JP2019145204A - Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2019145204A
JP2019145204A JP2016130017A JP2016130017A JP2019145204A JP 2019145204 A JP2019145204 A JP 2019145204A JP 2016130017 A JP2016130017 A JP 2016130017A JP 2016130017 A JP2016130017 A JP 2016130017A JP 2019145204 A JP2019145204 A JP 2019145204A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
particle
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016130017A
Other languages
Japanese (ja)
Inventor
平塚 秀和
Hidekazu Hiratsuka
秀和 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2016130017A priority Critical patent/JP2019145204A/en
Priority to PCT/JP2017/021715 priority patent/WO2018003477A1/en
Publication of JP2019145204A publication Critical patent/JP2019145204A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a positive electrode active material which is excellent in electrolyte permeability while suppressing reduction in particle strength.SOLUTION: A positive electrode active material 30 as an example of an embodiment consists mainly of a lithium-containing transition metal oxide and whose porosity calculated from a particle cross-sectional image of the positive electrode active material 30 is equal to or more than 20%. The positive electrode active material 30 has voids 32 communicated from the particle surface to the inside of a particle over a length corresponding to 1/6 of a particle diameter D. Here, the particle diameter D is the diameter of a circumcircle α of the particle in the particle cross-sectional image of the positive electrode active material 30.SELECTED DRAWING: Figure 4

Description

本開示は、正極活物質、正極、及び非水電解質二次電池に関する。   The present disclosure relates to a positive electrode active material, a positive electrode, and a non-aqueous electrolyte secondary battery.

特許文献1には、平均粒径が1μm〜8μmの一次粒子が凝集して形成された平均粒径が5μm〜30μmの二次粒子であるリチウムニッケル複合酸化物(正極活物質)が開示されている。特許文献1では、正極活物質の空隙率は10%〜20%が望ましく、一次粒子の粒径が大きくなるに連れて空隙率が大きくなる、と記載されている。   Patent Document 1 discloses a lithium nickel composite oxide (positive electrode active material) which is a secondary particle having an average particle diameter of 5 μm to 30 μm formed by aggregation of primary particles having an average particle diameter of 1 μm to 8 μm. Yes. Patent Document 1 describes that the porosity of the positive electrode active material is preferably 10% to 20%, and the porosity increases as the particle size of the primary particles increases.

特開2001−85006号公報JP 2001-85006 A

ところで、非水電解質二次電池の高出力化を図る場合、電解液の浸透性に優れた正極活物質を用いることが好ましい。しかし、正極活物質の液浸透性を改善することは容易ではなく、正極活物質の空隙率を単純に上げても、例えば、活物質が脆くなって電池のサイクル特性が低下するだけで、液浸透性は大して向上しない。正極活物質の粒子強度の低下を抑えながら、液浸透性を向上させることは重要な課題である。   By the way, when aiming at the high output of a nonaqueous electrolyte secondary battery, it is preferable to use the positive electrode active material excellent in the permeability of electrolyte solution. However, it is not easy to improve the liquid permeability of the positive electrode active material. Even if the porosity of the positive electrode active material is simply increased, for example, the active material becomes brittle and the cycle characteristics of the battery are reduced. The permeability is not greatly improved. It is an important issue to improve liquid permeability while suppressing a decrease in particle strength of the positive electrode active material.

本開示の一態様である正極活物質は、リチウム含有遷移金属酸化物を主成分として構成される非水電解質二次電池用の正極活物質であって、正極活物質の粒子断面画像から得られる粒子断面積に対して20%以上の割合で形成された空隙を有し、空隙には、正極活物質の粒子表面から粒径Dの1/6に相当する長さを超えて粒子内部まで連通した長空隙が含まれ、ここで、粒径Dとは粒子断面画像における粒子の外接円の直径である。   A positive electrode active material that is one embodiment of the present disclosure is a positive electrode active material for a non-aqueous electrolyte secondary battery including a lithium-containing transition metal oxide as a main component, and is obtained from a particle cross-sectional image of the positive electrode active material. It has voids formed at a ratio of 20% or more with respect to the particle cross-sectional area, and the voids communicate from the surface of the positive electrode active material particle to the inside of the particle over a length corresponding to 1/6 of the particle size D. Where the particle diameter D is the diameter of the circumscribed circle of the particle in the particle cross-sectional image.

本開示の一態様である正極は、非水電解質二次電池用の正極であって、正極集電体と、上記正極活物質、導電材、及び結着材から構成され、正極集電体の少なくとも一方の面上に形成された正極合材層とを備え、導電材の一部が、正極活物質の空隙内に存在する。   A positive electrode that is one embodiment of the present disclosure is a positive electrode for a non-aqueous electrolyte secondary battery, and includes a positive electrode current collector, the positive electrode active material, a conductive material, and a binder. A positive electrode mixture layer formed on at least one surface, and a part of the conductive material is present in the voids of the positive electrode active material.

本開示の一態様である非水電解質二次電池は、上記正極活物質を含む正極と、負極と、非水電解質とを備える。   A nonaqueous electrolyte secondary battery that is one embodiment of the present disclosure includes a positive electrode including the positive electrode active material, a negative electrode, and a nonaqueous electrolyte.

本開示の一態様によれば、粒子強度の低下を抑えながら、電解液の浸透性に優れた正極活物質を提供することができる。また、当該正極活物質を用いた非水電解質二次電池は、優れた出力特性を有する。   According to one embodiment of the present disclosure, it is possible to provide a positive electrode active material having excellent electrolyte solution permeability while suppressing a decrease in particle strength. Moreover, the nonaqueous electrolyte secondary battery using the positive electrode active material has excellent output characteristics.

実施形態の一例である非水電解質二次電池の斜視図である。It is a perspective view of the nonaqueous electrolyte secondary battery which is an example of embodiment. 実施形態の一例である正極活物質の断面図である。It is sectional drawing of the positive electrode active material which is an example of embodiment. 実施形態の一例である正極活物質のSEM画像である。It is a SEM image of the positive electrode active material which is an example of embodiment. 実施形態の一例である正極活物質の粒子断面のSEM画像である。It is a SEM image of the particle section of the cathode active material which is an example of an embodiment. 比較例1で用いた正極活物質のSEM画像である。3 is a SEM image of a positive electrode active material used in Comparative Example 1. 比較例1で用いた正極活物質の粒子断面のSEM画像である。2 is a SEM image of a particle cross section of a positive electrode active material used in Comparative Example 1.

非水電解質二次電池の出力特性を向上させるために、正極活物質の液浸透性を改善することは有効である。本発明者らは、正極活物質の液浸透性を改善すべく鋭意検討した結果、粒子表面から粒径Dの1/6に相当する長さを超えて粒子内部まで連通する空隙(長空隙)が多数形成された正極活物質の開発に成功したのである。本開示の一態様である正極活物質によれば、粒子表面から粒子内部までつながった空隙によって電解液が粒子内部まで素早く浸透する。このため、当該正極活物質を用いることにより、出力特性に優れた非水電解質二次電池を提供することができる。本開示の一態様である正極活物質は、電極の厚みが大きな電池に好適である。   In order to improve the output characteristics of the nonaqueous electrolyte secondary battery, it is effective to improve the liquid permeability of the positive electrode active material. As a result of intensive studies to improve the liquid permeability of the positive electrode active material, the present inventors have found that voids (long voids) communicating from the particle surface to the inside of the particles beyond the length corresponding to 1/6 of the particle size D. Has succeeded in developing a positive electrode active material in which a large number of particles are formed. According to the positive electrode active material that is one embodiment of the present disclosure, the electrolytic solution quickly permeates into the inside of the particles by the voids connected from the particle surface to the inside of the particles. For this reason, the nonaqueous electrolyte secondary battery excellent in output characteristics can be provided by using the said positive electrode active material. The positive electrode active material which is one embodiment of the present disclosure is suitable for a battery having a large electrode thickness.

本開示の一態様である正極活物質において、主成分であるリチウム含有遷移金属酸化物は、例えば少なくともニッケル(Ni)、コバルト(Co)、及びマンガン(Mn)を含有し、リチウム(Li)を除く金属元素の総モル数に対するNiの割合が30モル%以上である。この場合、上述の空隙が形成され易くなる。また、Niの含有率を高くすることで高容量化を図ることができる。   In the positive electrode active material that is one embodiment of the present disclosure, the lithium-containing transition metal oxide that is the main component contains, for example, at least nickel (Ni), cobalt (Co), and manganese (Mn), and lithium (Li). The ratio of Ni to the total number of moles of the metal element to be removed is 30 mol% or more. In this case, the above-mentioned gap is easily formed. Further, the capacity can be increased by increasing the Ni content.

以下、図面を参照しながら、実施形態の一例について詳細に説明する。なお、本開示の正極活物質、正極、及び非水電解質二次電池は、以下で説明する実施形態に限定されない。また、実施形態の説明で参照する図面は、模式的に記載されたものであり、各構成要素の寸法などは以下の説明を参酌して判断されるべきである。   Hereinafter, an example of an embodiment will be described in detail with reference to the drawings. Note that the positive electrode active material, the positive electrode, and the nonaqueous electrolyte secondary battery of the present disclosure are not limited to the embodiments described below. Further, the drawings referred to in the description of the embodiments are schematically described, and the dimensions and the like of each component should be determined in consideration of the following description.

以下で説明する実施形態では、複数の正極と複数の負極がセパレータを介して交互に積層されてなる積層構造の電極体が角形の外装缶に収容された角形電池を例示するが、電極体の構造は当該積層構造に限定されず、巻回構造であってもよい。また、電池ケースは角形の金属製ケース(外装缶)に限定されず、コイン形、円筒形等の金属製ケース、或いは樹脂フィルムによって構成される樹脂製ケースなどであってもよい。   In the embodiment described below, a rectangular battery in which a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via separators is housed in a rectangular outer can is illustrated. The structure is not limited to the laminated structure, and may be a wound structure. Further, the battery case is not limited to a rectangular metal case (exterior can), and may be a metal case such as a coin shape or a cylindrical shape, or a resin case constituted by a resin film.

図1は、実施形態の一例である非水電解質二次電池10の外観を示す斜視図である。図1に例示するように、非水電解質二次電池10は、電極体及び非水電解質を収容する外装缶11と、外装缶11の開口部を塞ぐ封口板12とを備える。外装缶11は、有底筒状の金属製容器である。電極体は、複数の正極、複数の負極、及び少なくとも1つのセパレータを含み、各正極と各負極がセパレータを介して交互に積層された構造を有する。セパレータは、例えば複数設けられ、正極の両側にそれぞれ配置される。   FIG. 1 is a perspective view showing an appearance of a nonaqueous electrolyte secondary battery 10 which is an example of an embodiment. As illustrated in FIG. 1, the nonaqueous electrolyte secondary battery 10 includes an outer can 11 that houses the electrode body and the nonaqueous electrolyte, and a sealing plate 12 that closes an opening of the outer can 11. The outer can 11 is a bottomed cylindrical metal container. The electrode body includes a plurality of positive electrodes, a plurality of negative electrodes, and at least one separator, and has a structure in which each positive electrode and each negative electrode are alternately stacked via the separator. A plurality of separators are provided, for example, and are respectively disposed on both sides of the positive electrode.

封口板12には、正極外部端子13、負極外部端子14、ガス排出弁15、及び注液部16が設けられている。正極外部端子13と負極外部端子14は、例えば絶縁性のガスケットを用いて封口板12と電気的に絶縁された状態で封口板12に取り付けられる。なお、封口板12に外部端子として負極外部端子のみを設け、外装缶11を正極外部端子とする形態としてもよい。注液部16は、一般的に、電解液を注液するための注液孔と、注液孔を塞ぐ封止栓とで構成される。   The sealing plate 12 is provided with a positive external terminal 13, a negative external terminal 14, a gas discharge valve 15, and a liquid injection part 16. The positive electrode external terminal 13 and the negative electrode external terminal 14 are attached to the sealing plate 12 in a state of being electrically insulated from the sealing plate 12 using, for example, an insulating gasket. In addition, it is good also as a form which provides only the negative electrode external terminal as an external terminal in the sealing board 12, and uses the armored can 11 as a positive electrode external terminal. The liquid injection part 16 is generally composed of a liquid injection hole for injecting an electrolytic solution and a sealing plug for closing the liquid injection hole.

以下、非水電解質二次電池10の各構成要素、特に正極活物質について詳説する。   Hereinafter, each component of the nonaqueous electrolyte secondary battery 10, particularly the positive electrode active material, will be described in detail.

[正極]
正極は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層は、正極活物質、導電材、及び結着材を含む。正極は、例えば正極集電体上に正極活物質、導電材、及び結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合材層を集電体の両面に形成することにより作製できる。正極合材層の厚みは、例えば100μm以上であり、集電体の両面の合計で200μm以上である。
[Positive electrode]
The positive electrode includes a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector. As the positive electrode current collector, a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used. The positive electrode mixture layer includes a positive electrode active material, a conductive material, and a binder. For the positive electrode, for example, a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and the like is applied onto a positive electrode current collector, the coating film is dried, and then rolled to collect a positive electrode mixture layer. It can be produced by forming on both sides of the body. The thickness of the positive electrode mixture layer is, for example, 100 μm or more, and the total of both surfaces of the current collector is 200 μm or more.

導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.

結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド、アクリル樹脂、ポリオレフィン等が例示できる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   Examples of the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide, acrylic resin, and polyolefin. These resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like. These may be used alone or in combination of two or more.

図2は、実施形態の一例である非水電解質二次電池用の正極活物質30の断面図である。図3は正極活物質30の走査型電子顕微鏡画像(SEM画像)、図4は正極活物質30のクロスセクションポリッシャ(CP)により形成した粒子断面のSEM画像である。なお、図3及び図4は、後述の実施例1で作製した正極活物質のSEM画像である。以下、CPにより形成した正極活物質30の粒子断面のSEM画像を粒子断面画像Zという。   FIG. 2 is a cross-sectional view of a positive electrode active material 30 for a non-aqueous electrolyte secondary battery which is an example of an embodiment. FIG. 3 is a scanning electron microscope image (SEM image) of the positive electrode active material 30, and FIG. 4 is an SEM image of a cross section of the particle formed by the cross section polisher (CP) of the positive electrode active material 30. 3 and 4 are SEM images of the positive electrode active material produced in Example 1 described later. Hereinafter, the SEM image of the particle cross section of the positive electrode active material 30 formed by CP is referred to as a particle cross sectional image Z.

図2〜図4に示すように、正極活物質30は、リチウム含有遷移金属酸化物を主成分とする一次粒子31が凝集して形成された二次粒子である。正極活物質30は、その粒子断面画像Z(図4参照)から得られる粒子断面積Aに対して20%以上の割合で形成された空隙32を有する。粒子断面画像Zで黒く見える部分が空隙32である。粒子断面積Aは、粒子断面画像Zにおいて正極活物質30の粒子表面に沿って描かれた外形線に囲まれた部分の面積であって、空隙32の面積も含んでいる。以下、粒子断面積Aに対する空隙32の面積の割合、即ち(空隙32の面積/粒子断面積A)×100(%)を空隙率という場合がある。   As shown in FIGS. 2 to 4, the positive electrode active material 30 is secondary particles formed by agglomerating primary particles 31 mainly composed of a lithium-containing transition metal oxide. The positive electrode active material 30 has voids 32 formed at a ratio of 20% or more with respect to the particle cross-sectional area A obtained from the particle cross-sectional image Z (see FIG. 4). The portion that appears black in the particle cross-sectional image Z is the void 32. The particle cross-sectional area A is the area of the portion surrounded by the outline drawn along the particle surface of the positive electrode active material 30 in the particle cross-sectional image Z, and includes the area of the void 32. Hereinafter, the ratio of the area of the void 32 to the particle cross-sectional area A, that is, (area of the void 32 / particle cross-sectional area A) × 100 (%) may be referred to as the porosity.

正極活物質30は、リチウム含有遷移金属酸化物を主成分として構成される。主成分とは、正極活物質30を構成する材料のうち最も含有量が多いものを意味する。正極活物質30におけるリチウム含有遷移金属酸化物の含有率は、例えば90質量%以上であり、実質的に100質量%であってもよい。好適なリチウム含有遷移金属酸化物の一例は、少なくともニッケル(Ni)、コバルト(Co)、及びマンガン(Mn)を含有し、リチウム(Li)を除く金属元素の総モル数に対するNiの割合が30モル%以上の酸化物である。Ni、Co、Mnを含有する複合酸化物を用いることで、良好な空隙32が形成され易くなり、またNi含有量を高めることで、正極の高容量化を図ることができる。   The positive electrode active material 30 is composed mainly of a lithium-containing transition metal oxide. The main component means a material having the largest content among materials constituting the positive electrode active material 30. The content rate of the lithium containing transition metal oxide in the positive electrode active material 30 is 90 mass% or more, for example, and may be 100 mass% substantially. An example of a suitable lithium-containing transition metal oxide contains at least nickel (Ni), cobalt (Co), and manganese (Mn), and the ratio of Ni to the total number of moles of metal elements excluding lithium (Li) is 30. It is an oxide of mol% or more. By using a composite oxide containing Ni, Co, and Mn, it is easy to form a favorable void 32, and by increasing the Ni content, the capacity of the positive electrode can be increased.

リチウム含有遷移金属酸化物は、例えば、組成式LiaNix(1x)2(0.95≦a≦1.2、0.3≦x<1.0、MはLi、Ni以外の金属元素)で表される酸化物である。Ni含有量は、0.5モル%以上であってもよく、0.5モル%〜0.8モル%であってもよい。リチウム含有遷移金属酸化物に含有されるLi、Ni以外の金属元素としては、上述のようにCo、Mnが好ましいが、他にもマグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、錫(Sn)、アンチモン(Sb)、鉛(Pb)、及びビスマス(Bi)から選択される少なくとも1種が含まれていてもよい。 The lithium-containing transition metal oxide is, for example, a composition formula Li a Ni x M (1 - x) O 2 (0.95 ≦ a ≦ 1.2, 0.3 ≦ x <1.0, M is Li, Ni It is an oxide represented by other metal elements. The Ni content may be 0.5 mol% or more, and may be 0.5 mol% to 0.8 mol%. As described above, Co and Mn are preferable as metallic elements other than Li and Ni contained in the lithium-containing transition metal oxide, but magnesium (Mg), aluminum (Al), calcium (Ca), and scandium are also preferable. (Sc), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge), yttrium (Y), zirconium At least one selected from (Zr), tin (Sn), antimony (Sb), lead (Pb), and bismuth (Bi) may be included.

正極活物質30は、例えば平均粒径が1μm以下の一次粒子31が集合して形成された二次粒子であって、正極活物質30には一次粒子31の粒界が存在する。空隙32は、一次粒子31同士の間に形成される。一次粒子31の粒界は、図3及び図4に示すようにSEMにより観察できる。換言すると、当該粒界で区画された部分が一次粒子31である。二次粒子である正極活物質30同士も凝集する場合があるが、二次粒子の凝集は超音波分散により互いに分離することができる。一方、二次粒子を超音波分散しても当該粒子が一次粒子31に分離することはない。   The positive electrode active material 30 is, for example, secondary particles formed by aggregating primary particles 31 having an average particle diameter of 1 μm or less, and the positive electrode active material 30 has grain boundaries of the primary particles 31. The void 32 is formed between the primary particles 31. The grain boundaries of the primary particles 31 can be observed by SEM as shown in FIGS. In other words, the portion partitioned by the grain boundary is the primary particle 31. The positive electrode active materials 30 that are secondary particles may also aggregate, but the aggregation of secondary particles can be separated from each other by ultrasonic dispersion. On the other hand, even if the secondary particles are ultrasonically dispersed, the particles are not separated into the primary particles 31.

一次粒子31の平均粒径は、2μm以下が好ましく、例えば0.5μm〜2μmである。平均粒径が当該範囲内であれば、空隙率を上げ易くなり、長空隙33が形成され易くなる。多くの一次粒子31は、例えば楕円体状又は棒状の粒子であって、短径と長径の比(長径/短径)であるアスペクト比が2倍以上である。正極活物質30を構成する一次粒子31のうち、例えば50%以上の一次粒子31が2倍以上のアスペクト比を有する。なお、一次粒子31の平均粒径は長径に基づいて算出される。一次粒子31の短径は、例えば0.2μm〜1μmである。   The average particle diameter of the primary particles 31 is preferably 2 μm or less, for example, 0.5 μm to 2 μm. If the average particle diameter is within the range, the porosity is easily increased, and the long voids 33 are easily formed. Many primary particles 31 are, for example, ellipsoidal or rod-shaped particles, and have an aspect ratio that is a ratio of a minor axis to a major axis (major axis / minor axis) of 2 times or more. Of the primary particles 31 constituting the positive electrode active material 30, for example, 50% or more of the primary particles 31 have an aspect ratio of twice or more. The average particle size of the primary particles 31 is calculated based on the major axis. The short diameter of the primary particle 31 is, for example, 0.2 μm to 1 μm.

一次粒子31の平均粒径は、SEMを用いて測定できる。
具体的な測定法には、下記の通りである。
(1)正極活物質30の粒子をSEM(2000倍)で観察して得られた粒子画像から、ランダムに10個の粒子を選択する。
(2)選択した10個の粒子について一次粒子31の粒界を観察し、一次粒子31をそれぞれ決定する。
(3)各一次粒子31の長径(最長径)を求め、選択した10個の粒子についての平均値を一次粒子31の平均粒径とする。
The average particle diameter of the primary particles 31 can be measured using SEM.
Specific measurement methods are as follows.
(1) Ten particles are randomly selected from a particle image obtained by observing the particles of the positive electrode active material 30 with SEM (2000 times).
(2) The grain boundaries of the primary particles 31 are observed for the 10 selected particles, and the primary particles 31 are determined respectively.
(3) The major axis (longest diameter) of each primary particle 31 is obtained, and the average value of the selected ten particles is defined as the average particle diameter of the primary particles 31.

正極活物質30(二次粒子)の平均粒径は、例えば5μm〜30μmであり、好ましくは7μm〜20μmである。正極活物質30の平均粒径とは、レーザ回折法によって測定されるメジアン径(体積基準)を意味し、例えば堀場製作所製のレーザ回折散乱式粒度分布測定装置を用いて測定できる。   The average particle diameter of the positive electrode active material 30 (secondary particles) is, for example, 5 μm to 30 μm, and preferably 7 μm to 20 μm. The average particle diameter of the positive electrode active material 30 means a median diameter (volume basis) measured by a laser diffraction method, and can be measured using, for example, a laser diffraction scattering type particle size distribution measuring apparatus manufactured by Horiba.

空隙32は、上述のように、正極活物質30の粒子断面積Aに対して20%以上の割合で形成される。正極活物質30の空隙率は、粒子断面積Aの50%以下が好ましく、例えば20%〜45%、又は25%〜40%である。空隙率が当該範囲内であれば、正極活物質30の粒子強度と電解液の浸透性を両立し易くなる。平均粒径が7μm〜20μmの正極活物質30の空隙率の平均値(N=100)は、例えば20%〜50%、又は25%〜40%、又は25%〜35%である。空隙32は、電池の充放電後においても維持され、空隙率は殆ど変化しない。   As described above, the voids 32 are formed at a ratio of 20% or more with respect to the particle cross-sectional area A of the positive electrode active material 30. The porosity of the positive electrode active material 30 is preferably 50% or less of the particle cross-sectional area A, for example, 20% to 45%, or 25% to 40%. When the porosity is within the range, it becomes easy to achieve both the particle strength of the positive electrode active material 30 and the permeability of the electrolytic solution. The average value (N = 100) of the porosity of the positive electrode active material 30 having an average particle diameter of 7 μm to 20 μm is, for example, 20% to 50%, or 25% to 40%, or 25% to 35%. The air gap 32 is maintained even after the battery is charged and discharged, and the porosity is hardly changed.

正極活物質30の空隙率は、SEMを用いて測定できる。
具体的な測定法には、下記の通りである。
(1)正極活物質30の粒子断面のSEM画像(粒子断面画像Z)において、粒子表面に沿って外形線を描き、外形線に囲まれた部分の面積である粒子断面積Aを求める。
(2)上記外形線に囲まれた部分における空隙32の面積を求める。
(3)式:(空隙32の面積/粒子断面積A)×100により空隙率(%)を算出する。
The porosity of the positive electrode active material 30 can be measured using SEM.
Specific measurement methods are as follows.
(1) In the SEM image (particle cross-sectional image Z) of the particle cross section of the positive electrode active material 30, an outline is drawn along the particle surface, and a particle cross-sectional area A that is the area of the portion surrounded by the outline is obtained.
(2) The area of the gap 32 in the portion surrounded by the outline is obtained.
(3) The porosity (%) is calculated by the formula: (area of void 32 / particle cross-sectional area A) × 100.

空隙32には、正極活物質30の粒子表面から粒径Dの1/6に相当する長さを超えて粒子内部まで連通した長空隙33が含まれる。長空隙33が形成されることにより、電解液が正極活物質30の粒子内部まで素早く浸透する。ここで、粒径Dとは、粒子断面画像Zにおける正極活物質30の粒子の外接円αの直径である。また、粒子表面とは、上記外形線上の位置である。本明細書では、粒子表面から外接円αの中心Xに向かって粒径Dの1/6を超える長さを有する空隙を長空隙33と定義する。換言すると、粒子表面に開口(入口)を有さない閉じられた空隙、粒径Dの1/6に相当する長さ以下の空隙は長空隙33ではない。   The void 32 includes a long void 33 that communicates from the particle surface of the positive electrode active material 30 to the inside of the particle over a length corresponding to 1/6 of the particle diameter D. By forming the long gap 33, the electrolytic solution quickly penetrates into the particles of the positive electrode active material 30. Here, the particle diameter D is the diameter of the circumscribed circle α of the particles of the positive electrode active material 30 in the particle cross-sectional image Z. The particle surface is a position on the outline. In the present specification, a void having a length exceeding 1/6 of the particle diameter D from the particle surface toward the center X of the circumscribed circle α is defined as a long void 33. In other words, a closed void that does not have an opening (inlet) on the particle surface, and a void that is equal to or less than 1/6 of the particle diameter D is not the long void 33.

長空隙33は、粒子表面から中心Xに向かって略真っ直ぐに延びていてもよく、蛇行していてもよい。また、長空隙33は、枝分かれしていてもよく、1つの連続した長空隙33において入口及び突き当りの少なくとも一方が複数存在してもよい。蛇行して形成される長空隙33は、粒径Dを超える長さを有していてもよい。   The long voids 33 may extend substantially straight from the particle surface toward the center X, or may meander. Further, the long gap 33 may be branched, and in one continuous long gap 33, there may be a plurality of at least one of the entrance and the abutment. The long gap 33 formed by meandering may have a length exceeding the particle diameter D.

長空隙33の入口は、正極活物質30の粒子表面の全体に一様に形成されることが好ましい。長空隙33は、粒子表面から中心Xに向かって粒径Dの2/6(1/3)、又は3/6(1/2)に相当する長さを超えて粒子内部まで連通していてもよい。図2には、外接円αの同心円であって直径Dの5/6の直径を有する円βを図示している。正極活物質30の粒子断面が略真円形状である場合、各粒子表面から形成される長空隙33は、円βを超えて粒子内部まで連通する。   The entrance of the long gap 33 is preferably formed uniformly on the entire particle surface of the positive electrode active material 30. The long gap 33 communicates from the particle surface toward the center X over the length corresponding to 2/6 (1/3) or 3/6 (1/2) of the particle diameter D to the inside of the particle. Also good. FIG. 2 illustrates a circle β that is concentric with the circumscribed circle α and has a diameter that is 5/6 of the diameter D. When the particle cross section of the positive electrode active material 30 has a substantially perfect circle shape, the long voids 33 formed from the surface of each particle communicate with the inside of the particle beyond the circle β.

空隙32に占める長空隙33の割合(以下、「長空隙率」という場合がある)は、例えば20%以上、又は30%以上、又は50%以上である。ここで、空隙32に占める長空隙33の割合は、式:(長空隙33の面積/空隙32の面積)×100により算出される。平均粒径が7μm〜15μmの正極活物質30の長空隙率の平均値(N=100)は、例えば20%〜80%、又は30%〜70%、又は30%〜60%である。   The ratio of the long gaps 33 occupying the gaps 32 (hereinafter sometimes referred to as “long void ratio”) is, for example, 20% or more, 30% or more, or 50% or more. Here, the ratio of the long gap 33 to the gap 32 is calculated by the formula: (area of the long gap 33 / area of the gap 32) × 100. The average value (N = 100) of the long porosity of the positive electrode active material 30 having an average particle diameter of 7 μm to 15 μm is, for example, 20% to 80%, or 30% to 70%, or 30% to 60%.

空隙32には、正極合材層に含まれる導電材の一部が存在していてもよい。導電材の一部は、例えば正極合材スラリーを調製する際又は正極合材層を形成する際に、正極活物質30の粒子表面に開口した空隙32に入り込む。導電材の一部は、長空隙33内に存在し、粒径Dの1/6に相当する長さを超えて粒子内部まで入り込んでいてもよい。空隙内に導電材が存在することで、例えば正極合材層内に良好な導電パスが形成され、さらに出力特性が向上する。   Part of the conductive material included in the positive electrode mixture layer may exist in the gap 32. A part of the conductive material enters, for example, the void 32 opened on the particle surface of the positive electrode active material 30 when preparing the positive electrode mixture slurry or forming the positive electrode mixture layer. A part of the conductive material may exist in the long gap 33 and may enter the inside of the particle beyond the length corresponding to 1/6 of the particle diameter D. By the presence of the conductive material in the gap, for example, a good conductive path is formed in the positive electrode mixture layer, and the output characteristics are further improved.

正極活物質30は、例えば、共沈法により合成した水酸化ニッケルコバルトマンガン等の遷移金属化合物と、リチウム化合物と、焼結阻害材とを混合して焼成することにより得られる。焼成は、例えば900℃〜1000℃の温度で、酸素気流中で行われる。遷移金属化合物には、種々の化合物を用いることができるが、上述のように、Ni、Co、Mnを含有する材料を用いると良好な空隙32が形成され易くなる。遷移金属化合物には、例えばパウダーテスタ(ホソカワミクロン製PT−X)により測定されるタップ密度(固め密度)が1.8g/cc以下、好ましくは1g/cc〜1.8g/ccの材料が用いられる。リチウム化合物としては、水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)などが例示できる。焼成阻害材には、例えばタングステン、ニオブ、モリブデン等を含有する酸化物、リン酸リチウム等のリン酸塩などが用いられる。 The positive electrode active material 30 is obtained, for example, by mixing and firing a transition metal compound such as nickel cobalt manganese hydroxide synthesized by a coprecipitation method, a lithium compound, and a sintering inhibitor. Firing is performed in an oxygen stream at a temperature of 900 ° C. to 1000 ° C., for example. Various compounds can be used as the transition metal compound. However, as described above, when a material containing Ni, Co, or Mn is used, a favorable void 32 is easily formed. For the transition metal compound, for example, a material having a tap density (consolidation density) of 1.8 g / cc or less, preferably 1 g / cc to 1.8 g / cc, measured by a powder tester (PT-X manufactured by Hosokawa Micron) is used. . Examples of the lithium compound include lithium hydroxide (LiOH) and lithium carbonate (Li 2 CO 3 ). As the firing inhibitor, for example, an oxide containing tungsten, niobium, molybdenum or the like, a phosphate such as lithium phosphate, or the like is used.

[負極]
負極は、例えば金属箔等からなる負極集電体と、当該集電体上に形成された負極合材層とで構成される。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、負極活物質、及び結着材を含む。負極は、例えば負極集電体上に負極活物質、結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合材層を集電体の両面に形成することにより作製できる。
[Negative electrode]
A negative electrode is comprised with the negative electrode collector which consists of metal foil etc., for example, and the negative electrode compound-material layer formed on the said collector. As the negative electrode current collector, a metal foil that is stable in the potential range of a negative electrode such as copper, a film in which the metal is disposed on the surface layer, or the like can be used. The negative electrode mixture layer includes a negative electrode active material and a binder. For example, the negative electrode is prepared by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. on a negative electrode current collector, drying the coating film, and rolling the negative electrode mixture layer on both sides of the current collector. It can be manufactured by forming.

負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、ケイ素(Si)、錫(Sn)等のリチウムと合金化する金属、又はSi、Sn等の金属元素を含む合金、複合酸化物などを用いることができる。負極活物質は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   The negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions. For example, carbon materials such as natural graphite and artificial graphite, lithium and alloys such as silicon (Si) and tin (Sn), etc. Or an alloy containing a metal element such as Si or Sn, a composite oxide, or the like can be used. A negative electrode active material may be used independently and may be used in combination of 2 or more types.

結着材としては、正極の場合と同様にフッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィン等を用いることができる。水系溶媒を用いて合材スラリーを調製する場合は、CMC又はその塩、スチレン−ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等を用いることが好ましい。   As the binder, as in the case of the positive electrode, fluororesin, PAN, polyimide, acrylic resin, polyolefin and the like can be used. When preparing a mixture slurry using an aqueous solvent, it is preferable to use CMC or a salt thereof, styrene-butadiene rubber (SBR), polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), or the like.

[セパレータ]
セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータは、例えばポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどで構成される。セパレータは、セルロース繊維層及びポリオレフィン等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、セパレータは、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、アラミド樹脂で構成される表面層又は無機物フィラーを含有する表面層を有していてもよい。
[Separator]
As the separator, a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric. The separator is made of, for example, polyolefin such as polyethylene or polypropylene, cellulose, or the like. The separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as polyolefin. Moreover, the multilayer separator containing a polyethylene layer and a polypropylene layer may be sufficient as a separator, and it may have a surface layer containing the surface layer comprised by an aramid resin, or an inorganic filler.

[非水電解質]
非水電解質は、非水溶媒と、非水溶媒に溶解した溶質(電解質塩)とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、ジメチルホルムアミド等のアミド類、ヘキサメチレンジイソシアネート等のイソシアネート類及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
[Nonaqueous electrolyte]
The nonaqueous electrolyte includes a nonaqueous solvent and a solute (electrolyte salt) dissolved in the nonaqueous solvent. As the non-aqueous solvent, for example, esters, ethers, nitriles, amides such as dimethylformamide, isocyanates such as hexamethylene diisocyanate, and a mixed solvent of two or more of these can be used. The non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.

上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。   Examples of the esters include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate. Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, etc. And a chain carboxylic acid ester.

上記エーテル類の例としては、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,3−ジオキサン、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等の環状エーテル、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。   Examples of the ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl Ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, tri Examples thereof include chain ethers such as ethylene glycol dimethyl ether and tetraethylene glycol dimethyl.

上記ニトリル類の例としては、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、n−ヘプタニトリル、スクシノニトリル、グルタロニトリル、アジボニトリル、ピメロニトリル、1,2,3−プロパントリカルボニトリル、1,3,5−ペンタントリカルボニトリル等が挙げられる。   Examples of the nitriles include acetonitrile, propionitrile, butyronitrile, valeronitrile, n-heptanitrile, succinonitrile, glutaronitrile, adionitrile, pimeonitrile, 1,2,3-propanetricarbonitrile, 1,3. , 5-pentanetricarbonitrile and the like.

上記ハロゲン置換体の例としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。   Examples of the halogen-substituted product include fluorinated cyclic carbonates such as fluoroethylene carbonate (FEC), fluorinated chain carbonates, and fluorinated chain carboxylates such as methyl fluoropropionate (FMP). .

電解質塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(Cl2l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。電解質塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。電解質塩の濃度は、例えば非水溶媒1L当り0.8〜1.8モルである。 Examples of the electrolyte salt, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 <x <6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic lithium carboxylate, Li Borates such as 2 B 4 O 7 and Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C l F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) and imide salts such as {1, m is an integer of 1 or more}. These electrolyte salts may be used alone or in combination of two or more. The concentration of the electrolyte salt is, for example, 0.8 to 1.8 mol per liter of the nonaqueous solvent.

以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。   Hereinafter, although this indication is further explained by an example, this indication is not limited to these examples.

<実施例1>
[正極活物質の作製]
組成式Ni0.33Co0.33Mn0.33(OH)2で表わされる、タップ密度が1.5g/ccの遷移金属水酸化物と、LiOHと、焼結阻害材とを混合し、935℃・50時間、酸素気流下で焼成してリチウム含有遷移金属酸化物を合成した。焼結阻害材には酸化タングステン(WO3)を用い、その添加量は0.3mol%とした。当該酸化物を分級して、平均粒径が10μmの正極活物質A1を得た。正極活物質A1の平均粒径(メジアン径・体積基準)は、レーザ回折散乱式粒度分布測定装置(堀場製作所製の「LA950」)を用いて測定した。
<Example 1>
[Preparation of positive electrode active material]
A transition metal hydroxide represented by a composition formula Ni 0.33 Co 0.33 Mn 0.33 (OH) 2 and having a tap density of 1.5 g / cc, LiOH, and a sintering inhibitor are mixed, and 935 ° C. for 50 hours. The lithium-containing transition metal oxide was synthesized by firing in an oxygen stream. Tungsten oxide (WO 3 ) was used as the sintering inhibitor, and the amount added was 0.3 mol%. The oxide was classified to obtain a positive electrode active material A1 having an average particle size of 10 μm. The average particle diameter (median diameter / volume basis) of the positive electrode active material A1 was measured using a laser diffraction / scattering particle size distribution analyzer (“LA950” manufactured by Horiba, Ltd.).

正極活物質A1について、粉末X線回折法により粉末X線回折測定装置(ブルカーAXS製の「D8ADVANCE」、線源Cu−Kα)を用いて解析した結果、層状岩塩型の結晶構造と帰属された。また、ICP発光分光分析装置(Thermo Fisher Scientific製の「iCAP6300」)を用いて正極活物質A1の組成を解析した結果、Li1.05Ni0.33Co0.33Mn0.332であった。 The positive electrode active material A1 was analyzed by a powder X-ray diffraction method using a powder X-ray diffractometer (“D8ADVANCE” manufactured by Bruker AXS, source Cu-Kα). As a result, it was attributed to a layered rock salt type crystal structure. . Further, the composition of the positive electrode active material A1 was analyzed using an ICP emission spectroscopic analyzer (“iCAP6300” manufactured by Thermo Fisher Scientific). As a result, it was Li 1.05 Ni 0.33 Co 0.33 Mn 0.33 O 2 .

図3に正極活物質A1のSEM画像を、図4にCPにより形成した正極活物質A1の粒子断面のSEM画像をそれぞれ示す。図3及び図4から、正極活物質A1は、多数の空隙を有し、当該空隙には、粒径Dの1/6に相当する長さを超えて粒子内部まで連通した長空隙が含まれることが分かる。上述の方法により求めた一次粒子の平均粒径は0.5μmであった。また、粒子断面画像で正極活物質A1の粒子を100個ランダムに選択し、各粒子について上述の方法により空隙率を求め、その平均値を算出した結果、31%であった。選択した100個の粒子について、当該空隙に占める長空隙の割合(長空隙率)を求め、その平均値を算出した結果、45%であった。   FIG. 3 shows an SEM image of the positive electrode active material A1, and FIG. 4 shows an SEM image of a particle cross section of the positive electrode active material A1 formed by CP. 3 and 4, the positive electrode active material A1 has a large number of voids, and the voids include long voids that extend to the inside of the particles beyond the length corresponding to 1/6 of the particle diameter D. I understand that. The average particle size of the primary particles determined by the above method was 0.5 μm. In addition, 100 particles of the positive electrode active material A1 were randomly selected from the particle cross-sectional image, the porosity was determined for each particle by the above-described method, and the average value was calculated to be 31%. For the selected 100 particles, the ratio of long voids (long void ratio) in the voids was determined, and the average value was calculated. As a result, it was 45%.

[正極の作製]
正極活物質A1が95.8質量%、炭素粉末が3質量%、ポリフッ化ビニリデン粉末が1.2質量%となるよう混合し、さらにN−メチル−2−ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。このスラリーをアルミニウム箔からなる集電体の両面にドクターブレード法により塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、正極集電体の両面に正極合材層が形成された正極を作製した。集電体の長手方向中央部に合材層を形成しない部分を設け、当該部分に正極タブを取り付けた。正極合材層の厚みは、約100μm、集電体両面の合計で約200μmとした。
[Production of positive electrode]
Mix so that the positive electrode active material A1 is 95.8% by mass, the carbon powder is 3% by mass, and the polyvinylidene fluoride powder is 1.2% by mass, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) is added. A positive electrode mixture slurry was prepared. The slurry is applied to both sides of a current collector made of aluminum foil by the doctor blade method, and after the coating film is dried, the coating film is rolled by a rolling roller to form a positive electrode mixture layer on both sides of the positive electrode current collector. A positive electrode was produced. A portion where the composite material layer was not formed was provided in the central portion in the longitudinal direction of the current collector, and a positive electrode tab was attached to the portion. The thickness of the positive electrode mixture layer was about 100 μm, and the total of both sides of the current collector was about 200 μm.

[負極の作製]
黒鉛が98.2質量%と、スチレン−ブタジエンゴムが0.7質量%、カルボキシメチルセルロースナトリウムが1.1質量%となるよう混合し、これを水と混合してスラリーを調製した。このスラリーを銅箔からなる集電体の両面にドクターブレード法により塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、負極集電体の両面に負極合材層が形成された負極を作製した。集電体の長手方向両端部に合材層を形成しない部分を設け、当該部分に負極タブを取り付けた。負極合材層の厚みは、約100μm、集電体両面の合計で約200μmとした。
[Production of negative electrode]
A graphite was mixed so that 98.2% by mass, styrene-butadiene rubber was 0.7% by mass, and sodium carboxymethylcellulose was 1.1% by mass, and this was mixed with water to prepare a slurry. The slurry is applied to both sides of a current collector made of copper foil by the doctor blade method, and after the coating film is dried, the coating film is rolled by a rolling roller to form a negative electrode mixture layer on both sides of the negative electrode current collector. A negative electrode was prepared. The part which does not form a compound-material layer in the longitudinal direction both ends of the electrical power collector was provided, and the negative electrode tab was attached to the said part. The thickness of the negative electrode mixture layer was about 100 μm, and the total of both sides of the current collector was about 200 μm.

[非水電解液の作製]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)との等体積混合非水溶媒に、LiPF6を1.6モル/Lの濃度で溶解させて非水電解液を得た。
[Preparation of non-aqueous electrolyte]
LiPF 6 was dissolved at a concentration of 1.6 mol / L in an equal volume mixed non-aqueous solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) to obtain a non-aqueous electrolyte.

[非水電解質二次電池の作製]
上記正極、上記負極、上記非水電解液、及びセパレータを用いて、以下の手順で電池A1を作製した。
(1)正極と負極とをセパレータを介して巻回し、巻回構造の電極体を作製した。
(2)電極体の上下にそれぞれ絶縁板を配置し、直径18mm、高さ65mmの円筒形状の電池外装缶に巻回電極体を収容した。
(3)負極の集電タブを電池外装缶の底部内面に溶接すると共に、正極の集電タブを封口体の底板に溶接した。
(4)電池外装缶の開口部から非水電解液を注入し、その後、封口体によって電池外装缶を密閉して、電池A1を得た。
[Production of non-aqueous electrolyte secondary battery]
Using the positive electrode, the negative electrode, the non-aqueous electrolyte, and the separator, a battery A1 was produced according to the following procedure.
(1) The positive electrode and the negative electrode were wound through a separator to produce a wound structure electrode body.
(2) Insulating plates were arranged above and below the electrode body, and the wound electrode body was housed in a cylindrical battery outer can having a diameter of 18 mm and a height of 65 mm.
(3) The current collecting tab of the negative electrode was welded to the bottom inner surface of the battery outer can, and the current collecting tab of the positive electrode was welded to the bottom plate of the sealing body.
(4) A non-aqueous electrolyte was injected from the opening of the battery outer can, and then the battery outer can was sealed with a sealing body to obtain a battery A1.

<比較例1>
リチウム含有遷移金属酸化物の合成において、タップ密度が2.5g/ccの遷移金属水酸化物を用い、焼結阻害材を添加しなかったこと以外は、実施例1と同様にして、正極活物質B1及び電池B1を作製した。
<Comparative Example 1>
In the synthesis of the lithium-containing transition metal oxide, a positive electrode active material was prepared in the same manner as in Example 1 except that a transition metal hydroxide having a tap density of 2.5 g / cc was used and no sintering inhibitor was added. Material B1 and battery B1 were made.

図5に正極活物質B1のSEM画像を、図6にCPにより形成した正極活物質B1の粒子断面のSEM画像をそれぞれ示す。図5及び図6から、正極活物質B1は、粒子内部に空隙を有するが、空隙率は正極活物質A1より低く、その空隙には長空隙が含まれないことが分かる。実施例1の場合と同様に、正極活物質B1の空隙率の平均値を算出した結果、5%であった。   FIG. 5 shows an SEM image of the positive electrode active material B1, and FIG. 6 shows an SEM image of a particle cross section of the positive electrode active material B1 formed by CP. 5 and 6, it can be seen that the positive electrode active material B1 has voids inside the particles, but the porosity is lower than that of the positive electrode active material A1, and the voids do not include long voids. As in the case of Example 1, the average value of the porosity of the positive electrode active material B1 was calculated to be 5%.

実施例及び比較例の各電池について、下記の方法で出力特性の評価を行い、評価結果を正極活物質の平均空隙率、平均長空隙率と共に表1に示した。   About each battery of an Example and a comparative example, the output characteristic was evaluated with the following method, and the evaluation result was shown in Table 1 with the average porosity of the positive electrode active material, and the average long porosity.

[出力特性の評価(−20℃、放電レート1C、2Cにおける放電容量の測定)]
各電池を、−20℃の環境下、0.1Cで4.2Vまで定電流充電した後、電流値が0.01C相当になるまで4.2Vで定電圧充電して充電を完了した。10分間休止後、0.5Cで2.5Vになるまで定電流放電した。このときの放電カーブから、正極活物質の質量当たりの放電容量を求めた。
[Evaluation of output characteristics (measurement of discharge capacity at −20 ° C., discharge rates 1C and 2C)]
Each battery was charged at a constant current of up to 4.2 V at 0.1 C in an environment of −20 ° C., and then charged at a constant voltage of 4.2 V until the current value was equivalent to 0.01 C to complete the charging. After resting for 10 minutes, constant current discharge was performed until the voltage became 2.5 V at 0.5C. From the discharge curve at this time, the discharge capacity per mass of the positive electrode active material was determined.



表1から、実施例1の電池A1では、比較例1の電池B1と比べて、放電レート1C、2Cの条件における放電容量が大幅に向上しており、出力特性(低温出力特性)が大幅に改善されていることが分かる。なお、放電レート0.25Cの条件では、各電池の放電容量は同程度であった。多数の長空隙を有する正極活物質A1によれば、電解液が粒子内部まで素早く浸透すると考えられる。つまり、電池A1の出力特性評価の結果は、正極活物質A1の優れた液浸透性に起因すると考えられる。   From Table 1, in the battery A1 of Example 1, the discharge capacity under the conditions of the discharge rates 1C and 2C is greatly improved as compared with the battery B1 of Comparative Example 1, and the output characteristics (low-temperature output characteristics) are greatly improved. It turns out that it is improving. Note that the discharge capacity of each battery was approximately the same under the condition of a discharge rate of 0.25C. According to the positive electrode active material A1 having a large number of long voids, it is considered that the electrolyte quickly penetrates into the particles. That is, it is considered that the result of the output characteristic evaluation of the battery A1 is caused by the excellent liquid permeability of the positive electrode active material A1.

10 非水電解質二次電池、11 外装缶、12 封口板、13 正極外部端子、14 負極外部端子、15 ガス排出弁、16 注液部、30 正極活物質、31 一次粒子、32 空隙、33 長空隙、D 粒径、α 外接円   DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery, 11 Exterior can, 12 Sealing plate, 13 Positive electrode external terminal, 14 Negative electrode external terminal, 15 Gas discharge valve, 16 Injection part, 30 Positive electrode active material, 31 Primary particle, 32 Void, 33 Length Void, D particle size, α circumscribed circle

Claims (8)

リチウム含有遷移金属酸化物を主成分として構成される非水電解質二次電池用の正極活物質であって、
前記正極活物質の粒子断面画像から得られる粒子断面積に対して20%以上の割合で形成された空隙を有し、
前記空隙には、前記正極活物質の粒子表面から粒径Dの1/6に相当する長さを超えて粒子内部まで連通した長空隙が含まれ、ここで、前記粒径Dとは前記粒子断面画像における粒子の外接円の直径である、正極活物質。
A positive electrode active material for a non-aqueous electrolyte secondary battery composed mainly of a lithium-containing transition metal oxide,
Having voids formed at a ratio of 20% or more with respect to the particle cross-sectional area obtained from the particle cross-sectional image of the positive electrode active material,
The void includes a long void that extends from the particle surface of the positive electrode active material to the inside of the particle beyond a length corresponding to 1/6 of the particle size D, where the particle size D is the particle size. A positive electrode active material that is a diameter of a circumscribed circle of particles in a cross-sectional image.
前記リチウム含有遷移金属酸化物は、少なくともニッケル、コバルト、及びマンガンを含有し、リチウムを除く金属元素の総モル数に対するニッケルの割合が30モル%以上である、請求項1に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the lithium-containing transition metal oxide contains at least nickel, cobalt, and manganese, and the ratio of nickel to the total number of moles of metal elements excluding lithium is 30 mol% or more. . 前記正極活物質は、平均粒径が1μm以下の一次粒子が集合して形成された二次粒子である、請求項1又は2に記載の正極活物質。   The positive electrode active material according to claim 1, wherein the positive electrode active material is a secondary particle formed by aggregating primary particles having an average particle diameter of 1 μm or less. 前記一次粒子は、短径と長径の比が2倍以上である、請求項3に記載の正極活物質。   The positive electrode active material according to claim 3, wherein the primary particle has a ratio of a minor axis to a major axis that is twice or more. 前記空隙に占める前記長空隙の割合は、20%以上である、請求項1〜4のいずれか1項に記載の正極活物質。   The positive electrode active material according to any one of claims 1 to 4, wherein a ratio of the long voids in the voids is 20% or more. 非水電解質二次電池用の正極であって、
正極集電体と、
請求項1〜5のいずれか1項に記載の正極活物質、導電材、及び結着材から構成され、前記正極集電体の少なくとも一方の面上に形成された正極合材層と、
を備え、
前記導電材の一部が、前記正極活物質の前記空隙内に存在する、正極。
A positive electrode for a non-aqueous electrolyte secondary battery,
A positive electrode current collector;
A positive electrode mixture layer composed of the positive electrode active material according to any one of claims 1 to 5, a conductive material, and a binder, and formed on at least one surface of the positive electrode current collector;
With
The positive electrode, wherein a part of the conductive material is present in the gap of the positive electrode active material.
前記正極合材層の厚みは75μm以上である、請求項6に記載の正極。   The positive electrode according to claim 6, wherein the positive electrode mixture layer has a thickness of 75 μm or more. 請求項1〜5のいずれか1項に記載の正極活物質を含む正極と、
負極と、
非水電解質と、
を備えた、非水電解質二次電池。
A positive electrode comprising the positive electrode active material according to claim 1;
A negative electrode,
A non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery.
JP2016130017A 2016-06-30 2016-06-30 Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery Pending JP2019145204A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016130017A JP2019145204A (en) 2016-06-30 2016-06-30 Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery
PCT/JP2017/021715 WO2018003477A1 (en) 2016-06-30 2017-06-13 Positive electrode active material, positive electrode, and non-aqueous electrolytic secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016130017A JP2019145204A (en) 2016-06-30 2016-06-30 Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2019145204A true JP2019145204A (en) 2019-08-29

Family

ID=60786338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016130017A Pending JP2019145204A (en) 2016-06-30 2016-06-30 Positive electrode active material, positive electrode and nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP2019145204A (en)
WO (1) WO2018003477A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755515C1 (en) * 2020-03-18 2021-09-16 Тойота Дзидося Кабусики Кайся Active material of the positive electrode and the battery containing the active material of the positive electrode
WO2022092475A1 (en) * 2020-10-26 2022-05-05 주식회사 에코프로비엠 Cathode active material and lithium secondary battery comprising same
WO2024042852A1 (en) * 2022-08-23 2024-02-29 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144371B2 (en) 2019-07-18 2022-09-29 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7235405B2 (en) * 2019-07-18 2023-03-08 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085006A (en) * 1999-09-14 2001-03-30 Toyota Central Res & Dev Lab Inc Lithium-nickel composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using the composite oxide
KR20130029041A (en) * 2010-01-08 2013-03-21 미쓰비시 가가꾸 가부시키가이샤 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP5858279B2 (en) * 2011-12-05 2016-02-10 トヨタ自動車株式会社 Lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2755515C1 (en) * 2020-03-18 2021-09-16 Тойота Дзидося Кабусики Кайся Active material of the positive electrode and the battery containing the active material of the positive electrode
EP3882217A1 (en) 2020-03-18 2021-09-22 Toyota Jidosha Kabushiki Kaisha Positive electrode active material and secondary battery including positive electrode active material
WO2022092475A1 (en) * 2020-10-26 2022-05-05 주식회사 에코프로비엠 Cathode active material and lithium secondary battery comprising same
WO2024042852A1 (en) * 2022-08-23 2024-02-29 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
WO2018003477A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
US11349121B2 (en) Positive electrode active substance for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2018061298A1 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6929514B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
JP6775125B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
WO2018003477A1 (en) Positive electrode active material, positive electrode, and non-aqueous electrolytic secondary cell
JP7022940B2 (en) Non-aqueous electrolyte secondary battery
CN111033829B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20230246168A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20200168907A1 (en) Nonaqueous electrolyte secondary battery
JPWO2018043188A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JPWO2019107032A1 (en) Negative electrode active material for lithium-ion batteries and lithium-ion batteries
WO2016151979A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
JP6920639B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
JP6851240B2 (en) Non-aqueous electrolyte secondary battery
CN113330603B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6986688B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
WO2019193875A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2019044204A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2022138840A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2021124971A1 (en) Nonaqueous electrolyte secondary battery positive electrode, and nonaqueous electrolyte secondary battery
WO2021210444A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7011427B2 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN116601786A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN116601785A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery