JP2019150752A - Calcium removal method and calcium removal equipment for calcium-containing waste water - Google Patents

Calcium removal method and calcium removal equipment for calcium-containing waste water Download PDF

Info

Publication number
JP2019150752A
JP2019150752A JP2018036287A JP2018036287A JP2019150752A JP 2019150752 A JP2019150752 A JP 2019150752A JP 2018036287 A JP2018036287 A JP 2018036287A JP 2018036287 A JP2018036287 A JP 2018036287A JP 2019150752 A JP2019150752 A JP 2019150752A
Authority
JP
Japan
Prior art keywords
calcium
tank
water
scale
softening agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018036287A
Other languages
Japanese (ja)
Other versions
JP6942658B2 (en
Inventor
槙田 則夫
Norio Makita
則夫 槙田
靖 塩澤
Yasushi Shiozawa
靖 塩澤
西村 隆司
Takashi Nishimura
隆司 西村
安永 利幸
Toshiyuki Yasunaga
利幸 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67947612&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019150752(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2018036287A priority Critical patent/JP6942658B2/en
Publication of JP2019150752A publication Critical patent/JP2019150752A/en
Priority to JP2021145951A priority patent/JP7155369B2/en
Application granted granted Critical
Publication of JP6942658B2 publication Critical patent/JP6942658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a calcium removal method and a calcium removal facility for calcium-containing wastewater that can improve maintainability: in particular, when treating calcium-containing wastewater with a high calcium concentration, it is possible to facilitate the removal work of scales fixed to the members of a reaction tank of the calcium removal equipment, and by reducing the work frequency.SOLUTION: The method for removing calcium from calcium-containing wastewater according to the present invention introduces calcium-containing wastewater as treated water through at least one of a pipe or a predetermined tank 11, and the introduced calcium-containing wastewater is introduced into a reaction tank 12 in which the calcium-containing wastewater is reacted with carbonate to produce calcium carbonate, and a scale softening agent is added to at least one of the reaction tank 12, the predetermined tank 11, and the pipe, thereby softening the scale and facilitating its removal operation.SELECTED DRAWING: Figure 1

Description

本発明は、管理型最終処分場などで発生する浸出水などのカルシウム含有排水のカルシウム除去方法及びカルシウム除去設備に関する。   The present invention relates to a calcium removal method and a calcium removal facility for calcium-containing wastewater such as leachate generated at a managed final disposal site.

一般に、産業や一般生活で発生する廃棄物のうち、再利用や再資源化ができない廃棄物は、管理型最終処分場などの最終処分場で埋め立て処理される。管理型最終処分場では、かつては生ゴミなどの有機性廃棄物が直接埋め立てられることが多かったが、ハエ、ネズミ、カラスの繁殖など環境衛生面の問題や、有機物分解に伴う可燃性ガス発生など安全面の問題、また、埋立地延命のための搬入廃棄物の減量化の問題から、近年では焼却処理を経た焼却灰や焼却飛灰が埋め立てられることが主体となっている。   Generally, waste that cannot be reused or recycled out of waste generated in industry or general life is landfilled at a final disposal site such as a managed final disposal site. In the past, organic waste such as garbage was often directly landfilled at the managed final disposal site. However, environmental hygiene problems such as the breeding of flies, rats, and crows, and the generation of combustible gas due to the decomposition of organic matter In recent years, incineration ash and incineration fly ash that have undergone incineration have been mainly reclaimed due to safety issues such as, and the problem of reducing the amount of imported waste for extending landfill life.

ところで、焼却施設から排出される排ガス中に含まれ得るSO、NO、HClなどの酸性成分は酸性雨の要因となることから、焼却施設では煙道にアルカリ性の消石灰粉末を噴霧して中和除去している。そのため、焼却飛灰には多量のカルシウム塩と未反応の消石灰が含まれることから、管理型最終処分場で発生する浸出水もカルシウム濃度が高く、かつ高pHなものとなり、このことが浸出水処理施設の配管、ポンプ、生物処理槽などでスケール付着障害を発生させる原因となっている。 By the way, acidic components such as SO X , NO X , and HCl that can be contained in the exhaust gas discharged from the incineration facility cause acid rain, so in the incineration facility, alkaline slaked lime powder is sprayed on the flue. The sum is eliminated. Therefore, the incinerated fly ash contains a large amount of calcium salt and unreacted slaked lime, so that the leachate generated at the managed final disposal site also has a high calcium concentration and a high pH. This is a cause of scale adhesion failure in pipes, pumps, biological treatment tanks, etc. in treatment facilities.

管理型最終処分場に設置されるカルシウム除去設備の標準的な処理フローを図10に示す。これは、カルシウム含有排水である被処理水を調整槽11で均一化した後、反応槽12で炭酸ナトリウムを添加し炭酸カルシウムを生成させる。その後、凝集槽13で無機凝集剤を添加し、フロック形成槽14で高分子凝集剤を添加して凝集沈殿処理による炭酸カルシウム粒子の除去を行い、沈殿槽上澄水のカルシウム濃度を低減することよって、後続の生物処理槽などへのスケール付着障害を防止するものである。   FIG. 10 shows a standard processing flow of the calcium removal equipment installed in the managed final disposal site. In this method, water to be treated, which is calcium-containing wastewater, is made uniform in the adjustment tank 11, and then sodium carbonate is added in the reaction tank 12 to generate calcium carbonate. Thereafter, an inorganic flocculant is added in the flocculant tank 13, and a polymer flocculant is added in the floc forming tank 14 to remove calcium carbonate particles by agglomeration and precipitation treatment, thereby reducing the calcium concentration of the supernatant of the precipitation tank. This prevents the scale from being attached to a subsequent biological treatment tank.

しかしながら、この従来のフローの場合、カルシウム除去設備の処理水である沈殿上澄水のカルシウム濃度は減少するものの、炭酸カルシウムが注入される反応槽12の内壁や撹拌機シャフトへの炭酸カルシウムスケールの付着を防止することができず、特に近年のようなカルシウム濃度700mg/L以上、さらにはカルシウム濃度1000〜5000mg/Lといったカルシウム濃度の高い排水が対象となる場合には、容易には除去できない硬いスケールの付着による前述のような種々のスケール障害が発生しており、大きな問題となっている。   However, in the case of this conventional flow, the calcium concentration of precipitation supernatant water, which is the treated water of the calcium removal equipment, decreases, but the calcium carbonate scale adheres to the inner wall of the reaction tank 12 and the agitator shaft into which calcium carbonate is injected. In particular, when wastewater with a high calcium concentration, such as a calcium concentration of 700 mg / L or more as in recent years, or a calcium concentration of 1000 to 5000 mg / L is a target, a hard scale that cannot be easily removed As described above, various scale obstacles due to the adhesion of the ink occur, which is a big problem.

このスケール障害を防ぐ手段としては、浸出水からカルシウムを除去することが有効であることから、以前より様々な手段が提案されている。例えば特許文献1には、実施例として、カルシウム濃度520ppmの浸出水を調整槽で均一化した後、反応槽の炭酸ナトリウム1500ppmを添加しpH7で10分間撹拌後、凝集槽で塩化第二鉄300ppm、フロック形成槽で高分子凝集剤1ppmを添加して凝集沈殿処理を行い、沈殿槽上澄水のカルシウム濃度を40ppmとし、後段の生物処理施設に送水することによって、生物処理以降の処理工程においてポンプ、配管、処理装置類にスケールが付着は生じなかったとする技術が開示されている。   As means for preventing this scale failure, various means have been proposed since the removal of calcium from the leachate is effective. For example, in Patent Document 1, as an example, after leaching water having a calcium concentration of 520 ppm was homogenized in a regulating tank, 1500 ppm of sodium carbonate in a reaction tank was added and stirred at pH 7 for 10 minutes, and then ferric chloride was 300 ppm in a coagulation tank. In the floc forming tank, 1 ppm of the polymer flocculant is added to perform the coagulation sedimentation treatment, the calcium concentration of the sedimentation tank supernatant water is set to 40 ppm, and the water is sent to the biological treatment facility in the subsequent stage, so In addition, a technique is disclosed in which scale does not adhere to piping and processing devices.

また、特許文献2には、その実施例1として、カルシウム濃度400mg/L、pH7.8の浸出水を、平均粒径0.5mmのCaCOペレットを充填した流動床式晶析反応槽に流入させ、晶析反応槽ではアルカリ剤としてNaCOを0.1mol/L添加するとともに、流入水量の4倍量を循環処理することにより槽内流速100m/m/hrで処理を行い、後段で生物処理、酸性凝集処理、ろ過処理、活性炭処理、滅菌処理を行ったところ、最終処理水のカルシウム濃度は20mg/Lとなり、凝集沈潜槽の汚泥引き抜き配管の閉塞や、汚泥移送配管及びポンプ類の閉塞問題も解消されたとする技術が開示されている。 In Patent Document 2, as Example 1, leachate having a calcium concentration of 400 mg / L and pH 7.8 flows into a fluidized bed crystallization reaction tank filled with CaCO 3 pellets having an average particle size of 0.5 mm. In the crystallization reaction tank, 0.1 2 mol / L of Na 2 CO 3 is added as an alkaline agent, and treatment is performed at a flow rate in the tank of 100 m 3 / m 2 / hr by circulating 4 times the amount of inflow water. After the biological treatment, acid flocculation treatment, filtration treatment, activated carbon treatment, and sterilization treatment in the latter stage, the calcium concentration of the final treated water becomes 20 mg / L, and the sludge extraction piping of the flocculation settling tank is blocked, the sludge transfer piping and A technique is disclosed in which the blockage problem of pumps has been solved.

さらに、特許文献3には、炭酸カルシウムなどの無機懸濁物質を含有する水系においてホスホン酸及び/又はホスホン酸塩と低分子水溶性ポリマーとを含有させるスケール防止技術が開示されており、その実施例及び比較例の設定水質としてはカルシウム硬度300mg−CaCO/L、懸濁状炭酸カルシウム濃度最大500mg−CaCO/Lが記載されている。 Furthermore, Patent Document 3 discloses a scale prevention technique for containing phosphonic acid and / or phosphonate and a low-molecular water-soluble polymer in an aqueous system containing an inorganic suspended substance such as calcium carbonate. As the set water quality of Examples and Comparative Examples, a calcium hardness of 300 mg-CaCO 3 / L and a suspended calcium carbonate concentration of up to 500 mg-CaCO 3 / L are described.

特開昭63−258692号公報JP-A 63-258692 特開2001−47062号公報JP 2001-47062 A 特開2003−53389号公報JP 2003-53389 A

しかしながら、特許文献1及び特許文献2は、焼却灰由来のスケール付着問題が認識され始めたころの、スケール問題の言わばハシリの技術とも言え、その問題としている浸出水のカルシウム濃度は400〜520mg/Lといった低濃度レベルであり、最近の高濃度のカルシウムを含有する浸出水の処理とは状況を異にしている。   However, Patent Document 1 and Patent Document 2 can be said to be a hashing technique when the scale problem originated from the incineration ash-derived scale adhesion problem, and the calcium concentration of leachate as the problem is 400 to 520 mg / It is at a low concentration level such as L, which is different from the recent treatment of leachate containing a high concentration of calcium.

また、特許文献3にしても、設定水質としてはカルシウム硬度300mg−CaCO/L、懸濁状炭酸カルシウム濃度最大500mg−CaCO/Lであり、これらをカルシウム濃度で表すと、それぞれ120mg−Ca/L、200mg−Ca/Lに過ぎない。 Further, even in Patent Document 3, the set water quality is a calcium hardness of 300 mg-CaCO 3 / L and a suspended calcium carbonate concentration of up to 500 mg-CaCO 3 / L. / L, only 200 mg-Ca / L.

最近の管理型最終処分場に搬入される廃棄物の中で焼却灰が占める比率は増加する一方であり、ほぼ全てが焼却灰という最終処分場も現れている。この傾向に比例するように浸出水のカルシウム濃度も700mg−Ca/L以上、さらには1000〜5000mg−Ca/Lといった高濃度にまで増加している。最近の浸出水処理施設には、上述の特許文献1のような、反応槽→凝集槽→フロック形成槽→沈殿槽のフローからなるカルシウム除去設備を有する施設も増えており、後続の生物処理設備以降の配管、ポンプ類でのスケール問題は解決しているが、これに代わり、炭酸ナトリウムを添加してカルシウム除去を行うための反応槽自体でのスケール障害が問題となっている。   The proportion of incineration ash in the wastes brought into recent managed-type final disposal sites is increasing, and there is also a final disposal site where almost all incineration ash is incinerated. In proportion to this tendency, the calcium concentration of leachate has also increased to 700 mg-Ca / L or more, and further to a high concentration of 1000 to 5000 mg-Ca / L. In recent leachate treatment facilities, there are an increasing number of facilities having a calcium removal facility consisting of a flow of reaction tank → flocculation tank → floc formation tank → precipitation tank as in Patent Document 1 described above, and subsequent biological treatment equipment Subsequent scale problems in piping and pumps have been solved, but instead of this, scale obstacles in the reaction tank itself for removing calcium by adding sodium carbonate have become a problem.

図11は、従来のカルシウム除去設備の反応槽の撹拌機のスケール付着状況を示す写真である。この撹拌機はシャフト中段及び下段に2つのインペラを有するものであるが、厚さ30mm以上のスケールがシャフトもインペラも覆い尽くしており、シャフト径やインペラ径が外観からは判断できないような状況になっている。   FIG. 11 is a photograph showing the scale adhesion of the stirrer in the reaction tank of the conventional calcium removal equipment. This stirrer has two impellers in the middle and lower stages of the shaft, but the scale with a thickness of 30 mm or more covers both the shaft and impeller, and the shaft diameter and impeller diameter cannot be judged from the appearance. It has become.

スケールは硬く石化しており、ハンマーで叩き割らないと除去できないほどである。スケール除去後、再び図11のような状態になるまでおよそ2〜3週間であり、スケールが付き過ぎるとモーターが過負荷となり電源トリップが発生するため、2〜3週間ごとにスケール除去作業が必要となっている。   The scale is hard and fossilized, and can only be removed with a hammer. After removing the scale, it takes about 2 to 3 weeks to reach the state shown in Fig. 11 again. If the scale is excessive, the motor will be overloaded and a power trip will occur. It has become.

また、スケールは撹拌機だけでなく反応槽内壁や底部にも同様に付着するため、こちらもスクレーパー等で削り落とし、さらには酸洗浄を行うなどの除去作業も必要となる。したがって、特許文献1に開示されているカルシウム除去技術では、最近の浸出水のようなカルシウム濃度700〜5000mg/Lといった高濃度レベルには対応できないと言える。   In addition, since the scale adheres not only to the stirrer but also to the inner wall and bottom of the reaction tank, it is also necessary to remove the scale by scraping it off with a scraper or the like and further performing acid cleaning. Therefore, it can be said that the calcium removal technique disclosed in Patent Document 1 cannot cope with a high concentration level such as a calcium concentration of 700 to 5000 mg / L as in recent leachate.

特許文献1及び特許文献2では、それぞれの反応槽自体でのスケール付着は問題としてはいないことからも明らかなように、これらの従来技術では対象とするカルシウム濃度が400〜520mg/Lといった低濃度レベルにのみ適用できる技術に過ぎないと考えられる。   In patent document 1 and patent document 2, as it is clear from the fact that scale adhesion in each reaction tank itself is not a problem, the calcium concentration targeted by these conventional techniques is as low as 400 to 520 mg / L. It is considered that this technology is only applicable to the level.

本発明の目的は、特に、カルシウム濃度が高いカルシウム含有排水を処理する場合において、カルシウム除去設備の反応槽の部材に固着したスケールの除去作業を容易にすることができ、カルシウム除去設備のメンテナンス性を向上させることができる、カルシウム含有排水のカルシウム除去方法及びカルシウム除去設備を提供することにある。   The object of the present invention is to facilitate the removal work of scales fixed to the members of the reaction tank of the calcium removal equipment, particularly when treating calcium-containing wastewater with a high calcium concentration, and maintainability of the calcium removal equipment. An object of the present invention is to provide a calcium removal method and a calcium removal facility for calcium-containing wastewater.

上記課題を解決するために、本発明は以下の構成とすることができる。   In order to solve the above problems, the present invention can be configured as follows.

(1)被処理水としてのカルシウム含有排水を、配管又は所定の槽の少なくともいずれかを介して導入し、
前記導入されたカルシウム含有排水を、炭酸塩と反応させて炭酸カルシウムを生成させる反応槽へ導入し、
前記反応槽、前記所定の槽、及び前記配管の少なくともいずれかにスケール軟質化剤を添加することを特徴とするカルシウム含有排水のカルシウム除去方法。
(1) Calcium-containing wastewater as treated water is introduced through at least one of piping or a predetermined tank,
Introducing the calcium-containing wastewater introduced into a reaction vessel that reacts with carbonate to produce calcium carbonate;
A method for removing calcium from calcium-containing wastewater, wherein a scale softening agent is added to at least one of the reaction tank, the predetermined tank, and the pipe.

(2)前記スケール軟質化剤が、(メタ)アクリル系ポリマーを含む、(1)に記載のカルシウム含有排水のカルシウム除去方法。   (2) The method for removing calcium from calcium-containing wastewater according to (1), wherein the scale softening agent comprises a (meth) acrylic polymer.

(3)前記(メタ)アクリル系ポリマーが、ポリ(メタ)アクリル酸塩、アクリル酸−メタクリル酸共重合体塩、アクリル酸−マレイン酸共重合体塩、及びアクリル酸−スルホン酸系モノマー共重合体塩からなる群から選択される少なくとも1種を含む、(2)に記載のカルシウム含有排水のカルシウム除去方法。   (3) The (meth) acrylic polymer is a poly (meth) acrylate, acrylic acid-methacrylic acid copolymer salt, acrylic acid-maleic acid copolymer salt, and acrylic acid-sulfonic acid monomer copolymer. The method for removing calcium from calcium-containing wastewater according to (2), comprising at least one selected from the group consisting of coalesced salts.

(4)前記スケール軟質化剤が、鉄塩及びアルミニウム塩から選択される少なくとも1種の無機塩を更に含む、(2)又は(3)に記載のカルシウム含有排水のカルシウム除去方法。   (4) The method for removing calcium from calcium-containing wastewater according to (2) or (3), wherein the scale softening agent further contains at least one inorganic salt selected from iron salts and aluminum salts.

(5)前記スケール軟質化剤の添加量が、前記カルシウム含有排水1L当たり10〜200mgである、(1)〜(4)のいずれか1つに記載のカルシウム含有排水のカルシウム除去方法。   (5) The calcium removal method of the calcium containing waste_water | drain as described in any one of (1)-(4) whose addition amount of the said scale softening agent is 10-200 mg per 1L of said calcium containing waste_water | drain.

(6)前記無機塩の添加量が、前記(メタ)アクリル系ポリマー100質量部に対して100〜200質量部である、(4)に記載のカルシウム含有排水のカルシウム除去方法。   (6) The calcium removal method of the calcium containing waste_water | drain as described in (4) whose addition amount of the said inorganic salt is 100-200 mass parts with respect to 100 mass parts of said (meth) acrylic-type polymers.

(7)被処理水としてのカルシウム含有排水が導入される配管又は所定の槽と、
前記配管又は前記所定の槽を介して導入された前記被処理水を、炭酸塩と反応させて炭酸カルシウムを生成させる反応槽と、
前記反応槽、前記配管、及び前記所定の槽のうち少なくともいずれかに前記炭酸カルシウムから形成されるスケールを軟質化するためのスケール軟質化剤を添加する添加手段と、
前記反応槽及び前記所定の槽のうちの少なくともいずれかの槽内に添加されたスケール軟質化剤を撹拌する攪拌手段と、
を備えたことを特徴とするカルシウム除去設備。
(7) a pipe or a predetermined tank into which calcium-containing wastewater as treated water is introduced;
A reaction tank in which the water to be treated introduced through the pipe or the predetermined tank is reacted with carbonate to generate calcium carbonate;
An adding means for adding a scale softening agent for softening the scale formed from the calcium carbonate to at least one of the reaction tank, the pipe, and the predetermined tank;
A stirring means for stirring the scale softening agent added in at least one of the reaction tank and the predetermined tank;
A calcium removal facility characterized by comprising:

(8)前記添加手段が、前記反応槽の被処理水流入部及び前記反応槽に備えられた撹拌機シャフト接液表面部のうちのいずれか一方又は両方に添加する、(7)に記載のカルシウム除去設備。   (8) The addition means is added to either one or both of the treated water inflow portion of the reaction vessel and the agitator shaft wetted surface portion provided in the reaction vessel, according to (7). Calcium removal equipment.

(9)前記スケール軟質化剤を添加、攪拌した後の被処理水に、更に高分子凝集剤が添加され、凝集フロックを形成するフロック形成槽と、
前記高分子凝集剤添加後の凝集フロックが形成された被処理水を、凝集沈殿して沈殿上澄水を得る沈殿槽と、
を更に備えたことを特徴とする(7)又は(8)に記載のカルシウム除去設備。
(9) A floc-forming tank in which a polymer flocculant is further added to the water to be treated after the scale softening agent has been added and stirred to form a floc floc;
A settling tank in which the water to be treated on which the floc flocs have been formed after the addition of the polymer flocculant is agglomerated and precipitated to obtain precipitation supernatant water;
The calcium removal facility according to (7) or (8), further comprising:

本発明のカルシウム除去方法及びカルシウム除去設備によれば、カルシウム除去設備の反応槽の部材に固着したスケールの除去作業を容易することができるとともに、作業頻度を減少させることにより、カルシウム除去設備のメンテナンス性を向上させることができる。本発明は、特に、カルシウム濃度が高いカルシウム含有排水を処理する場合に有効である。   According to the calcium removal method and the calcium removal equipment of the present invention, it is possible to facilitate the removal work of the scales fixed to the members of the reaction tank of the calcium removal equipment, and to maintain the calcium removal equipment by reducing the work frequency. Can be improved. The present invention is particularly effective when treating calcium-containing wastewater having a high calcium concentration.

本発明のカルシウム除去方法の第1の実施形態を示すフロー図である。It is a flowchart which shows 1st Embodiment of the calcium removal method of this invention. スケール軟質化剤を反応槽に添加する場合の注入点(1)の説明図である。It is explanatory drawing of the injection | pouring point (1) in the case of adding a scale softening agent to a reaction tank. スケール軟質化剤を反応槽に添加する場合の注入点(2)の説明図である。It is explanatory drawing of the injection | pouring point (2) in the case of adding a scale softening agent to a reaction tank. スケール軟質化剤を反応槽に添加する場合の注入点(3)の説明図である。It is explanatory drawing of the injection | pouring point (3) in the case of adding a scale softening agent to a reaction tank. 本発明のカルシウム除去方法の第2の実施形態を示すフロー図である。It is a flowchart which shows 2nd Embodiment of the calcium removal method of this invention. 本発明のカルシウム除去方法の第3の実施形態を示すフロー図である。It is a flowchart which shows 3rd Embodiment of the calcium removal method of this invention. 本発明のカルシウム除去方法の第4の実施形態を示すフロー図である。It is a flowchart which shows 4th Embodiment of the calcium removal method of this invention. 本発明のカルシウム除去方法の第5の実施形態を示すフロー図である。It is a flowchart which shows 5th Embodiment of the calcium removal method of this invention. 本発明のカルシウム除去方法の第6の実施形態を示すフロー図である。It is a flowchart which shows 6th Embodiment of the calcium removal method of this invention. 従来のカルシウム除去方法の一例を示すフロー図である。It is a flowchart which shows an example of the conventional calcium removal method. 従来のカルシウム除去設備の反応槽撹拌機シャフトに付着したスケール状況を説明するための写真である。It is a photograph for demonstrating the scale condition adhering to the reaction tank stirring machine shaft of the conventional calcium removal equipment.

以下、図面を参照して本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to a specific example.

図1は、本発明のカルシウム除去方法の第1の実施形態を示すフローである。図示されているように、管理型最終処分場等で発生した浸出水などのカルシウム含有排水(被処理水)を、まず、調整槽11で均一化する。均一化するためには機械撹拌などの攪拌手段が好ましく用いられる。均一化された被処理水1は反応槽12に送られる。   FIG. 1 is a flow showing a first embodiment of the calcium removal method of the present invention. As shown in the drawing, calcium-containing wastewater (treated water) such as leachate generated in a managed final disposal site or the like is first uniformized in the adjustment tank 11. In order to make it uniform, a stirring means such as mechanical stirring is preferably used. The treated water 1 that has been made uniform is sent to the reaction tank 12.

反応槽12では、炭酸ナトリウムなどの炭酸塩を添加する。添加量は従来から用いられている量でよい。炭酸塩を添加すると、被処理水に含まれるカルシウムイオンと反応して炭酸カルシウムが生成する。   In the reaction tank 12, a carbonate such as sodium carbonate is added. The addition amount may be an amount conventionally used. When carbonate is added, it reacts with calcium ions contained in the water to be treated to produce calcium carbonate.

そして、本実施形態において特徴的なことは、反応槽12にスケール軟質化剤を更に添加することである。上述したように、従来では、反応槽12で生成した炭酸カルシウムは、反応槽12の内壁や底部、撹拌機、pH電極や配管等に固着して、除去困難なスケールが形成していた。本実施形態では、スケール軟質化剤を反応槽12に添加することによりスケールが軟質化するので、スケール除去作業が容易となり、カルシウム除去設備のメンテナンス性を向上させることができる。   And what is characteristic in this embodiment is that a scale softening agent is further added to the reaction tank 12. As described above, conventionally, the calcium carbonate generated in the reaction tank 12 is fixed to the inner wall and bottom of the reaction tank 12, the stirrer, the pH electrode, the piping, and the like, and a scale that is difficult to remove is formed. In this embodiment, since the scale is softened by adding the scale softening agent to the reaction tank 12, the scale removal work is facilitated, and the maintainability of the calcium removal equipment can be improved.

スケール軟質化剤は、炭酸カルシウムから形成されたスケールを軟質化することができればどのようなものでもよい。スケール軟質化剤の例としては、(メタ)アクリル系ポリマーが挙げられる。具体的には、ポリアクリル酸、ポリメタクリル酸、(メタ)アクリル酸−マレイン酸共重合体、(メタ)アクリル酸−スルホン酸系モノマー共重合体、アクリル酸−メタクリル酸共重合体、(メタ)アクリル酸−ヒドロキシアリロキシプロパンスルホン酸共重合体、及びこれらの塩(ナトリウム塩、カリウム塩など)が挙げられる。スルホン酸系モノマー(スルホン酸基含有モノマー)としては、2−アクリルアミド−2−メチルプロパンスルホン酸、メタリルスルホン酸、スチレンスルホン酸、アリルスルホン酸、ビニルスルホン酸、2−ヒドロキシ−3−アリルオキシ−1−プロパンスルホン酸、2−ヒドロキシ−3−ブテンスルホン酸等が挙げられる。また、他のスケール軟質化剤の例としては、ポリアクリルアミド及びその加水分解物、マレイン酸系重合体、イタコン酸系重合体、アクリルアミド−2−メチルプロパンスルホン酸、イソプレンスルホン酸などを含むアクリル酸系の2成分系又は3成分系共重合体が挙げられる。これらの列挙した化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、ポリ(メタ)アクリル酸塩、アクリル酸−メタクリル酸共重合体塩、アクリル酸−マレイン酸共重合体塩、及びアクリル酸−スルホン酸系モノマー共重合体塩が特に好ましい。なお、本発明において、「(メタ)アクリル酸」とは、アクリル酸、メタアクリル酸、又はその両方を意味する。   The scale softening agent may be any as long as it can soften the scale formed from calcium carbonate. Examples of the scale softening agent include (meth) acrylic polymers. Specifically, polyacrylic acid, polymethacrylic acid, (meth) acrylic acid-maleic acid copolymer, (meth) acrylic acid-sulfonic acid monomer copolymer, acrylic acid-methacrylic acid copolymer, (meth ) Acrylic acid-hydroxyallyloxypropane sulfonic acid copolymer and salts thereof (sodium salt, potassium salt, etc.). As sulfonic acid monomers (sulfonic acid group-containing monomers), 2-acrylamido-2-methylpropanesulfonic acid, methallylsulfonic acid, styrenesulfonic acid, allylsulfonic acid, vinylsulfonic acid, 2-hydroxy-3-allyloxy- Examples thereof include 1-propanesulfonic acid and 2-hydroxy-3-butenesulfonic acid. Examples of other scale softening agents include polyacrylamide and hydrolysates thereof, maleic acid polymers, itaconic acid polymers, acrylamido-2-methylpropane sulfonic acid, isoprene sulfonic acid and the like. Two-component or three-component copolymers of the system. These listed compounds can be used individually by 1 type or in combination of 2 or more types. Among these, poly (meth) acrylate, acrylic acid-methacrylic acid copolymer salt, acrylic acid-maleic acid copolymer salt, and acrylic acid-sulfonic acid monomer copolymer salt are particularly preferable. In the present invention, “(meth) acrylic acid” means acrylic acid, methacrylic acid, or both.

(メタ)アクリル系ポリマーの分子量については特に限定するものではないが、例えば、重量平均分子量が2000〜12000、好ましくは3000〜9000などの比較的低分子量のものが好ましい。   Although the molecular weight of the (meth) acrylic polymer is not particularly limited, for example, those having a relatively low molecular weight such as a weight average molecular weight of 2000 to 12000, preferably 3000 to 9000 are preferable.

また、本発明のスケール軟質化剤は、上記の有機高分子に加え、鉄塩やアルミニウム塩などの無機塩を含有することが好ましい。これにより、スケール軟質化効果が更に向上する。具体的には、塩化第二鉄、ポリ硫酸第二鉄(ポリ鉄)、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)からなる群より選択される少なくとも1種以上を使用することができる。   Moreover, it is preferable that the scale softening agent of this invention contains inorganic salts, such as iron salt and aluminum salt, in addition to said organic polymer. Thereby, the scale softening effect is further improved. Specifically, at least one selected from the group consisting of ferric chloride, polyferric sulfate (polyiron), aluminum sulfate, and polyaluminum chloride (PAC) can be used.

スケール軟質化剤が、上記の有機高分子に加えて無機塩を含有する場合、それらの好ましい組み合わせは、(メタ)アクリル酸−スルホン酸系モノマー共重合体/鉄塩の組み合わせ、ポリアクリル酸ナトリウム塩/鉄塩の組み合わせ、ポリアクリル酸ナトリウム塩/アルミニウム塩の組み合わせが好ましい。   When the scale softening agent contains an inorganic salt in addition to the above organic polymer, preferred combinations thereof include a (meth) acrylic acid-sulfonic acid monomer copolymer / iron salt combination, sodium polyacrylate A salt / iron salt combination and a polyacrylic acid sodium salt / aluminum salt combination are preferred.

スケール軟質化剤の所要添加量(上記無機塩を含有する場合は無機塩を含めた量)は、被処理水のカルシウム濃度及び塩類濃度に応じて適宜設定されるが、例えば、10〜200mg/L(カルシウム含有排水1L当たり10〜200mg)、好ましくは20〜180mg/L、より好ましくは30〜150mg/L、更に好ましくは40〜130mg/L、最も好ましくは50〜100mg/Lである。   The required addition amount of the scale softening agent (in the case of containing the inorganic salt, the amount including the inorganic salt) is appropriately set according to the calcium concentration and the salt concentration of the water to be treated. L (10 to 200 mg per liter of calcium-containing wastewater), preferably 20 to 180 mg / L, more preferably 30 to 150 mg / L, still more preferably 40 to 130 mg / L, and most preferably 50 to 100 mg / L.

このうち、無機塩を使用する場合、無機塩の添加量は、上記の(メタ)アクリル系ポリマー100質量部に対して100〜200質量部、好ましくは130〜190質量部、特に好ましくは150〜180質量部とすることが好ましい。   Among these, when using inorganic salt, the addition amount of inorganic salt is 100-200 mass parts with respect to 100 mass parts of said (meth) acrylic-type polymer, Preferably it is 130-190 mass parts, Most preferably, 150- It is preferable to set it as 180 mass parts.

図2〜図4に示すように、反応槽12には、撹拌機シャフト12A及びインペラ12Bを有する攪拌手段が設けられている。反応槽12におけるスケール軟質化剤を添加するための注入位置(すなわち、スケール軟質化剤添加手段の位置)は、図2に示すように、反応槽12に被処理水が流入する付近(被処理水流入部)a−1や、図3に示すように、撹拌機シャフト12Aの接液表面部a−2が好ましい。また、図4に示すように、これらの両方(a−1及びa−2)を注入点としてもよい。特に、撹拌機シャフト12A接液表面部a−2に注入すると、撹拌機シャフト12Aやインペラ12Bに付着するスケールを効果的に軟質化することができる。   As shown in FIGS. 2 to 4, the reaction vessel 12 is provided with a stirring means having a stirrer shaft 12 </ b> A and an impeller 12 </ b> B. As shown in FIG. 2, the pouring position for adding the scale softening agent in the reaction tank 12 (that is, the position of the scale softening agent adding means) is the vicinity where the water to be treated flows into the reaction tank 12 (the treatment target). The water inflow portion a-1 or the liquid contact surface portion a-2 of the stirrer shaft 12A is preferable as shown in FIG. Moreover, as shown in FIG. 4, it is good also considering both of these (a-1 and a-2) as an injection | pouring point. In particular, when injected into the agitator shaft 12A wetted surface a-2, the scale attached to the agitator shaft 12A and the impeller 12B can be effectively softened.

図1に示すように、本実施の形態では、非処理水は反応槽12で処理された後、凝集槽13に送られる。凝集槽13では、無機凝集剤を非処理水に添加する。無機凝集剤の例としては、鉄塩やアルミニウム塩などが挙げられ、これらは1種を単独で使用しても2種以上を組み合わせて使用してもよい。   As shown in FIG. 1, in this embodiment, untreated water is treated in a reaction tank 12 and then sent to a coagulation tank 13. In the flocculation tank 13, an inorganic flocculant is added to the untreated water. Examples of the inorganic flocculant include iron salts and aluminum salts, and these may be used alone or in combination of two or more.

次に、凝集槽13で処理された被処理水は、フロック形成槽14に送られる。フロック形成層14では、高分子凝集剤を添加する。高分子凝集剤としては、カチオン系高分子凝集剤、アニオン系高分子凝集剤、両性高分子凝集剤が挙げられ、これらは1種を単独で使用しても2種以上を組み合わせて使用してもよい。   Next, the water to be treated that has been treated in the coagulation tank 13 is sent to the flock formation tank 14. In the floc-forming layer 14, a polymer flocculant is added. Examples of the polymer flocculant include a cationic polymer flocculant, an anionic polymer flocculant, and an amphoteric polymer flocculant. These may be used alone or in combination of two or more. Also good.

次に、フロック形成槽14で処理された非処理水は、沈殿槽15に送られて沈殿物と上澄水に分離される。上記の処理によりカルシウムの濃度が低減した上澄水は後続の生物処理設備等に送られる。以上により、本発明のカルシウム除去方法が完了する。   Next, the non-processed water processed in the flock formation tank 14 is sent to the settling tank 15, and is separated into the precipitate and the supernatant water. The supernatant water whose calcium concentration has been reduced by the above treatment is sent to a subsequent biological treatment facility or the like. Thus, the calcium removal method of the present invention is completed.

次に、本発明の他の実施形態について説明する。図5は、本発明の第2の実施形態を示すフロー図である。本実施の形態において特徴的なことは、スケール軟質化剤の添加位置は、反応槽12ではなく、所定の槽である調整槽11としていることである。調整槽11にスケール軟質化剤を添加した場合でも、反応槽12の壁部や撹拌機等に付着したスケールを軟質化することが可能である。なお、本実施の形態では、調整槽11にスケール軟質化剤を添加する例を示しているが、スケール軟質化剤の添加位置は、調整槽11と反応槽12との間の配管であってもよい。また、調整槽11と反応槽12の間に別の槽を設けて、その槽にスケール軟質化剤を添加してもよい。   Next, another embodiment of the present invention will be described. FIG. 5 is a flowchart showing the second embodiment of the present invention. What is characteristic in the present embodiment is that the addition position of the scale softening agent is not the reaction tank 12 but the adjustment tank 11 which is a predetermined tank. Even when a scale softening agent is added to the adjustment tank 11, it is possible to soften the scale attached to the wall of the reaction tank 12, the stirrer, or the like. In addition, in this Embodiment, although the example which adds a scale softening agent to the adjustment tank 11 is shown, the addition position of a scale softening agent is piping between the adjustment tank 11 and the reaction tank 12. Also good. Moreover, another tank may be provided between the adjustment tank 11 and the reaction tank 12, and a scale softening agent may be added to the tank.

図6は、本発明の第3の実施形態を示すフロー図である。本実施の形態では、スケール軟質化剤を調整槽11と反応槽12の両方に添加している。このように構成することにより、スケールの軟質化効果が更に向上する。   FIG. 6 is a flowchart showing the third embodiment of the present invention. In the present embodiment, the scale softening agent is added to both the adjustment tank 11 and the reaction tank 12. By comprising in this way, the softening effect of a scale further improves.

図7〜図9は、本発明の第4〜第6の実施形態を示すフロー図であり、それぞれ、図1、図5、図6に示した第1〜第3の実施形態における凝集槽13を省略し、無機凝集剤を反応槽12に添加する構成としている。これらの場合において、スケール軟質化剤の添加位置は、反応槽12、調整槽11、又はこれらの両方(反応槽12及び調整槽11)である。このような構成としても本発明の目的を達成可能であり、凝集槽を省略したことで、カルシウム除去方法及び除去設備の簡素化が図られる。   FIGS. 7-9 is a flowchart which shows the 4th-6th embodiment of this invention, and the coagulation tank 13 in the 1st-3rd embodiment shown in FIG.1, FIG.5, FIG.6, respectively. Is omitted, and an inorganic flocculant is added to the reaction vessel 12. In these cases, the addition position of the scale softening agent is the reaction tank 12, the adjustment tank 11, or both (reaction tank 12 and the adjustment tank 11). Even if it is such a structure, the objective of this invention can be achieved, and simplification of the calcium removal method and removal equipment is achieved by omitting the coagulation tank.

上述した各実施の形態において、カルシウム含有排水のカルシウム濃度は特に限定されないが、本発明はカルシウム濃度の高いカルシウム含有排水であっても、スケール形成によるメンテナンス性を向上させることができる。特に、カルシウム濃度が700mg/L以上、例えば、100〜5000mg/Lのカルシウム含有排水を処理する際にスケールが多量に発生する場合に好適に適用可能である。
本実施例に係る図1〜図9において、被処理水の導入は、配管(図示→部分に相当)から調整槽11へ導入した例を示したが、これに限らず、所定の槽として、例えば配管から反応槽12、配管を介さず直接、調整槽11のみ、反応槽12のみに導入する様にしても良い。また、所定の槽として、調整槽11に限らず、撹拌槽、混合槽、貯留槽などでも良い。
In each of the embodiments described above, the calcium concentration of the calcium-containing wastewater is not particularly limited, but the present invention can improve the maintainability due to scale formation even if the calcium-containing wastewater has a high calcium concentration. In particular, the present invention is suitably applicable when a large amount of scale is generated when processing calcium-containing wastewater having a calcium concentration of 700 mg / L or more, for example, 100 to 5000 mg / L.
In FIG. 1 to FIG. 9 according to the present embodiment, the introduction of the water to be treated has been shown as an example of introduction from the pipe (corresponding to the part →) into the adjustment tank 11, but not limited thereto, as a predetermined tank, For example, the reaction vessel 12 may be introduced directly from the piping without passing through the piping, and only the adjustment vessel 11 or the reaction vessel 12 alone. Further, the predetermined tank is not limited to the adjustment tank 11, and may be a stirring tank, a mixing tank, a storage tank, or the like.

以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by a following example.

以下の実施例及び比較例では、表1に示す水質の被処理水を処理する際に、表2に示すスケール軟質化剤を使用した。表3は、スケール軟質化剤の注入位置及び注入率を示している。   In the following examples and comparative examples, the scale softening agent shown in Table 2 was used when the water to be treated shown in Table 1 was treated. Table 3 shows the injection position and injection rate of the scale softening agent.

<比較例1>
表1に記載の水質の被処理水を対象として、調整槽→反応槽→凝集槽→フロック形成槽→沈殿槽からなる実験装置を用い、図10の従来のカルシウム除去方法のフローによるカルシウム除去試験を行った。
<Comparative Example 1>
Calcium removal test by the flow of the conventional calcium removal method of FIG. 10 using an experimental apparatus consisting of an adjustment tank → reaction tank → coagulation tank → floc formation tank → precipitation tank for water to be treated as shown in Table 1 Went.

各条件は次の通りである:処理水量1000L/日、炭酸ナトリウム注入率5500mg/L、無機凝集剤としてポリ鉄注入率200mg/L、高分子凝集剤として水ing株式会社のエバグロースA−151注入率1mg/L。炭酸ナトリウム、ポリ鉄、高分子凝集剤の注入点は、それぞれ、反応槽、凝集槽、フロック形成槽の流入ドラフトチューブ内とした。   Each condition is as follows: treated water volume 1000 L / day, sodium carbonate injection rate 5500 mg / L, polyiron injection rate 200 mg / L as an inorganic flocculant, and Ebagrose A-151 injection from Mizu Inc. as a polymer flocculant Rate 1 mg / L. The injection points of sodium carbonate, polyiron, and polymer flocculant were in the inflow draft tubes of the reaction tank, the coagulation tank, and the floc forming tank, respectively.

処理開始から18日経過後、反応槽流入ドラフトチューブ内のスケール付着による閉塞が生じ流入水の越流が認められたため、当該ドラフトチューブ内のブラシ洗浄を行い処理を継続したところ、処理開始から27日経過時に反応槽12の撹拌機がスケール付着起因する電流トリップが発生し、撹拌機が停止しため、処理を終了した。
水抜き後、反応槽の内面及び撹拌機を観察したところ、反応槽内壁、底面、撹拌機シャフトに硬いスケールが厚さ5cm以上付着しており、槽内に入って、スケール表面をハンマーで破砕したり金属製スクレーパーで削り落として剥離するなどの除去作業後、最終的には、希塩酸水溶液を水張りして残留スケールを溶解させ清掃作業を終了した。
After 18 days from the start of treatment, clogging due to scale adhesion in the reaction vessel inflow draft tube was observed and overflow of the inflow water was observed. When the treatment was continued by brush cleaning in the draft tube, 27 days from the start of treatment. During the lapse of time, the stirrer in the reaction vessel 12 caused a current trip due to scale adhesion, and the stirrer stopped, so the processing was terminated.
After draining water, the inner surface of the reaction tank and the stirrer were observed, and a hard scale of 5 cm or more adhered to the inner wall, bottom surface, and stirrer shaft of the reaction tank. Finally, after removal work such as scraping or peeling off with a metal scraper, the residual scale was dissolved with a dilute hydrochloric acid aqueous solution to finish the cleaning work.

<実施例1>
上記と同様の実験装置を用い、反応槽12の注入点a−1(図2参照)に表2に示すスケール軟質化剤1を100mg/L注入して図1のフロー1として処理した以外は、比較例と同じ条件でカルシウム除去試験を行った。
除去試験は5週間実施したが、期間中、反応槽注入部のドラフトチューブがスケール付着による閉塞で流入水の越流が発生することはなく、また、反応槽撹拌機が電流トリップで停止することもなく連続運転のまま試験を終了した。水抜き後、反応槽の内面及び撹拌機を観察したところ、スケールも軟質化が認められ、金属製スクレーパーなどで軽く擦りながら水洗するだけで容易に剥離することができた。
また、撹拌機シャフトの付着スケールについては厚さは比較例とあまり変わらないものの、軟質化は顕著であり、ハンマーによる粉砕は不要で金属製スクレーパーで削ることにより容易に剥離除去することができた。
<Example 1>
Using the same experimental apparatus as described above, 100 mg / L of the scale softening agent 1 shown in Table 2 was injected into the injection point a-1 (see FIG. 2) of the reaction tank 12 and processed as the flow 1 of FIG. The calcium removal test was performed under the same conditions as in the comparative example.
The removal test was conducted for 5 weeks. During the period, the draft tube in the reaction vessel injection section was blocked due to scale adhesion, and no overflow of the influent occurred, and the reaction vessel agitator stopped due to current trip. The test was terminated with no continuous operation. When the inner surface of the reaction vessel and the stirrer were observed after draining water, the scale was also softened and could be easily peeled off simply by washing with light scraping with a metal scraper or the like.
In addition, the thickness of the adhesion scale of the stirrer shaft is not much different from that of the comparative example, but the softening is remarkable, and pulverization with a hammer is unnecessary, and it can be easily removed by scraping with a metal scraper. .

<実施例2>
上記と同様の実験装置を用い、反応槽12の注入点a−1及び注入点a−2(図4参照)に表2に示すスケール軟質化剤2をそれぞれ50mg/L注入して処理した以外は実施例1と同じ条件でカルシウム除去試験を行った。
<Example 2>
Using the same experimental apparatus as above, except that 50 mg / L of the scale softening agent 2 shown in Table 2 was injected into the injection point a-1 and the injection point a-2 (see FIG. 4) of the reaction tank 12, respectively. Conducted a calcium removal test under the same conditions as in Example 1.

<実施例3>
上記と同様の実験装置を用い、反応槽12にはスケール軟質化剤を注入せず、調整槽11の注入点b(図5参照)に表2に示すスケール軟質化剤3を100mg/L注入して図5のフロー2として処理した以外は実施例1と同じ条件でカルシウム除去試験を行った。
<Example 3>
Using the same experimental apparatus as described above, the scale softening agent 3 shown in Table 2 was injected at 100 mg / L at the injection point b (see FIG. 5) of the adjustment tank 11 without injecting the scale softening agent into the reaction tank 12. Then, a calcium removal test was performed under the same conditions as in Example 1 except that the treatment was performed as Flow 2 in FIG.

<実施例4>
上記と同様の実験装置を用い、調整槽11の注入点b(図6参照)及び反応槽12の注入点a−2(図3参照)に表2に示すスケール軟質化剤4をそれぞれ50mg/L注入して図6のフロー3として処理した以外は実施例3と同じ条件でカルシウム除去試験を行った。
<Example 4>
Using the same experimental apparatus as described above, 50 mg / kg of the scale softening agent 4 shown in Table 2 was added to the injection point b (see FIG. 6) of the adjustment tank 11 and the injection point a-2 (see FIG. 3) of the reaction tank 12, respectively. A calcium removal test was performed under the same conditions as in Example 3 except that L was injected and the flow 3 of FIG. 6 was processed.

<実施例5>
上記と同様の実験装置から凝集槽をバイパスさせてポリ鉄の添加位置を反応槽に変更するとともに、反応槽の注入点a−1及び注入点a−2(図4参照)に表3に示すスケール軟質化剤3をそれぞれ50mg/L注入して図7のフロー4として処理した以外は実施例2と同じ条件でカルシウム除去試験を行った。
<Example 5>
The coagulation tank is bypassed from the same experimental apparatus as described above, and the addition position of the polyiron is changed to the reaction tank, and the injection points a-1 and a-2 (see FIG. 4) of the reaction tank are shown in Table 3. A calcium removal test was performed under the same conditions as in Example 2 except that 50 mg / L of the scale softening agent 3 was injected and processed as Flow 4 in FIG.

<実施例6>
実施例5と同様の実験装置を用い、反応槽12の注入点a−1及び注入点a−2(図4参照)に表2に示すスケール軟質化剤4をそれぞれ50mg/L注入して処理した以外は実施例5と同じ条件でカルシウム除去試験を行った。
<Example 6>
Using the same experimental apparatus as in Example 5, 50 mg / L each of the scale softening agent 4 shown in Table 2 was injected into the injection point a-1 and the injection point a-2 (see FIG. 4) of the reaction tank 12 and processed. A calcium removal test was performed under the same conditions as in Example 5 except that.

<実施例7>
反応槽にはスケール軟質化剤を注入せず、調整槽11の注入点b(図8参照)に表2に示すスケール軟質化剤5を100mg/L注入して図8のフロー5として処理した以外は実施例6と同じ条件でカルシウム除去試験を行った。
<Example 7>
The scale softener was not injected into the reaction tank, but 100 mg / L of the scale softener 5 shown in Table 2 was injected into the injection point b (see FIG. 8) of the adjustment tank 11 to process as flow 5 in FIG. Except for the above, the calcium removal test was performed under the same conditions as in Example 6.

<実施例8>
調整槽11の注入点b及び反応槽12の注入点a−2に表2に示すスケール軟質化剤6をそれぞれ50mg/L注入して図9のフロー6として処理した以外は実施例7と同じ条件でカルシウム除去処理試験を行った。
<Example 8>
The same as Example 7 except that 50 mg / L of the scale softening agent 6 shown in Table 2 was injected into the injection point b of the adjustment tank 11 and the injection point a-2 of the reaction tank 12 and processed as the flow 6 of FIG. A calcium removal treatment test was performed under the conditions.

実施例2〜実施例8の何れにおいても、5週間の連続試験期間中に反応槽12の流入部ドラフトチューブでの流入水越流、撹拌機の電流トリップは発生せず、処理試験終了後の反応槽12の内面及び撹拌機を観察したところ、実験例1と同等かそれ以上の軟質化が確認できた。特に、実施例5及び実施例6においては、反応槽12内面及び底面の付着スケールは厚さ1cm以下であり、圧力水によりホース水洗のみで付着スケールを除去することが可能であった。   In any of Example 2 to Example 8, the inflow water overflow in the inflow portion draft tube of the reaction tank 12 and the current trip of the stirrer did not occur during the continuous test period of 5 weeks, and the reaction after the end of the treatment test. When the inner surface of the tank 12 and the stirrer were observed, softening equivalent to or higher than that of Experimental Example 1 was confirmed. In particular, in Example 5 and Example 6, the adhesion scales on the inner surface and the bottom surface of the reaction tank 12 were 1 cm or less in thickness, and it was possible to remove the adhesion scales only by washing the hose with pressure water.

Figure 2019150752
Figure 2019150752

Figure 2019150752
Figure 2019150752

Figure 2019150752
Figure 2019150752

Claims (9)

被処理水としてのカルシウム含有排水を、配管又は所定の槽の少なくともいずれかを介して導入し、
前記導入されたカルシウム含有排水を、炭酸塩と反応させて炭酸カルシウムを生成させる反応槽へ導入し、
前記反応槽、前記所定の槽、及び前記配管の少なくともいずれかにスケール軟質化剤を添加することを特徴とするカルシウム含有排水のカルシウム除去方法。
Calcium-containing waste water as treated water is introduced through at least one of piping or a predetermined tank,
Introducing the calcium-containing wastewater introduced into a reaction vessel that reacts with carbonate to produce calcium carbonate;
A method for removing calcium from calcium-containing wastewater, wherein a scale softening agent is added to at least one of the reaction tank, the predetermined tank, and the pipe.
前記スケール軟質化剤が、(メタ)アクリル系ポリマーを含む、請求項1に記載のカルシウム含有排水のカルシウム除去方法。   The calcium removal method of the calcium containing waste_water | drain of Claim 1 in which the said scale softening agent contains a (meth) acrylic-type polymer. 前記(メタ)アクリル系ポリマーが、ポリ(メタ)アクリル酸塩、アクリル酸−メタクリル酸共重合体塩、アクリル酸−マレイン酸共重合体塩、及びアクリル酸−スルホン酸系モノマー共重合体塩からなる群から選択される少なくとも1種を含む、請求項2に記載のカルシウム含有排水のカルシウム除去方法。   The (meth) acrylic polymer is composed of poly (meth) acrylate, acrylic acid-methacrylic acid copolymer salt, acrylic acid-maleic acid copolymer salt, and acrylic acid-sulfonic acid monomer copolymer salt. The calcium removal method of the calcium containing waste water of Claim 2 containing at least 1 sort (s) selected from the group which consists of. 前記スケール軟質化剤が、鉄塩及びアルミニウム塩から選択される少なくとも1種の無機塩を更に含む、請求項2又は3に記載のカルシウム含有排水のカルシウム除去方法。   The method for removing calcium from calcium-containing wastewater according to claim 2 or 3, wherein the scale softening agent further comprises at least one inorganic salt selected from iron salts and aluminum salts. 前記スケール軟質化剤の添加量が、前記カルシウム含有排水1L当たり10〜200mgである、請求項1〜4のいずれか1項に記載のカルシウム含有排水のカルシウム除去方法。   The calcium removal method of the calcium containing waste_water | drain of any one of Claims 1-4 whose addition amount of the said scale softening agent is 10-200 mg per 1L of said calcium containing waste_water | drains. 前記無機塩の添加量が、前記(メタ)アクリル系ポリマー100質量部に対して100〜200質量部である、請求項4に記載のカルシウム含有排水のカルシウム除去方法。   The calcium removal method of the calcium containing waste_water | drain of Claim 4 whose addition amount of the said inorganic salt is 100-200 mass parts with respect to 100 mass parts of said (meth) acrylic-type polymers. 被処理水としてのカルシウム含有排水が導入される配管又は所定の槽と、
前記配管又は前記所定の槽を介して導入された前記被処理水を、炭酸塩と反応させて炭酸カルシウムを生成させる反応槽と、
前記反応槽、前記配管、及び前記所定の槽のうち少なくともいずれかに前記炭酸カルシウムから形成されるスケールを軟質化するためのスケール軟質化剤を添加する添加手段と、
前記反応槽及び前記所定の槽のうちの少なくともいずれかの槽内に添加されたスケール軟質化剤を撹拌する攪拌手段と、
を備えたことを特徴とするカルシウム除去設備。
A pipe or a predetermined tank into which calcium-containing wastewater as treated water is introduced; and
A reaction tank in which the water to be treated introduced through the pipe or the predetermined tank is reacted with carbonate to generate calcium carbonate;
An adding means for adding a scale softening agent for softening the scale formed from the calcium carbonate to at least one of the reaction tank, the pipe, and the predetermined tank;
A stirring means for stirring the scale softening agent added in at least one of the reaction tank and the predetermined tank;
A calcium removal facility characterized by comprising:
前記添加手段が、前記反応槽の被処理水流入部及び前記反応槽に備えられた撹拌機シャフト接液表面部のうちのいずれか一方又は両方に添加する、請求項7に記載のカルシウム除去設備。   The calcium removal equipment according to claim 7, wherein the adding means adds to either one or both of the treated water inflow portion of the reaction tank and the agitator shaft wetted surface portion provided in the reaction tank. . 前記スケール軟質化剤を添加、攪拌した後の被処理水に、更に高分子凝集剤が添加され、凝集フロックを形成するフロック形成槽と、
前記高分子凝集剤添加後の凝集フロックが形成された被処理水を、凝集沈殿して沈殿上澄水を得る沈殿槽と、
を更に備えたことを特徴とする請求項7又は8に記載のカルシウム除去設備。
A floc forming tank in which a polymer flocculant is further added to the water to be treated after the scale softening agent has been added and stirred, to form a floc floc;
A settling tank in which the water to be treated on which the floc flocs have been formed after the addition of the polymer flocculant is agglomerated and precipitated to obtain precipitation supernatant water;
The calcium removal equipment according to claim 7 or 8, further comprising:
JP2018036287A 2018-03-01 2018-03-01 Calcium removal method and calcium removal equipment for calcium-containing wastewater Active JP6942658B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018036287A JP6942658B2 (en) 2018-03-01 2018-03-01 Calcium removal method and calcium removal equipment for calcium-containing wastewater
JP2021145951A JP7155369B2 (en) 2018-03-01 2021-09-08 Method for removing calcium from wastewater containing calcium and equipment for removing calcium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036287A JP6942658B2 (en) 2018-03-01 2018-03-01 Calcium removal method and calcium removal equipment for calcium-containing wastewater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021145951A Division JP7155369B2 (en) 2018-03-01 2021-09-08 Method for removing calcium from wastewater containing calcium and equipment for removing calcium

Publications (2)

Publication Number Publication Date
JP2019150752A true JP2019150752A (en) 2019-09-12
JP6942658B2 JP6942658B2 (en) 2021-09-29

Family

ID=67947612

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018036287A Active JP6942658B2 (en) 2018-03-01 2018-03-01 Calcium removal method and calcium removal equipment for calcium-containing wastewater
JP2021145951A Active JP7155369B2 (en) 2018-03-01 2021-09-08 Method for removing calcium from wastewater containing calcium and equipment for removing calcium

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021145951A Active JP7155369B2 (en) 2018-03-01 2021-09-08 Method for removing calcium from wastewater containing calcium and equipment for removing calcium

Country Status (1)

Country Link
JP (2) JP6942658B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579095A (en) * 1978-12-08 1980-06-14 Kurita Water Ind Ltd Treating method for cooling water of waste incinerated ash
US4517098A (en) * 1983-04-15 1985-05-14 Rohm And Haas Company Method of dispersing inorganic materials in aqueous systems with low molecular weight acrylic acid copolymers
JPS63258692A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of organic sewage
JPH04156995A (en) * 1990-10-17 1992-05-29 Mitsubishi Kakoki Kaisha Ltd Method for removing dissolved calcium in waste water
JP2002011466A (en) * 2000-06-29 2002-01-15 Shinko Pantec Co Ltd Method and device for treating water
JP2015112593A (en) * 2013-12-16 2015-06-22 栗田工業株式会社 Apparatus and method for treating waste water having high hardness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761500B2 (en) 2004-08-05 2011-08-31 伯東株式会社 Inhibitor of calcium carbonate scale by slaked lime suspension and method of inhibiting calcium carbonate scale
JP7183211B2 (en) 2020-02-27 2022-12-05 栗田工業株式会社 Pulp manufacturing process water-based calcium-based scale inhibitor and scale prevention method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5579095A (en) * 1978-12-08 1980-06-14 Kurita Water Ind Ltd Treating method for cooling water of waste incinerated ash
US4517098A (en) * 1983-04-15 1985-05-14 Rohm And Haas Company Method of dispersing inorganic materials in aqueous systems with low molecular weight acrylic acid copolymers
JPS63258692A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of organic sewage
JPH04156995A (en) * 1990-10-17 1992-05-29 Mitsubishi Kakoki Kaisha Ltd Method for removing dissolved calcium in waste water
JP2002011466A (en) * 2000-06-29 2002-01-15 Shinko Pantec Co Ltd Method and device for treating water
JP2015112593A (en) * 2013-12-16 2015-06-22 栗田工業株式会社 Apparatus and method for treating waste water having high hardness

Also Published As

Publication number Publication date
JP6942658B2 (en) 2021-09-29
JP2021184993A (en) 2021-12-09
JP7155369B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US6391207B1 (en) Treatment of scale
CA2084327A1 (en) Lime neutralization process for treating acidic waters
US11634345B2 (en) Waste water treatment method and waste water treatment apparatus
JP6422649B2 (en) Waste water treatment apparatus and waste water treatment method
AU2001254646A1 (en) Treatment of scale
CN103951114A (en) Heavy metal wastewater tertiary treatment and deep purification recycling process
JP2004141799A (en) Silica-containing waste water treatment method
JP2012005941A (en) Treatment apparatus and treatment method for phosphorus-containing wastewater
JP6942658B2 (en) Calcium removal method and calcium removal equipment for calcium-containing wastewater
JP2019072675A (en) Coagulation sedimentation apparatus and coagulation sedimentation treatment method
JP7173908B2 (en) Method and apparatus for treating calcium-containing wastewater
JP5767009B2 (en) Method for starting up high-speed coagulation sedimentation basin and high-speed coagulation sedimentation apparatus for realizing
JP6062797B2 (en) Method and apparatus for treatment of water containing persistent organic substances
JP2008142683A (en) Water treatment method
JP4137103B2 (en) Treatment method of shellfish waste liquid
JP2001259683A (en) Treating method of nitrogen and phosphorus in waste water
JPH11290894A (en) Method for treating waste liquid containing polymeric organic substance
JP2000301160A (en) Method for treating oil-containing wastewater containing surfactant
CN105236666A (en) Method for treating and recycling water-jet loom wastewater
KR100425954B1 (en) Sewage treatment system amd method
JP2006231265A (en) Method for treating sewage by waste acid
CN104150635B (en) A kind of electroplating wastewater film reclaims pretreatment process
JP2005305253A (en) Treatment method for sludge
JPS63258692A (en) Treatment of organic sewage
JPH05301098A (en) Treatment of aluminum electroplating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6942658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150