JP2019146277A - Linear motor and compressor mounted with the same - Google Patents

Linear motor and compressor mounted with the same Download PDF

Info

Publication number
JP2019146277A
JP2019146277A JP2016087639A JP2016087639A JP2019146277A JP 2019146277 A JP2019146277 A JP 2019146277A JP 2016087639 A JP2016087639 A JP 2016087639A JP 2016087639 A JP2016087639 A JP 2016087639A JP 2019146277 A JP2019146277 A JP 2019146277A
Authority
JP
Japan
Prior art keywords
movable part
frequency
spring
linear motor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016087639A
Other languages
Japanese (ja)
Inventor
大介 松家
Daisuke Matsuka
大介 松家
小山 昌喜
Masaki Koyama
昌喜 小山
鈴木 尚礼
Hisanori Suzuki
尚礼 鈴木
修平 永田
Shuhei Nagata
修平 永田
賢一 岡本
Kenichi Okamoto
賢一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016087639A priority Critical patent/JP2019146277A/en
Priority to PCT/JP2017/014768 priority patent/WO2017187958A1/en
Publication of JP2019146277A publication Critical patent/JP2019146277A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Linear Motors (AREA)

Abstract

To provide a linear motor capable of efficiently operating with two drive frequencies and a compressor mounted with the same.SOLUTION: A linear motor comprises: a first movable part having one of a permanent magnet and a coil; a second movable part having the other of the permanent magnet and the coil; a stationary part; a first spring connected between the first movable part and the second movable part; and a second spring connected between the second movable part and the stationary part. The first movable part and the second movable part reciprocate in approximately the same direction. The linear motor performs a low range mode supplying an AC current of a frequency in the vicinity of a low range side resonance mode frequency and a high range mode supplying an AC current of a frequency in the vicinity of a high range side resonance mode frequency.SELECTED DRAWING: Figure 3

Description

本発明は、リニアモータおよびリニアモータを搭載した圧縮機に関する。   The present invention relates to a linear motor and a compressor equipped with the linear motor.

本発明に関連する技術として、例えば、特許文献1が挙げられる。
特許文献1は、シリンダを有する基準アッセンブリ、及び基準アッセンブリに対して変位する共振アッセンブリを有し、基準アッセンブリ及びシェル1がスプリング9で接続し、基準アッセンブリ及び共振アッセンブリが共振スプリング3で接続した振動性動システムを開示している(段落0003−0005、図1、図2等)。制動スプリング9の機能は、共振アッセンブリの動作によって生じる振動の伝達を最小限に抑えることである旨の開示がある。
As a technique related to the present invention, for example, Patent Document 1 is cited.
Patent Document 1 includes a reference assembly having a cylinder and a resonance assembly that is displaced with respect to the reference assembly. The reference assembly and the shell 1 are connected by a spring 9, and the reference assembly and the resonance assembly are connected by a resonance spring 3. A sexual movement system is disclosed (paragraphs 0003-0005, FIG. 1, FIG. 2, etc.). There is a disclosure that the function of the brake spring 9 is to minimize the transmission of vibrations caused by the operation of the resonant assembly.

また、特許文献1は、シェル1及び基準アッセンブリ20を接続する第1の釣り合い手段30、基準アッセンブリ20及び共振アッセンブリ10を接続する共振スプリング3、並びに、シェル1及び共振アッセンブリ10を接続する第2の釣り合い手段40を開示しており、第1の釣り合い手段30の弾性係数(バネ定数)KSと第2の釣り合い手段40の弾性係数KBとの関係に着目している(段落0024、図8等)。   Further, Patent Document 1 discloses a first balancing means 30 that connects the shell 1 and the reference assembly 20, a resonance spring 3 that connects the reference assembly 20 and the resonance assembly 10, and a second that connects the shell 1 and the resonance assembly 10. The balance means 40 is disclosed, and attention is paid to the relationship between the elastic coefficient (spring constant) KS of the first balance means 30 and the elastic coefficient KB of the second balance means 40 (paragraph 0024, FIG. 8, etc.). ).

特表2004−503717号公報JP-T-2004-503717

特許文献1は、制動スプリング9の弾性係数及び共振スプリング3の弾性係数の関係、又は、このような弾性係数の関係に基づいたコンプレッサの駆動制御について、特定の技術的思想を開示するものではない。また、特許文献1は、コンプレッサの振動を抑制するものであり、この場合、シェル1への振動の伝達を抑制すべく、スプリング9のバネ定数は小さく、すなわち、スプリング9を柔らかく設定するのが通常である。
特許文献1のように構成すると、共振制御が可能な周波数領域を確保することについて改善の余地が残る。
Patent Document 1 does not disclose a specific technical idea regarding the relationship between the elastic coefficient of the braking spring 9 and the elastic coefficient of the resonance spring 3 or the drive control of the compressor based on the relationship between such elastic coefficients. . Patent Document 1 is for suppressing the vibration of the compressor. In this case, in order to suppress the transmission of vibration to the shell 1, the spring constant of the spring 9 is small, that is, the spring 9 is set soft. It is normal.
If it comprises like patent document 1, the room for improvement remains about ensuring the frequency area | region in which resonance control is possible.

上記事情に鑑みた本発明は、永久磁石又はコイルの一方を有する第一の可動部と、永久磁石又はコイルの他方を有する第二の可動部と、固定部と、前記第一の可動部と前記第二の可動部とを繋ぐ第一のばねと、前記第二の可動部と前記固定部とを繋ぐ第二のばねと、を備え、前記第一の可動部及び第二の可動部が略同じ方向に往復動するリニアモータであって、低域側共振モード周波数近傍の周波数の交流電流を前記コイルに流す低域モードと、高域側共振モード周波数近傍の周波数の交流電流を前記コイルに流す高域モードと、を実行することを特徴とする。   In view of the above circumstances, the present invention provides a first movable part having one of a permanent magnet or a coil, a second movable part having the other of the permanent magnet or the coil, a fixed part, and the first movable part. A first spring that connects the second movable part, and a second spring that connects the second movable part and the fixed part, the first movable part and the second movable part being A linear motor that reciprocates in substantially the same direction, wherein a low-frequency mode in which an alternating current having a frequency in the vicinity of a low-frequency resonance mode frequency is passed through the coil, and an alternating current having a frequency in the vicinity of a high-frequency resonance mode frequency are applied to the coil. And a high-frequency mode that flows in

本発明によれば、共振制御を効果的に行うことができるリニアモータ及びこれを搭載した圧縮機を提供することができる。
上記以外の課題、構成、および効果は、以下の実施例の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, the linear motor which can perform resonance control effectively, and the compressor carrying this can be provided.
Problems, configurations, and effects other than those described above will become apparent from the description of the following examples.

実施例1のリニアモータの概略図Schematic of the linear motor of Example 1 実施例1に係るリニアモータをバネマスダンパ系として描いた図The figure which drawn the linear motor concerning Example 1 as a spring mass damper system 実施例1のコイルを流れる電流から第一の可動部の変位量までの伝達関数の周波数応答特性を示す図The figure which shows the frequency response characteristic of the transfer function from the electric current which flows through the coil of Example 1 to the displacement amount of the 1st movable part. 実施例1のコイルを流れる電流から第二の可動部の変位量までの伝達関数の周波数応答特性を示す図The figure which shows the frequency response characteristic of the transfer function from the electric current which flows through the coil of Example 1 to the displacement amount of the 2nd movable part. 実施例2の圧縮機の基本構造を示す図The figure which shows the basic structure of the compressor of Example 2. 実施例2の二つの可動部の相対変位量に関する周波数応答特性図Frequency response characteristic diagram regarding the relative displacement of the two movable parts of Example 2 実施例2の変位量の時間波形(駆動周波数=fDisplacement time waveform of Example 2 (drive frequency = f L ) 実施例2の変位量の時間波形(駆動周波数=fDisplacement time waveform of Example 2 (drive frequency = f H ) 比較例1の第一の可動部変位量に関する周波数応答特性図Frequency response characteristic diagram regarding first moving part displacement amount of Comparative Example 1 比較例1の第二の可動部変位量に関する周波数応答特性図Frequency response characteristic diagram regarding the second movable part displacement amount of Comparative Example 1 比較例2の二つの可動部変位量に関する周波数応答特性図Frequency response characteristic diagram regarding displacement of two movable parts of Comparative Example 2 比較例2の変位量の時間波形(駆動周波数=fDisplacement time waveform of Comparative Example 2 (drive frequency = f H )

以下、添付の図面を用いて本発明の各実施例を説明するが、本発明は、以下で詳述する各実施例の構成に限定されるものではない。また、本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、或る構成要素が他の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。   Hereinafter, each embodiment of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited to the configuration of each embodiment described in detail below. The various components of the present invention do not necessarily have to be independent of each other. A plurality of components are formed as a single member, and a single component is formed of a plurality of members. That a certain component is a part of another component, a part of a certain component overlaps with a part of another component, and the like.

[リニアモータ100]
図1は、本実施例に係るリニアモータ100の概略図、図2(a)、(b)は本実施例に係るリニアモータ100をバネマスダンパ系として描いた図である。リニアモータ100は、第一の可動部1、第二の可動部2、固定部3、永久磁石4、磁性体であるヨーク6(6a,6b)、ヨーク6に巻回したコイル5(5a,5b)、第一のばね10、第二のばね11及び減衰部12を有する。
[Linear motor 100]
FIG. 1 is a schematic diagram of a linear motor 100 according to the present embodiment, and FIGS. 2A and 2B are diagrams illustrating the linear motor 100 according to the present embodiment as a spring mass damper system. The linear motor 100 includes a first movable part 1, a second movable part 2, a fixed part 3, a permanent magnet 4, a yoke 6 (6a, 6b) that is a magnetic body, and a coil 5 (5a, 5) wound around the yoke 6. 5b), having a first spring 10, a second spring 11 and a damping part 12.

第一の可動部1は、コイル5に対向可能な永久磁石4を有し、第一のばね10及び減衰部12を介して第二の可動部2に接続している。
第二の可動部2は、コイル5及びヨーク6を有し、第二のばね11を介して固定部3に接続している。コイル5のそれぞれは、第一の可動部1を挟んで互いに対向している。
第一の可動部1及び第二の可動部2はそれぞれ、固定部3に対して略同一方向に往復動可能である。
固定部3は、例えばリニアモータ100の筐体としてもよいし、リニアモータ100とは別に、例えば地面としてもよい。固定部3には、第二のばね11の一端が接続している。
The first movable part 1 has a permanent magnet 4 that can face the coil 5, and is connected to the second movable part 2 via a first spring 10 and a damping part 12.
The second movable part 2 has a coil 5 and a yoke 6 and is connected to the fixed part 3 via a second spring 11. Each of the coils 5 is opposed to each other with the first movable part 1 interposed therebetween.
The first movable portion 1 and the second movable portion 2 can reciprocate in substantially the same direction with respect to the fixed portion 3.
The fixing unit 3 may be a housing of the linear motor 100, for example, or may be the ground separately from the linear motor 100, for example. One end of the second spring 11 is connected to the fixed portion 3.

第二のばね11の他端には、第二の可動部2が接続している。第二の可動部2について、第二の可動部2を挟んで第二のばね11の伸張方向(図1中の紙面上下方向)の反対側には、第一のばね10の一端及び減衰部12の一端が接続している。第一のばね10の他端及び減衰部12の他端は、第一の可動部1に接続している。第一の可動部1及び第二の可動部2は、第一のばね10及び第二のばね11の略伸張方向に往復動可能である。   The second movable portion 2 is connected to the other end of the second spring 11. With respect to the second movable part 2, one end of the first spring 10 and the damping part are arranged on the opposite side of the second spring 11 in the extending direction (the vertical direction in the drawing in FIG. 1) across the second movable part 2. One end of 12 is connected. The other end of the first spring 10 and the other end of the damping part 12 are connected to the first movable part 1. The first movable part 1 and the second movable part 2 can reciprocate in the substantially extending direction of the first spring 10 and the second spring 11.

リニアモータ100は、コイル5に交流電流を流すことで発することができる交流磁界により、第二の可動部2に往復動力を与えることができる。第一の可動部1は、この往復動力の反作用により往復動力を受けることができる。
永久磁石4の磁化方向は、図1の紙面左右方向である。また、コイル5に電流が流れた際に発生する磁界の閉ループは、図1の紙面内である。そのため、コイル5に流す電流によって第一の可動部1と第二の可動部2の間に吸引力又は反発力が生じる。本実施例に係るリニアモータ100では、コイル5に交流電流を流すことで、二つの可動部1,2間の距離を振動させることができる。制御によって可変な交流電流の周波数を動作周波数fopと定義する。なお、図1中の紙面下方向は重力方向にしても良いが、必ずしも重力方向に一致する必要はなく、左右方向の何れかが重力方向に平行であっても良い。この場合、第二の可動部2を地面等に対して支持する別の弾性体を設けても良い。
The linear motor 100 can give reciprocating power to the second movable part 2 by an AC magnetic field that can be generated by passing an AC current through the coil 5. The 1st movable part 1 can receive reciprocating power by reaction of this reciprocating power.
The magnetization direction of the permanent magnet 4 is the left-right direction in FIG. Further, the closed loop of the magnetic field generated when a current flows through the coil 5 is in the plane of FIG. Therefore, an attractive force or a repulsive force is generated between the first movable part 1 and the second movable part 2 by the current flowing through the coil 5. In the linear motor 100 according to the present embodiment, the distance between the two movable parts 1 and 2 can be vibrated by passing an alternating current through the coil 5. The frequency of the alternating current that can be changed by the control is defined as an operating frequency fop. 1 may be the gravitational direction, but it is not necessarily coincident with the gravitational direction, and either the left-right direction may be parallel to the gravitational direction. In this case, you may provide another elastic body which supports the 2nd movable part 2 with respect to the ground etc.

なお、リニアモータ100の停止状態で永久磁石4の図心を図1中の紙面に垂直な方向から観察した場合、永久磁石4の図心は、ヨーク6の図心より下方又は上方に位置することができる。こうすることで、リニアモータ100の起動時に、効果的に往復動力を発することができる。   When the centroid of the permanent magnet 4 is observed from a direction perpendicular to the paper surface in FIG. 1 while the linear motor 100 is stopped, the centroid of the permanent magnet 4 is located below or above the centroid of the yoke 6. be able to. By doing so, reciprocating power can be effectively generated when the linear motor 100 is started.

リニアモータ100は、コイル5に流す交流電流の周波数の通常の範囲が存在する。この範囲はリニアモータ100の用途によって異なり得るが、例えば後述する圧縮機の場合、冷蔵庫に搭載されるような小型のものであれば、10Hz以上100Hz以下が用いられ易い。以下、説明するように、二慣性系である本実施例のリニアモータ100の共振モード周波数の両者が、この数値範囲に収まることが好ましい。こうすることで、リニアモータ100は、低域側共振モード周波数f近傍の交流電流にて駆動する低域モードと、高域側共振モード周波数f近傍の交流電流にて駆動する高域モードとを区別して実行可能である。 The linear motor 100 has a normal range of the frequency of the alternating current flowing through the coil 5. This range may vary depending on the application of the linear motor 100. For example, in the case of a compressor described later, if it is a small one mounted on a refrigerator, 10 Hz to 100 Hz is easily used. As will be described below, it is preferable that both of the resonance mode frequencies of the linear motor 100 of the present embodiment, which is a two-inertia system, fall within this numerical range. In this way, the linear motor 100, and the low frequency mode to drive at a low frequency side resonant mode frequency f L vicinity of the alternating current, the high-frequency mode of driving at a high frequency side resonant mode frequency f H vicinity of the alternating current And can be executed separately.

[二慣性系の共振モード周波数]
リニアモータ100は、第一の可動部1及び第二の可動部2が固定部3に対して変位可能な二慣性系である。すなわち、第一の可動部1は、第二のばね11の振動を介して固定部3に対して振動可能であり、第一のばね10を介して第二の可動部2に対して振動可能である。また第二の可動部2は、第一のばね10及び第二のばね11の合成ばねを介して固定部3に対して振動可能である。第一の可動部1及び第二の可動部2の振動方向は、それぞれ略同一方向である。
このようなリニアモータ100は、2つの共振モードを持つ。共振モード周波数fおよびf(f<f)は下記の数1で導出可能である。
[Resonant mode frequency of two-inertia system]
The linear motor 100 is a two-inertia system in which the first movable part 1 and the second movable part 2 can be displaced with respect to the fixed part 3. That is, the first movable part 1 can vibrate with respect to the fixed part 3 via the vibration of the second spring 11, and can vibrate with respect to the second movable part 2 via the first spring 10. It is. Further, the second movable part 2 can vibrate with respect to the fixed part 3 via a combined spring of the first spring 10 and the second spring 11. The vibration directions of the first movable part 1 and the second movable part 2 are substantially the same direction.
Such a linear motor 100 has two resonance modes. The resonance mode frequencies f L and f H (f L <f H ) can be derived by the following formula 1.

Figure 2019146277
Figure 2019146277

なお、説明を簡単にするため、減衰部12の減衰係数cを無視した非減衰系での共振モード周波数を明示しているが、減衰係数cは零でも非零でも、本実施例の要点は維持される。ここで、第一のばね10のばね定数をk、第二のばね20のばね定数をk、第一の可動部質量をm、第二の可動部質量をmとする。第一のばね定数と第一の可動部質量より求まる角速度ω、第二のばね定数と第二の可動部質量より求まる角速度ω、可動部の質量比μは下記の数2に示す通りである。ここで、m1やm2には、可動子に接続しているばねの質量の一部又は全部を加えて計算すると、さらに高精度となる。例えば、m1に第一のばね10の質量の1/3を含ませることができる。また、m2に第一のばね10の質量の全てと、第二のばね11質量の1/3とを含ませることができる。 In order to simplify the explanation, the resonance mode frequency in the non-attenuating system ignoring the attenuation coefficient c 1 of the attenuation unit 12 is clearly shown, but the attenuation coefficient c 1 may be zero or non-zero. The main points are maintained. Here, the spring constant of the first spring 10 is k 1 , the spring constant of the second spring 20 is k 2 , the first movable part mass is m 1 , and the second movable part mass is m 2 . The angular velocity ω 1 obtained from the first spring constant and the first movable part mass, the angular velocity ω 2 obtained from the second spring constant and the second movable part mass, and the mass ratio μ of the movable part are as shown in Equation 2 below. It is. Here, when calculating by adding a part or all of the mass of the spring connected to the mover to m1 and m2, the accuracy becomes higher. For example, 1/3 of the mass of the first spring 10 can be included in m1. Further, m2 can include all of the mass of the first spring 10 and 1/3 of the mass of the second spring 11.

Figure 2019146277
Figure 2019146277

本実施例では、k=50N/mm、k=300N/mm、m=0.5kg、m=4kgの場合、共振モード周波数は38.3Hzおよび57.3Hzとしている。
本実施例は、例えば、ωとωを比較的近い値、好ましくは一致させることで、fとfを近接させることができる。このようにして(f/f)を1に近くすると、共振モード周波数を互いに近づけることができる。具体的には、下記数3の関係が成立するように、各パラメータを設定することが好ましい。
In this example, when k 1 = 50 N / mm, k 2 = 300 N / mm, m 1 = 0.5 kg, and m 2 = 4 kg, the resonance mode frequencies are 38.3 Hz and 57.3 Hz.
In this embodiment, for example, f L and f R can be brought close to each other by making ω 1 and ω 2 relatively close to each other, preferably matched. When (f R / f L ) is made close to 1 in this way, the resonance mode frequencies can be made closer to each other. Specifically, it is preferable to set each parameter so that the relationship of the following formula 3 is established.

Figure 2019146277
Figure 2019146277

ここで、Aは、0.6以上1.4以下、好ましくは0.8以上1.2以下、より好ましくは0.9以上1.1以下である。値Aをこのような上下限範囲に収めることで、後述するように、二慣性系の共振モード周波数を互いに近いものにしつつ、低域側共振周波数fを或る程度高い値にすることができる。 Here, A is 0.6 or more and 1.4 or less, preferably 0.8 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less. By housing the value A in such upper and lower limit range, as described later, while the close to each other resonant mode frequency of the two-inertia, to be a low band side resonance frequency f L to a certain extent higher value it can.

ここで、リニアモータ100は通常、地面に対して大きく往復動する可動部(本実施例では第一の可動部1)の方を、他方の可動部よりも小さい質量となるようにすると好ましい。このため、m<mの場合、k<k(添え字のk及びlは、一方が1、他方が2)とする方が好ましい。 Here, in general, it is preferable that the linear motor 100 has a movable part (first movable part 1 in the present embodiment) that reciprocates greatly with respect to the ground so as to have a smaller mass than the other movable part. For this reason, when m k <m l , it is preferable that k k <k l (subscripts k and l are one and the other is 2).

なお、リニアモータ100の用途として、非常に低出力のモードと非常に高出力のモードとを使い分けたい場合は、(f/f)が高い値になるようにすればよい。種々の用途に応じて設計することができるが、(f/f)を1超20以下にする機器が多いと考えられる。 In addition, as a usage of the linear motor 100, when it is desired to use a very low output mode and a very high output mode separately, the value of (f R / f L ) may be set to a high value. Can be designed according to various applications, is considered to be large devices to a super 20 or less (f R / f L).

[可動部の変位]
力及び変位の正方向を、図2中の紙面上向きとする。コイル5に電流を流すことで発生する電磁力Fは、第一の可動部1に作用し、第二の可動部2には、電磁力Fと同じ大きさかつ反対方向の反力が作用する。以下、第一の可動部1の変位量をx、第二の可動部2の変位量をxとし、減衰定数cは0.1とする。
[Displacement of moving parts]
The positive direction of force and displacement is assumed to be upward in the drawing in FIG. The electromagnetic force F generated by passing a current through the coil 5 acts on the first movable portion 1, and the second movable portion 2 has the same magnitude and opposite reaction force as the electromagnetic force F. . Hereinafter, it is assumed that the displacement amount of the first movable portion 1 is x 1 , the displacement amount of the second movable portion 2 is x 2 , and the attenuation constant c 1 is 0.1.

図3はコイル5を流れる電流から第一の可動部1の変位量xまでの伝達関数の周波数応答特性を示す図、図4はコイル5を流れる電流から第二の可動部2の変位量xまでの伝達関数の周波数応答特性を示す図である。
可動部1,2の変位量はそれぞれ、共振モード周波数fおよびfで大きなピークを持つ。第一の可動部1は共振モード周波数fとfの間にゲインが大きく低下する反共振点を持つ。第一の可動部1と第二の可動部2の位相関係を見ると、低域側の共振モード周波数f近傍やそれ以下の周波数では同位相であり、可動部1の反共振点を超えた後は逆位相となっている。
FIG. 3 is a diagram showing the frequency response characteristics of the transfer function from the current flowing through the coil 5 to the displacement x 1 of the first movable part 1, and FIG. 4 is the displacement amount of the second movable part 2 from the current flowing through the coil 5. is a diagram showing the frequency response characteristic of the transfer function up to x 2.
The amount of displacement of the movable part 1 and 2 respectively, with a large peak at a resonant mode frequency f L and f H. The first movable part 1 has an anti-resonance point of the gain is greatly reduced during the resonant mode frequencies f L and f H. Looking at the phase relationship between the first movable part 1 and the second movable part 2, it is in the same phase in the vicinity of the resonance mode frequency f L on the low frequency side or lower, and exceeds the antiresonance point of the movable part 1. After that, the phase is reversed.

本実施例に係るリニアモータ100は、コイル5に流す電流の周波数について、低域側の共振モード周波数fを含む範囲とするモードと、高域側の共振モード周波数fを含む範囲とするモードを持つ。前者は第一の可動部1と第二の可動部2が同位相の関係にあり、後者は逆位相の関係にある。つまり、本実施例に係るリニアモータ100では二つの可動部1,2が同じ方向と反対方向に動作する二つの運転モードを持つ。すなわち、低域モードでは、二つの可動部1,2が同じ方向に動作し、高域モードでは、二つの可動部1,2が反対方向に動作する。このように、振動が大きくなりやすい高域モードにおける可動部1,2の動作方向が反対の逆位相であるため、振動の発生を抑制できる。 Linear motor 100 according to this embodiment, the frequency of the current flowing through the coil 5, to a mode in a range including a resonant mode frequency f L of the low-frequency side, the range including a resonant mode frequency f H of the high-frequency side Has a mode. In the former, the first movable part 1 and the second movable part 2 have the same phase relationship, and the latter has the opposite phase relationship. That is, the linear motor 100 according to the present embodiment has two operation modes in which the two movable parts 1 and 2 operate in the same direction and in the opposite direction. That is, in the low frequency mode, the two movable parts 1 and 2 operate in the same direction, and in the high frequency mode, the two movable parts 1 and 2 operate in the opposite directions. Thus, since the operation directions of the movable parts 1 and 2 in the high-frequency mode in which vibration is likely to increase are in opposite phases, generation of vibration can be suppressed.

本実施例の構成は、以下の点を除き、実施例1と同様にできる。本実施例は、リニアモータ100を有する圧縮機200に関する。図5は圧縮機200の縦断面図である。圧縮機200は、リニアモータ100、ピストン21、シリンダケース22、シリンダ室23、吸入口24、吐出口25を備える。   The configuration of the present embodiment can be the same as that of the first embodiment except for the following points. The present embodiment relates to a compressor 200 having a linear motor 100. FIG. 5 is a longitudinal sectional view of the compressor 200. The compressor 200 includes a linear motor 100, a piston 21, a cylinder case 22, a cylinder chamber 23, a suction port 24, and a discharge port 25.

リニアモータ100は、実施例1と同様の構成でも良いし、さらにコイル5c,5d、ヨーク6c,6d、を有しても良い。本実施例では、第一の可動部1は、永久磁石4、ピストン21、可動子構成材27を有する。第二の可動部2は、コイル5、ヨーク6、シリンダケース22を有する。   The linear motor 100 may have the same configuration as that of the first embodiment, and may further include coils 5c and 5d and yokes 6c and 6d. In the present embodiment, the first movable portion 1 has a permanent magnet 4, a piston 21, and a mover constituting material 27. The second movable part 2 includes a coil 5, a yoke 6, and a cylinder case 22.

吸入口24及び吐出口25には、それぞれ公知の吸入弁(図示せず)と吐出弁(図示せず)が設けられ、それぞれ吸入配管(図示せず)と吐出配管(図示せず)に接続される。吸入弁及び吐出弁それぞれは、弁の前後に生じる圧力差が設定値を上回る(下回る)際に開閉する。まず、吸入弁が閉じた状態でコイル5に一方向の電流を流し、ピストン21が図7中の下方に移動すると、シリンダ室23の容積が増加してシリンダ室23内圧力が低下し、吸入弁が開いてシリンダ室23内に作動流体(図示せず)が流入する。次に、吐出弁が閉じた状態でコイル5に逆方向の電流を流すと、ピストン21が上方に移動してシリンダ室23の容積が減少してシリンダ室23内圧力が上昇し、吐出弁が開き吐出口25より高圧となった作動流体が吐出される。   The suction port 24 and the discharge port 25 are each provided with a known suction valve (not shown) and a discharge valve (not shown), and are connected to a suction pipe (not shown) and a discharge pipe (not shown), respectively. Is done. Each of the suction valve and the discharge valve opens and closes when the pressure difference generated before and after the valve exceeds (is below) a set value. First, when a one-way current flows through the coil 5 with the intake valve closed, and the piston 21 moves downward in FIG. 7, the volume of the cylinder chamber 23 increases and the pressure in the cylinder chamber 23 decreases, and the intake The valve opens and working fluid (not shown) flows into the cylinder chamber 23. Next, when a reverse current is passed through the coil 5 with the discharge valve closed, the piston 21 moves upward, the volume of the cylinder chamber 23 decreases, the pressure in the cylinder chamber 23 increases, and the discharge valve The working fluid having a high pressure is discharged from the open discharge port 25.

図6は、k,k,m,mを実施例1と同様の値にした際の、第一の可動部1の変位量と第二の可動部2との相対変位量をΔxとし、コイル5に流す電流からΔxまでの周波数応答特性である。このとき、低域側の共振モード周波数fは38.3Hz、高域側fは57.3Hzである。ここで、mには、シリンダケース22に設けられた吸入弁及び吐出弁の質量の全部、並びにこれら弁に取付けられた配管の質量の一部又は全部が含まれる。配管の質量のどの程度の割合がmに含まれるかは、配管の取付け態様に依存する。シリンダケース22にどの程度の重量が加わるかを考慮して決定すべきであることは当業者に明らかである。 FIG. 6 shows the relative displacement between the first movable part 1 and the second movable part 2 when k 1 , k 2 , m 1 and m 2 are set to the same values as in the first embodiment. Δx is a frequency response characteristic from the current flowing through the coil 5 to Δx. At this time, the resonance mode frequency f L of the lower frequency 38.3Hz, high frequency side f H is 57.3Hz. Here, m 2 includes all of the masses of the suction valve and the discharge valve provided in the cylinder case 22 and part or all of the mass of the pipes attached to these valves. How much of the mass of the pipe is included in m 2 depends on the installation mode of the pipe. It will be apparent to those skilled in the art that the weight should be determined in consideration of how much weight is applied to the cylinder case 22.

図6によれば、シリンダ室23で大きな圧縮力を生じるのは、低域側の共振モード周波数fと高域側の共振モード周波数fの二つある。図7は、駆動周波数をfとした際の第一の可動部1の変位(ピストン21の変位)x、第二の可動部2の変位(シリンダケース22の変位)x、及び相対変位量Δxの時間発展を示す図である。第一の可動部1と第二の可動部2は同位相で振動しており、振動振幅は第一の可動部1が第二の可動部2より大きい。Δxはシリンダ室23の空間の高さの初期値からの変化量に相当し、ピーク高さが高いほど小電流で大きな圧縮力が得られることを意味する。そのため、相対変位量Δxが振動し、シリンダケース22内の作動流体を圧縮できる。 According to FIG. 6, there are two low compression mode frequencies f L and high resonance mode frequencies f H that generate a large compressive force in the cylinder chamber 23. FIG. 7 shows the displacement of the first movable part 1 (displacement of the piston 21) x 1 , the displacement of the second movable part 2 (displacement of the cylinder case 22) x 2 when the driving frequency is f L , and relative It is a figure which shows the time development of displacement amount (DELTA) x. The first movable part 1 and the second movable part 2 vibrate in the same phase, and the vibration amplitude of the first movable part 1 is larger than that of the second movable part 2. Δx corresponds to an amount of change from the initial value of the height of the space of the cylinder chamber 23, and means that a higher compressive force can be obtained with a smaller current as the peak height is higher. Therefore, the relative displacement amount Δx vibrates and the working fluid in the cylinder case 22 can be compressed.

図8は、本実施例で駆動周波数をfとした際の第一の可動部1の変位(ピストン21の変位)x、第二の可動部2の変位(シリンダケース22の変位)x、及び相対変位量Δxの時間発展を示す図である。第一の可動部1と第二の可動部2は逆位相で振動しており、振動振幅は第一の可動部1が第二の可動部2より大きい。そのため、相対変位量Δxが振動し、シリンダ室内の作動流体を圧縮できる。 FIG. 8 shows the displacement of the first movable part 1 (displacement of the piston 21) x 1 and the displacement of the second movable part 2 (displacement of the cylinder case 22) x when the drive frequency is f H in this embodiment. 2 and the time evolution of the relative displacement amount Δx. The first movable part 1 and the second movable part 2 vibrate in opposite phases, and the vibration amplitude of the first movable part 1 is larger than that of the second movable part 2. Therefore, the relative displacement amount Δx vibrates and the working fluid in the cylinder chamber can be compressed.

つまり、二つのバネ定数や二つの可動部の質量の関係を、実施例1で上述したようなものにすることで、二つの共振モード周波数が近接する。それぞれの共振モード周波数を駆動周波数とする運転モードとすることで、小さな電力で大きな圧力が得られる効率のよい圧縮機200を提供できる。   That is, by making the relationship between the two spring constants and the masses of the two movable parts as described above in the first embodiment, the two resonance mode frequencies are close to each other. By setting the operation mode in which each resonance mode frequency is a drive frequency, it is possible to provide an efficient compressor 200 that can obtain a large pressure with a small electric power.

ところで、反共振点は、二つの共振モード周波数の間に存在する。また、圧縮機200は流体を圧縮するため、流体によるばね定数が系に加わるため、二つの共振モード周波数は、高周波側に遷移する。よって、高域モードから低域モードに切り替える際は、駆動中の周波数から、流体によるばね定数が0としたときの低域側共振モード周波数以下に切り替え、その後周波数を増加させるようにすると、反共振点での駆動を回避しやすくなり、好ましい。   By the way, the anti-resonance point exists between two resonance mode frequencies. Further, since the compressor 200 compresses the fluid, a spring constant due to the fluid is added to the system, so that the two resonance mode frequencies transition to the high frequency side. Therefore, when switching from the high frequency mode to the low frequency mode, switching from the driving frequency to below the low frequency resonance mode frequency when the spring constant by the fluid is 0, and then increasing the frequency, It is easy to avoid driving at the resonance point, which is preferable.

(比較例1)
比較例1は、リニアモータに関する。パラメータとして、k=50N/mm、k=0.3N/mm、m=0.5kg、m=4kg、すなわちA=33.3の場合のリニアモータである。このとき、共振モード周波数はf=1.3Hzおよびf=53.4Hzとなる。
比較例1は、第二のばね定数が小さく、また、fが動作周波数の下限より十分に小さい。
(Comparative Example 1)
Comparative Example 1 relates to a linear motor. As parameters, k 1 = 50 N / mm, k 2 = 0.3 N / mm, m 1 = 0.5 kg, m 2 = 4 kg, that is, a linear motor in the case of A = 33.3. At this time, the resonance mode frequencies are f 1 = 1.3 Hz and f 2 = 53.4 Hz.
In Comparative Example 1, the second spring constant is small, and f L is sufficiently smaller than the lower limit of the operating frequency.

図9、図10は、電流から各可動部1,2の変位量x,xまでの伝達関数の周波数応答特性を示す。各可動部1,2の変位量は、共に共振モード周波数f、fで大きなピークを持つことが分かる。低域側の共振モード周波数fは非常に低く、通常、動作モードから外れる。 9 and 10 show the frequency response characteristics of the transfer function from the current to the displacement amounts x 1 and x 2 of the movable parts 1 and 2 . It can be seen that the displacement amounts of the movable parts 1 and 2 both have large peaks at the resonance mode frequencies f L and f H. Resonant mode frequency f L of the low-frequency side is very low, usually out of the operation mode.

また可動部1は低域側の共振モード周波数f付近でゲインが大きく低下する反共振点を持つ。可動部1と2の位相関係を見ると、可動部1の反共振点を超えた後は逆位相となっている。比較例1においては、リニアモータが通常駆動する周波数範囲には、共振モード周波数のうち、高域側のfのみが属するため、二つの可動部1,2は反対方向に動作する。 In addition, the movable part 1 has an anti-resonance point at which the gain greatly decreases in the vicinity of the resonance mode frequency f L on the low frequency side. Looking at the phase relationship between the movable parts 1 and 2, the phase is reversed after the antiresonance point of the movable part 1 is exceeded. In Comparative Example 1, the linear motor is in the frequency range of normal driving, among the resonant mode frequencies, only f H of the high-frequency side belongs, the two movable parts 1 operates in the opposite direction.

(比較例2)
比較例2は、圧縮機に関する。図11は、比較例1のパラメータを採用したもとで、コイル5に流す電流からΔxまでの周波数応答特性を示す図である。このとき、低域側の共振モード周波数fは1.3Hz、高域側の共振モード周波数fは53.4Hzである。
圧縮機が通常駆動する周波数範囲には、共振モード周波数のうち、高域側共振モード周波数fのみが属する。
(Comparative Example 2)
Comparative Example 2 relates to a compressor. FIG. 11 is a diagram showing frequency response characteristics from the current flowing through the coil 5 to Δx, using the parameters of Comparative Example 1. In FIG. At this time, the resonance mode frequency f L on the low frequency side is 1.3 Hz, and the resonance mode frequency f H on the high frequency side is 53.4 Hz.
The frequency range compressor is normally driven, of the resonant mode frequencies, only high-frequency side resonant mode frequency f H belongs.

図12は、駆動周波数をfとした際のピストン変位x、シリンダ変位x、及び相対変位量Δxを示す図である。第二の可動部2はほとんど振動せず、第一の可動部1の振動振幅が二つの可動部間距離とおおよそ等しくなる。比較例2の圧縮機は、fより実質的に小さい周波数にて共振駆動しようとすると、圧縮機の作動が困難な周波数にまで低下させなければならないため、低出力を効果的に行うことが困難である。 FIG. 12 is a diagram showing the piston displacement x 1 , the cylinder displacement x 2 , and the relative displacement amount Δx when the drive frequency is f H. The second movable part 2 hardly vibrates, and the vibration amplitude of the first movable part 1 is approximately equal to the distance between the two movable parts. When the compressor of Comparative Example 2 is to be resonantly driven at a frequency substantially lower than f H , the compressor must be lowered to a frequency at which operation of the compressor is difficult, so that low output can be effectively performed. Have difficulty.

本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…第一の可動部
2…第二の可動部
3…固定部
4…永久磁石
5・5a・5b・5c・5d…コイル
6・6a・6b・6c・6d…ヨーク
10…第一のばね
11…第二のばね
12…減衰部
21…ピストン
22…シリンダケース
23…シリンダ室
24…吸入口
25…吐出口
27…可動部構成材
DESCRIPTION OF SYMBOLS 1 ... 1st movable part 2 ... 2nd movable part 3 ... Fixed part 4 ... Permanent magnet 5,5a * 5b * 5c * 5d ... Coil 6,6a * 6b * 6c * 6d ... Yoke 10 ... First spring DESCRIPTION OF SYMBOLS 11 ... 2nd spring 12 ... Damping part 21 ... Piston 22 ... Cylinder case 23 ... Cylinder chamber 24 ... Suction port 25 ... Discharge port 27 ... Moving part component

Claims (5)

永久磁石又はコイルの一方を有する第一の可動部と、
永久磁石又はコイルの他方を有する第二の可動部と、
固定部と、
前記第一の可動部と前記第二の可動部とを繋ぐ第一のばねと、
前記第二の可動部と前記固定部とを繋ぐ第二のばねと、を備え、
前記第一の可動部及び第二の可動部が略同じ方向に往復動するリニアモータであって、
低域側共振モード周波数近傍の周波数の交流電流を前記コイルに流す低域モードと、
高域側共振モード周波数近傍の周波数の交流電流を前記コイルに流す高域モードと、を実行することを特徴とするリニアモータ。
A first movable part having one of a permanent magnet or a coil;
A second movable part having the other of a permanent magnet or a coil;
A fixed part;
A first spring connecting the first movable part and the second movable part;
A second spring connecting the second movable part and the fixed part,
A linear motor in which the first movable part and the second movable part reciprocate in substantially the same direction,
A low-frequency mode in which an alternating current having a frequency near the low-frequency resonance mode frequency is passed through the coil;
And a high frequency mode in which an alternating current having a frequency in the vicinity of the high frequency side resonance mode frequency is passed through the coil.
前記第一の可動部の質量をm、前記第二の可動部の質量をm、前記第一のばねのばね定数をk、前記第二のばねのばね定数をk、としたとき、次の数1の関係式を満たすことを特徴とする請求項1に記載のリニアモータ。
Figure 2019146277
但し、Aは、0.6以上1.4以下。
The mass of the first movable part is m 1 , the mass of the second movable part is m 2 , the spring constant of the first spring is k 1 , and the spring constant of the second spring is k 2 . The linear motor according to claim 1, wherein the following relational expression 1 is satisfied.
Figure 2019146277
However, A is 0.6 or more and 1.4 or less.
前記第一の可動部の質量をm、前記第二の可動部の質量をm、前記第一のばねのばね定数をk、前記第二のばねのばね定数をk、としたとき、関係式m<mと、関係式k<kと、が成立することを特徴とする請求項1に記載のリニアモータ。 The mass of the first movable part is m 1 , the mass of the second movable part is m 2 , the spring constant of the first spring is k 1 , and the spring constant of the second spring is k 2 . 2. The linear motor according to claim 1, wherein relational expression m 1 <m 2 and relational expression k 1 <k 2 hold. 前記高域モードにおける前記第一の可動部及び前記第二の可動部の往復動方向は、互いに逆方向であることを特徴とする請求項1乃至3何れか一項に記載のリニアモータ。   The linear motor according to any one of claims 1 to 3, wherein reciprocating directions of the first movable part and the second movable part in the high frequency mode are opposite to each other. 請求項1乃至4何れか一項に記載のリニアモータを備え、流体を圧縮する圧縮機であって、
前記高域モードから前記低域モードに切り替える際、前記コイルに流している電流の周波数を、流体によるばね定数が0としたときの低域側共振モード周波数以下に切り替え、その後周波数を増加させることを特徴とする圧縮機。
A compressor comprising the linear motor according to any one of claims 1 to 4 and compressing a fluid,
When switching from the high frequency mode to the low frequency mode, the frequency of the current flowing through the coil is switched below the low frequency resonance mode frequency when the spring constant by the fluid is 0, and then the frequency is increased. Compressor characterized by.
JP2016087639A 2016-04-26 2016-04-26 Linear motor and compressor mounted with the same Pending JP2019146277A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016087639A JP2019146277A (en) 2016-04-26 2016-04-26 Linear motor and compressor mounted with the same
PCT/JP2017/014768 WO2017187958A1 (en) 2016-04-26 2017-04-11 Linear motor and compressor mounted with linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016087639A JP2019146277A (en) 2016-04-26 2016-04-26 Linear motor and compressor mounted with the same

Publications (1)

Publication Number Publication Date
JP2019146277A true JP2019146277A (en) 2019-08-29

Family

ID=60161668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016087639A Pending JP2019146277A (en) 2016-04-26 2016-04-26 Linear motor and compressor mounted with the same

Country Status (2)

Country Link
JP (1) JP2019146277A (en)
WO (1) WO2017187958A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2601744B (en) * 2020-12-04 2023-11-22 Occuity Ltd Linear resonance scanning apparatus and method of scanning

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768064B2 (en) * 2000-03-31 2006-04-19 三洋電機株式会社 Linear compressor drive unit
BR0101879B1 (en) * 2001-04-23 2008-11-18 linear compressor.
JP4039359B2 (en) * 2002-11-26 2008-01-30 松下電工株式会社 Actuator
JP2007111619A (en) * 2005-10-19 2007-05-10 Alps Electric Co Ltd Vibration generation device
JP4319213B2 (en) * 2006-10-16 2009-08-26 アルプス電気株式会社 Vibration generator
JP6444035B2 (en) * 2014-02-07 2018-12-26 国立大学法人信州大学 Electromagnetic vibration actuator

Also Published As

Publication number Publication date
WO2017187958A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
KR100851369B1 (en) Linear compressor
US8714944B2 (en) Diaphragm pump with a crinkle diaphragm of improved efficiency
KR100812297B1 (en) Vibration Dampening System For A Reciprocating Compressor With A Linear Motor
CA2764332C (en) Fluid disc pump
KR20140058561A (en) Linear compressor
EP3087274B1 (en) Reciprocating compressor
US20130129540A1 (en) Linear compressor
US9004885B2 (en) Reciprocating compressor
JP2005195023A (en) Linear compressor having external vibration-proofing structure
JP2019075966A (en) Reciprocating motor
WO2017187958A1 (en) Linear motor and compressor mounted with linear motor
JP3686460B2 (en) Vibrating compressor
JP2001524702A (en) Power supply for acoustic resonator
KR101766245B1 (en) Type compressor
KR101484539B1 (en) Hermetic compressor and refrigerator having the same
KR100406305B1 (en) Linear compressor
JP2005273477A (en) Electromagnetic type diaphragm pump
KR100883853B1 (en) Vibration Dampening System For A Reciprocating Compressor With A Linear Motor
WO2021235036A1 (en) Linear compressor and refrigerator provided with linear compressor, and air suspension device provided with linear compressor
Popham et al. Variable gap-reluctance linear motor with application to linear resonance compressors
KR101484326B1 (en) Linear compressor
Ummaneni et al. Demonstration model of a linear permanent magnet actuator with gas springs
JP2005307794A (en) Vibration control device of compressor
JP6800041B2 (en) Linear motor control system
JP2016114229A (en) Active type vibration-proof device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113