JP2019145349A - Lithium battery - Google Patents

Lithium battery Download PDF

Info

Publication number
JP2019145349A
JP2019145349A JP2018028763A JP2018028763A JP2019145349A JP 2019145349 A JP2019145349 A JP 2019145349A JP 2018028763 A JP2018028763 A JP 2018028763A JP 2018028763 A JP2018028763 A JP 2018028763A JP 2019145349 A JP2019145349 A JP 2019145349A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
current collector
lithium
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018028763A
Other languages
Japanese (ja)
Inventor
皓己 大塚
Hiroki Otsuka
皓己 大塚
春彦 佐竹
Haruhiko Satake
春彦 佐竹
浩 濱田
Hiroshi Hamada
浩 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2018028763A priority Critical patent/JP2019145349A/en
Publication of JP2019145349A publication Critical patent/JP2019145349A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a cylindrical lithium battery excellent in safety, discharge characteristics, and productivity.SOLUTION: A lithium battery includes: a bottomed cylindrical battery can which has an opening at one end; a hollow cylindrical positive electrode mixture, a separator, a negative electrode, and an electrolyte which are housed in the battery can; a sealing body which seals the opening of the battery can; and a rod-like negative electrode collector which is protrudingly fixed to a negative electrode terminal plate. The negative electrode, which is made of a tabular member obtained by molding lithium metal or a lithium alloy, is arranged inside the positive electrode mixture so as to be wound around the negative electrode collector. The tabular member is spirally wound around the negative electrode collector. An inner peripheral surface on at least an outermost peripheral end of the tabular member comes into contact with an outer peripheral surface of an inner layer directly under the outermost peripheral end of the tabular member.SELECTED DRAWING: Figure 1

Description

本発明は、負極にリチウム金属あるいはリチウム合金を用いたリチウム電池に関する。   The present invention relates to a lithium battery using lithium metal or a lithium alloy as a negative electrode.

特許文献1には、負極にリチウム金属あるいはリチウム合金を用いたボビン形リチウム一次電池に関して記載されている。ボビン形リチウム一次電池は、開口が負極端子板を兼ねる封口体によって封止されてなる中空筒状の電池缶内に中空筒状の負極リチウムを中空筒状の正極合剤の内方にセパレータを介して配置されて電解液とともに収納され、負極リチウムには、内面に接触する集電領域の上縁辺から上方に向かって帯状に延長する負極リード部が一体的に形成された金属製薄板からなる負極集電体が取り付けられ、負極リード部は、先端側が封口体の下面に接続されているともに、延長途上に機械加工によって他の領域より強度が低い強度低下部が形成されている。   Patent Document 1 describes a bobbin-type lithium primary battery using lithium metal or a lithium alloy as a negative electrode. A bobbin-type lithium primary battery has a hollow cylindrical negative electrode lithium in a hollow cylindrical battery can whose opening is sealed by a sealing body that also serves as a negative electrode terminal plate, and a separator inside the hollow cylindrical positive electrode mixture. The negative electrode lithium is made of a thin metal plate integrally formed with a negative electrode lead portion extending upwardly from the upper edge of the current collecting region contacting the inner surface. A negative electrode current collector is attached, and the negative electrode lead portion has a tip end side connected to the lower surface of the sealing body, and a strength reduction portion having a lower strength than other regions is formed by machining on the way of extension.

特開2017−147069号公報JP 2017-147069 A

強制放電(過放電含む)や異常充電モードに対する安全性を高めるために、リチウム電池には負極及び正極の表面積に対する負極集電体の面積占有率を高くすることが求められる。また特許文献1に記載のボビン形リチウム一次電池のように薄板状の負極集電体を用いる場合は負極の内径を負極集電体の外径に合わせて大きくする必要があるが、この形状は放電末期まで維持されるためデンドライト(樹枝状の金属リチウム)のセパレータ貫通リスクを低減するには極間距離を大きくする必要があり放電性能に影響が生じる。また負極材料の切断に伴う内部着火の発現リスクを防ぐために負極集電体の全体に亘って集電効率を確保する必要もある。   In order to enhance safety against forced discharge (including overdischarge) and abnormal charge mode, the lithium battery is required to have a high area occupation ratio of the negative electrode current collector with respect to the negative electrode and the surface area of the positive electrode. Moreover, when using a thin plate-like negative electrode current collector like the bobbin-type lithium primary battery described in Patent Document 1, it is necessary to increase the inner diameter of the negative electrode in accordance with the outer diameter of the negative electrode current collector. Since it is maintained until the end of discharge, it is necessary to increase the distance between the electrodes in order to reduce the risk of penetrating dendrites (dendritic lithium metal) through the separator, which affects the discharge performance. Moreover, in order to prevent the risk of internal ignition due to the cutting of the negative electrode material, it is also necessary to ensure the current collection efficiency over the entire negative electrode current collector.

本発明はこうした背景に鑑みてなされたものであり、安全性、放電特性、及び生産性に優れた筒形リチウム電池を提供することを目的とする。   This invention is made | formed in view of such a background, and it aims at providing the cylindrical lithium battery excellent in safety | security, discharge characteristics, and productivity.

上記目的を達成するための本発明は、リチウム電池であって、一端が開口する有底筒状の電池缶と、前記電池缶に収納される、中空筒状の正極合剤、セパレータ、負極、及び電解液と、前記電池缶の開口を封口する封口体と、前記封口体に立設固定された棒状の負極集電体と、を含み、前記負極は、リチウム金属またはリチウム合金を成形した板状の部材からなり、前記正極合剤の内方に、前記負極集電体の周囲に巻回された状態で配置される。   The present invention for achieving the above object is a lithium battery, a bottomed cylindrical battery can opened at one end, a hollow cylindrical positive electrode mixture, a separator, a negative electrode, And an electrolyte, a sealing body that seals the opening of the battery can, and a rod-shaped negative electrode current collector that is erected and fixed to the sealing body, and the negative electrode is a plate formed of lithium metal or a lithium alloy And is disposed inside the positive electrode mixture in a state of being wound around the negative electrode current collector.

本発明の他の一つは、上記リチウム電池であって、前記板状の部材は前記負極集電体の周囲にスパイラル状に巻回され、前記板状の部材の少なくとも最外周端部の内周面は、前記板状の部材の前記最外周端部の直下の内層の外周面と接触している。   Another aspect of the present invention is the above lithium battery, wherein the plate-like member is spirally wound around the negative electrode current collector, and at least the outermost peripheral end portion of the plate-like member is included. The peripheral surface is in contact with the outer peripheral surface of the inner layer immediately below the outermost peripheral end portion of the plate-like member.

本発明の他の一つは、上記リチウム電池であって、前記電池缶、前記封口体、及び前記負極集電体の少なくともいずれかが、筒形アルカリ電池の部材を用いて構成されている。   Another aspect of the present invention is the lithium battery, wherein at least one of the battery can, the sealing body, and the negative electrode current collector is configured using a member of a cylindrical alkaline battery.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.

本発明によれば、安全性、放電特性、及び生産性に優れた筒形リチウム電池を提供することができる。   According to the present invention, a cylindrical lithium battery excellent in safety, discharge characteristics, and productivity can be provided.

リチウム電池の円筒軸の延出する方向を上下(縦)方向とした場合における縦断面図である。It is a longitudinal cross-sectional view in the case where the extending direction of the cylindrical axis of the lithium battery is the vertical (vertical) direction. リチウム電池の負極の構成並びに製造方法を説明する図である。(a)は板状の部材を巻回する前の板状の部材と負極集電体を示す図であり、(b)は板状の部材を負極集電体の棒状部に巻回している途中の様子を示す図であり、(c)は板状の部材を負極集電体の棒状部に巻回し終えた後の板状の部材と負極集電体の状態を示す図である。It is a figure explaining the structure and manufacturing method of the negative electrode of a lithium battery. (A) is a figure which shows the plate-shaped member and negative electrode collector before winding a plate-shaped member, (b) is winding the plate-shaped member around the rod-shaped part of a negative electrode collector. It is a figure which shows the state in the middle, (c) is a figure which shows the state of the plate-shaped member and negative electrode collector after finishing winding a plate-shaped member around the rod-shaped part of a negative electrode collector. 図2(c)の負極集電体と負極の構成を図2(c)のA−A’線で切断して得られる断面図である。It is sectional drawing obtained by cut | disconnecting the structure of the negative electrode electrical power collector and negative electrode of FIG.2 (c) by the A-A 'line | wire of FIG.2 (c). 従来のリチウム電池の負極と負極集電体の構成図である。It is a block diagram of the negative electrode and negative electrode collector of the conventional lithium battery.

以下、発明を実施するための形態について図面を参照しつつ説明する。尚、以下の説明において、同一の又は類似する部分に同一の符号を付して重複する説明を省略することがある。   Hereinafter, embodiments for carrying out the invention will be described with reference to the drawings. In the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted.

図1に一実施形態として示すボビン形リチウム一次電池(以下、リチウム電池1と称する。)の構成を示している。同図はリチウム電池1の円筒軸50の延出する方向を上下(縦)方向とした場合における縦断面図である。同図に示すリチウム電池1は、金属等の導体を素材とする有底円筒状の電池缶2内に発電要素を収納するとともに電池缶2の開口を金属等の導体からなる負極端子板7で封口することにより製造される。   FIG. 1 shows a configuration of a bobbin-type lithium primary battery (hereinafter referred to as a lithium battery 1) shown as an embodiment. This figure is a longitudinal sectional view when the extending direction of the cylindrical shaft 50 of the lithium battery 1 is the vertical (vertical) direction. A lithium battery 1 shown in the figure includes a power generation element in a bottomed cylindrical battery can 2 made of a conductor such as metal, and the opening of the battery can 2 is a negative terminal plate 7 made of a conductor such as metal. Manufactured by sealing.

同図に示すように、リチウム電池1は、電池缶2、二酸化マンガン等の正極活物質を黒鉛(カーボンブラック)等の導電助剤とともに中空円筒状に成形してなる正極合剤3、金属リチウム又はリチウム合金からなる負極4、有底円筒状のセパレータ5、金属(真鍮等)の導電体からなる負極集電体6、負極端子板7、ナイロンやポリオレフィン等の樹脂からなる封口ガスケット10を含む。   As shown in the figure, a lithium battery 1 includes a battery can 2, a positive electrode mixture 3 formed by forming a positive electrode active material such as manganese dioxide into a hollow cylindrical shape together with a conductive aid such as graphite (carbon black), metallic lithium Or a negative electrode 4 made of a lithium alloy, a bottomed cylindrical separator 5, a negative electrode current collector 6 made of a metal (brass or the like) conductor, a negative electrode terminal plate 7, and a sealing gasket 10 made of a resin such as nylon or polyolefin. .

電池缶2は、電池ケース及び正極集電体として機能する。電池缶2には正極端子8が下方に突出して形成されている。電池缶2には、正極合剤3、セパレータ5、及び負極4が収納されるとともに、図示しない電解液が充填されている。同図に示すように、負極4は、正極合剤3の内方にセパレータ5を介して配置される。後述するように、負極4は、板状の部材41からなり、この板状の部材41は負極集電体6の周囲にスパイラル状(螺旋状)に巻回された状態で電池缶2に収納される。尚、同図では負極4の構成を簡略化して描いている。   The battery can 2 functions as a battery case and a positive electrode current collector. A positive electrode terminal 8 is formed on the battery can 2 so as to protrude downward. The battery can 2 contains a positive electrode mixture 3, a separator 5, and a negative electrode 4, and is filled with an electrolyte solution (not shown). As shown in the figure, the negative electrode 4 is disposed inside the positive electrode mixture 3 via a separator 5. As will be described later, the negative electrode 4 includes a plate-like member 41, and the plate-like member 41 is housed in the battery can 2 while being wound around the negative electrode current collector 6 in a spiral shape (spiral shape). Is done. In the figure, the configuration of the negative electrode 4 is simplified.

同図に示すように、負極端子板7は、円形の平板状部71と、当該平板状部71の周囲に形成されたフランジ部72とを有する。負極端子板7は、封口ガスケット10とともに電池缶2の缶口を封口する封口体20を構成する。負極集電体6は、少なくとも電池缶2の長手方向の長さの半分以上の長さを有する円柱状の棒状部61と、棒状部61の上端に形成された円盤状部62とを有する。   As shown in the figure, the negative electrode terminal plate 7 includes a circular flat plate portion 71 and a flange portion 72 formed around the flat plate portion 71. The negative electrode terminal plate 7 constitutes a sealing body 20 that seals the can of the battery can 2 together with the sealing gasket 10. The negative electrode current collector 6 includes a cylindrical rod-shaped portion 61 having a length that is at least half the length of the battery can 2 in the longitudinal direction, and a disk-shaped portion 62 formed at the upper end of the rod-shaped portion 61.

同図に示すように、円盤状部62の上面は溶接等により負極端子板7の下面に電気的に接続されており、それにより棒状部61は負極端子板7の平板状部71の中央から電池缶2の長手方向に立設固定されている。   As shown in the figure, the upper surface of the disk-shaped portion 62 is electrically connected to the lower surface of the negative electrode terminal plate 7 by welding or the like, so that the rod-shaped portion 61 extends from the center of the flat plate portion 71 of the negative electrode terminal plate 7. The battery can 2 is erected and fixed in the longitudinal direction.

図2は、本実施形態のリチウム電池1の負極4の構成並びに製造方法を説明する図である。図2(a)に示すように、本実施形態のリチウム電池1は、負極4の材料として、金属リチウムやリチウム合金等を圧延して得られる平面矩形状の板状の部材41を用いる。そして図2(b)、(c)に示すように、この板状の部材41を負極集電体6の棒状部61にスパイラル状(螺旋状)に巻回することにより負極4が構成されている。   FIG. 2 is a diagram illustrating the configuration and manufacturing method of the negative electrode 4 of the lithium battery 1 of the present embodiment. As shown in FIG. 2A, the lithium battery 1 of the present embodiment uses a planar rectangular plate-like member 41 obtained by rolling metal lithium, a lithium alloy, or the like as the material of the negative electrode 4. Then, as shown in FIGS. 2B and 2C, the negative electrode 4 is formed by winding the plate-like member 41 around the rod-like portion 61 of the negative electrode current collector 6 in a spiral shape (spiral shape). Yes.

板状の部材41の平面形状、板状の部材41の厚さ、及び板状の部材41を負極集電体6の棒状部61への巻き付け回数は、リチウム電池1の安全性、放電特性、及び生産性等の観点、リチウム電池1の大きさ、正極合剤3の形状や大きさ、負極集電体6の直径等に基づき設定される。   The planar shape of the plate-like member 41, the thickness of the plate-like member 41, and the number of times of winding the plate-like member 41 around the rod-like portion 61 of the negative electrode current collector 6 are the safety of the lithium battery 1, the discharge characteristics, Further, it is set based on the viewpoint of productivity, the size of the lithium battery 1, the shape and size of the positive electrode mixture 3, the diameter of the negative electrode current collector 6, and the like.

負極集電体6の棒状部61の直径は、上記板状の部材41の巻き付けが可能な程度の寸法範囲とし、負極端子板7への溶接の容易性、強度確保等の観点を考慮して設定される。例えば、単三サイズのリチウム電池1であれば、上記直径は例えば1mm程度となる。   The diameter of the rod-shaped portion 61 of the negative electrode current collector 6 is set to a size range in which the plate-like member 41 can be wound, and in consideration of ease of welding to the negative electrode terminal plate 7 and securing of strength. Is set. For example, in the case of an AA size lithium battery 1, the diameter is about 1 mm, for example.

強制放電(過放電含む)や異常充電モードに対する安全性を向上する観点からすれば、負極4は、少なくとも負極集電体6の棒状部61の正極合剤3と対向する部分の全体を覆うように負極集電体6に巻回することが好ましい。また内部着火等を引き起こす要因となる過放電時の負極4の切断を防ぐ観点からすれば、負極4は、負極集電体6の棒状部61の正極合剤3と対向する部分の全体を丁度覆う程度に負極集電体6に巻回することが好ましい。また負極集電体6の棒状部61を長くすることで、負極及び正極の表面積に対する負極集電体6の面積占有率を高めることができ、強制放電(過放電含む)や異常充電モードに対する安全性を高めることができる。   From the viewpoint of improving safety against forced discharge (including overdischarge) and abnormal charge mode, the negative electrode 4 covers at least the entire portion of the rod-shaped portion 61 of the negative electrode current collector 6 facing the positive electrode mixture 3. The negative electrode current collector 6 is preferably wound around. From the viewpoint of preventing disconnection of the negative electrode 4 at the time of overdischarge, which causes internal ignition and the like, the negative electrode 4 is just the entire portion of the rod-shaped portion 61 of the negative electrode current collector 6 facing the positive electrode mixture 3. It is preferable to wind it around the negative electrode current collector 6 so as to cover it. In addition, by making the rod-shaped portion 61 of the negative electrode current collector 6 longer, the area occupation ratio of the negative electrode current collector 6 with respect to the surface areas of the negative electrode and the positive electrode can be increased, and safety against forced discharge (including overdischarge) and abnormal charge modes is achieved. Can increase the sex.

図3は、図2(c)の負極集電体6と負極4の構成を同図のA−A’線で切断して得られる断面図である。同図に示すように、この例では板状の部材41を負極集電体6の周囲に2周程巻き付けている。同図に示すように、負極集電体6に巻回された板状の部材41(負極4)の層間に隙間Sが存在するが、この隙間Sは負極4と電解液との間の接触面積の増大に寄与する。   FIG. 3 is a cross-sectional view obtained by cutting the configurations of the negative electrode current collector 6 and the negative electrode 4 of FIG. 2C along the line A-A ′ of FIG. As shown in the figure, in this example, a plate-like member 41 is wound around the periphery of the negative electrode current collector 6 about two rounds. As shown in the figure, there is a gap S between the layers of the plate-like member 41 (negative electrode 4) wound around the negative electrode current collector 6, and this gap S is a contact between the negative electrode 4 and the electrolyte. Contributes to increased area.

同図に示すように、板状の部材41の少なくとも最外周端部42の内周面は、板状の部材41の直下の内層の外周面と接触(電気的に接続)していることが好ましい。そのようにすることで、例えば、過放電等により板状の部材41が途中で切断した場合でも、切断後の板状の部材41の一部が負極集電体6と電気的に切断されてしまうのを防ぐことができ、負極4の切断によって生じる内部着火のリスクを低減することができる。   As shown in the figure, at least the inner peripheral surface of the outermost peripheral end portion 42 of the plate-like member 41 is in contact (electrically connected) with the outer peripheral surface of the inner layer immediately below the plate-like member 41. preferable. By doing so, for example, even when the plate-like member 41 is cut halfway due to overdischarge or the like, a part of the cut plate-like member 41 is electrically cut from the negative electrode current collector 6. The risk of internal ignition caused by the cutting of the negative electrode 4 can be reduced.

以上に示した本実施形態のリチウム電池1は、その構成部材(電池缶2、正極合剤3、セパレータ5、負極集電体6、封口体20(負極端子板7、封口ガスケット10))として、筒形アルカリ電池の製造に用いられている部材(部品)を用いる(利用する)ことができる。そのため、材料コストの低減や製造工程の簡素化を図ることができ、安価なリチウム電池1を提供することができる。   As described above, the lithium battery 1 of the present embodiment includes the battery can 2, the positive electrode mixture 3, the separator 5, the negative electrode current collector 6, and the sealing body 20 (the negative electrode terminal plate 7 and the sealing gasket 10). A member (component) used for manufacturing a cylindrical alkaline battery can be used (utilized). Therefore, the material cost can be reduced and the manufacturing process can be simplified, and the inexpensive lithium battery 1 can be provided.

図4は、比較例として示す、特許文献1に記載されている従来のリチウム電池の負極4’と負極集電体6’の構成図である。同図から理解されるように、従来のリチウム電池の場合、負極4’の内径を負極集電体6’の外径に合わせる必要があり、この形状は放電末期まで維持されデンドライト(樹枝状の金属リチウム)のセパレータ貫通リスクを低減するために極間距離を大きくする必要があり放電性能に影響が生じる。また従来のリチウム電池の場合、負極4’と負極集電体6’との間の圧着強度を確保するために圧着面を工夫する必要もあり、工程が複雑化して集電不良が生じる可能性がある。   FIG. 4 is a configuration diagram of a negative electrode 4 ′ and a negative electrode current collector 6 ′ of a conventional lithium battery described in Patent Document 1 shown as a comparative example. As can be seen from the figure, in the case of a conventional lithium battery, the inner diameter of the negative electrode 4 ′ needs to be matched with the outer diameter of the negative electrode current collector 6 ′, and this shape is maintained until the end of discharge, and dendrites (dendritic shape) In order to reduce the risk of metal lithium) penetrating the separator, it is necessary to increase the distance between the electrodes, which affects the discharge performance. Further, in the case of a conventional lithium battery, it is necessary to devise a crimping surface in order to ensure the crimping strength between the negative electrode 4 ′ and the negative electrode current collector 6 ′, and the process may be complicated, resulting in poor current collection. There is.

これに対し図3に示した構成からなる本実施形態のリチウム電池1の場合、負極4(板状の部材41)の減少とともに負極4とセパレータ5及び正極合剤3との間の距離(間隔)が広がっていく。そのため、残存容量が異なる電池同士を接続したときの転極過放電や誤使用による充電により生じるセパレータの貫通リスクは低減される方向となる。また構造上、極間距離の確保が容易であり、高負荷パルス特性を確保し易い。また負極4に負極集電体6を巻き付ける際に負極4と負極集電体6との間の圧着強度を確保し易く集電不良も生じにくい。   On the other hand, in the case of the lithium battery 1 of the present embodiment having the configuration shown in FIG. 3, the distance (interval) between the negative electrode 4, the separator 5, and the positive electrode mixture 3 as the negative electrode 4 (plate-like member 41) decreases. ) Will spread. Therefore, the risk of penetration of the separator caused by reversal overdischarge or charging due to misuse when batteries having different remaining capacities are connected is reduced. In addition, because of the structure, it is easy to ensure the distance between the electrodes, and it is easy to ensure high load pulse characteristics. In addition, when the negative electrode current collector 6 is wound around the negative electrode 4, it is easy to secure the pressure bonding strength between the negative electrode 4 and the negative electrode current collector 6, and it is difficult to cause current collection failure.

尚、本実施形態のように負極集電体6の周囲に負極4(板状の部材41)を巻回するのではなく、負極材料(金属リチウムやリチウム合金)に負極集電体6を差し込む(突き刺す)ようにすることも考えられるが、負極材料の抗力に逆らって負極集電体6を差し込む際に強度的なリスクが伴い、とくに電池が高背である場合は製造が困難となる。また差し込み方式の場合は負極材料と電解液との間の接触面積の確保が難しく、その結果、極間距離を広げる必要があり、高負荷パルス特性に影響が生じる。   Instead of winding the negative electrode 4 (plate-like member 41) around the negative electrode current collector 6 as in the present embodiment, the negative electrode current collector 6 is inserted into the negative electrode material (metallic lithium or lithium alloy). Although it is conceivable to pierce (stab), there is a risk of strength when the negative electrode current collector 6 is inserted against the drag of the negative electrode material, and manufacturing is particularly difficult when the battery is tall. Further, in the case of the insertion method, it is difficult to secure a contact area between the negative electrode material and the electrolytic solution. As a result, it is necessary to widen the distance between the electrodes, which affects the high load pulse characteristics.

=性能検証=
以上の構成からなるリチウム電池1の性能を検証すべく、図3に示す断面構造の本実施形態のボビン形リチウム一次電池(以下、「実施例」と称する。)、及び図4に示す断面構造のボビン形リチウム一次電池(以下、「比較例」と称する。)を作成して試験を行った。試作したボビン形リチウム一次電池はいずれも単三サイズ(直径14.5mm,高さ50.0mm)とした。
= Performance verification =
In order to verify the performance of the lithium battery 1 having the above-described configuration, the bobbin-type lithium primary battery (hereinafter referred to as “Example”) having the cross-sectional structure shown in FIG. 3 and the cross-sectional structure shown in FIG. A bobbin-type lithium primary battery (hereinafter referred to as “comparative example”) was prepared and tested. All of the prototype bobbin-type lithium primary batteries were AA size (14.5 mm in diameter and 50.0 mm in height).

<安全性試験>
安全性について試験を行った結果を表1に示す。また表1に示した各モードA〜Dの詳細を表2に示す。尚、試験数(サンプル数)は、実施例及び比較例のいずれについても5つとした。

Figure 2019145349
Figure 2019145349
表1に示すように、比較例についてはモードDにおいて異常を示すものが存在するが、実施例の場合はモードA〜Dの全てについて異常を示すものは存在しなかった。 <Safety test>
Table 1 shows the results of testing for safety. Details of the modes A to D shown in Table 1 are shown in Table 2. The number of tests (number of samples) was set to 5 for both the examples and comparative examples.
Figure 2019145349
Figure 2019145349
As shown in Table 1, there were those showing an abnormality in mode D for the comparative example, but none of the modes A to D showed an abnormality in the example.

<放電性能試験>
放電性能について行った試験の結果を表3に示す。連続放電特性(23℃、1kΩ負荷での連続放電)、パルス放電特定(23℃、1秒毎オン(オン時電流40mA))の夫々について試験を行った。尚、表中の数値は比較例の放電特性を100としたときの相対値である。

Figure 2019145349
表3に示すように、実施例について比較例と同等の放電性能が得られることがわかった。 <Discharge performance test>
Table 3 shows the results of tests conducted on the discharge performance. Tests were conducted for each of continuous discharge characteristics (continuous discharge at 23 ° C. and 1 kΩ load) and pulse discharge specification (23 ° C., ON every second (on-state current 40 mA)). In addition, the numerical value in a table | surface is a relative value when the discharge characteristic of a comparative example is set to 100.
Figure 2019145349
As shown in Table 3, it was found that the discharge performance equivalent to that of the comparative example was obtained for the example.

尚、上記の比較例に加え、さらに負極材料に負極集電体6を差し込んだ(突き刺した)構造(他の構造は実施例と同様)の比較例のボビン形リチウム一次電池を試作して放電性能を検証した。表4にその結果を示す。表中の数値は比較例の放電特性を100としたときの相対値である。

Figure 2019145349
表4に示すように、実施例は比較例よりも良好なパルス特性が得られた。これは実施例のほうが負極と電解液との間の接触面積が大きく、パルス負荷時の閉路電圧降下が小さくなるからであると考えられる。 In addition to the above comparative example, a bobbin-type lithium primary battery of a comparative example having a structure in which the negative electrode current collector 6 is further inserted (pierced) into the negative electrode material (the other structures are the same as those in the example) was manufactured and discharged. The performance was verified. Table 4 shows the results. The numerical values in the table are relative values when the discharge characteristic of the comparative example is 100.
Figure 2019145349
As shown in Table 4, the example obtained better pulse characteristics than the comparative example. This is considered to be because the contact area between the negative electrode and the electrolytic solution is larger in the example, and the closed circuit voltage drop at the time of pulse load is smaller.

<高温保存特性(耐漏液性)試験>
高温保存特性(耐漏液性)について試験を行った結果を表5に示す。尚、試験数(サンプル数)は、実施例及び比較例のいずれについても5つとした。

Figure 2019145349
表5に示すように、実施例はいずれのサンプルについても比較例と同等の高温保存特性(耐漏液性)であった。 <High temperature storage characteristics (leakage resistance) test>
Table 5 shows the results of testing for high temperature storage characteristics (leakage resistance). The number of tests (number of samples) was set to 5 for both the examples and comparative examples.
Figure 2019145349
As shown in Table 5, the Examples had the same high-temperature storage characteristics (leakage resistance) as the comparative examples for all the samples.

=効果=
以上のように、本実施形態のリチウム電池1によれば、負極4及び正極(電池缶2)の表面積に対する負極集電体6の面積占有率を確保することができる。また本実施形態のリチウム電池1によれば、負極4の減少に伴い負極4とセパレータ5及び正極合剤3との間の距離が広がるため、残存容量が異なる電池同士を接続したときの転極過放電や誤使用による充電により生じるセパレータの貫通リスクを低減することができる。
= Effect =
As described above, according to the lithium battery 1 of the present embodiment, the area occupation ratio of the negative electrode current collector 6 with respect to the surface areas of the negative electrode 4 and the positive electrode (battery can 2) can be ensured. In addition, according to the lithium battery 1 of the present embodiment, the distance between the negative electrode 4 and the separator 5 and the positive electrode mixture 3 increases as the negative electrode 4 decreases, so that the reversal when batteries having different remaining capacities are connected to each other. The risk of penetration of the separator caused by charging due to overdischarge or misuse can be reduced.

また本実施形態のリチウム電池1は極間距離を確保しやすく、負極集電体6に巻回された板状の部材41(負極4)の層間に存在する隙間Sにより負極4と電解液との間の接触面積を確保することができ、高負荷パルス特性が損なわれることもない。   Moreover, the lithium battery 1 of this embodiment is easy to ensure the distance between the electrodes, and the negative electrode 4 and the electrolyte solution are formed by the gap S existing between the layers of the plate-like member 41 (negative electrode 4) wound around the negative electrode current collector 6. Can be ensured, and the high-load pulse characteristics are not impaired.

また本実施形態のリチウム電池1は負極集電体6に負極4に巻回する方式であるため、負極4と負極集電体6との間の圧着強度を確保しやすく、集電不良が生じにくい。   Moreover, since the lithium battery 1 of this embodiment is a system which winds around the negative electrode 4 around the negative electrode collector 6, it is easy to ensure the crimping | compression-bonding strength between the negative electrode 4 and the negative electrode collector 6, and current collection defect arises. Hateful.

また本実施形態のリチウム電池1は、その構成部材として、筒形アルカリ電池の製造に用いられる部材(部品)を用いる(利用する)ことができる。そのため、材料コストの低減や製造工程の簡素化を図ることができ、安価なリチウム電池1を提供することができる。   Moreover, the lithium battery 1 of this embodiment can use (utilize) the member (component) used for manufacture of a cylindrical alkaline battery as the structural member. Therefore, the material cost can be reduced and the manufacturing process can be simplified, and the inexpensive lithium battery 1 can be provided.

尚、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。   In addition, the above description is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.

1 リチウム電池、2 電池缶、3 正極合剤、4 負極、41 板状の部材、42 最外周端部、5 セパレータ、6 負極集電体、61 棒状部、62 円盤状部、7 負極端子板、71 平板状部、72 フランジ部、10 封口ガスケット、20 封口体 DESCRIPTION OF SYMBOLS 1 Lithium battery, 2 Battery can, 3 Positive electrode mixture, 4 Negative electrode, 41 Plate-shaped member, 42 Outermost peripheral edge part, 5 Separator, 6 Negative electrode current collector, 61 Rod-shaped part, 62 Disc-shaped part, 7 Negative electrode terminal board 71 Flat plate part 72 Flange part 10 Sealing gasket 20 Sealing body

Claims (3)

一端が開口する有底筒状の電池缶と、
前記電池缶に収納される、中空筒状の正極合剤、セパレータ、負極、及び電解液と、
前記電池缶の開口を封口する封口体と、
前記封口体に立設固定された棒状の負極集電体と、
を含み、
前記負極は、リチウム金属またはリチウム合金を成形した板状の部材からなり、前記正極合剤の内方に、前記負極集電体の周囲に巻回された状態で配置される
ことを特徴とするリチウム電池。
A bottomed cylindrical battery can with one end open;
A hollow cylindrical positive electrode mixture, a separator, a negative electrode, and an electrolyte solution housed in the battery can,
A sealing body for sealing the opening of the battery can;
A rod-shaped negative electrode current collector standingly fixed to the sealing body;
Including
The negative electrode is composed of a plate-shaped member formed of lithium metal or a lithium alloy, and is disposed inside the positive electrode mixture in a state of being wound around the negative electrode current collector. Lithium battery.
前記板状の部材は前記負極集電体の周囲にスパイラル状に巻回されており、
前記板状の部材の少なくとも最外周端部の内周面は、前記板状の部材の前記最外周端部の直下の内層の外周面と接触している
ことを特徴とする請求項1に記載のリチウム電池。
The plate-like member is wound in a spiral around the negative electrode current collector,
The inner peripheral surface of at least the outermost peripheral end portion of the plate-shaped member is in contact with the outer peripheral surface of the inner layer immediately below the outermost peripheral end portion of the plate-shaped member. Lithium battery.
前記電池缶、前記封口体、及び前記負極集電体の少なくともいずれかが、筒形アルカリ電池の部材を用いて構成されている
ことを特徴とする請求項1又は2に記載のリチウム電池。
The lithium battery according to claim 1, wherein at least one of the battery can, the sealing body, and the negative electrode current collector is configured using a cylindrical alkaline battery member.
JP2018028763A 2018-02-21 2018-02-21 Lithium battery Pending JP2019145349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028763A JP2019145349A (en) 2018-02-21 2018-02-21 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028763A JP2019145349A (en) 2018-02-21 2018-02-21 Lithium battery

Publications (1)

Publication Number Publication Date
JP2019145349A true JP2019145349A (en) 2019-08-29

Family

ID=67772637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028763A Pending JP2019145349A (en) 2018-02-21 2018-02-21 Lithium battery

Country Status (1)

Country Link
JP (1) JP2019145349A (en)

Similar Documents

Publication Publication Date Title
CN100544069C (en) Enclosed secondary battery
JP2012059365A (en) Terminal for sealed battery and method of manufacturing the same
JP5899495B2 (en) Cylindrical lithium-ion battery
JP3877619B2 (en) Sealed battery
JP2009099558A (en) Secondary battery
US20220376332A1 (en) Cylindrical battery
US20220416338A1 (en) Sealed battery
JPWO2013014833A1 (en) Lithium ion secondary battery
JP5571318B2 (en) Cylindrical battery
JP7411925B2 (en) Manufacturing method of sealed battery with terminal and sealed battery with terminal
WO2015098865A1 (en) Capacitor
KR101038115B1 (en) The cylindrical storage battery
JP2009110885A (en) Sealed battery and its manufacturing method
JP4580699B2 (en) Nonaqueous electrolyte secondary battery
JP2008243811A (en) Battery
JP2009224070A (en) Lithium secondary battery
JP2006032297A (en) Sealed battery and its manufacturing method
JP2019145349A (en) Lithium battery
JP2017059345A (en) Cylindrical secondary battery
WO2022196172A1 (en) Battery and method for manufacturing battery
EP4300644A1 (en) Cylindrical battery
EP4270613A1 (en) Hermetically sealed battery
JP7398719B2 (en) sealed battery
US20240136675A1 (en) Cylindrical battery
CN104838528A (en) Flat battery