link
JP (1) JP2019130541A (en)

Similar Documents

Publication Publication Date Title
RU2745219C1 (en) Method for parallel control of deformation and accuracy of parts manufacturing during additive manufacturing process
Jhavar et al. Causes of failure and repairing options for dies and molds: A review
Li et al. Repairing surface defects of metal parts by groove machining and wire+ arc based filling
KR101666102B1 (en) Method for manufacturing three-dimensional molding
US9889525B2 (en) Method of hardfacing a part
dos Santos Paes et al. Modeling layer geometry in directed energy deposition with laser for additive manufacturing
JP2010207884A (en) Mold repairing method
WO2019156168A1 (en) Method for reclaiming tool material and tool material
CN112809311A (en) Method for repairing and remanufacturing forging-grade parts, terminal and medium
CN103273200A (en) Laser cladding restoring method for die steel
US20220072646A1 (en) Method for setting excess thickness, device for setting excess thickness, method for producing shaped object, and program
JPH08174215A (en) Method for repairing metallic mold
Payne et al. Remanufacturing H13 steel moulds and dies using laser metal deposition
Nikam et al. Laser-based repair of damaged dies, molds, and gears
KR20200006277A (en) Mold having conformal cooling channel by using 3D printer and method therefor
JP7069838B2 (en) Welding method
JP2019130541A (en) Welding method
JP2010201491A (en) Method for repairing heat-resistant steel casting by welding and heat resistant steel casting having part repaired by welding
JP2016150348A (en) Metal mold manufacturing method and regeneration processing method
JP5931341B2 (en) Welding method
JP6373303B2 (en) Repair method for continuous casting mold
JP2014155959A (en) Method and apparatus for producing mold material
CN116083914A (en) Method for laser cladding of self-fluxing nickel-based alloy powder on copper alloy glass die
JP6255656B2 (en) Mold repair method and mold repaired by the mold repair method
Dimitriu Methodology for Creating a Software for Structuring the Reconstruction Technologies by Laser Welding of Metal Moulds