JP2019146030A - Camera stand for generating high-resolution image and method for using the same - Google Patents

Camera stand for generating high-resolution image and method for using the same Download PDF

Info

Publication number
JP2019146030A
JP2019146030A JP2018028742A JP2018028742A JP2019146030A JP 2019146030 A JP2019146030 A JP 2019146030A JP 2018028742 A JP2018028742 A JP 2018028742A JP 2018028742 A JP2018028742 A JP 2018028742A JP 2019146030 A JP2019146030 A JP 2019146030A
Authority
JP
Japan
Prior art keywords
camera
mounting table
image
images
resolution image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018028742A
Other languages
Japanese (ja)
Other versions
JP7213016B2 (en
Inventor
雄哉 稲浦
Yuya Inaura
雄哉 稲浦
博史 大池
Hiroshi Oike
博史 大池
杉山 健二
Kenji Sugiyama
健二 杉山
雅史 天野
Masafumi Amano
雅史 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Corp filed Critical Fuji Corp
Priority to JP2018028742A priority Critical patent/JP7213016B2/en
Publication of JP2019146030A publication Critical patent/JP2019146030A/en
Application granted granted Critical
Publication of JP7213016B2 publication Critical patent/JP7213016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To allow multi-frame super-resolution processing of a component by a component equipment machine by a camera stand.SOLUTION: A high-resolution image generation camera stand 11 includes: a mounting board 25 on which a component is to be mounted; a camera 13 for imaging the component on the mounting board 25 while irradiating the component with light from above; an image processor 41 for processing the image taken by the camera 13. One of the mounting board 25 or the camera 13 is set to be movable and the amount of movement of one of the mounting board 25 or the camera 13 is set to be measurable. An image processor 41 acquires a plurality of images of the component on the mounting board 25 taken in different positions by taking images more than one time while moving one of the mounting board 25 or the camera 13 within the range in which the component on the mounting board 25 does not protrude outside the field of vision of the camera 13, measures the amount of movement between the positions at which each image was taken, aligns the positions of the images according to the measured value, integrates the images, and generates a high-resolution image.SELECTED DRAWING: Figure 1

Description

本明細書は、マルチフレーム超解像処理により高解像度画像を作成する高解像度画像作成用カメラスタンド及びその使用方法に関する技術を開示したものである。   This specification discloses a technique relating to a high-resolution image creation camera stand that creates a high-resolution image by multi-frame super-resolution processing and a method of using the same.

部品実装機で吸着ノズルに吸着した微小な部品をカメラで撮像して画像認識する際に、カメラで撮像した画像の解像度が低いために微小な部品の認識が困難な場合がある。そのような場合に、特許文献1(国際公開WO2015/083220号公報)に記載されているように、マルチフレーム超解像技術を利用して、カメラを移動させて部品を複数回撮像して取得した複数枚の低解像度画像から1枚の高解像度画像を作成して当該部品を認識するようにしたものがある。   When a component mounted machine picks up a minute component sucked by a suction nozzle and recognizes the image by the camera, it may be difficult to recognize the minute component because the resolution of the image captured by the camera is low. In such a case, as described in Patent Document 1 (International Publication No. WO2015 / 083220), the multi-frame super-resolution technique is used to move the camera and pick up the image several times. There is one in which one high-resolution image is created from a plurality of low-resolution images and the component is recognized.

国際公開WO2015/083220号公報International Publication WO2015 / 083220

生産開始前に、部品実装機で部品をマルチフレーム超解像処理により正常に画像認識できることを確認する超解像処理テストを行う必要がある場合がある。この超解像処理テストは、生産開始前に部品実装機を使用して行うため、次の生産に使用する部品の超解像処理テストを行う場合に、先の生産が終了するまで超解像処理テストを行うことができない。しかも、先の生産が終了しても、超解像処理テストが終了するまで次の生産を開始できないため、超解像処理テストの所要時間がそのまま稼働率低下につながる。   Before starting production, it may be necessary to perform a super-resolution processing test to confirm that a component can be normally recognized by multi-frame super-resolution processing using a component mounter. This super-resolution processing test is performed using a component mounter before the start of production, so when performing a super-resolution processing test of a component used for the next production, super-resolution processing is completed until the previous production is completed. Processing test cannot be performed. In addition, even if the previous production is completed, the next production cannot be started until the super-resolution processing test is completed, so that the time required for the super-resolution processing test is directly reduced in operation rate.

そこで、生産中でも、次の生産に使用する部品の超解像処理テストを行えるようにするために、部品実装機のカメラユニットと同等のカメラユニットを設けたカメラスタンドを用意して、このカメラスタンドを使用して部品の超解像処理テストを行うことが考えられる。しかし、現存するカメラスタンドは、カメラが固定されていて、カメラを移動できないため、マルチフレーム超解像処理を行うことができない。   Therefore, a camera stand provided with a camera unit equivalent to the camera unit of the component mounting machine is prepared so that the super-resolution processing test of the part used for the next production can be performed even during production. It is conceivable to perform a super-resolution processing test of parts using However, the existing camera stand cannot perform multi-frame super-resolution processing because the camera is fixed and the camera cannot be moved.

上記課題を解決するために、回路基板に実装するための部品を載置する載置台と、前記載置台に載置した部品をその上方から撮像するカメラと、撮像対象となる部品を照明する照明装置と、前記カメラで撮像した画像を処理する画像処理装置とを備えた高解像度画像作成用カメラスタンドにおいて、前記載置台又は前記カメラを移動可能に構成すると共に、前記載置台又は前記カメラの移動量を計測可能に構成し、前記画像処理装置は、前記カメラの視野内に前記載置台上の部品が収まる範囲内で前記載置台又は前記カメラを移動させて複数回撮像することで、異なる位置で前記載置台上の部品を撮像した複数枚の画像を取得すると共に、各画像を撮像した位置間の移動量を計測し、その計測値に基づいて前記複数枚の画像を位置合わせして統合して高解像度画像を作成するようにしたものである。   In order to solve the above-mentioned problems, a mounting table for mounting components to be mounted on a circuit board, a camera for imaging the components mounted on the mounting table from above, and illumination for illuminating the components to be imaged In the camera stand for creating a high-resolution image including the apparatus and an image processing apparatus that processes an image captured by the camera, the mounting table or the camera is configured to be movable, and the mounting table or the camera is moved. The image processing device is configured to measure the amount, and the image processing device moves the mounting table or the camera within a range in which the parts on the mounting table are within the field of view of the camera, and images the image multiple times. And acquiring a plurality of images obtained by imaging the parts on the mounting table in the above, measuring a movement amount between the positions where each image was imaged, and aligning the plurality of images based on the measured values. Combined and is obtained so as to create a high resolution image.

このように構成すれば、高解像度画像作成用カメラスタンドを使用して、部品実装基板の生産に用いる部品の高解像度画像を作成できるため、生産中でも、次の生産に使用する部品の超解像処理テストを能率良く行うことができると共に、生産中に、次の生産に使用する部品の超解像処理テストを行うことで、生産終了後に速やかに次の生産を開始することができ、部品実装機の稼働率を向上させることができる。   With this configuration, it is possible to create a high-resolution image of a component used for production of a component mounting board using a camera stand for creating a high-resolution image. The processing test can be performed efficiently, and the next production can be started immediately after the end of production by performing the super-resolution processing test of the parts used for the next production during the production. The operating rate of the machine can be improved.

図1は実施例1の高解像度画像作成用カメラスタンドの構成を示す縦断正面図である。FIG. 1 is a longitudinal front view showing a configuration of a camera stand for creating a high-resolution image according to the first embodiment. 図2は基準位置マークの第1例を示す載置台の平面図である。FIG. 2 is a plan view of the mounting table showing a first example of the reference position mark. 図3は高解像度画像作成用カメラスタンドの電気的な構成を示すブロック図である。FIG. 3 is a block diagram showing an electrical configuration of a camera stand for creating a high resolution image. 図4は1回目の撮像で取得した第1画像を示す図である。FIG. 4 is a diagram illustrating a first image acquired by the first imaging. 図5は2回目の撮像で取得した第2画像を示す図である。FIG. 5 is a diagram illustrating a second image acquired by the second imaging. 図6はマルチフレーム超解像処理プログラムの処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of processing of the multi-frame super-resolution processing program. 図7は基準位置マークの第2例を示す載置台の平面図である。FIG. 7 is a plan view of a mounting table showing a second example of the reference position mark. 図8は基準位置マークの第3例を示す載置台の平面図である。FIG. 8 is a plan view of a mounting table showing a third example of the reference position mark. 図9は実施例2の載置台の平面図である。FIG. 9 is a plan view of the mounting table of the second embodiment. 図10は実施例3の載置台の平面図である。FIG. 10 is a plan view of the mounting table of the third embodiment.

以下、幾つかの実施例を説明する。   Several embodiments will be described below.

図1乃至図8を用いて実施例1を説明する。
まず、図1及び図2を参照して高解像度画像作成用カメラスタンド11の構成を説明する。
Example 1 will be described with reference to FIGS.
First, the configuration of the high-resolution image creation camera stand 11 will be described with reference to FIGS. 1 and 2.

高解像度画像作成用カメラスタンド11の本体フレーム12の上部に、カメラ13が下向きに取り付けられている。このカメラ13は、部品実装機に搭載された部品撮像用カメラと同種のカメラであり、例えば、グレースケール画像(モノクロ画像)を撮像する撮像素子を用いて構成されているが、カラー画像を撮像する撮像素子を用いたカメラであっても良い。   A camera 13 is attached downward on the upper part of the main body frame 12 of the camera stand 11 for creating a high-resolution image. The camera 13 is a camera of the same type as a component imaging camera mounted on a component mounter, and is configured using an imaging device that captures a grayscale image (monochrome image), for example, and captures a color image. It may be a camera using an image pickup device.

このカメラ13の下方には、レンズユニット14が取り付けられ、このレンズユニット14の下方に同軸落射照明装置15が取り付けられ、この同軸落射照明装置15の下方に側射照明装置16が取り付けられている。図示はしないが、同軸落射照明装置15は、その側方から中心側に向けて光を水平方向に放射するLED等の発光源と、その発光源の光を下方の撮像対象物に向けて直角に反射するハーフミラー等を備えた構成となっている。   A lens unit 14 is attached below the camera 13, a coaxial epi-illumination device 15 is attached below the lens unit 14, and a side-illumination device 16 is attached below the coaxial epi-illumination device 15. . Although not shown, the coaxial epi-illumination device 15 includes a light emitting source such as an LED that emits light in the horizontal direction from the side toward the center, and a right angle toward the imaging object below the light source. It is the structure provided with the half mirror etc. which reflect.

一方、側射照明装置16は、例えば、上下3段の側射光源21,22,23を椀状又は多角錐台状に配置した構成となっている。各段の側射光源21,22,23は、例えば、多数のLEDを実装した複数枚のLED実装基板を八角形等の多角形の環状に組み付けて構成され、各段の側射光源21,22,23の照明光がカメラ13の光軸上に位置する撮像対象物に対して斜め上方から照射されるように、撮像対象物に対する各段の側射光源21,22,23の側射照明の角度が設定されている。   On the other hand, the side illumination device 16 has a configuration in which, for example, upper and lower three-stage side light sources 21, 22, and 23 are arranged in a bowl shape or a polygonal frustum shape. The side light sources 21, 22, and 23 of each stage are configured by, for example, assembling a plurality of LED mounting boards on which a large number of LEDs are mounted in a polygonal ring shape such as an octagon, Side-illumination of the side-illumination light sources 21, 22, and 23 of each stage with respect to the imaging target is performed so that the illumination lights 22 and 23 are irradiated obliquely from above to the imaging target positioned on the optical axis of the camera 13. The angle is set.

この側射照明装置16の各段の側射光源21,22,23は、点灯/消灯を個別に切り換え可能に構成され、後述する画像処理装置41(図3参照)によって、側射照明装置16の各段の側射光源21,22,23の点灯/消灯の組み合わせパターンである点灯パターンを、撮像対象となる部品の種類(サイズ、形状等)に応じて切り換えるようになっている。これにより、撮像対象となる部品と同じ品種の部品を実装する部品実装機に搭載された照明装置と同等の照明条件を再現できるように構成されている。   The side light sources 21, 22, and 23 of each stage of the side illumination device 16 are configured to be individually switchable on / off, and the side illumination device 16 is configured by an image processing device 41 (see FIG. 3) described later. The lighting pattern, which is a combination pattern of lighting / extinguishing of the side-light sources 21, 22, 23 of each stage, is switched according to the type (size, shape, etc.) of the part to be imaged. Thereby, it is comprised so that the illumination conditions equivalent to the illuminating device mounted in the component mounting machine which mounts components of the same kind as the components used as an imaging object can be reproduced.

側射照明装置16の下方には、撮像対象となる部品を載置する載置台25が設置されている。この載置台25は、これを水平方向に移動させる移動装置26の移動テーブル27に水平に支持されている。移動装置26は、例えば、ボールねじ装置、リニアモータ、リニアソレノイド等のアクチュエータ28を駆動源とし、そのアクチュエータ28によって載置台25を水平方向に移動させるように構成されている。この載置台25の移動方向は、例えば、カメラ13の視野内を撮像対象の部品が斜め方向に移動する方向である。この移動装置26は、載置台25の移動方向を調整可能に構成しても良い。   Below the side illuminating device 16, a mounting table 25 for mounting a part to be imaged is installed. The mounting table 25 is horizontally supported by a moving table 27 of a moving device 26 that moves the mounting table 25 in the horizontal direction. The moving device 26 is configured so that, for example, an actuator 28 such as a ball screw device, a linear motor, or a linear solenoid is used as a drive source, and the mounting table 25 is moved in the horizontal direction by the actuator 28. The moving direction of the mounting table 25 is, for example, a direction in which the imaging target component moves in an oblique direction within the field of view of the camera 13. The moving device 26 may be configured so that the moving direction of the mounting table 25 can be adjusted.

載置台25のうちの少なくとも部品を載置する部分は、移動時の部品のずれ動きを防止するために滑り止め加工が施されている。滑り止め加工としては、例えば、シリコーン等の高摩擦係数の材料のコーティング、表面の摩擦係数を大きくする粗面加工や化学的表面処理のいずれかを用いれば良い。或は、載置台25のうちの少なくとも部品を載置する部分をシリコーン樹脂やゴム等の高摩擦係数の材料で形成しても良い。   At least a part of the mounting table 25 on which the component is mounted is subjected to anti-slip processing in order to prevent the component from shifting when moving. As the anti-slip processing, for example, any one of coating of a material having a high friction coefficient such as silicone, rough surface processing for increasing the friction coefficient of the surface, and chemical surface treatment may be used. Alternatively, at least a portion of the mounting table 25 on which the component is mounted may be formed of a material having a high friction coefficient such as silicone resin or rubber.

或は、載置台25に、載置した部品を保持する保持具(図示せず)を設けた構成としても良い。この保持具は、例えば負圧吸引力や磁気吸引力等により載置台25上の部品を保持するものであっても良いし、粘着テープの粘着力により載置台25上の部品を保持するものであっても良い。   Or it is good also as a structure which provided the holder (not shown) which hold | maintains the mounted components in the mounting base 25. FIG. This holding tool may hold parts on the mounting table 25 by, for example, negative pressure suction force or magnetic suction force, or hold parts on the mounting table 25 by the adhesive force of the adhesive tape. There may be.

また、図2に示すように、載置台25の上面のうち、載置する部品と重ならない所定位置に基準位置部として1個又は複数個の基準位置マーク29が設けられている。基準位置マーク29は、画像認識により特定可能な形状であれば、どの様な形状であっても良い。複数個の基準位置マーク29の位置関係によって方向を特定できるようにしても良いし、基準位置マーク29の形状が画像認識により方向を特定可能な形状であれば、基準位置マーク29の個数は1個のみであっても良い。また、移動装置26による載置台25の移動方向が正確に一定方向のみに固定されている場合は、基準位置マーク29の個数は1個のみであっても良い。   As shown in FIG. 2, one or a plurality of reference position marks 29 are provided as reference position portions at predetermined positions on the upper surface of the mounting table 25 that do not overlap with the components to be mounted. The reference position mark 29 may have any shape as long as it can be specified by image recognition. The direction may be specified by the positional relationship of a plurality of reference position marks 29, and the number of reference position marks 29 is 1 if the shape of the reference position mark 29 can specify the direction by image recognition. Only one piece may be sufficient. Further, when the moving direction of the mounting table 25 by the moving device 26 is accurately fixed only in a certain direction, the number of reference position marks 29 may be only one.

図2の例では、載置台25の上面の1つのコーナー部付近に4個の基準位置マーク29が配置されているが、基準位置マーク29の位置は、カメラ13の視野内に載置台25上の部品と基準位置マーク29の両方を収めて撮像できる位置で、且つ、載置台25を移動させて撮像した複数枚の画像(図4、図5参照)に含まれる位置であれば、基準位置マーク29の位置を適宜変更しても良い。   In the example of FIG. 2, four reference position marks 29 are arranged in the vicinity of one corner portion on the upper surface of the mounting table 25, but the positions of the reference position marks 29 are located on the mounting table 25 within the field of view of the camera 13. The reference position is a position that can be captured with both the component and the reference position mark 29 and is included in a plurality of images (see FIGS. 4 and 5) captured by moving the mounting table 25. The position of the mark 29 may be changed as appropriate.

例えば、図7に示すように、載置台25の上面の4つのコーナー部付近に基準位置マーク30を1個ずつ配置しても良い。或は、図8に示すように、載置台25の上面の4辺と平行に直線状の基準位置マーク31を配置しても良い。いずれの場合でも、基準位置マーク29〜31は、それぞれの位置関係によって方向を特定できる。   For example, as shown in FIG. 7, the reference position marks 30 may be arranged one by one in the vicinity of the four corners on the upper surface of the mounting table 25. Alternatively, as shown in FIG. 8, linear reference position marks 31 may be arranged in parallel with the four sides of the upper surface of the mounting table 25. In any case, the direction of the reference position marks 29 to 31 can be specified by their positional relationship.

カメラ13で撮像した画像は、画像処理装置41(図3参照)に取り込まれてマルチフレーム超解像による画像処理が施される。画像処理装置41は、コンピュータを主体として構成され、図3に示すように、キーボード、マウス、タッチパネル等で構成した入力装置42と、カメラ13で撮像した画像やマルチフレーム超解像処理により作成した高解像度画像等を表示する表示装置43等が接続されている。画像処理装置41は、マルチフレーム超解像処理を行う場合に、カメラ13の視野内に載置台25上の部品及び基準位置マーク29が収まる範囲内で移動装置26により載置台25を移動させて複数回撮像することで、異なる位置で載置台25上の部品及び基準位置マーク29を撮像した複数枚の画像(図4、図5参照)を取得すると共に、各画像内の基準位置マーク29の位置に基づいて各画像を撮像した位置間の移動量を計測し、その計測値に基づいて前記複数枚の画像を位置合わせして統合して高解像度画像を作成する。   An image captured by the camera 13 is captured by the image processing device 41 (see FIG. 3) and subjected to image processing by multi-frame super-resolution. The image processing device 41 is mainly composed of a computer, and as shown in FIG. 3, the image processing device 41 is created by an input device 42 composed of a keyboard, a mouse, a touch panel, etc., and an image captured by the camera 13 and multi-frame super-resolution processing. A display device 43 for displaying a high-resolution image or the like is connected. When performing multi-frame super-resolution processing, the image processing device 41 moves the mounting table 25 by the moving device 26 within a range where the components on the mounting table 25 and the reference position mark 29 are within the field of view of the camera 13. By imaging multiple times, a plurality of images (see FIGS. 4 and 5) obtained by imaging the parts on the mounting table 25 and the reference position mark 29 at different positions are acquired, and the reference position mark 29 in each image is captured. Based on the position, the amount of movement between the positions where each image is captured is measured, and based on the measured value, the plurality of images are aligned and integrated to create a high-resolution image.

尚、カメラ13で撮像する部品の種類によって、載置台25上の部品を照明する照明モードが切り替えられる。例えば、同軸落射照明装置15と側射照明装置16の両方で部品を照明する全点灯照明モードと、同軸落射照明装置15のみで部品を同軸落射照明する同軸落射照明モードと、側射照明装置16のみで部品を側射照明する側射照明モードがある。基準位置マーク29は同軸落射照明装置15で同軸落射照明する必要があるため、側射照明装置16のみで部品を側射照明して撮像する場合は、撮像する位置毎に載置台25の移動を停止して、その位置で側射照明装置16で側射照明した部品の撮像と、同軸落射照明装置15で同軸落射照明した基準位置マーク29の撮像とを別々に行う。この場合は、同軸落射照明装置15で同軸落射照明して撮像した各画像内の基準位置マーク29の位置に基づいて各画像を撮像した位置間の移動量を計測し、その計測値に基づいて、側射照明装置16で側射照明して撮像した複数枚の画像を位置合わせして統合して高解像度画像を作成する。   The illumination mode for illuminating the component on the mounting table 25 is switched depending on the type of component imaged by the camera 13. For example, an all-illumination illumination mode in which parts are illuminated by both the coaxial epi-illumination device 15 and the side-illumination illumination device 16, a coaxial epi-illumination mode in which the components are coaxially illuminated only by the coaxial epi-illumination device 15, and the side-illumination device 16. There is a side-illumination mode that only illuminates the part side-by-side. Since the reference position mark 29 needs to be coaxially illuminated by the coaxial incident illumination device 15, when the parts are incidentally illuminated by the side incident illumination device 16 alone, the mounting table 25 is moved for each imaging position. It stops, and the imaging of the component side-illuminated by the side-illumination device 16 at that position and the imaging of the reference position mark 29 subjected to the coaxial epi-illumination by the coaxial epi-illumination device 15 are separately performed. In this case, the movement amount between the positions where each image is captured is measured based on the position of the reference position mark 29 in each image captured by coaxial incident illumination with the coaxial incident illumination device 15, and based on the measured value. Then, a plurality of images captured by side illumination by the side illumination device 16 are aligned and integrated to create a high resolution image.

以上説明した本実施例1のマルチフレーム超解像処理は、画像処理装置41によって図6のマルチフレーム超解像処理プログラムに従って次のように実行される。尚、図6のマルチフレーム超解像処理プログラムは、載置台25上の部品と基準位置マーク29を同軸落射照明装置15で同軸落射照明し、又は、同軸落射照明装置15と側射照明装置16の両方で照明して撮像した2枚の低解像度画像(第1画像と第2画像)から1枚の高解像度画像を作成する例であり、3枚以上の低解像度画像から1枚の高解像度画像を作成するようにしても良いことは言うまでもない。   The multiframe super-resolution processing of the first embodiment described above is executed by the image processing device 41 as follows according to the multi-frame super-resolution processing program of FIG. Note that the multi-frame super-resolution processing program of FIG. 6 performs coaxial epi-illumination on the mounting table 25 and the reference position mark 29 with the coaxial epi-illumination device 15, or the coaxial epi-illumination device 15 and the side-illumination device 16. This is an example of creating one high-resolution image from two low-resolution images (first image and second image) imaged by illumination with both, and one high-resolution image from three or more low-resolution images Needless to say, an image may be created.

図6のマルチフレーム超解像処理プログラムは、作業者が載置台25上に部品を載置して入力装置42により画像処理開始操作を行うと実行される。本プログラムが起動されると、まず、ステップ101で、カメラ13の視野内に載置台25上の部品及び基準位置マーク29を収めて撮像して第1画像を取得する(1回目の撮像)。この後、ステップ102に進み、カメラ13の視野内に載置台25上の部品及び基準位置マーク29が収まる範囲内で移動装置26により載置台25を移動させた後、ステップ103に進み、カメラ13で載置台25上の部品及び基準位置マーク29を撮像して第2画像を取得する(2回目の撮像)。   The multi-frame super-resolution processing program in FIG. 6 is executed when an operator places a component on the mounting table 25 and performs an image processing start operation using the input device 42. When this program is activated, first, in step 101, the parts on the mounting table 25 and the reference position mark 29 are placed in the field of view of the camera 13 and imaged to obtain a first image (first imaging). Thereafter, the process proceeds to step 102, after the mounting table 25 is moved by the moving device 26 within a range in which the parts on the mounting table 25 and the reference position mark 29 are within the visual field of the camera 13, the process proceeds to step 103, where the camera 13 Then, the second image is acquired by imaging the component on the mounting table 25 and the reference position mark 29 (second imaging).

そして、次のステップ104で、第1画像と第2画像をそれぞれ画像処理して、各画像内の基準位置マーク29の位置(X1 ,Y1 )、(X2 ,Y2 )を計測する。尚、図4、図5の例では、各画像の右上の角を原点(0,0)として各画像内の基準位置マーク29の位置(X1 ,Y1 )、(X2 ,Y2 )を計測するようにしているが、各画像の他の角(例えば左下の角)や各画像の中心点を原点(0,0)として各画像内の基準位置マーク29の位置(X1 ,Y1 )、(X2 ,Y2 )を計測するようにしても良い。   In the next step 104, the first image and the second image are processed, and the positions (X1, Y1) and (X2, Y2) of the reference position mark 29 in each image are measured. 4 and 5, the positions (X1, Y1) and (X2, Y2) of the reference position mark 29 in each image are measured with the upper right corner of each image as the origin (0, 0). However, the position (X1, Y1), (X2,...) Of the reference position mark 29 in each image is set with the other corner (for example, the lower left corner) of each image and the center point of each image as the origin (0, 0). Y2) may be measured.

この後、ステップ105に進み、両画像を撮像した位置間の移動量ΔX、ΔYを算出する。
ΔX=|X1 −X2 |
ΔY=|Y1 −Y2 |
Thereafter, the process proceeds to step 105, and the movement amounts ΔX and ΔY between the positions where both images are taken are calculated.
ΔX = | X1-X2 |
ΔY = | Y1-Y2 |

この後、ステップ106に進み、両画像を撮像した位置間の移動量ΔX、ΔYに基づいて、各画像内の基準位置マーク29の位置が一致するように両画像を位置合わせして統合して1枚の高解像度画像を作成して、本プログラムを終了する。   Thereafter, the process proceeds to step 106, where both images are aligned and integrated so that the positions of the reference position marks 29 in each image coincide with each other based on the movement amounts ΔX and ΔY between the positions where both images are captured. One high-resolution image is created and the program is terminated.

以上説明した本実施例1の高解像度画像作成用カメラスタンド11を使用して、部品実装基板の生産開始前にその生産に使用する部品と同じ品種の部品を載置台25に載置してカメラ13で複数回撮像して高解像度画像を作成して当該部品を正常に画像認識できることを確認する超解像処理テストを行うようにすれば良い。   Using the camera stand 11 for creating a high-resolution image according to the first embodiment described above, the parts of the same type as the parts used for the production of the component mounting board are placed on the mounting table 25 before starting the production of the component mounting board. It is sufficient to perform a super-resolution processing test for confirming that the part can be normally recognized by creating a high-resolution image by imaging a plurality of times at 13.

本実施例1によれば、高解像度画像作成用カメラスタンド11を使用して、部品実装基板の生産に用いる部品の高解像度画像を作成できるため、生産中でも、次の生産に使用する部品の超解像処理テストを能率良く行うことができると共に、生産中に、次の生産に使用する部品の超解像処理テストを行うことで、生産終了後に速やかに次の生産を開始することができ、部品実装機の稼働率を向上させることができる。   According to the first embodiment, a high-resolution image of a component used for production of a component mounting board can be created using the camera stand 11 for creating a high-resolution image. The resolution processing test can be performed efficiently, and the next production can be started immediately after the end of production by performing the super-resolution processing test of the parts used for the next production during the production. The operating rate of the component mounting machine can be improved.

次に、図9を用いて実施例2を説明する。但し、上記実施例1と実質的に同じ部分については、同一符号を付して説明を省略又は簡単化し、主として異なる部分について説明する。   Next, Example 2 will be described with reference to FIG. However, substantially the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted or simplified, and different parts are mainly described.

上記実施例1では、載置台25の上面に設けた基準位置部である基準位置マーク29は、同軸落射照明装置15で同軸落射照明して撮像する必要があるため、載置台25上の部品を側射照明装置16のみで側射照明して撮像する場合は、撮像する位置毎に載置台25の移動を停止して、その位置で側射照明装置16で側射照明した部品の撮像と、同軸落射照明装置15で同軸落射照明した基準位置マーク29の撮像とを別々に行う必要があり、マルチフレーム超解像処理に必要な撮像回数が2倍に増える。   In the first embodiment, the reference position mark 29, which is the reference position portion provided on the upper surface of the mounting table 25, needs to be imaged by coaxial epi-illumination with the coaxial epi-illumination device 15. In the case of imaging by side-illuminating only with the side-illumination device 16, the movement of the mounting table 25 is stopped for each image-capturing position, and imaging of the component that is side-illuminated by the side-illumination device 16 at that position; It is necessary to separately perform the imaging of the reference position mark 29 that is coaxially illuminated by the coaxial epi-illuminator 15, and the number of times of imaging necessary for the multi-frame super-resolution processing is doubled.

そこで、本実施例2では、載置台25の上面に基準位置部としてLED等の基準位置表示用の発光素子32を設けている。基準位置表示用の発光素子32を設ける位置や個数は、上記実施例1の基準位置マーク29の場合と同じで良い。   Therefore, in the second embodiment, a light emitting element 32 for displaying a reference position such as an LED is provided as a reference position portion on the upper surface of the mounting table 25. The positions and the number of the light emitting elements 32 for displaying the reference position may be the same as in the case of the reference position mark 29 in the first embodiment.

載置台25上の部品は、バンプの配列が形成されたバンプ部品等、側射照明装置16のみで側射照明して撮像する部品である。バンプ部品の場合は、載置台25上にバンプを上向きにして載置する。バンプ部品を側射照明装置16のみで側射照明して撮像する際に、基準位置表示用の発光素子32を発光させて、カメラ13の視野内に載置台25上のバンプ部品と基準位置表示用の発光素子32の両方を収めて撮像する。側射照明のみであっても、基準位置表示用の発光素子32を発光させて、カメラ13の視野内に載置台25上のバンプ部品と基準位置表示用の発光素子32の両方を収めて撮像すれば、1回の撮像で載置台25上のバンプ部品と基準位置表示用の発光素子32の両方を画像認識できる。このため、載置台25上の部品が側射照明のみで撮像するバンプ部品等の部品である場合でも、基準位置表示用の発光素子32を発光させることで、基準位置表示用の発光素子32を同軸落射照明して撮像する必要がなく、マルチフレーム超解像処理に必要な撮像回数が増えずに済む。   The components on the mounting table 25 are components that are imaged by side-illumination only with the side-illumination device 16, such as bump components on which bump arrays are formed. In the case of a bump component, the bump is placed on the mounting table 25 with the bump facing upward. When the bump component is imaged by side-illuminating only with the side illumination device 16, the light emitting element 32 for displaying the reference position is caused to emit light, and the bump component on the mounting table 25 and the reference position display are displayed within the field of view of the camera 13. Both light emitting elements 32 are housed and imaged. Even with only side illumination, the light emitting element 32 for displaying the reference position is caused to emit light, and both the bump component on the mounting table 25 and the light emitting element 32 for displaying the reference position are accommodated within the field of view of the camera 13. By doing so, it is possible to recognize both the bump component on the mounting table 25 and the light emitting element 32 for displaying the reference position by one imaging. For this reason, even when the component on the mounting table 25 is a component such as a bump component that is imaged only by side illumination, the light emitting element 32 for displaying the reference position is caused to emit light by emitting the light emitting element 32 for displaying the reference position. There is no need to image with coaxial epi-illumination, and the number of imaging operations required for multi-frame super-resolution processing does not increase.

次に、図10を用いて実施例3を説明する。但し、上記実施例1,2と実質的に同じ部分については、同一符号を付して説明を省略又は簡単化し、主として異なる部分について説明する。   Next, Example 3 will be described with reference to FIG. However, substantially the same parts as those in the first and second embodiments are denoted by the same reference numerals, description thereof is omitted or simplified, and different parts are mainly described.

上記実施例1,2では、載置台25の上面に基準位置部(基準位置マーク29又は基準位置表示用の発光素子32)を設けて、載置台25を移動させて載置台25上の部品と基準位置部とを撮像した複数枚の画像を取得することで、各画像内の基準位置部の位置に基づいて各画像を撮像した位置間の移動量を計測するようにしている。   In the first and second embodiments, the reference position portion (the reference position mark 29 or the light emitting element 32 for displaying the reference position) is provided on the upper surface of the mounting table 25, and the mounting table 25 is moved to move the components on the mounting table 25. By acquiring a plurality of images obtained by imaging the reference position portion, the amount of movement between the positions where each image is imaged is measured based on the position of the reference position portion in each image.

これに対し、図10に示す実施例3では、載置台25の上面に基準位置部を設けず、載置台25の移動量を計測するセンサ部として、X方向の移動量(載置台25の位置のX座標)を計測するX方向リニアスケール44と、Y方向の移動量(載置台25の位置のY座標)を計測するY方向リニアスケール45とが設けられている。この場合、各リニアスケール44,45は、高解像度画像作成用カメラスタンド11の本体フレーム側に固定され、載置台25が移動しても、各リニアスケール44,45は移動しないように構成されている。載置台25には、各リニアスケール44,45から位置情報(X座標,Y座標)を読み取る各検出ヘッド46,47が設けられ、各検出ヘッド46,47によって載置台25の位置(X座標,Y座標)を読み取ることで、載置台25の移動量を計測する。   On the other hand, in Example 3 shown in FIG. 10, the reference position portion is not provided on the upper surface of the mounting table 25, and the movement amount in the X direction (the position of the mounting table 25 is used as a sensor unit for measuring the movement amount of the mounting table 25. X-direction linear scale 44 that measures the amount of movement in the Y-direction (the Y-coordinate of the position of the mounting table 25) is provided. In this case, the linear scales 44 and 45 are fixed to the main body frame side of the high-resolution image creation camera stand 11, and the linear scales 44 and 45 are configured not to move even when the mounting table 25 moves. Yes. The mounting table 25 is provided with detection heads 46 and 47 for reading position information (X coordinate, Y coordinate) from the linear scales 44 and 45, and the position of the mounting table 25 (X coordinate, The amount of movement of the mounting table 25 is measured by reading (Y coordinate).

マルチフレーム超解像処理を行う場合には、カメラ13の視野内に載置台25上の部品が収まる範囲内で載置台25を移動させて複数回撮像することで、異なる位置で載置台25上の部品を撮像した複数枚の画像を取得すると共に、各画像を撮像した位置間の移動量を各リニアスケール44,45の検出ヘッド46,47により計測し、その計測値に基づいて複数枚の画像を位置合わせして統合して1枚の高解像度画像を作成する。   When performing multi-frame super-resolution processing, the mounting table 25 is moved within a range in which the components on the mounting table 25 are within the field of view of the camera 13 and images are taken a plurality of times, so that images on the mounting table 25 can be obtained at different positions. A plurality of images obtained by picking up the parts are measured, and a movement amount between the positions where the images are picked up is measured by the detection heads 46 and 47 of the linear scales 44 and 45, and a plurality of images are obtained based on the measured values. The images are aligned and integrated to create a single high resolution image.

尚、載置台25の移動量を計測するセンサ部は、リニアスケール44,45に限定されず、例えば、移動装置26の駆動源となるアクチュエータ28の動作量を検出するエンコーダを設け、このエンコーダで検出したアクチュエータ28の動作量に基づいて載置台25の移動量を計測するようにしても良い。
以上のように構成した実施例3でも、前述した実施例1と同様の効果を得ることができる。
The sensor unit for measuring the movement amount of the mounting table 25 is not limited to the linear scales 44 and 45. For example, an encoder for detecting the operation amount of the actuator 28 serving as a drive source of the moving device 26 is provided. The movement amount of the mounting table 25 may be measured based on the detected operation amount of the actuator 28.
In the third embodiment configured as described above, the same effect as that of the first embodiment can be obtained.

[その他の実施例]
上記実施例1〜3では、カメラ13の位置を固定して移動装置26により載置台25を移動させることで、異なる位置で載置台25上の部品を撮像した複数枚の画像を取得するようにしたが、載置台25の位置を固定し、カメラを移動装置により水平方向に移動させることで、異なる位置で載置台25上の部品を撮像した複数枚の画像を取得するようにしても良い。
[Other Examples]
In the first to third embodiments, by fixing the position of the camera 13 and moving the mounting table 25 by the moving device 26, a plurality of images obtained by capturing the parts on the mounting table 25 at different positions are acquired. However, by fixing the position of the mounting table 25 and moving the camera in the horizontal direction by the moving device, a plurality of images obtained by capturing the parts on the mounting table 25 at different positions may be acquired.

或は、載置台25又はカメラ13を作業者が手動で移動させるように構成し、作業者が手動で載置台25又はカメラ13を移動させることで、異なる位置で載置台25上の部品を撮像した複数枚の画像を取得するようにしても良い。   Alternatively, the mounting table 25 or the camera 13 is configured to be manually moved by an operator, and the operator manually moves the mounting table 25 or the camera 13 to pick up images of parts on the mounting table 25 at different positions. A plurality of images may be acquired.

その他、本発明は、上記各実施例に限定されず、例えば、移動装置26の構成を変更したり、載置台25上の部品を照明する照明装置の構成を変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。   In addition, this invention is not limited to each said Example, For example, the structure of the moving apparatus 26 may be changed or the structure of the illuminating device which illuminates the components on the mounting base 25 may be changed. It goes without saying that various modifications can be made without departing from the scope.

11…高解像度画像作成用カメラスタンド、13…カメラ、14…レンズユニット、15…同軸落射照明装置、16…側射照明装置、21,22,23…上下3段の側射光源、25…載置台、26…移動装置、28…アクチュエータ、29,30,31…基準位置マーク(基準位置部)、32…基準位置表示用の発光素子(基準位置部)、41…画像処理装置、43…表示装置、44…X方向リニアスケール(センサ部)、45…Y方向リニアスケール(センサ部)、46,47…検出ヘッド(センサ部)   DESCRIPTION OF SYMBOLS 11 ... Camera stand for high-resolution image creation, 13 ... Camera, 14 ... Lens unit, 15 ... Coaxial epi-illumination device, 16 ... Side-illumination illumination device, 21, 22, 23 ... Upper and lower three-stage side light source, 25 ... Mount Table 26: Moving device 28 ... Actuator 29, 30, 31 ... Reference position mark (reference position portion) 32 ... Light emitting element for displaying reference position (reference position portion) 41 ... Image processing device 43 ... Display Apparatus 44 ... X-direction linear scale (sensor part) 45 ... Y-direction linear scale (sensor part) 46, 47 ... detection head (sensor part)

Claims (11)

回路基板に実装するための部品を載置する載置台と、
前記載置台に載置した部品をその上方から撮像するカメラと、
撮像対象となる部品を照明する照明装置と、
前記カメラで撮像した画像を処理する画像処理装置と
を備えた高解像度画像作成用カメラスタンドにおいて、
前記載置台又は前記カメラを移動可能に構成すると共に、前記載置台又は前記カメラの移動量を計測可能に構成し、
前記画像処理装置は、前記カメラの視野内に前記載置台上の部品が収まる範囲内で前記載置台又は前記カメラを移動させて複数回撮像することで、異なる位置で前記載置台上の部品を撮像した複数枚の画像を取得すると共に、各画像を撮像した位置間の移動量を計測し、その計測値に基づいて前記複数枚の画像を位置合わせして統合して高解像度画像を作成する、高解像度画像作成用カメラスタンド。
A mounting table for mounting components to be mounted on the circuit board;
A camera for imaging the parts placed on the mounting table from above;
An illumination device for illuminating a component to be imaged;
In a camera stand for creating a high-resolution image, comprising: an image processing device that processes an image captured by the camera;
The above-mentioned mounting table or the camera is configured to be movable, and the previous mounting table or the camera is configured to be able to measure the movement amount,
The image processing apparatus moves the mounting table or the camera within a range in which the components on the mounting table are within the field of view of the camera and captures the images on the mounting table at different positions. Acquire a plurality of captured images, measure the amount of movement between the positions where each image was captured, and align and integrate the plurality of images based on the measured values to create a high-resolution image A camera stand for creating high-resolution images.
前記載置台又は前記カメラを移動させる移動装置を備え、
前記移動装置には、駆動源となるアクチュエータが設けられている、請求項1に記載の高解像度画像作成用カメラスタンド。
A moving device for moving the mounting table or the camera;
The camera stand for creating a high-resolution image according to claim 1, wherein the moving device is provided with an actuator serving as a drive source.
前記載置台又は前記カメラを作業者が手動で移動させるように構成されている、請求項1に記載の高解像度画像作成用カメラスタンド。   The camera stand for creating a high-resolution image according to claim 1, wherein an operator is configured to manually move the mounting table or the camera. 前記載置台の上面のうち、前記載置台上の部品と重ならない位置に基準位置部が設けられ、
前記画像処理装置は、前記カメラの視野内に前記載置台上の部品及び前記基準位置部が収まる範囲内で前記載置台又は前記カメラを移動させて複数回撮像することで、異なる位置で前記載置台上の部品及び前記基準位置部を撮像した複数枚の画像を取得すると共に、各画像内の前記基準位置部の位置に基づいて各画像を撮像した位置間の移動量を計測し、その計測値に基づいて前記複数枚の画像を位置合わせして統合して高解像度画像を作成する、請求項1乃至3のいずれかに記載の高解像度画像作成用カメラスタンド。
Of the upper surface of the mounting table, a reference position portion is provided at a position that does not overlap with the parts on the mounting table,
The image processing apparatus described above at different positions by moving the mounting table or the camera within a range in which the parts on the mounting table and the reference position part are within the field of view of the camera and capturing images a plurality of times. A plurality of images obtained by imaging the parts on the table and the reference position portion are acquired, and the movement amount between the positions where each image is taken is measured based on the position of the reference position portion in each image, and the measurement is performed. 4. The camera stand for creating a high resolution image according to claim 1, wherein the plurality of images are aligned and integrated based on a value to create a high resolution image.
前記基準位置部は、発光素子を用いて構成されている、請求項4に記載の高解像度画像作成用カメラスタンド。   The high-resolution image creation camera stand according to claim 4, wherein the reference position portion is configured using a light emitting element. 前記照明装置は、撮像時に前記載置台上の部品を斜め上方から側射照明する側射照明装置を含む、請求項1乃至5のいずれかに記載の高解像度画像作成用カメラスタンド。   The camera stand for high-resolution image creation according to any one of claims 1 to 5, wherein the illumination device includes a side illumination device that laterally illuminates a part on the mounting table from obliquely above during imaging. 前記載置台又は前記カメラの移動量を計測するセンサ部を備え、
前記画像処理装置は、前記カメラの視野内に前記載置台上の部品が収まる範囲内で前記載置台又は前記カメラを移動させて複数回撮像することで、異なる位置で前記載置台上の部品を撮像した複数枚の画像を取得すると共に、各画像を撮像した位置間の移動量を前記センサ部により計測し、その計測値に基づいて前記複数枚の画像を位置合わせして統合して高解像度画像を作成する、請求項1乃至3のいずれかに記載の高解像度画像作成用カメラスタンド。
Comprising the sensor unit for measuring the movement amount of the mounting table or the camera,
The image processing apparatus moves the mounting table or the camera within a range in which the components on the mounting table are within the field of view of the camera and captures the images on the mounting table at different positions. Acquire a plurality of captured images, measure the amount of movement between the positions where each image was captured by the sensor unit, align and integrate the plurality of images based on the measured values, and achieve high resolution The camera stand for high-resolution image creation according to any one of claims 1 to 3, which creates an image.
前記載置台が移動可能に構成され、
前記載置台のうちの少なくとも部品を載置する部分は、滑り止め加工が施され又は高摩擦係数の材料で形成されている、請求項1乃至7のいずれかに記載の高解像度画像作成用カメラスタンド。
The mounting table is configured to be movable,
The high resolution image creation camera according to any one of claims 1 to 7, wherein at least a part of the mounting table on which the part is mounted is formed with a non-slip process or a material having a high coefficient of friction. stand.
前記載置台が移動可能に構成され、
前記載置台には、載置した部品を保持する保持具が設けられている、請求項1乃至7のいずれかに記載の高解像度画像作成用カメラスタンド。
The mounting table is configured to be movable,
The camera stand for creating a high-resolution image according to any one of claims 1 to 7, wherein the mounting table is provided with a holder for holding the mounted component.
前記照明装置は、撮像対象となる部品と同じ品種の部品を実装する部品実装機に搭載された照明装置と同等の照明条件を再現できるように構成されている、請求項1乃至9のいずれかに記載の高解像度画像作成用カメラスタンド   10. The lighting device according to claim 1, wherein the lighting device is configured to reproduce illumination conditions equivalent to those of a lighting device mounted on a component mounter that mounts a component of the same type as a component to be imaged. Camera stand for creating high-resolution images as described in 請求項1乃至10のいずれかに記載の高解像度画像作成用カメラスタンドを使用して、部品実装基板の生産開始前にその生産に使用する部品と同じ品種の部品を前記載置台に載置して前記カメラで複数回撮像して前記高解像度画像を作成して当該部品を正常に画像認識できることを確認する超解像処理テストを行う、高解像度画像作成用カメラスタンドの使用方法。   Using the camera stand for creating a high-resolution image according to any one of claims 1 to 10, a part of the same type as the part used for the production of the component mounting board is placed on the placing table. A method of using a camera stand for creating a high-resolution image, wherein a super-resolution processing test is performed in which the high-resolution image is created by imaging a plurality of times with the camera to confirm that the part can be normally recognized.
JP2018028742A 2018-02-21 2018-02-21 Camera stand for creating high resolution images Active JP7213016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028742A JP7213016B2 (en) 2018-02-21 2018-02-21 Camera stand for creating high resolution images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028742A JP7213016B2 (en) 2018-02-21 2018-02-21 Camera stand for creating high resolution images

Publications (2)

Publication Number Publication Date
JP2019146030A true JP2019146030A (en) 2019-08-29
JP7213016B2 JP7213016B2 (en) 2023-01-26

Family

ID=67771303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028742A Active JP7213016B2 (en) 2018-02-21 2018-02-21 Camera stand for creating high resolution images

Country Status (1)

Country Link
JP (1) JP7213016B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150100A (en) * 1990-10-15 1992-05-22 Juki Corp Chip mounter
JPH1093293A (en) * 1996-09-19 1998-04-10 Brother Ind Ltd Electronic part mounting device
JP2005340872A (en) * 2004-05-24 2005-12-08 Hitachi Omron Terminal Solutions Corp Image input apparatus
WO2015083220A1 (en) * 2013-12-02 2015-06-11 富士機械製造株式会社 Assembly machine
WO2017006416A1 (en) * 2015-07-06 2017-01-12 富士機械製造株式会社 Mounting device, photographic processing method, and photographic unit
JP2018006417A (en) * 2016-06-28 2018-01-11 富士機械製造株式会社 Determination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150100A (en) * 1990-10-15 1992-05-22 Juki Corp Chip mounter
JPH1093293A (en) * 1996-09-19 1998-04-10 Brother Ind Ltd Electronic part mounting device
JP2005340872A (en) * 2004-05-24 2005-12-08 Hitachi Omron Terminal Solutions Corp Image input apparatus
WO2015083220A1 (en) * 2013-12-02 2015-06-11 富士機械製造株式会社 Assembly machine
WO2017006416A1 (en) * 2015-07-06 2017-01-12 富士機械製造株式会社 Mounting device, photographic processing method, and photographic unit
JP2018006417A (en) * 2016-06-28 2018-01-11 富士機械製造株式会社 Determination device

Also Published As

Publication number Publication date
JP7213016B2 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
KR100958204B1 (en) Method and apparatus for inspecting of flat display panel
JP4883181B2 (en) Component mounting method
JP5660810B2 (en) Adsorption nozzle inspection device for component mounting machines
US11778796B2 (en) Support pin arrangement determination assisting apparatus
US10147174B2 (en) Substrate inspection device and method thereof
KR101802843B1 (en) Automated Vision Inspection System
JP5272784B2 (en) Optical inspection method and optical inspection apparatus
JP6258295B2 (en) Component recognition system for component mounters
JPWO2017081773A1 (en) Image processing apparatus and image processing method for substrate
JP2007033202A (en) Visual inspection apparatus and visual inspection method
WO2018096577A1 (en) Image processing system and image processing method
JP2019146030A (en) Camera stand for generating high-resolution image and method for using the same
JP5943525B2 (en) Mounting / inspection data creation device and mounting / inspection data creation method
JP6339849B2 (en) Inspection device
JP2013140082A (en) Height measuring device and height measuring method
JP5907628B2 (en) Adsorption nozzle inspection device for component mounting machines
JP2018017608A (en) Method and device for inspecting circuit board
CN112857234A (en) Measuring method and device for combining two-dimensional and height information of object
JP7019065B2 (en) Production optimization system for component mounting line
TWI250275B (en) Automatic optical inspection apparatus having an upward image acquisition structure
US20240155821A1 (en) Component mounting apparatus, component mounting method, and component positional relationship information acquiring method
JP6794215B2 (en) Board inspection equipment
JP2006054302A (en) Component mounting apparatus
JP2005166769A (en) Electronic part packaging apparatus
JP2010160006A (en) Substrate inspection apparatus equipped with lighting system for substrate inspection camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230116

R150 Certificate of patent or registration of utility model

Ref document number: 7213016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150