JP2019147759A - Manufacturing method of trimethylene carbonate derivative - Google Patents

Manufacturing method of trimethylene carbonate derivative Download PDF

Info

Publication number
JP2019147759A
JP2019147759A JP2018033179A JP2018033179A JP2019147759A JP 2019147759 A JP2019147759 A JP 2019147759A JP 2018033179 A JP2018033179 A JP 2018033179A JP 2018033179 A JP2018033179 A JP 2018033179A JP 2019147759 A JP2019147759 A JP 2019147759A
Authority
JP
Japan
Prior art keywords
compound
trimethylene carbonate
carbonate derivative
represented
hydroxyl groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018033179A
Other languages
Japanese (ja)
Other versions
JP6992976B2 (en
Inventor
広治 網代
Koji Ajiro
広治 網代
宏明 信岡
Hiroaki Nobuoka
宏明 信岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2018033179A priority Critical patent/JP6992976B2/en
Publication of JP2019147759A publication Critical patent/JP2019147759A/en
Application granted granted Critical
Publication of JP6992976B2 publication Critical patent/JP6992976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To enable easily synthesizing a trimethylene carbonate derivative containing no ester bond.SOLUTION: The manufacturing method of a trimethylene carbonate derivative having a process for obtaining a compound A represented by the following formula (2) by protecting hydroxyl groups at 2 locations of trimethylolalkane represented by the following formula (1) by a protection agent at same time, a process for obtaining a compound B represented by the formula (3) and having 2 hydroxyl groups by reducing the compound A by a reductant and deprotecting only one of the 2 locations, a process for obtaining a trimethylene carbonate derivative represented by the formula (4) by carbonylating 2 hydroxyl groups of the compound B.SELECTED DRAWING: None

Description

本発明は、感熱応答性、生分解性等の機能を有するトリメチレンカーボネート誘導体の製造方法に関する。   The present invention relates to a method for producing a trimethylene carbonate derivative having functions such as heat sensitivity and biodegradability.

ポリ乳酸は生分解性を有し、生体内で分解吸収されることから、ドラッグデリバリーシステム(DDS)の担体や医療用接着剤等の医用材料への利用が期待されている。しかしながら、ポリ乳酸をはじめ、生分解性を有する高分子化合物の多くは高分子主鎖にエステル結合を有しており、加水分解により酸性有機化合物を生成するため、これが炎症を引き起こす可能性がある。   Since polylactic acid has biodegradability and is decomposed and absorbed in vivo, it is expected to be used for medical materials such as carriers for drug delivery systems (DDS) and medical adhesives. However, many of the biodegradable polymer compounds such as polylactic acid have ester bonds in the polymer main chain, and generate acidic organic compounds by hydrolysis, which may cause inflammation. .

これに対して、ポリトリメチレンカーボネートはカーボネート骨格を高分子主鎖とするため、加水分解によって二酸化炭素とジオールが生成され、酸性有機化合物が生成されることはない。そこで、このような性質に着目し、ポリトリメチレンポリカーボネートに様々な置換基を導入した新規の高分子材料が提案されている(特許文献1)。所定の置換基を導入することによって、生分解性を有するポリトリメチレンカーボネートの誘導体を創出することができる。さらに、置換基の種類を選択することにより、生分解性に感熱応答性や抗血栓性等の医用材料に好適な機能を付加したポリトリメチレンカーボネート誘導体を得ることも可能となる。   On the other hand, since polytrimethylene carbonate has a carbonate skeleton as a polymer main chain, carbon dioxide and diol are generated by hydrolysis, and an acidic organic compound is not generated. Thus, paying attention to such properties, a novel polymer material in which various substituents are introduced into polytrimethylene polycarbonate has been proposed (Patent Document 1). By introducing a predetermined substituent, a biodegradable polytrimethylene carbonate derivative can be created. Further, by selecting the type of substituent, it is possible to obtain a polytrimethylene carbonate derivative having a biodegradable function suitable for medical materials such as heat-responsiveness and antithrombotic properties.

特開2012-232909号公報JP 2012-232909

置換基の導入には、該置換基をそれが導入される化合物の主鎖とエステル結合させる方法が採られることが多い。しかし、この方法では、置換基を導入することによって得られるトリメチレンカーボネート誘導体にエステル結合が存在することになり、この誘導体を高分子量化(重合)したときに上述したポリトリメチレンカーボネートの性質を失ってしまう。そのため、特許文献1では、エステル結合とは異なる結合形態でトリメチレンカーボネートに置換基を導入する方法が採用されているが、この方法は出発物質から目的物質(トリメチレンカーボネート誘導体)までの工程が多く、しかも合成経路が複雑であるため、トリメチレンカーボネート誘導体の合成に時間や手間がかかるという問題があった。   In many cases, a substituent is introduced by an ester bond between the substituent and the main chain of the compound into which the substituent is introduced. However, in this method, an ester bond exists in the trimethylene carbonate derivative obtained by introducing a substituent, and when the derivative is polymerized (polymerized), the properties of the polytrimethylene carbonate described above are obtained. I will lose. Therefore, in Patent Document 1, a method of introducing a substituent into trimethylene carbonate in a bond form different from the ester bond is employed, but this method involves steps from the starting material to the target substance (trimethylene carbonate derivative). In addition, since the synthesis route is complicated, there is a problem that it takes time and labor to synthesize a trimethylene carbonate derivative.

本発明が解決しようとする課題は、エステル結合を含まないトリメチレンカーボネート誘導体を少ない工程で簡便に合成することができるようにすることである。   The problem to be solved by the present invention is to make it possible to easily synthesize a trimethylene carbonate derivative containing no ester bond with few steps.

上記課題を解決するために成された本発明に係るトリメチレンカーボネート誘導体の製造方法は、出発物質であるトリオールの3箇所のヒドロキシル基のうちの2箇所のベンジル化による保護、該保護された2箇所のうちの一方のみの脱保護、該脱保護された1箇所と前記トリオールの3箇所のヒドロキシル基のうちベンジル化による保護を受けなかった1箇所の計2箇所のヒドロキシル基のカーボネート化を経て、トリメチレンカーボネート誘導体を得る方法である。   The method for producing a trimethylene carbonate derivative according to the present invention to solve the above-mentioned problems is protected by benzylation of two of the three hydroxyl groups of the starting triol, the protected 2 Through deprotection of only one of the sites, and carbonateation of a total of two hydroxyl groups, one site that was deprotected and one site that was not protected by benzylation among the three hydroxyl groups of the triol. This is a method for obtaining a trimethylene carbonate derivative.

具体的には、本発明に係るトリメチレンカーボネート誘導体の製造方法は、
下記式(1)で表されるトリメチロールアルカンの2箇所のヒドロキシル基を保護剤で同時に保護することにより、下記式(2)で表される化合物Aを得る工程と、
前記化合物Aを還元剤で還元し、前記2箇所のうちの一方のみを脱保護することにより、下記式(3)で表される、2個のヒドロキシル基を有する化合物Bを得る工程と、
前記化合物Bの2個のヒドロキシル基を、カルボニル化することにより、下記式(4)で表されるトリメチレンカーボネート誘導体を得る工程と
を備えることを特徴とする。

Figure 2019147759
Specifically, the method for producing a trimethylene carbonate derivative according to the present invention includes:
A step of obtaining a compound A represented by the following formula (2) by simultaneously protecting two hydroxyl groups of the trimethylolalkane represented by the following formula (1) with a protective agent;
Reducing compound A with a reducing agent and deprotecting only one of the two sites to obtain compound B having two hydroxyl groups represented by the following formula (3);
And a step of obtaining a trimethylene carbonate derivative represented by the following formula (4) by carbonylation of two hydroxyl groups of the compound B.
Figure 2019147759

式(1)〜(4)中、R1は水素原子又はアルキル基を表し、好ましくは炭素数1〜5の低級アルキル基、より好ましくはメチル基又はエチル基を表す。
また、式(2)〜(4)中、Rはアリール基を表し、好ましくはフェニル基を表す。
In formulas (1) to (4), R1 represents a hydrogen atom or an alkyl group, preferably a lower alkyl group having 1 to 5 carbon atoms, more preferably a methyl group or an ethyl group.
In formulas (2) to (4), R represents an aryl group, preferably a phenyl group.

上記製造方法においては、トリメチロールアルカンの2個のヒドロキシル基をアルデヒド基で同時に保護した後、片方のみを脱保護する。この結果、アルデヒド化合物がエーテル結合でトリメチロールアルカンと結合した構造(つまり、化合物Bの構造)が得られる。次に、脱保護されたヒドロキシル基と、もともと保護されていないヒドロキシル基のカルボニル化(カーボネート化)による環状付加反応によりトリメチレンカーボネート誘導体が形成される。形成されたトリメチレンカーボネート誘導体は、周知の方法により高分子量化することができる。   In the above production method, two hydroxyl groups of trimethylolalkane are simultaneously protected with aldehyde groups, and then only one of them is deprotected. As a result, a structure in which the aldehyde compound is bonded to the trimethylolalkane through an ether bond (that is, the structure of compound B) is obtained. Next, a trimethylene carbonate derivative is formed by a cycloaddition reaction by decarbonylation of a deprotected hydroxyl group and an originally unprotected hydroxyl group by carbonylation (carbonation). The formed trimethylene carbonate derivative can be made high molecular weight by a well-known method.

上記方法は、出発物質であるトリメチロールアルカンの3個のヒドロキシル基の対称性に注目し、トリメチロールアルカンの2個のヒドロキシル基を保護剤で同時に保護した後、片方のみを脱保護して開裂させるという反応経路を見出したことによりなし得たものであり、従来法に比べて少ない工程でトリメチロールアルカンからトリメチレンカーボネート誘導体を得ることができる。   The above method pays attention to the symmetry of the three hydroxyl groups of the starting trimethylolalkane, and simultaneously protects the two hydroxyl groups of the trimethylolalkane with a protective agent and then deprotects and cleaves only one of them. Thus, a trimethylene carbonate derivative can be obtained from a trimethylolalkane with fewer steps than the conventional method.

トリメチロールアルカンから化合物Aを得るため、つまり、トリメチロールアルカンの2個のヒドロキシル基を保護するために用いられる保護剤はアルデヒド化合物であれば良く、好ましい保護剤としてベンズアルデヒドやバニリンを挙げることができる。トリメチレンカーボネート誘導体に必要とされる機能性の種類や程度に応じて、上記式(1)におけるR1や上記式(2)、(3)におけるR(つまり、保護剤の種類に関連する。)を適宜選択するとよい。   In order to obtain compound A from trimethylolalkane, that is, the protective agent used for protecting the two hydroxyl groups of trimethylolalkane may be an aldehyde compound, and preferred protective agents include benzaldehyde and vanillin. . Depending on the type and degree of functionality required for the trimethylene carbonate derivative, R1 in the above formula (1) and R in the above formulas (2) and (3) (that is, related to the type of protective agent). May be selected as appropriate.

化合物Aから化合物Bを得るため、つまり、化合物Aにおける保護剤で保護された2個のヒドロキシル基のうちの一方のみを脱保護するために用いられる還元剤は、還元力が比較的弱いものが好ましく、そのような還元剤の例としては、水素化ジイソブチルアルミニウム又は水素化ホウ素ナトリウムが挙げられる。特に、R1がメチル基であるときは、還元剤として水素化ジイソブチルアルミニウムを用いることが好ましい。これに対して、水素化アルミニウムリチウム(LiAlH)のような還元力の強い還元剤を用いると、保護された2個のヒドロキシル基の両方が脱保護されてしまうため、用いることができない。 The reducing agent used for obtaining compound B from compound A, that is, deprotecting only one of the two hydroxyl groups protected by the protecting agent in compound A, has a relatively weak reducing power. Preferably, examples of such reducing agents include diisobutylaluminum hydride or sodium borohydride. In particular, when R1 is a methyl group, it is preferable to use diisobutylaluminum hydride as the reducing agent. On the other hand, when a reducing agent having a strong reducing power such as lithium aluminum hydride (LiAlH 4 ) is used, both of the two protected hydroxyl groups are deprotected and cannot be used.

本発明によれば、側鎖がポリエーテルのみから構成されており、エステル結合を含まないトリメチレンカーボネート誘導体を、少ない工程で簡便に製造することができる。   According to the present invention, a trimethylene carbonate derivative whose side chain is composed only of a polyether and does not contain an ester bond can be easily produced with fewer steps.

本発明に係る製造方法の実施例1で得られた、エチル(2-メトキシ-4-(((5-メチル-2-オキソ-1,3-ジオキサン-5-イル)メトキシ)メチル)フェニル) カルボネートのH NMRスペクトル。Ethyl (2-methoxy-4-(((5-methyl-2-oxo-1,3-dioxane-5-yl) methoxy) methyl) phenyl) obtained in Example 1 of the production method according to the present invention 1 H NMR spectrum of carbonate. エチル(2-メトキシ-4-(((5-メチル-2-オキソ-1,3-ジオキサン-5-イル)メトキシ)メチル)フェニル) カルボネートのFT−IRスペクトル。FT-IR spectrum of ethyl (2-methoxy-4-(((5-methyl-2-oxo-1,3-dioxane-5-yl) methoxy) methyl) phenyl) carbonate. エチル(2-メトキシ-4-(((5-メチル-2-オキソ-1,3-ジオキサン-5-イル)メトキシ)メチル)フェニル) カルボネートの高分子量体のH NMRスペクトル。 1 H NMR spectrum of high molecular weight ethyl (2-methoxy-4-(((5-methyl-2-oxo-1,3-dioxane-5-yl) methoxy) methyl) phenyl) carbonate. 本発明に係る製造方法の実施例2で得られた、化合物A2と化合物B2のH NMRスペクトル。 1 H NMR spectra of Compound A2 and Compound B2 obtained in Example 2 of the production method according to the present invention.

以下、本発明に係る製造方法の具体的な実施例について説明する。   Hereinafter, specific examples of the manufacturing method according to the present invention will be described.

[実施例1]
以下に示す3段階の合成反応により、トリメチレンカーボネート誘導体(モノマー)を得た。各段階の合成手順について以下に詳述する。
[Example 1]
A trimethylene carbonate derivative (monomer) was obtained by the following three-step synthesis reaction. The synthesis procedure at each stage is described in detail below.

Figure 2019147759
Figure 2019147759

(1)4-(5-ヒドロキシメチル-5-メチル-1,3-ジオキサン-2-イル)-2-メトキシフェノールの合成(ジオールの保護)
窒素雰囲気下で500mLの二口フラスコにトリメチロールエタン 60.0g(500mmol)とp-トルエンスルホン酸(TsOH)0.860g(5.0mmol)とテトラヒドロキシフラン(THF)400mLを加え、室温で1時間撹拌して溶解させた。その後、下記式(5)で表されるバニリン15.2g(100mmol)を加え、50℃で15時間撹拌した。溶媒を除去し、超純水とジクロロメタン(CHCl)を用いて分液操作を行い、有機層を回収した。回収した有機層に硫酸ナトリウム(NaSO)を加え、濾過した後に溶媒を除去した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル(EtOAc):ヘキサン=4:1)により精製し、化合物A1(8.58g、33.7mmol、収率34%)を得た。
(1) Synthesis of 4- (5-hydroxymethyl-5-methyl-1,3-dioxan-2-yl) -2-methoxyphenol (protection of diol)
Under a nitrogen atmosphere, add 60.0 g (500 mmol) of trimethylolethane, 0.860 g (5.0 mmol) of p-toluenesulfonic acid (TsOH) and 400 mL of tetrahydroxyfuran (THF) to a 500 mL two-necked flask, and add 1 at room temperature. Stir for hours to dissolve. Thereafter, 15.2 g (100 mmol) of vanillin represented by the following formula (5) was added and stirred at 50 ° C. for 15 hours. The solvent was removed, and a liquid separation operation was performed using ultrapure water and dichloromethane (CH 2 Cl 2 ) to recover the organic layer. Sodium sulfate (Na 2 SO 4 ) was added to the collected organic layer, and the solvent was removed after filtration. Then, it refine | purified by silica gel column chromatography (developing solvent ethyl acetate (EtOAc): hexane = 4: 1), and compound A1 (8.58 g, 33.7 mmol, 34% of yield) was obtained.

Figure 2019147759
Figure 2019147759

(2)2-(((4-ヒドロキシ-3-メトキシベンジル)オキシ)メチル)-2-メチルプロパン-1,3-ジオールの合成(脱保護(開裂))
化合物A1:2.55g(10.0mmol)を少量のTHFに溶解し、乾燥剤(商品名:モレキュラーシーブ(MS)4A)を用いて無水状態にしたものを、窒素雰囲気下で300mLの二口フラスコに加えた。その後、氷浴で0℃に冷却し、水素化ジイソブチルアルミニウム(DIBAL)30.1mL(30.1mmol)をゆっくり加え、室温で10時間撹拌した。以下の式(6)はDIBALの構造を示している。
(2) Synthesis of 2-(((4-hydroxy-3-methoxybenzyl) oxy) methyl) -2-methylpropane-1,3-diol (deprotection (cleavage))
Compound A1: A solution obtained by dissolving 2.55 g (10.0 mmol) in a small amount of THF and making it anhydrous with a desiccant (trade name: Molecular Sieve (MS) 4A) was added to 300 mL of two necks under a nitrogen atmosphere. Added to the flask. Then, it cooled to 0 degreeC with the ice bath, 30.1 mL (30.1 mmol) of diisobutylaluminum hydride (DIBAL) was added slowly, and it stirred at room temperature for 10 hours. The following formula (6) shows the structure of DIBAL.

Figure 2019147759
Figure 2019147759

次に、氷浴で0℃に冷却し、メタノール21mLをゆっくり滴下した。溶液がゼリー状になるのを確認した後、飽和ロッシェル塩水溶液を加え、二層に分離するまで室温で撹拌した。その後、ジエチルエーテルを用いて分液操作を行い、有機層を回収した。回収した有機層に硫酸ナトリウムを加え、濾過した後に溶媒を除去した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=4:1)により精製し、化合物B1(1.31g、5.39mmol、収率54%)を得た。   Next, it was cooled to 0 ° C. in an ice bath, and 21 mL of methanol was slowly added dropwise. After confirming that the solution became jelly, a saturated aqueous Rochelle salt solution was added, and the mixture was stirred at room temperature until separated into two layers. Then, liquid separation operation was performed using diethyl ether, and the organic layer was recovered. Sodium sulfate was added to the collected organic layer, and the solvent was removed after filtration. Then, it refine | purified by silica gel column chromatography (developing solvent ethyl acetate: hexane = 4: 1), and compound B1 (1.31 g, 5.39 mmol, 54% of yield) was obtained.

なお、図示は省略するが、H NMR及びFT−IRにより、4-(5-ヒドロキシメチル-5-メチル-1,3-ジオキサン-2-イル)-2-メトキシフェノールの生成、及び2-(((4-ヒドロキシ-3-メトキシベンジル)オキシ)メチル)-2-メチルプロパン-1,3-ジオールの生成を確認した。 Although illustration is omitted, formation of 4- (5-hydroxymethyl-5-methyl-1,3-dioxan-2-yl) -2-methoxyphenol by 1 H NMR and FT-IR, and 2- Formation of (((4-hydroxy-3-methoxybenzyl) oxy) methyl) -2-methylpropane-1,3-diol was confirmed.

(3)エチル(2-メトキシ-4-(((5-メチル-2-オキソ-1,3-ジオキサン-5-イル)メトキシ)メチル)フェニル) カルボネートの合成
化合物B1:1.31g(5.39mmol)を少量のTHFに溶解し、乾燥剤MS4Aを用いて無水状態にしたものを、窒素雰囲気下で300mLの二口フラスコに加えた。クロロギ酸エチル(Ethyl chroloformate)1.55mL(16.2mmol)を加え、氷浴で0℃に冷却した。続いてトリエチルアミン2.23mL(16.1mmol)をゆっくり滴下し、6時間撹拌した。1Mの塩酸とジクロロメタンを用いて分液操作を行い、有機層を回収した。回収した有機層に硫酸マグネシウムを加え、濾過した後に溶媒を除去した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル)により精製し、化合物C1(1.33g、3.75mmol、収率69.5%)を得た。
(3) Synthesis of ethyl (2-methoxy-4-(((5-methyl-2-oxo-1,3-dioxane-5-yl) methoxy) methyl) phenyl) carbonate Compound B1: 1.31 g (5. 39 mmol) dissolved in a small amount of THF and made anhydrous with desiccant MS4A were added to a 300 mL two-necked flask under a nitrogen atmosphere. Ethyl chloroformate (1.55 mL, 16.2 mmol) was added and cooled to 0 ° C. in an ice bath. Subsequently, 2.23 mL (16.1 mmol) of triethylamine was slowly added dropwise and stirred for 6 hours. Liquid separation operation was performed using 1M hydrochloric acid and dichloromethane, and the organic layer was recovered. Magnesium sulfate was added to the collected organic layer, and the solvent was removed after filtration. Then, it refine | purified by silica gel column chromatography (developing solvent ethyl acetate), and compound C1 (1.33 g, 3.75 mmol, yield 69.5%) was obtained.

化合物C1を H NMR(400MHz、室温、CDCl中)及びFT−IRにより同定し、エチル(2-メトキシ-4-(((5-メチル-2-オキソ-1,3-ジオキサン-5-イル)メトキシ)メチル)フェニル) カルボネートが生成されたことを確認した。図1にH NMRの測定結果を、図2にFT−IRの測定結果を示す。 Compound C1 was identified by 1 H NMR (400 MHz, room temperature in CDCl 3 ) and FT-IR, and ethyl (2-methoxy-4-(((5-methyl-2-oxo-1,3-dioxane-5- It was confirmed that yl) methoxy) methyl) phenyl) carbonate was produced. FIG. 1 shows the measurement result of 1 H NMR, and FIG. 2 shows the measurement result of FT-IR.

(4)エチル(2-メトキシ-4-(((5-メチル-2-オキソ-1,3-ジオキサン-5-イル)メトキシ)メチル)フェニル) カルボネートの高分子量化の確認
化合物C1を少量の溶媒に溶解し、乾燥剤MS4Aを用いて無水状態にしたものを、窒素雰囲気下で二口試験管に加えた。その後、真空ポンプを用いて溶媒を乾燥させた(室温、24時間)。再び窒素雰囲気下にし、2,2-ジメチル-1-プロパノールを溶媒で1.0Mに調製したもの、及び1,8-ジアザビシクロ[5.4.0]-7-ウンデセンを溶媒で1.0Mに調製したものを加えた。その後、試験管ミキサーで少し撹拌し、静置した。
なお、この実施例では、静置時間を8時間、又は24時間とし、溶媒をTHF又はジクロロメタンとして、高分子量化を行った。
反応完了後、少量のジクロロメタンに溶解させ、メタノールを貧溶媒とし、再沈殿することで精製を行った。
(4) Confirmation of high molecular weight of ethyl (2-methoxy-4-(((5-methyl-2-oxo-1,3-dioxane-5-yl) methoxy) methyl) phenyl) carbonate What was dissolved in a solvent and made anhydrous with desiccant MS4A was added to a two-necked test tube under a nitrogen atmosphere. Thereafter, the solvent was dried using a vacuum pump (room temperature, 24 hours). Under a nitrogen atmosphere again, 2,2-dimethyl-1-propanol was adjusted to 1.0 M with a solvent, and 1,8-diazabicyclo [5.4.0] -7-undecene was adjusted to 1.0 M with a solvent. I added things. Then, it stirred a little with the test tube mixer and left still.
In this example, the molecular weight was increased by setting the standing time to 8 hours or 24 hours and using the solvent as THF or dichloromethane.
After completion of the reaction, the product was dissolved in a small amount of dichloromethane and purified by reprecipitation using methanol as a poor solvent.

得られた生成物を、H NMR(400MHz、室温、CDCl中)により同定し、高分子量化を確認した。図3に高分子量体のH NMRの測定結果を示す。また、サイズ排除クロマトグラフィにより生成物の分子量分布(PDI)を測定し、数平均分子量(Mn)、重量平均分子量(Mw)、収率を求めた。その結果を表1に示す。 The resulting product was identified by 1 H NMR (400 MHz, room temperature, in CDCl 3 ) to confirm high molecular weight. FIG. 3 shows the 1 H NMR measurement results of the high molecular weight product. Further, the molecular weight distribution (PDI) of the product was measured by size exclusion chromatography, and the number average molecular weight (Mn), the weight average molecular weight (Mw), and the yield were determined. The results are shown in Table 1.

Figure 2019147759
Figure 2019147759

以上の結果より、以下の式に示す重合反応により化合物C1の高分子量体(ポリマー)が形成されていることが推定された。

Figure 2019147759
From the above results, it was estimated that a high molecular weight compound (polymer) of compound C1 was formed by the polymerization reaction represented by the following formula.
Figure 2019147759

[実施例2]
この実施例では、以下に示す2段階の合成反応により、トリメチレンカーボネート誘導体の合成経路の中間体を得た。各段階の合成手順について以下に詳述する。

Figure 2019147759
[Example 2]
In this example, an intermediate of the synthesis route of the trimethylene carbonate derivative was obtained by the following two-step synthesis reaction. The synthesis procedure at each stage is described in detail below.
Figure 2019147759

(1)5-ヒドロキシメチル-5-メチル-2-フェニル-[1,3]-ジオキサンの合成(ジオールの保護)
窒素雰囲気下で2.0Lの二口フラスコにトリメチロールエタン 72.048g(600mmol)とp-トルエンスルホン酸3.69g(21.4mmol)とTHF1.5Lを加え、室温で1時間撹拌した。その後、ベンズアルデヒド64.2mL(630mmol)を加え、室温で15時間撹拌した。溶媒を除去し、超純水とジクロロメタン(CHCl)を用いて分液操作を行い、有機層を回収した。回収した有機層に硫酸ナトリウム(NaSO)を加え、濾過した後に溶媒を除去した。その後、ヘキサンに懸濁させ、15分間撹拌しヘキサンを濾過することにより除去し、化合物A2(111g、534mmol、収率89%)を得た。
(1) Synthesis of 5-hydroxymethyl-5-methyl-2-phenyl- [1,3] -dioxane (protection of diol)
Under a nitrogen atmosphere, 72.048 g (600 mmol) of trimethylolethane, 3.69 g (21.4 mmol) of p-toluenesulfonic acid and 1.5 L of THF were added to a 2.0 L two-necked flask, and the mixture was stirred at room temperature for 1 hour. Thereafter, 64.2 mL (630 mmol) of benzaldehyde was added and stirred at room temperature for 15 hours. The solvent was removed, and a liquid separation operation was performed using ultrapure water and dichloromethane (CH 2 Cl 2 ) to recover the organic layer. Sodium sulfate (Na 2 SO 4 ) was added to the collected organic layer, and the solvent was removed after filtration. Then, it was suspended in hexane, stirred for 15 minutes, and hexane was removed by filtration to obtain compound A2 (111 g, 534 mmol, yield 89%).

(2)2-((ベンジルオキシ)メチル)-2-メチルプロパン-1,3-ジオールの合成(脱保護(開裂))
化合物A2:1.0g(4.80mmol)を少量のジクロロメタン(CHCl)に溶解し、乾燥剤MS4Aを用いて無水状態にしたものを、窒素雰囲気下で300mLの二口フラスコに加えた。その後、氷浴で0℃に冷却し、水素化ジイソブチルアルミニウム(DIBAL)14.4mL(14.4mmol)をゆっくり加え、室温で10時間撹拌した。
(2) Synthesis of 2-((benzyloxy) methyl) -2-methylpropane-1,3-diol (deprotection (cleavage))
Compound A2: 1.0 g (4.80 mmol) dissolved in a small amount of dichloromethane (CH 2 Cl 2 ) and made anhydrous with desiccant MS4A was added to a 300 mL two-necked flask under a nitrogen atmosphere. . Then, it cooled to 0 degreeC with the ice bath, 14.4 mL (14.4 mmol) of diisobutylaluminum hydride (DIBAL) was added slowly, and it stirred at room temperature for 10 hours.

次に、氷浴で0℃に冷却し、超純水2.05mLをゆっくり滴下した。続いて、5M水酸化ナトリウム水溶液2.05mLをゆっくり滴下した。最後に超純水6.15mLをゆっくり滴下した。室温で1時間撹拌し、生じた沈殿物をセライトを用いて吸引濾過により除去した。その後、濾過した溶液を超純水とジクロロメタン(CHCl)を用いて分液操作を行い、有機層を回収した。回収した有機層に硫酸ナトリウムを加え、濾過した後に溶媒を除去した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:1)により精製し、化合物B2(0.587g、2.79mmol、収率58%)を得た。 Next, it was cooled to 0 ° C. in an ice bath, and 2.05 mL of ultrapure water was slowly added dropwise. Subsequently, 2.05 mL of 5M aqueous sodium hydroxide solution was slowly added dropwise. Finally, 6.15 mL of ultrapure water was slowly added dropwise. The mixture was stirred at room temperature for 1 hour, and the resulting precipitate was removed by suction filtration using celite. Thereafter, the filtered solution was subjected to a liquid separation operation using ultrapure water and dichloromethane (CH 2 Cl 2 ) to recover the organic layer. Sodium sulfate was added to the collected organic layer, and the solvent was removed after filtration. Then, it refine | purified by silica gel column chromatography (developing solvent ethyl acetate: hexane = 1: 1), and obtained compound B2 (0.587g, 2.79mmol, yield 58%).

化合物A2、B2を H NMR(400MHz、室温、CDCl中)により同定した結果を図3に示す。図3中、下側は化合物A2のH NMRスペクトルを、上側は化合物B2のH NMRスペクトルを示している。 The results of identification of compounds A2 and B2 by 1 H NMR (400 MHz, room temperature, in CDCl 3 ) are shown in FIG. In FIG. 3, the lower side shows the 1 H NMR spectrum of Compound A2, and the upper side shows the 1 H NMR spectrum of Compound B2.

Claims (5)

下記式(1)で表されるトリメチロールアルカンの2箇所のヒドロキシル基を保護剤で同時に保護することにより、下記式(2)で表される化合物Aを得る工程と、
前記化合物Aを還元剤で還元し、前記2箇所のうちの一方のみを脱保護することにより、式(3)で表される、2個のヒドロキシル基を有する化合物Bを得る工程と、
前記化合物Bの2個のヒドロキシル基を、カルボニル化することにより、式(4)で表されるトリメチレンカーボネート誘導体を得る工程と
を備えるトリメチレンカーボネート誘導体の製造方法。
Figure 2019147759
式(1)〜(4)中、R1は水素原子又はアルキル基を表し、式(2)〜(4)中、Rはアリール基を表す。
A step of obtaining a compound A represented by the following formula (2) by simultaneously protecting two hydroxyl groups of the trimethylolalkane represented by the following formula (1) with a protective agent;
Reducing compound A with a reducing agent and deprotecting only one of the two sites to obtain compound B having two hydroxyl groups represented by formula (3);
A process for obtaining a trimethylene carbonate derivative represented by the formula (4) by carbonylation of two hydroxyl groups of the compound B.
Figure 2019147759
In formulas (1) to (4), R1 represents a hydrogen atom or an alkyl group, and in formulas (2) to (4), R represents an aryl group.
R1が、炭素数1〜5の低級アルキル基である、請求項1に記載のトリメチレンカーボネート誘導体の製造方法。   The method for producing a trimethylene carbonate derivative according to claim 1, wherein R1 is a lower alkyl group having 1 to 5 carbon atoms. R1が、メチル基である、請求項1に記載のトリメチレンカーボネート誘導体の製造方法。   The method for producing a trimethylene carbonate derivative according to claim 1, wherein R1 is a methyl group. Rがフェニル基である、請求項1〜3のいずれかに記載のトリメチレンカーボネート誘導体の製造方法。   The manufacturing method of the trimethylene carbonate derivative in any one of Claims 1-3 whose R is a phenyl group. 前記還元剤が水素化ジイソブチルアルミニウム又は水素化ホウ素ナトリウムである、請求項1〜4のいずれかに記載のトリメチレンカーボネート誘導体の製造方法。   The manufacturing method of the trimethylene carbonate derivative in any one of Claims 1-4 whose said reducing agent is diisobutylaluminum hydride or sodium borohydride.
JP2018033179A 2018-02-27 2018-02-27 Method for Producing Trimethylene Carbonate Derivative Active JP6992976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033179A JP6992976B2 (en) 2018-02-27 2018-02-27 Method for Producing Trimethylene Carbonate Derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033179A JP6992976B2 (en) 2018-02-27 2018-02-27 Method for Producing Trimethylene Carbonate Derivative

Publications (2)

Publication Number Publication Date
JP2019147759A true JP2019147759A (en) 2019-09-05
JP6992976B2 JP6992976B2 (en) 2022-02-15

Family

ID=67850191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033179A Active JP6992976B2 (en) 2018-02-27 2018-02-27 Method for Producing Trimethylene Carbonate Derivative

Country Status (1)

Country Link
JP (1) JP6992976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704711A (en) * 2019-03-18 2020-09-25 中国科学院宁波材料技术与工程研究所 Epoxy monomer based on acetal structure and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083118A (en) * 1994-06-16 1996-01-09 Nippon Paint Co Ltd Vinyl monomer having linear carbonate group and hydroxyl group and its production
US5753660A (en) * 1995-11-15 1998-05-19 G. D. Searle & Co. Substituted sulfonylalkanoylamino hydroxyethylamino sulfonamide retroviral protease inhibitors
US5808108A (en) * 1997-01-15 1998-09-15 Chappelow; Cecil C. Polymeric compositions and composites prepared from spiroorthocarbonates and epoxy monomers
JP2012232909A (en) * 2011-04-28 2012-11-29 Osaka Univ Novel trimethylene carbonate derivative and polymer of the same
WO2013059295A2 (en) * 2011-10-17 2013-04-25 Trustees Of Boston University Polymeric depots for localization of an agent to biological sites
WO2015012156A1 (en) * 2013-07-25 2015-01-29 Dic株式会社 Liquid crystalline compound having 2,6-difluorophenyl ether structure and liquid crystal composition thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083118A (en) * 1994-06-16 1996-01-09 Nippon Paint Co Ltd Vinyl monomer having linear carbonate group and hydroxyl group and its production
US5753660A (en) * 1995-11-15 1998-05-19 G. D. Searle & Co. Substituted sulfonylalkanoylamino hydroxyethylamino sulfonamide retroviral protease inhibitors
US5808108A (en) * 1997-01-15 1998-09-15 Chappelow; Cecil C. Polymeric compositions and composites prepared from spiroorthocarbonates and epoxy monomers
JP2012232909A (en) * 2011-04-28 2012-11-29 Osaka Univ Novel trimethylene carbonate derivative and polymer of the same
WO2013059295A2 (en) * 2011-10-17 2013-04-25 Trustees Of Boston University Polymeric depots for localization of an agent to biological sites
WO2015012156A1 (en) * 2013-07-25 2015-01-29 Dic株式会社 Liquid crystalline compound having 2,6-difluorophenyl ether structure and liquid crystal composition thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704711A (en) * 2019-03-18 2020-09-25 中国科学院宁波材料技术与工程研究所 Epoxy monomer based on acetal structure and preparation method and application thereof
CN111704711B (en) * 2019-03-18 2022-04-08 中国科学院宁波材料技术与工程研究所 Epoxy monomer based on acetal structure and preparation method and application thereof

Also Published As

Publication number Publication date
JP6992976B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
JP4049794B2 (en) Calixarene compound, production method thereof, and composition thereof
AU2014301613B2 (en) 2-oxo-1,3-dioxolane-4-acyl halides, their preparation and use
JP2009263596A (en) Incompletely condensed oligosilsesquioxane and its production method
CN113286844B (en) Method for producing non-isocyanate polyurethanes
JP6992976B2 (en) Method for Producing Trimethylene Carbonate Derivative
JP2011084512A (en) Cyclic carbonate
JP2015003875A (en) Phosphorus compound and method for producing the same
KR20120091971A (en) Preparation method for entecavir
JP6944141B2 (en) Isocyanuric acid derivative having an alkoxyalkyl group and its production method
TWI720410B (en) Method for manufacturing potash and potash
JPH069610A (en) Production of substituted 1,3-dioxolan-2-one derivative
KR101127618B1 (en) Preparation method of 4-[4-chlorophenyl2-pyridylmethoxy]piperidine
JP2636042B2 (en) 4,4 '""-dihydroxyquarterphenyl derivative and method for producing the same
JP5893008B2 (en) 4,4-bis [(ethenyloxy) methyl] cyclohexene and process for producing the same
US20110172421A1 (en) N-(alpha-AROMATIC GROUP-SUBSTITUTED-2-NITRO-4,5-DIALKOXYBENZYLOXYCARBONYL)AMINE COMPOUND AND PROCESS FOR PRODUCING THE SAME
JP2012036155A (en) Bis(oxetane vinyl ether) compound, and method for producing the same
KR20180050091A (en) A method for preparation of (S)-N1-(2-aminoethyl)-3-(4-alkoxyphenyl)propane-1,2-diamine trihydrocholoride
JPH10265487A (en) Production of phosphonic acid ester and polyphosphonate and curable composition
JP2020066596A (en) Method for producing ester and allyl ether using fluorine-containing cyclic diol as raw material
KR100976749B1 (en) Process for producing glycidyl ether
TW201533090A (en) Polymer having oxygen-containing saturated heterocycles and process for manufacturing same
JPH0552315B2 (en)
JP2009256306A (en) Adamantane derivative having polymerizable unsaturated group, and method for producing the same
van Haveren et al. Shanmugam Thiyagarajan, Linda Gootjes, Willem Vogelzang, Jing Wu
JP2019143017A (en) Polycarbonate and production method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211202

R150 Certificate of patent or registration of utility model

Ref document number: 6992976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150