JP2019147722A - Ultraviolet transmission glass and manufacturing method therefor - Google Patents

Ultraviolet transmission glass and manufacturing method therefor Download PDF

Info

Publication number
JP2019147722A
JP2019147722A JP2018034345A JP2018034345A JP2019147722A JP 2019147722 A JP2019147722 A JP 2019147722A JP 2018034345 A JP2018034345 A JP 2018034345A JP 2018034345 A JP2018034345 A JP 2018034345A JP 2019147722 A JP2019147722 A JP 2019147722A
Authority
JP
Japan
Prior art keywords
glass
ultraviolet
transmittance
content
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018034345A
Other languages
Japanese (ja)
Other versions
JP7289612B2 (en
Inventor
伸敏 伊藤
Nobutoshi Ito
伸敏 伊藤
西本 剛寿
Takehisa Nishimoto
剛寿 西本
大島 洋
Hiroshi Oshima
洋 大島
浩明 角
Hiroaki Sumi
浩明 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2018034345A priority Critical patent/JP7289612B2/en
Priority to PCT/JP2018/047207 priority patent/WO2019167399A1/en
Publication of JP2019147722A publication Critical patent/JP2019147722A/en
Application granted granted Critical
Publication of JP7289612B2 publication Critical patent/JP7289612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Abstract

To provide an ultraviolet transmission glass high in transmission coefficient of an ultraviolet light in deep ultraviolet range, especially with wavelength of 200 to 250 nm.SOLUTION: The ultraviolet transmission glass has thickness of 0.5 mm and T≥75, wherein transmission coefficient (%) at wavelength of 200 nm is T. The manufacturing method of the ultraviolet transmission glass uses synthetic silica as at least a part of glass raw materials.SELECTED DRAWING: Figure 1

Description

本発明は、紫外線透過ガラス及びその製造方法に関する。     The present invention relates to an ultraviolet transmissive glass and a method for producing the same.

現在、深紫外域(例えば、波長域200〜350nm)において高い出力を有する光源が開発されており、紫外線ランプや磁気記録媒体への書き込み装置等に用いられている。このような光源やこれを用いた装置では、深紫外線の透過率の良い紫外線透過ガラス(例えば、特許文献1)が用いられている。     Currently, a light source having a high output in the deep ultraviolet region (for example, a wavelength region of 200 to 350 nm) has been developed, and is used for an ultraviolet lamp, a writing device for a magnetic recording medium, and the like. In such a light source and an apparatus using the same, ultraviolet transmissive glass (for example, Patent Document 1) having a high deep ultraviolet transmittance is used.

国際公開2017/057375号公報International Publication No. 2017/057375

紫外線透過ガラスの深紫外域の透過率が高い程、上述のような深紫外域において高い出力を有する光源やこれを用いた装置の性能を向上し得る。例えば、殺菌用途の紫外線ランプでは、より透過率の高い紫外線透過ガラスを外筒として用いることによって、より高い殺菌力を得られる。しかし、従来の紫外線透過ガラスには、その透過率、特に、波長200〜250nmの深波長域の透過率が未だ不十分であり、改良の余地が残されていた。   The higher the transmittance of the ultraviolet transmissive glass in the deep ultraviolet region, the higher the performance of the light source having a high output in the deep ultraviolet region as described above and the apparatus using the same. For example, in an ultraviolet lamp for sterilization, higher sterilization power can be obtained by using an ultraviolet transmissive glass having a higher transmittance as an outer cylinder. However, the transmittance of conventional ultraviolet transmissive glass, particularly the transmittance in the deep wavelength range of 200 to 250 nm, is still insufficient, and there remains room for improvement.

本発明の紫外線透過ガラスは、厚み0.5mm、波長200nmにおける透過率(%)をT200とした場合、T200≧75であることを特徴とする。ここで、「波長200nmにおける透過率」は、市販の分光光度計(例えば、日立製作所製UV―3100)で測定可能である。 The ultraviolet transmissive glass of the present invention is characterized in that T 200 ≧ 75 when the transmittance (%) at a thickness of 0.5 mm and a wavelength of 200 nm is T 200 . Here, the “transmittance at a wavelength of 200 nm” can be measured with a commercially available spectrophotometer (for example, UV-3100 manufactured by Hitachi, Ltd.).

本発明の紫外線透過ガラスは、厚み0.5mm、波長250nmにおける透過率(%)をT250とした場合、 T200/T250≧0.75以上であることが好ましい。 The ultraviolet transmissive glass of the present invention preferably has T 200 / T 250 ≧ 0.75 or more when the transmittance (%) at a thickness of 0.5 mm and a wavelength of 250 nm is T 250 .

本発明の紫外線透過ガラスは、厚み0.5mm、波長220nmにおける透過率(%)をT220とした場合、T220≧80であることが好ましい。 The ultraviolet transmissive glass of the present invention preferably has T 220 ≧ 80 when the transmittance (%) at a thickness of 0.5 mm and a wavelength of 220 nm is T 220 .

本発明の紫外線透過ガラスは、厚みが0.1〜3.0mmの板状または管状であることが好ましい。   The ultraviolet transmissive glass of the present invention is preferably a plate or tube having a thickness of 0.1 to 3.0 mm.

本発明の紫外線透過ガラスは、ガラス組成として、質量%で、SiO 55〜75%、Al 1〜10%、B 10〜30%、CaO 0〜5 %、 BaO 0〜5%、LiO+NaO+KO 1.0〜15%、TiO 0〜0.001%、Fe 0〜0.001%、を含有することが好ましい。 Ultraviolet transmitting glass of the present invention has a glass composition, in mass%, SiO 2 55~75%, Al 2 O 3 1~10%, B 2 O 3 10~30%, CaO 0~5%, BaO 0~ 5%, Li 2 O + Na 2 O + K 2 O 1.0 to 15%, TiO 2 0 to 0.001%, Fe 2 O 3 0 to 0.001% are preferably contained.

本発明の紫外線透過ガラスの製造方法は、上記何れかに記載の紫外線透過ガラスの製造方法であって、ガラス原料の少なくとも一部として合成シリカを用いることを特徴とする。   The method for producing an ultraviolet transmissive glass of the present invention is the method for producing an ultraviolet transmissive glass according to any one of the above, wherein synthetic silica is used as at least a part of the glass raw material.

本発明の紫外線透過ガラスの製造方法は、合成シリカが気相反応法または液相反応法により精製された粒体シリカであることが好ましい。   In the method for producing the ultraviolet light transmitting glass of the present invention, it is preferable that the synthetic silica is a granular silica purified by a gas phase reaction method or a liquid phase reaction method.

本発明の紫外線透過ガラスの製造方法は、前記合成シリカの平均粒径が100μm以下であり、前記ガラス原料の全シリカ源に占める前記合成シリカの割合が90〜100質量%であることが好ましい。   In the method for producing an ultraviolet transmissive glass of the present invention, the synthetic silica preferably has an average particle size of 100 μm or less, and the proportion of the synthetic silica in the total silica source of the glass raw material is preferably 90 to 100% by mass.

本発明の紫外線透過ガラスおよびその製造方法によれば、深紫外波長域において従来品よりも高い透過率を有するガラスを得ることができる。   According to the ultraviolet transmissive glass and the method for producing the same of the present invention, it is possible to obtain a glass having a higher transmittance than the conventional product in the deep ultraviolet wavelength region.

厚み0.5mmの試料No.1〜3の透過率を示すグラフである。It is a graph which shows the transmittance | permeability of sample No. 1-3 of thickness 0.5mm.

本発明の紫外線透過ガラスにおいて、厚み0.5mm、波長200nmにおける透過率(%)をT200とした場合、T200≧75、好ましくはT200≧80、T200≧83である。厚み0.5mm、波長200nmにおける透過率が低過ぎると、紫外光が透過し難くなり、搭載される光源やデバイスの性能が低下し易くなる。 In the ultraviolet transmitting glass of the present invention, when T 200 is the transmittance (%) at a thickness of 0.5 mm and a wavelength of 200 nm, T 200 ≧ 75, preferably T 200 ≧ 80, and T 200 ≧ 83. If the transmittance at a thickness of 0.5 mm and a wavelength of 200 nm is too low, it is difficult for ultraviolet light to pass through, and the performance of the mounted light source or device tends to be reduced.

本発明の紫外線透過ガラスにおいて、厚み0.5mm、波長220nmにおける透過率(%)をT220とした場合、好ましくはT220≧80であり、より好ましくはT220≧85、T220≧87である。厚み0.5mm、波長220nmにおける透過率が低過ぎると、紫外光が透過し難くなり、搭載される光源やデバイスの性能が低下し易くなる。 In the ultraviolet transmitting glass of the present invention, the thickness 0.5 mm, if the transmittance at a wavelength of 220nm (%) was the T 220, is preferably T 220 ≧ 80, more preferably T 220 ≧ 85, T 220 ≧ 87 is there. If the transmittance at a thickness of 0.5 mm and a wavelength of 220 nm is too low, it is difficult for ultraviolet light to pass through, and the performance of the mounted light source or device is likely to deteriorate.

本発明の紫外線透過ガラスにおいて、厚み0.5mm、波長250nmにおける透過率(%)をT250とした場合、好ましくはT250≧88であり、より好ましくはT250≧89、T250≧89.5である。厚み0.5mm、波長250nmにおける透過率が低過ぎると、紫外光が透過し難くなり、搭載される光源やデバイスの性能が低下し易くなる。 In the ultraviolet transmitting glass of the present invention, when the thickness 0.5 mm, the transmittance at a wavelength of 250nm (%) was the T 250, preferably T 250 ≧ 88, more preferably T 250 ≧ 89, T 250 ≧ 89. 5. If the transmittance at a thickness of 0.5 mm and a wavelength of 250 nm is too low, it is difficult for ultraviolet light to pass through, and the performance of the mounted light source or device tends to deteriorate.

また、T200/T250の値は、好ましくは0.75以上、0.80以上、0.85以上、0.90以上、0.92以上である。T200/T250の値が小さ過ぎると、紫外光が透過し難くなり、搭載される光源やデバイスの性能が低下し易くなる。 Further, the value of T 200 / T 250 is preferably 0.75 or more, 0.80 or more, 0.85 or more, 0.90 or more, or 0.92 or more. When the value of T 200 / T 250 is too small, it becomes difficult to transmit ultraviolet light, and the performance of the mounted light source or device tends to be lowered.

本発明の紫外線透過ガラスの歪点は、好ましくは400℃以上、410℃以上、415℃以上である。紫外線透過ガラスの歪点が低過ぎる場合、例えば、表面に機能性膜を成膜する際に、高温の成膜工程においてガラスに意図しない変形が生じ易くなる。   The strain point of the ultraviolet transmissive glass of the present invention is preferably 400 ° C. or higher, 410 ° C. or higher, and 415 ° C. or higher. When the strain point of the ultraviolet transmissive glass is too low, for example, when a functional film is formed on the surface, unintended deformation is likely to occur in the glass in a high-temperature film forming process.

本発明の紫外線透過ガラスの軟化点は、好ましくは850℃以下、800℃以下、750℃以下、特に700℃以下である。軟化点が高過ぎると、ガラス溶融窯への負荷が大きくなり、ガラスの製造コストが高騰し易くなる。   The softening point of the ultraviolet transmitting glass of the present invention is preferably 850 ° C. or lower, 800 ° C. or lower, 750 ° C. or lower, particularly 700 ° C. or lower. If the softening point is too high, the load on the glass melting furnace becomes large, and the manufacturing cost of the glass tends to increase.

本発明の紫外線透過ガラスの粘度102.5dPa・sにおける温度は、1540℃以下、1520℃以下、1500℃以下、特に1480℃以下である。102.5dPa・sにおける温度が高過ぎると、溶融性が低下して、ガラスの製造コストが高騰し易くなる。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 The temperature at a viscosity of 10 2.5 dPa · s of the ultraviolet transmissive glass of the present invention is 1540 ° C. or lower, 1520 ° C. or lower, 1500 ° C. or lower, particularly 1480 ° C. or lower. If the temperature at 10 2.5 dPa · s is too high, the meltability is lowered, and the production cost of the glass tends to increase. Here, “temperature at 10 2.5 dPa · s” can be measured by a platinum ball pulling method.

本発明の紫外線透過ガラスの30〜380℃の温度範囲における平均線熱膨張係数は、好ましくは30×10−7/℃以上、特に35×10−7/℃以上であり、また95×10−7/℃以下、特に80×10−7/℃以下である。平均線熱膨張係数が低過ぎると、各種部材、特にガラスフリットの熱膨張係数に整合させ難くなる。結果として、ガラスフリットの低融点化が困難になるため、デバイスの工程温度の上昇を招き、デバイスの性能が劣化し易くなる。一方、平均線熱膨張係数が高過ぎると、熱衝撃により、ガラスが破損し易くなる。 The average linear thermal expansion coefficient in the temperature range of 30 to 380 ° C. of the ultraviolet transmitting glass of the present invention is preferably 30 × 10 −7 / ° C. or higher, particularly 35 × 10 −7 / ° C. or higher, and 95 × 10 − 7 / ° C. or less, particularly 80 × 10 −7 / ° C. or less. If the average linear thermal expansion coefficient is too low, it becomes difficult to match the thermal expansion coefficient of various members, particularly glass frit. As a result, since it is difficult to lower the melting point of the glass frit, the process temperature of the device is increased, and the performance of the device is easily deteriorated. On the other hand, if the average linear thermal expansion coefficient is too high, the glass tends to break due to thermal shock.

本発明の紫外線透過ガラスの液相温度は、好ましくは1120℃以下、1100℃以下、1080℃以下、1050℃以下、1000℃以下、950℃以下、900℃以下、特に850℃以下である。液相温度における粘度は、好ましくは104.0dPa・s以上、104.3dPa・s以上、104.5dPa・s以上、104.8dPa・s以上、105.1dPa・s以上、105.3dPa・s以上、特に105.5dPa・s以上である。このようにすれば、耐失透性が向上し、ダウンドロー法、特にオーバーフローダウンドロー法で成形し易くなるため、所望の形状のガラスを作製し易くなる。 The liquidus temperature of the ultraviolet transmissive glass of the present invention is preferably 1120 ° C. or lower, 1100 ° C. or lower, 1080 ° C. or lower, 1050 ° C. or lower, 1000 ° C. or lower, 950 ° C. or lower, 900 ° C. or lower, particularly 850 ° C. or lower. The viscosity at the liquidus temperature is preferably of 10 4.0 dPa · s or more, 10 4.3 dPa · s or more, 10 4.5 dPa · s or more, 10 4.8 dPa · s or more, 10 5.1 dPa · S or more, 10 5.3 dPa · s or more, particularly 10 5.5 dPa · s or more. If it does in this way, devitrification resistance will improve and it will become easy to shape | mold by a downdraw method, especially an overflow downdraw method, Therefore It becomes easy to produce glass of a desired shape.

本発明の紫外線透過ガラスのヤング率は、好ましくは40GPa以上、特に45GPa以上である。ヤング率が低過ぎると、デバイスの製造工程における搬送ラインでガラスが剛性を維持し難くなり、ガラスの変形、反り、破損が発生し易くなる。   The Young's modulus of the ultraviolet transmissive glass of the present invention is preferably 40 GPa or more, particularly 45 GPa or more. If the Young's modulus is too low, it is difficult to maintain the rigidity of the glass in the conveying line in the device manufacturing process, and the glass is likely to be deformed, warped, or broken.

本発明の紫外線透過ガラスは、ガラス組成として、質量%で、SiO 55〜75%、Al 1〜10%、B 10〜30%、CaO 0〜5 %、 BaO 0〜5%、LiO+NaO+KO 1.0〜15%、TiO 0〜0.001%、Fe 0〜0.001%、F 0.5〜2.0%を含有することが好ましい。 Ultraviolet transmitting glass of the present invention has a glass composition, in mass%, SiO 2 55~75%, Al 2 O 3 1~10%, B 2 O 3 10~30%, CaO 0~5%, BaO 0~ 5%, Li 2 O + Na 2 O + K 2 O 1.0-15%, TiO 2 0-0.001%, Fe 2 O 3 0-0.001%, F 0.5-2.0% Is preferred.

上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。   The reason for limiting the content of each component as described above will be described below. In addition, in description of content of each component,% display represents the mass% unless there is particular notice.

SiOは、ガラスの骨格を形成する主成分である。SiOの含有量は、好ましくは50〜80%、55〜75%、58〜70%、特に65〜69%である。SiOの含有量が少な過ぎると、ヤング率、耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。 SiO 2 is a main component that forms a glass skeleton. The content of SiO 2 is preferably 50 to 80%, 55 to 75%, 58 to 70%, particularly 65 to 69%. When the content of SiO 2 is too small, the Young's modulus, acid resistance tends to decrease. On the other hand, if the SiO 2 content is too large, the high-temperature viscosity becomes high and the meltability tends to be lowered, and devitrified crystals such as cristobalite are likely to precipitate, and the liquidus temperature is likely to rise. Become.

AlとBは、耐失透性を高める成分である。Al+Bの含有量は、好ましくは2〜40%、5〜35%、10〜30%、特に20〜28%である。Al+Bの含有量が少な過ぎると、ガラスが失透し易くなる。一方、Al+Bの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、逆にガラスが失透し易くなる。 Al 2 O 3 and B 2 O 3 are components that enhance devitrification resistance. The content of Al 2 O 3 + B 2 O 3 is preferably 2 to 40%, 5 to 35%, 10 to 30%, particularly 20 to 28%. When the content of Al 2 O 3 + B 2 O 3 is too small, easily glass devitrified. On the other hand, when the content of Al 2 O 3 + B 2 O 3 is too large, is impaired balance of components glass composition, the glass is liable to devitrify reversed.

Alは、ヤング率を高める成分であると共に、分相、失透を抑制する成分である。Alの含有量は、好ましくは1〜20%、2〜15%、特に3〜10%である。Alの含有量が少な過ぎると、ヤング率が低下し易くなり、またガラスが分相、失透し易くなる。一方、Alの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなる。 Al 2 O 3 is a component that enhances the Young's modulus and a component that suppresses phase separation and devitrification. The content of Al 2 O 3 is preferably 1 to 20%, 2 to 15%, particularly 3 to 10%. When the content of Al 2 O 3 is too small, easily Young's modulus is lowered and also the glass phase separation, easily devitrified. On the other hand, when the content of Al 2 O 3 is too large, the higher the viscosity at high temperature melting property tends to decrease.

は、溶融性、耐失透性を高める成分であり、また傷の付き易さを改善して、強度を高める成分である。Bの含有量は、好ましくは10〜25%、13〜28%、15〜25%、である。Bの含有量が少な過ぎると、溶融性、耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。一方、Bの含有量が多過ぎると、ヤング率、耐酸性が低下し易くなる。 B 2 O 3 is a component that enhances meltability and devitrification resistance, and is a component that improves the ease of scratching and increases strength. The content of B 2 O 3 is preferably 10 to 25%, 13 to 28%, 15 to 25%. When the content of B 2 O 3 is too small, meltability, devitrification resistance is liable to lower, also resistance tends to decrease with respect to hydrofluoric acid chemical. On the other hand, when the content of B 2 O 3 is too large, the Young's modulus, acid resistance tends to decrease.

LiO、NaO及びKOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与するアルカリ金属酸化物成分である。LiO+NaO+KOの含有量は、好ましくは1.5〜15%、2〜10%、特に3〜6%である。LiO+NaO+KOの含有量が少な過ぎると、溶融性が低下し易くなる。一方、アルカリ金属酸化物の含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。 Li 2 O, Na 2 O, and K 2 O are alkali metal oxide components that contribute to the initial melting of the glass raw material while lowering the high-temperature viscosity to significantly increase the meltability. The content of Li 2 O + Na 2 O + K 2 O is preferably 1.5 to 15%, 2 to 10%, in particular 3 to 6%. When li 2 O + content of Na 2 O + K 2 O is too small, the melting property tends to decrease. On the other hand, if the content of the alkali metal oxide is too large, the thermal expansion coefficient may be unduly high.

LiOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。LiOの含有量は、好ましくは0〜5%、0〜3%、特に0〜1.2%、である。LiOの含有量が少な過ぎると、溶融性が低下し易くなることに加えて、熱膨張係数が不当に低くなる虞がある。一方、LiOの含有量が多過ぎると、ガラスが分相し易くなる。 Li 2 O is a component that contributes to the initial melting of the glass raw material while lowering the high-temperature viscosity to significantly increase the meltability. The content of Li 2 O is preferably 0 to 5%, 0 to 3%, particularly 0 to 1.2%. If the content of Li 2 O is too small, the meltability tends to decrease, and the thermal expansion coefficient may be unduly lowered. On the other hand, when the content of Li 2 O is too large, easily glass phase separation.

NaOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。NaOの含有量は、好ましくは0〜10%、0〜8%、1〜5%、特に1〜3%である。NaOの含有量が少な過ぎると、溶融性が低下し易くなることに加えて、熱膨張係数が不当に低くなる虞がある。一方、NaOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。 Na 2 O is a component that contributes to the initial melting of the glass raw material while lowering the high-temperature viscosity to significantly increase the meltability. It is a component for adjusting the thermal expansion coefficient. The content of Na 2 O is preferably 0 to 10%, 0 to 8%, 1 to 5%, particularly 1 to 3%. If the content of Na 2 O is too small, the meltability tends to be lowered, and the thermal expansion coefficient may be unduly lowered. On the other hand, when the content of Na 2 O is too large, there is a concern that the thermal expansion coefficient becomes unduly high.

Oは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。KOの含有量は、好ましくは0.1〜10%、0.5〜5%、特に1〜3%である。KOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。 K 2 O is a component that contributes to the initial melting of the glass raw material while lowering the high-temperature viscosity to significantly increase the meltability. It is a component for adjusting the thermal expansion coefficient. The content of K 2 O is preferably 0.1 to 10%, 0.5 to 5%, particularly 1 to 3%. When the content of K 2 O is too large, there is a concern that the thermal expansion coefficient becomes unduly high.

CaO、SrO及びBaOは、高温粘性を下げて、溶融性を高める成分である。CaO+SrO+BaOの含有量は、好ましくは0〜8%、0.1〜5%である。CaO+SrO+BaOの含有量が多過ぎると、ガラスが失透し易くなる。   CaO, SrO, and BaO are components that lower the high-temperature viscosity and increase the meltability. The content of CaO + SrO + BaO is preferably 0 to 8% and 0.1 to 5%. When there is too much content of CaO + SrO + BaO, it will become easy to devitrify glass.

CaOは、高温粘性を下げて、溶融性を高める成分である。またアルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、好ましくは0〜8%、0〜5%、0.01〜1%、0.1〜0.8%である。CaOの含有量が多過ぎると、ガラスが失透し易くなる。なお、CaOの含有量が少な過ぎると、上記効果を享受し難くなる。   CaO is a component that lowers the high-temperature viscosity and increases the meltability. Further, among the alkaline earth metal oxides, since the introduced raw material is relatively inexpensive, it is a component that lowers the raw material cost. The content of CaO is preferably 0 to 8%, 0 to 5%, 0.01 to 1%, and 0.1 to 0.8%. When there is too much content of CaO, it will become easy to devitrify glass. In addition, when there is too little content of CaO, it will become difficult to receive the said effect.

SrOは、耐失透性を高める成分である。SrOの含有量は、好ましくは0〜7%、0〜5%、0〜3%、特に0〜1%である。SrOの含有量が多過ぎると、ガラスが失透し易くなる。   SrO is a component that improves devitrification resistance. The content of SrO is preferably 0 to 7%, 0 to 5%, 0 to 3%, particularly 0 to 1%. When there is too much content of SrO, it will become easy to devitrify glass.

BaOは、耐失透性を高める成分である。BaOの含有量は、好ましくは0〜7%、0.1〜5%、0.5〜3%、1〜1.5%である。BaOの含有量が多過ぎると、ガラスが失透し易くなる。   BaO is a component that increases devitrification resistance. The content of BaO is preferably 0 to 7%, 0.1 to 5%, 0.5 to 3%, and 1 to 1.5%. When there is too much content of BaO, it will become easy to devitrify glass.

上記成分以外にも、250nm以下の波長帯における透過率を低下させない範囲において、任意の他の成分を導入してもよい。なお、上記成分以外の他の成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、5%以下、特に3%以下が好ましい。   In addition to the above components, any other component may be introduced in a range that does not decrease the transmittance in a wavelength band of 250 nm or less. In addition, the content of other components other than the above components is preferably 10% or less, 5% or less, particularly 3% or less as a combined amount from the viewpoint of accurately enjoying the effects of the present invention.

ZrOは、耐酸性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透し易くなる。よって、ZrOの含有量は、好ましくは0.1%以下、より好ましくは0.001〜0.02%、特に0.0001〜0.01%である。 ZrO 2 is a component that enhances acid resistance, but if it is contained in a large amount in the glass composition, the glass tends to devitrify. Therefore, the content of ZrO 2 is preferably 0.1% or less, more preferably 0.001 to 0.02%, and particularly preferably 0.0001 to 0.01%.

FeとTiOは、深紫外域での透過率を低下させる成分である。Fe+TiOの含有量は、好ましくは0.0010%(10ppm)以下、0.00001〜0.0007%(0.1〜7ppm)である。Fe+TiOの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。 Fe 2 O 3 and TiO 2 are components that reduce the transmittance in the deep ultraviolet region. The content of Fe 2 O 3 + TiO 2 is preferably 0.0010% (10 ppm) or less and 0.00001 to 0.0007% (0.1 to 7 ppm). When the content of Fe 2 O 3 + TiO 2 is too large, the glass is colored, the transmittance in the deep ultraviolet region is likely to decrease.

Feは、深紫外域での透過率を低下させる成分である。Feの含有量は、好ましくは0.0010%(10ppm)以下、0.00001〜0.0009%(0.1〜9ppm)、0.00001〜0.0007%(0.1〜7ppm)である。Feの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。 Fe 2 O 3 is a component that reduces the transmittance in the deep ultraviolet region. The content of Fe 2 O 3 is preferably 0.0010% (10 ppm) or less, 0.00001 to 0.0009% (0.1 to 9 ppm), 0.00001 to 0.0007% (0.1 to 7 ppm) ). When the content of Fe 2 O 3 is too large, the glass is colored, the transmittance in the deep ultraviolet region is likely to decrease.

酸化鉄中のFeイオンは、Fe2+又はFe3+の状態で存在する。Fe2+の割合が少な過ぎると、深紫外線での透過率が低下し易くなる。よって、本発明の紫外線透過ガラスに含まれる酸化鉄中のFe2+/(Fe2++Fe3+)の質量割合は、好ましくは0.1以上、0.2以上、0.3以上、0.4以上、特に0.5以上である。 Fe ions in iron oxide exist in the state of Fe 2+ or Fe 3+ . If the proportion of Fe 2+ is too small, the transmittance with deep ultraviolet rays tends to decrease. Therefore, the mass ratio of Fe 2+ / (Fe 2+ + Fe 3+ ) in the iron oxide contained in the ultraviolet ray transmitting glass of the present invention is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more. In particular, it is 0.5 or more.

TiOは、深紫外域での透過率を低下させる成分である。TiOの含有量は、好ましくは0.0010%(10ppm)以下、0.00030%(3ppm)以下、0.00001〜0.00015%(0.1〜1.5ppm)である。TiOの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。 TiO 2 is a component that reduces the transmittance in the deep ultraviolet region. The content of TiO 2 is preferably 0.0010% (10 ppm) or less, 0.00030% (3 ppm) or less, and 0.00001 to 0.00015% (0.1 to 1.5 ppm). When the content of TiO 2 is too large, the glass is colored, the transmittance in the deep ultraviolet region is likely to decrease.

Fは、粘性を下げて溶融性を高める成分である。Fの含有量は、好ましくは0〜2%、0.1〜1.5%、0.5〜1.5%であることが好ましい。   F is a component that lowers the viscosity and increases the meltability. The content of F is preferably 0 to 2%, 0.1 to 1.5%, and 0.5 to 1.5%.

清澄剤としては、他にもClを2000ppm以下、好ましくは1000ppm添加して良い。   As a clarifying agent, Cl may be added to 2000 ppm or less, preferably 1000 ppm.

本発明の紫外線透過ガラスの形状は任意に設定可能である。本発明の紫外線透過ガラスの形状は、例えば、平板状、曲板状、直管状、曲管状、棒状、球状、容器状、ブロック状とすることができる。   The shape of the ultraviolet transmissive glass of the present invention can be arbitrarily set. The shape of the ultraviolet ray transmitting glass of the present invention can be, for example, a flat plate shape, a curved plate shape, a straight tubular shape, a curved tubular shape, a rod shape, a spherical shape, a container shape, or a block shape.

本発明の紫外線透過ガラスを平板状とする場合、例えば、主平面寸法は100mm×100mm以上、200mm×200mm以上、400mm×400mm以上、1000mm×1000mm以上、特に2000mm×2000mm以上とすることが好ましい。   When the ultraviolet transmissive glass of the present invention is formed into a flat plate shape, for example, the main plane dimensions are preferably 100 mm × 100 mm or more, 200 mm × 200 mm or more, 400 mm × 400 mm or more, 1000 mm × 1000 mm or more, particularly 2000 mm × 2000 mm or more.

また、本発明の紫外線透過ガラスの厚みは、例えば、0.1〜3.0mmが好ましい。このような厚みであれば、紫外線ランプや磁気記録媒体への書き込み装置等に好適に用いることができる
特に、精密機器用途においては、本発明の紫外線透過ガラスの厚みは0.2〜1.0mm、0.3〜0.6mmとすることがより好ましい。一方、大型装置の用途においては、本発明の紫外線透過ガラスの厚みを0.5mm以上、より好ましくは0.5〜2.0mmとすることが強度剛性を担保する観点から好ましい。なお、一般的に紫外線透過率はガラスの厚みが厚いほど低下するが、本発明の紫外線透過ガラスは250nm以下の波長領域において高い透過率を有するために、従来品に比べ厚みを増加させても同波長域において高い透過率を維持可能である。
Moreover, as for the thickness of the ultraviolet transmissive glass of this invention, 0.1-3.0 mm is preferable, for example. With such a thickness, it can be suitably used for an ultraviolet lamp, a writing device for a magnetic recording medium, etc. Especially, in the precision instrument application, the thickness of the ultraviolet transmissive glass of the present invention is 0.2 to 1.0 mm. More preferably, the thickness is 0.3 to 0.6 mm. On the other hand, in the use of a large apparatus, the thickness of the ultraviolet light transmitting glass of the present invention is preferably 0.5 mm or more, more preferably 0.5 to 2.0 mm from the viewpoint of ensuring strength rigidity. In general, the ultraviolet transmittance decreases as the glass thickness increases. However, since the ultraviolet transmitting glass of the present invention has a high transmittance in a wavelength region of 250 nm or less, even if the thickness is increased compared to the conventional product. High transmittance can be maintained in the same wavelength region.

本発明の紫外線透過ガラスの表面の表面粗さRaは好ましくは10nm以下、9nm以下、8nm以下、7nm以下、6nm以下、5nm以下、4nm以下、3nm以下、2nm以下、特に1nm以下である。表面の表面粗さRaが大き過ぎると、深紫外線での透過率が減少する傾向がある。   The surface roughness Ra of the ultraviolet transmissive glass of the present invention is preferably 10 nm or less, 9 nm or less, 8 nm or less, 7 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, particularly 1 nm or less. If the surface roughness Ra of the surface is too large, the transmittance at deep ultraviolet rays tends to decrease.

本発明の紫外線透過ガラスは、例えば、各種ガラス原料を調合して、ガラスバッチを得た上で、このガラスバッチを溶融し、得られた溶融ガラスを清澄、均質化し、所定形状に成形することで作製することができる。   The ultraviolet transmissive glass of the present invention is prepared by, for example, preparing various glass raw materials to obtain a glass batch, melting the glass batch, clarifying and homogenizing the obtained molten glass, and molding the glass into a predetermined shape. Can be produced.

本発明の紫外線透過ガラスの製造方法では、ガラス原料の少なくとも一部として合成シリカを用いることを特徴とする。特に、気相反応法または液相反応法により生成された粒状合成シリカを用いることが好ましい。また、合成シリカの平均粒径は、好ましくは100μm以下、より好ましくは5〜90μmである。合成シリカは、例えば、不定形シリカや、球形シリカ、或いはこれらの混合である。また、ガラス原料の全シリカ源に占める上記合成シリカの割合は90〜100質量%であることが好ましい。このような原料を用いることにより、ガラスの紫外線透過率を向上できる。   In the manufacturing method of the ultraviolet transmissive glass of this invention, synthetic silica is used as at least one part of a glass raw material. In particular, it is preferable to use granular synthetic silica produced by a gas phase reaction method or a liquid phase reaction method. The average particle size of the synthetic silica is preferably 100 μm or less, more preferably 5 to 90 μm. The synthetic silica is, for example, amorphous silica, spherical silica, or a mixture thereof. Moreover, it is preferable that the ratio of the said synthetic silica to the whole silica source of a glass raw material is 90-100 mass%. By using such a raw material, the ultraviolet transmittance of the glass can be improved.

本発明の紫外線透過ガラスの製造方法において、ガラス原料の一部として、還元剤を用いることが好ましい。このようにすれば、ガラス中に含まれるFe3+が還元されて、深紫外線での透過率が向上する。還元剤として、木粉、カーボン粉末、金属アルミニウム、金属シリコン、フッ化アルミニウム等の材料が使用可能であるが、その中でも金属シリコン、フッ化アルミニウムが好ましい。 In the method for producing an ultraviolet transmitting glass of the present invention, it is preferable to use a reducing agent as a part of the glass raw material. If it does in this way, Fe3 + contained in glass will be reduced and the transmittance in deep ultraviolet rays will improve. As the reducing agent, materials such as wood powder, carbon powder, metallic aluminum, metallic silicon, and aluminum fluoride can be used, among which metallic silicon and aluminum fluoride are preferable.

本発明の紫外線透過ガラスの製造方法において、ガラス原料の一部として、金属シリコンを用いることが好ましく、その添加量は、ガラスバッチの全質量に対して0.001〜3質量%、0.005〜2質量%、0.01〜1質量%、特に0.03〜0.1質量%が好ましい。金属シリコンの添加量が少な過ぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下し易くなる。一方、金属シリコンの添加量が多過ぎると、ガラスが茶色に着色する傾向がある。 In the manufacturing method of the ultraviolet transmissive glass of this invention, it is preferable to use metallic silicon as a part of glass raw material, The addition amount is 0.001-3 mass% with respect to the total mass of a glass batch, 0.005. ~ 2 mass%, 0.01-1 mass%, especially 0.03-0.1 mass% is preferable. When there is too little addition amount of a metal silicon, Fe3 + contained in glass will not be reduced, but the transmittance | permeability in deep ultraviolet rays will fall easily. On the other hand, when there is too much addition amount of metal silicon, there exists a tendency for glass to color brown.

ガラス原料の一部として、フッ化アルミニウム(AlF)を用いることも好ましく、その添加量は、ガラスバッチの全質量に対して、F換算で0.01〜2質量%、0.05〜1.5質量%、0.3〜1.5質量%が好ましい。一方、フッ化アルミニウムの添加量が多過ぎると、Fガスがガラス中に泡として残存する虞がある。フッ化アルミニウムの添加量が少な過ぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下し易くなる。 It is also preferable to use aluminum fluoride (AlF 3 ) as a part of the glass raw material, and the addition amount is 0.01 to 2% by mass, 0.05 to 1 in terms of F with respect to the total mass of the glass batch. 0.5 mass% and 0.3-1.5 mass% are preferable. On the other hand, when there is too much addition amount of aluminum fluoride, there exists a possibility that F gas may remain as a bubble in glass. If the amount of aluminum fluoride added is too small, Fe 3+ contained in the glass is not reduced, and the transmittance at deep ultraviolet rays tends to decrease.

本発明の紫外線透過ガラスの製造方法において、紫外線透過ガラスを平板形状に成形する場合は、ダウンドロー法や、オーバーフローダウンドロー法を用いて成形することが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下頂端で合流させながら、下方に延伸成形してガラス板を成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、薄型のガラス板を作製し易くなると共に、表面を研磨しなくても、板厚ばらつきを低減することができる。結果として、ガラス板の製造コストを低廉化することができる。なお、樋状構造物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。   In the method for producing an ultraviolet light transmitting glass of the present invention, when the ultraviolet light transmitting glass is formed into a flat plate shape, it is preferably formed using a down draw method or an overflow down draw method. In the overflow down draw method, molten glass overflows from both sides of the heat-resistant bowl-shaped structure, and the overflowed molten glass is merged at the lower top end of the bowl-like structure, and then stretched downward to form a glass plate. It is a method to do. In the overflow down draw method, the surface to be the surface of the glass plate is not in contact with the bowl-shaped refractory and is molded in a free surface state. For this reason, it becomes easy to produce a thin glass plate, and variation in plate thickness can be reduced without polishing the surface. As a result, the manufacturing cost of the glass plate can be reduced. In addition, the structure and material of a bowl-shaped structure will not be specifically limited if a desired dimension and surface accuracy are realizable. In addition, the method of applying a force when performing downward stretch molding is not particularly limited. For example, a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with glass, or a plurality of pairs of heat-resistant rolls are contacted only near the end face of the glass. It is also possible to adopt a method of stretching by stretching.

本発明の紫外線透過ガラスの製造方法において、紫外線透過ガラスを管状に成形する場合は、ダウンドロー法や、ベロー法、ダンナー法等を用いて成形することが好ましい。ダンナー法は、傾斜配置された耐熱性のスリーブ状構造物の上方端側に溶融ガラスを流下して巻き付け、下方端側へ流下した溶融ガラスを延伸成形してガラス管を成形する方法である。   In the method for producing an ultraviolet light transmitting glass of the present invention, when the ultraviolet light transmitting glass is formed into a tubular shape, it is preferably formed using a downdraw method, a bellow method, a Dunner method, or the like. The Danner method is a method of forming a glass tube by flowing and winding molten glass around the upper end side of a heat-resistant sleeve-like structure arranged in an inclined manner, and drawing the molten glass flowing down to the lower end side.

成形方法として、上記以外にも、例えば、スロットダウン法、リドロー法、フロート法等を採択することもできる。   As a forming method, in addition to the above, for example, a slot down method, a redraw method, a float method or the like can be adopted.

以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, the present invention will be described based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1は、本発明の実施例(試料No.1〜2)と比較例(試料No.3〜4)を示している。   Table 1 shows examples of the present invention (sample Nos. 1-2) and comparative examples (samples Nos. 3-4).

まず、表中のガラス組成となるように、表に示すガラス原料を調合したガラスバッチを白金坩堝に入れ、1550℃で4時間溶融した。なお、合成シリカとしては気相反応法により生成された平均粒径30μmの合成シリカを用い、天然原料としてはガラス製造用途として一般的な精製済みの平均粒径100〜120μmの天然シリカ原料を用いた。   First, the glass batch which prepared the glass raw material shown to a table | surface so that it might become the glass composition in a table | surface was put into the platinum crucible, and it melted at 1550 degreeC for 4 hours. As synthetic silica, synthetic silica having an average particle diameter of 30 μm produced by a gas phase reaction method is used. As natural raw materials, natural silica raw materials having an average particle diameter of 100 to 120 μm, which have been refined and are generally used for glass production, are used. It was.

得られた溶融ガラスについて、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、平板形状に成形した後、徐冷点より20℃程度高い温度から室温まで3℃/分の速度で徐冷した。   About the obtained molten glass, it stirred using the platinum stirrer and homogenized. Next, the molten glass was poured onto a carbon plate and formed into a flat plate shape, and then slowly cooled from a temperature about 20 ° C. higher than the annealing point to room temperature at a rate of 3 ° C./min.

得られた各試料について透過率を測定した。透過率は、ダブルビーム型分光光度計を用いて、厚み方向の分光透過率を測定した値である。測定試料としては、表1に記載の厚みで両面を光学研磨面(鏡面)に研磨したものを使用した。なお、AFMにより、これらの測定試料の表面の表面粗さRaを測定したところ、測定領域10μm×10μmで0.5〜1.0nmであった。   The transmittance of each obtained sample was measured. The transmittance is a value obtained by measuring the spectral transmittance in the thickness direction using a double beam spectrophotometer. As a measurement sample, one having both thicknesses shown in Table 1 polished to an optically polished surface (mirror surface) was used. In addition, when surface roughness Ra of the surface of these measurement samples was measured by AFM, it was 0.5 to 1.0 nm in a measurement region of 10 μm × 10 μm.

図1は、波長200〜400nmにおける厚さ0.5mmの試料No.1〜3の透過率曲線である。表1および図1から明らかなように、実施例のガラスは250nm以下の波長域における紫外線透過率が比較例のガラスに比べて高かった。   FIG. 1 shows a sample No. 5 having a thickness of 0.5 mm at a wavelength of 200 to 400 nm. It is the transmittance | permeability curve of 1-3. As is clear from Table 1 and FIG. 1, the glass of the example had a higher ultraviolet transmittance in the wavelength region of 250 nm or less than the glass of the comparative example.

なお、上記実施例では、溶融ガラスを流し出して平板形状に成形したが、工業的規模で生産する場合には、オーバーフローダウンドロー法等で平板形状に成形し、両表面が未研磨の状態で使用に供することが好ましい。また、管状に形成する場合は、ダウンドロー法やダンナー法等で管状に成形することが好ましい。   In the above embodiment, molten glass was poured out and formed into a flat plate shape. However, when produced on an industrial scale, it was formed into a flat plate shape by an overflow down draw method or the like, and both surfaces were unpolished. It is preferable to use. Moreover, when forming in a tubular shape, it is preferable to form the tubular shape by a downdraw method, a Dunner method, or the like.

本発明の紫外線透過ガラスは、例えば、殺菌灯や、磁気記録媒体の読み書き装置、その他紫外線を用いた装置に備えられるガラス等として好適である。   The ultraviolet transmissive glass of the present invention is suitable, for example, as a glass provided in a germicidal lamp, a magnetic recording medium read / write device, and other devices using ultraviolet rays.

Claims (8)

厚み0.5mm、波長200nmにおける透過率(%)をT200とした場合、T200≧75であることを特徴とする紫外線透過ガラス。 An ultraviolet transmissive glass characterized by T 200 ≧ 75, where T 200 is a transmittance (%) at a thickness of 0.5 mm and a wavelength of 200 nm. 厚み0.5mm、波長250nmにおける透過率(%)をT250とした場合、
200/T250≧0.75以上である、請求項1に記載の紫外線透過ガラス。
When the thickness 0.5 mm, the transmittance at a wavelength of 250nm (%) was the T 250,
The ultraviolet transmissive glass according to claim 1, wherein T 200 / T 250 ≧ 0.75 or more.
厚み0.5mm、波長220nmにおける透過率(%)をT220とした場合、T220≧80である、請求項1または2に記載の紫外線透過ガラス。 The ultraviolet ray transmitting glass according to claim 1, wherein T 220 ≧ 80 when the transmittance (%) at a thickness of 0.5 mm and a wavelength of 220 nm is T 220 . 厚みが0.1〜3.0mmの板状または管状である、請求項1〜3の何れかに記載の紫外線透過ガラス。   The ultraviolet ray transmitting glass according to any one of claims 1 to 3, which is a plate or tube having a thickness of 0.1 to 3.0 mm. ガラス組成として、質量%で、SiO 55〜75%、Al 1〜10%、B 10〜30%、CaO 0〜5 %、 BaO 0〜5%、LiO+NaO+KO 1.0〜15%、TiO 0〜0.001%、Fe 0〜0.001%を含有する、請求項1〜4の何れかに記載の紫外線透過ガラス。 As a glass composition, in mass%, SiO 2 55~75%, Al 2 O 3 1~10%, B 2 O 3 10~30%, CaO 0~5%, BaO 0~5%, Li 2 O + Na 2 O + K 2 O 1.0~15%, TiO 2 0~0.001 %, containing Fe 2 O 3 0~0.001%, UV transmittance glass according to claim 1. 請求項1〜5の何れかに記載の紫外線透過ガラスの製造方法であって、ガラス原料の少なくとも一部として合成シリカを用いることを特徴とする、紫外線透過ガラスの製造方法。   6. The method for producing an ultraviolet transmissive glass according to claim 1, wherein synthetic silica is used as at least a part of the glass raw material. 前記合成シリカが、気相反応法または液相反応法により生成された粒体シリカである、請求項6に記載の紫外線透過ガラスの製造方法。   The method for producing an ultraviolet transmissive glass according to claim 6, wherein the synthetic silica is granular silica produced by a gas phase reaction method or a liquid phase reaction method. 前記合成シリカの平均粒径が100μm以下であり、
前記ガラス原料の全シリカ源に占める前記合成シリカの割合が90〜100質量%である、請求項6または7に記載の紫外線透過ガラスの製造方法。
The synthetic silica has an average particle size of 100 μm or less,
The manufacturing method of the ultraviolet transmissive glass of Claim 6 or 7 whose ratio of the said synthetic silica to the total silica source of the said glass raw material is 90-100 mass%.
JP2018034345A 2018-02-28 2018-02-28 Ultraviolet transmitting glass and its manufacturing method Active JP7289612B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018034345A JP7289612B2 (en) 2018-02-28 2018-02-28 Ultraviolet transmitting glass and its manufacturing method
PCT/JP2018/047207 WO2019167399A1 (en) 2018-02-28 2018-12-21 Uv transmitting glass and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034345A JP7289612B2 (en) 2018-02-28 2018-02-28 Ultraviolet transmitting glass and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019147722A true JP2019147722A (en) 2019-09-05
JP7289612B2 JP7289612B2 (en) 2023-06-12

Family

ID=67805703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034345A Active JP7289612B2 (en) 2018-02-28 2018-02-28 Ultraviolet transmitting glass and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7289612B2 (en)
WO (1) WO2019167399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218938A1 (en) * 2022-05-13 2023-11-16 日本電気硝子株式会社 Uv-transmitting glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021075407A (en) * 2019-11-05 2021-05-20 日本電気硝子株式会社 Ultraviolet transmission glass

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021830A (en) * 1983-07-15 1985-02-04 Nippon Electric Glass Co Ltd Ultraviolet ray transmissive glass useful for sealing alumina
JPS62256739A (en) * 1986-04-26 1987-11-09 Seiko Epson Corp Glass
JPH07187706A (en) * 1993-10-15 1995-07-25 Jenaer Glaswerk Gmbh Reductively molten borosilicate glass having improved ultraviolet transmittance and hydrolysis stability and its usage
JPH1036134A (en) * 1996-07-22 1998-02-10 Nippon Electric Glass Co Ltd Ultraviolet light-transmitting glass for sealing aulimina
US20070265155A1 (en) * 2006-05-12 2007-11-15 Cornelius Lauren K UV transmitting glasses
JP2011032162A (en) * 2009-08-04 2011-02-17 Schott Ag Highly ultraviolet-transmitting borosilicate glass with reduced boron content
JP2015140389A (en) * 2014-01-28 2015-08-03 株式会社アドマテックス Encapsulation material for mold under fill and manufacturing method therefor
JP2015193521A (en) * 2014-03-19 2015-11-05 日本電気硝子株式会社 Ultraviolet transmission glass and production method
WO2017057375A1 (en) * 2015-09-30 2017-04-06 旭硝子株式会社 Ultraviolet radiation-transmitting glass
JP2018002548A (en) * 2016-07-01 2018-01-11 信越石英株式会社 Method of manufacturing quartz glass member for ultraviolet led

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11074369B2 (en) 2019-07-29 2021-07-27 Google Llc Privacy preserving remarketing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021830A (en) * 1983-07-15 1985-02-04 Nippon Electric Glass Co Ltd Ultraviolet ray transmissive glass useful for sealing alumina
JPS62256739A (en) * 1986-04-26 1987-11-09 Seiko Epson Corp Glass
JPH07187706A (en) * 1993-10-15 1995-07-25 Jenaer Glaswerk Gmbh Reductively molten borosilicate glass having improved ultraviolet transmittance and hydrolysis stability and its usage
JPH1036134A (en) * 1996-07-22 1998-02-10 Nippon Electric Glass Co Ltd Ultraviolet light-transmitting glass for sealing aulimina
US20070265155A1 (en) * 2006-05-12 2007-11-15 Cornelius Lauren K UV transmitting glasses
JP2011032162A (en) * 2009-08-04 2011-02-17 Schott Ag Highly ultraviolet-transmitting borosilicate glass with reduced boron content
JP2015140389A (en) * 2014-01-28 2015-08-03 株式会社アドマテックス Encapsulation material for mold under fill and manufacturing method therefor
JP2015193521A (en) * 2014-03-19 2015-11-05 日本電気硝子株式会社 Ultraviolet transmission glass and production method
WO2017057375A1 (en) * 2015-09-30 2017-04-06 旭硝子株式会社 Ultraviolet radiation-transmitting glass
JP2018002548A (en) * 2016-07-01 2018-01-11 信越石英株式会社 Method of manufacturing quartz glass member for ultraviolet led

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218938A1 (en) * 2022-05-13 2023-11-16 日本電気硝子株式会社 Uv-transmitting glass

Also Published As

Publication number Publication date
JP7289612B2 (en) 2023-06-12
WO2019167399A1 (en) 2019-09-06

Similar Documents

Publication Publication Date Title
JP6777893B2 (en) UV transmissive glass
JP5557168B2 (en) Method for producing tempered glass substrate and tempered glass substrate
JP5589252B2 (en) Tempered glass substrate
WO2020045417A1 (en) Optical glass and optical component
US9663395B2 (en) Alkali-free glass and alkali-free glass plate using same
JP2012072054A (en) Cover glass and method for producing the same
WO2009157297A1 (en) Toughened glass and method for producing the same
JP2008115071A (en) Reinforced glass substrate
WO2021070707A1 (en) Ultraviolet transmission glass
JP4756856B2 (en) Glass composition and method for producing the same
CN105384337A (en) Glass, light guide plate, backlight unit, liquid crystal panel, liquid crystal display terminal and preparation method of glass
JP2019182709A (en) Optical glass
WO2019167399A1 (en) Uv transmitting glass and method for producing same
JP2019006643A (en) Optical glass
WO2021090631A1 (en) Ultraviolet transmission glass
JPWO2007136071A1 (en) Optical glass
JPWO2010035770A1 (en) Optical glass
WO2020067048A1 (en) Optical glass
JP2023168201A (en) Ultraviolet transmission glass
WO2023218938A1 (en) Uv-transmitting glass
JPWO2019131528A1 (en) cover glass
WO2010074211A1 (en) Optical glass
JP2012211041A (en) Optical glass
JP2014001120A (en) Optical glass
JPWO2011019016A1 (en) Optical glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220518

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220527

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220530

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220624

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220629

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221214

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230405

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230531

R150 Certificate of patent or registration of utility model

Ref document number: 7289612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150