JP2019142390A - Cooling structure of secondary battery for vehicle - Google Patents

Cooling structure of secondary battery for vehicle Download PDF

Info

Publication number
JP2019142390A
JP2019142390A JP2018029533A JP2018029533A JP2019142390A JP 2019142390 A JP2019142390 A JP 2019142390A JP 2018029533 A JP2018029533 A JP 2018029533A JP 2018029533 A JP2018029533 A JP 2018029533A JP 2019142390 A JP2019142390 A JP 2019142390A
Authority
JP
Japan
Prior art keywords
refrigerant
secondary batteries
secondary battery
cooling structure
branch passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018029533A
Other languages
Japanese (ja)
Inventor
信吾 ▲高▼▲崎▼
信吾 ▲高▼▲崎▼
Shingo Takasaki
義幸 両國
Yoshiyuki Ryogoku
義幸 両國
克好 村松
Katsuyoshi Muramatsu
克好 村松
健次 柳
Kenji Yanagi
健次 柳
岡田 真一
Shinichi Okada
真一 岡田
裕太 塚田
Yuta Tsukada
裕太 塚田
徳子 田口
Noriko Taguchi
徳子 田口
しおみ 藪本
Shiomi Yabumoto
しおみ 藪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2018029533A priority Critical patent/JP2019142390A/en
Publication of JP2019142390A publication Critical patent/JP2019142390A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

To provide a cooling structure of a secondary battery for a vehicle which can homogenize temperatures of a plurality of the secondary batteries.SOLUTION: A cooling structure of a secondary battery for a vehicle comprises: a plurality of the secondary batteries which are aligned in one row; a refrigerant passage which is formed along an alignment direction of a plurality of the secondary batteries in a lower region of a plurality of the secondary batteries, and sets a lower face of a plurality of the secondary batteries as a part of a partitioning wall; a plurality of branch passages which are individually branched from the refrigerant passage toward a sideway of a plurality of the secondary batteries, and set a side face of the secondary batteries as a part of the partitioning wall; and a plurality of door bodies which are arranged in a boundary between a plurality of the branch passages and the refrigerant passage, and can open the branch passages by a rise of a temperature of the refrigerant which stays in each of a plurality of the branch passages.SELECTED DRAWING: Figure 4

Description

本開示は、車両用二次電池の冷却構造に関する。   The present disclosure relates to a cooling structure for a vehicular secondary battery.

特許文献1には、電気自動車用の熱管理システムが開示されている。かかる熱管理システムは、電気自動車パワートレインに結合されて、電気自動車パワートレインの電気モータに電力を供給する電気エネルギー貯蔵システム(ESS)と、ESSに熱的に連通する冷却液ループ内に冷却液を含んだ冷却システムであって、該冷却システムはさらに、冷却液ループを通して冷却液を圧送する冷却液ポンプを含んだ冷却システムと、該冷却システムに結合した温度制御システムであって、冷却システムは、温度制御システムの制御下にある温度システムと、を具備する。
そして、温度制御システムはさらに、自動車状態モニタであって、該自動車状態モニタは、電気自動車が稼動中であるとき第1状態信号を出力し、電気自動車が停止中であるとき第2状態信号を出力する自動車状態モニタと、ESSに熱的に連通した少なくとも1つの温度センサであって、該少なくとも1つの温度センサはESS温度を監視している少なくとも1つの温度センサと、ESS温度をプリセット温度と比較する比較器回路であって、該比較器回路は、ESS温度がプリセット温度より低いときに第1信号を出力し、ESS温度がプリセット温度より高いときに第2信号を出力する比較器回路と、冷却システムに結合した冷却システムコントローラであって、該冷却システムコントローラは、自動車状態モニタが第2状態信号を出力するとき、冷却システムに制御信号を出力するよう構成され、冷却システムコントローラはさらに、比較器回路から第1および第2信号を受信するよう構成され、制御信号は、冷却システムコントローラが第2信号を受信したとき、冷却液ポンプを起動させ、制御信号は、冷却システムコントローラが第1信号を受信したとき、冷却液ポンプを停止させる冷却システムコントローラと、を具備している。
上述した電気自動車用の熱管理システムでは、冷却システムコントローラは、ESS温度がプリセット温度よりも高いときに冷却液ポンプを起動させ、ESS温度がプリセット温度よりも低いときに冷却液ポンプを停止させる。
Patent Document 1 discloses a thermal management system for an electric vehicle. Such a thermal management system is coupled to an electric vehicle powertrain to supply power to an electric motor of the electric vehicle powertrain and an electrical energy storage system (ESS) and a coolant in a coolant loop that is in thermal communication with the ESS. A cooling system that includes a cooling liquid pump that pumps the cooling liquid through a cooling liquid loop, and a temperature control system coupled to the cooling system, the cooling system comprising: A temperature system under the control of the temperature control system.
The temperature control system is further an automobile status monitor, which outputs a first status signal when the electric vehicle is in operation and outputs a second status signal when the electric vehicle is stopped. An automotive status monitor for output; at least one temperature sensor in thermal communication with the ESS, the at least one temperature sensor monitoring the ESS temperature; and the ESS temperature as a preset temperature A comparator circuit for comparing, wherein the comparator circuit outputs a first signal when the ESS temperature is lower than a preset temperature, and outputs a second signal when the ESS temperature is higher than the preset temperature; A cooling system controller coupled to the cooling system, wherein the cooling system controller outputs a second status signal from the vehicle status monitor. The cooling system controller is further configured to receive the first and second signals from the comparator circuit, and the control signal is transmitted from the cooling system controller to the second signal. When received, the coolant pump is activated, and the control signal includes a cooling system controller that stops the coolant pump when the cooling system controller receives the first signal.
In the above-described thermal management system for an electric vehicle, the cooling system controller starts the coolant pump when the ESS temperature is higher than the preset temperature, and stops the coolant pump when the ESS temperature is lower than the preset temperature.

特開2010−200605号公報Japanese Patent Application Laid-Open No. 2010-200605

車両用二次電池は、大型のケースに複数の二次電池を搭載するために内部で温度バラツキが生じる。複数の二次電池において部分的に使用上限温度に達すると電池性能を十分に発揮することができないため、複数の二次電池の温度を均一にすることが望まれている。
しかしながら、特許文献1が開示する電気自動車用の熱管理システムでは、ESS(車両用電池パック内の複数の二次電池)において温度を均一にすることができない。
Since a secondary battery for vehicles has a plurality of secondary batteries mounted in a large case, temperature variation occurs inside. When the use upper limit temperature is partially reached in a plurality of secondary batteries, the battery performance cannot be sufficiently exhibited. Therefore, it is desired to make the temperatures of the plurality of secondary batteries uniform.
However, in the thermal management system for an electric vehicle disclosed in Patent Document 1, the temperature cannot be made uniform in ESS (a plurality of secondary batteries in a vehicle battery pack).

上述の事情に鑑みて、本発明の少なくとも一実施形態は、複数の二次電池において温度を均一にすることができる車両用二次電池の冷却構造を提供することを目的とする。   In view of the above circumstances, an object of at least one embodiment of the present invention is to provide a cooling structure for a vehicular secondary battery that can make the temperature uniform among a plurality of secondary batteries.

(1)本発明の少なくとも一実施形態に係る車両用二次電池の冷却構造は、一列に整列した複数の二次電池と、前記複数の二次電池の下方域において前記複数の二次電池の整列方向に沿って設けられ、前記複数の二次電池の下面を区画壁の一部とする冷媒通路と、前記冷媒通路から前記複数の二次電池の側方に向けて個別に分岐し、前記二次電池の側面を区画壁の一部とする複数の分岐通路と、前記複数の分岐通路のそれぞれと前記冷媒通路との境界に設けられ、前記複数の分岐通路のそれぞれに滞留する冷媒の温度上昇によって前記複数の分岐通路のそれぞれを個別に開放可能な複数の扉体と、を備える。   (1) A vehicle secondary battery cooling structure according to at least one embodiment of the present invention includes a plurality of secondary batteries arranged in a row, and a plurality of secondary batteries in a lower region of the plurality of secondary batteries. A refrigerant passage provided along an alignment direction, the lower surface of the plurality of secondary batteries being a part of a partition wall, and individually branched from the refrigerant passage toward a side of the plurality of secondary batteries, The temperature of the refrigerant | coolant which is provided in the boundary of the some branch passage which makes the side surface of a secondary battery a part of partition wall, and each of the said some branch passage, and the said refrigerant passage, and retains in each of the said some branch passage A plurality of door bodies capable of individually opening each of the plurality of branch passages by ascending.

上記(1)の構成によれば、複数の分岐通路のそれぞれに滞留する冷媒の温度上昇によって複数の扉体が複数の分岐通路を個別に開放するので、開放された分岐通路に滞留する冷媒が入れ替わり、温度が上昇した二次電池を冷却する。これにより、複数の二次電池において温度を均一にすることができる。   According to the configuration of (1) above, since the plurality of doors individually open the plurality of branch passages due to the temperature rise of the refrigerant staying in each of the plurality of branch passages, the refrigerant staying in the opened branch passages The secondary battery that has been replaced is cooled. Thereby, temperature can be made uniform in a some secondary battery.

(2)幾つかの実施形態では、上記(1)の構成において、前記冷媒通路は、前記複数の二次電池の下方域において前記冷媒が循環可能な循環路であって、往路と復路とが前記複数の二次電池の下方域に配置される。
上記(2)の構成によれば、冷媒通路は、複数の二次電池の下方域において冷媒が循環可能な循環路であって、往路と復路とが複数の二次電池の下方域に配置されるので、複数の二次電池の下方域において冷媒が循環し、往路と復路とにおいて複数の二次電池を冷却することができる。
(2) In some embodiments, in the configuration of the above (1), the refrigerant passage is a circulation path through which the refrigerant can circulate in a lower region of the plurality of secondary batteries, and includes an outward path and a return path. The battery is disposed in a lower area of the plurality of secondary batteries.
According to the configuration of (2) above, the refrigerant passage is a circulation path through which the refrigerant can circulate in the lower area of the plurality of secondary batteries, and the forward path and the return path are arranged in the lower area of the plurality of secondary batteries. Therefore, the refrigerant circulates in the lower region of the plurality of secondary batteries, and the plurality of secondary batteries can be cooled in the forward path and the return path.

(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記複数の扉体は、前記冷媒の流れ方向に対して逆らう方向に開放可能である。
上記(3)の構成によれば、複数の扉体は、冷媒の流れ方向に対して逆らう方向に開放するので、冷媒通路から分岐通路に冷媒を流れ込ませることができ、分岐通路に滞留する冷媒を分岐通路から冷媒通路に排出させることができる。
(3) In some embodiments, in the configuration of the above (1) or (2), the plurality of door bodies can be opened in a direction opposite to the flow direction of the refrigerant.
According to the configuration of (3) above, the plurality of door bodies open in a direction opposite to the flow direction of the refrigerant, so that the refrigerant can flow into the branch passage from the refrigerant passage, and the refrigerant stays in the branch passage. Can be discharged from the branch passage to the refrigerant passage.

(4)幾つかの実施形態では、上記(1)から(3)の何れか一つの構成において、前記複数の扉体のそれぞれは、熱膨張率が異なる二枚の金属板を貼り合わせたバイメタルで構成される。
上記(4)の構成によれば、複数の扉体のそれぞれは、熱膨張率が異なる二枚の金属板を貼り合わせたバイメタルで構成されるので、分岐通路に滞留する冷媒の温度上昇によって扉体が変形することで分岐通路を個別に開放することができる。
(4) In some embodiments, in any one of the configurations (1) to (3), each of the plurality of door bodies is a bimetal obtained by bonding two metal plates having different thermal expansion coefficients. Consists of.
According to the configuration of (4) above, each of the plurality of door bodies is composed of a bimetal obtained by bonding two metal plates having different thermal expansion coefficients, so that the door is raised by the temperature rise of the refrigerant staying in the branch passage. The branch passages can be opened individually by deforming the body.

(5)幾つかの実施形態では、上記(1)から(3)の何れか一つの構成において、前記複数の扉体のそれぞれは、温度変化によって記憶された元の形状に戻る形状記憶合金で構成される。
上記(5)の構成によれば、複数の扉体のそれぞれは、分岐通路に滞留する冷媒の温度上昇によって記憶された元の形状に戻る形状記憶合金で構成されるので、温度上昇によって扉体が元の形状に戻ることで分岐通路を開くことができる。
(5) In some embodiments, in any one of the configurations (1) to (3), each of the plurality of door bodies is a shape memory alloy that returns to an original shape memorized by a temperature change. Composed.
According to the configuration of (5) above, each of the plurality of door bodies is made of the shape memory alloy that returns to the original shape stored by the temperature rise of the refrigerant staying in the branch passage. The branch passage can be opened by returning to the original shape.

(6)幾つかの実施形態では、上記(1)から(3)の何れか一つの構成において、前記複数の扉体のそれぞれは、温度変化によって伸縮可能な紐が張られて閉塞している。
上記(6)の構成によれば、複数の扉体のそれぞれは、分岐通路に滞留する冷媒の温度上昇によって伸長可能な紐が張られて閉塞しているので、温度上昇によって紐が伸長することで扉体を開くことができる。
(6) In some embodiments, in any one of the configurations (1) to (3), each of the plurality of door bodies is closed with a string that can be expanded and contracted by a temperature change. .
According to the configuration of (6) above, since each of the plurality of door bodies is stretched and closed by the temperature increase of the refrigerant staying in the branch passage, the string is extended by the temperature increase. You can open the door.

本発明の少なくとも一実施形態によれば、複数の二次電池において温度を均一にすることができる。   According to at least one embodiment of the present invention, the temperature can be made uniform in a plurality of secondary batteries.

本発明の一実施形態に係る車両用二次電池の冷却構造を概略的に示す平面図である。It is a top view which shows roughly the cooling structure of the secondary battery for vehicles which concerns on one Embodiment of this invention. 図1に示した車両用二次電池の冷却構造のII−II線断面図である。It is the II-II sectional view taken on the line of the cooling structure of the vehicle secondary battery shown in FIG. 図1に示した車両用二次電池の冷却構造のIII−III線断面図である。FIG. 3 is a sectional view taken along line III-III of the cooling structure for the vehicle secondary battery shown in FIG. 1. 図2に示した扉体を開閉させる構成の一例を模式的に示す図である。It is a figure which shows typically an example of the structure which opens and closes the door body shown in FIG. 図2に示した扉体を開閉させる構成の他の一例を模式的に示す図である。It is a figure which shows typically another example of the structure which opens and closes the door body shown in FIG.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
In addition, for example, expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within the range where the same effect can be obtained. A shape including a chamfered portion or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.

図1は、本発明の一実施形態に係る車両用二次電池の冷却構造1を概略的に示す平面図である。図2は、図1に示した車両用二次電池の冷却構造1のII−II線断面図であり、図3は、図1に示した車両用二次電池のIII−III線断面図である。   FIG. 1 is a plan view schematically showing a cooling structure 1 for a vehicle secondary battery according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line II-II of the vehicle secondary battery cooling structure 1 shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line III-III of the vehicle secondary battery shown in FIG. is there.

本発明の一実施形態に係る車両用二次電池の冷却構造1は、電気自動車(EV)、ハイブリッド自動車(HV)又はプラグインハイブリッド自動車(PHEV)等の電動車両の動力源(モータ)に電力の供給が可能な車両用二次電池を冷却するためのものである。   A vehicle secondary battery cooling structure 1 according to an embodiment of the present invention provides power to a power source (motor) of an electric vehicle such as an electric vehicle (EV), a hybrid vehicle (HV), or a plug-in hybrid vehicle (PHEV). It is for cooling the secondary battery for vehicles which can be supplied.

図1から図3に示すように、本発明の一実施形態に係る車両用二次電池の冷却構造1は、複数の二次電池2、冷媒通路3、複数の分岐通路4及び複数の扉体5を備えて構成される。複数の二次電池2は、例えば、直列に接続されている。二次電池2は、例えば、リチウムイオン二次電池であり、二次電池2は、電池セルであっても良いし、複数の電池セルによって構成される電池モジュールであっても良い。   As shown in FIGS. 1 to 3, the vehicle secondary battery cooling structure 1 according to an embodiment of the present invention includes a plurality of secondary batteries 2, a refrigerant passage 3, a plurality of branch passages 4, and a plurality of door bodies. 5 is configured. The plurality of secondary batteries 2 are connected in series, for example. The secondary battery 2 is, for example, a lithium ion secondary battery, and the secondary battery 2 may be a battery cell or a battery module including a plurality of battery cells.

冷媒通路3は、複数の二次電池2を冷却するための冷媒が流れる通路である。冷媒は、例えば、液体(冷媒液)であるが、液体に限れるものではなく、気体であってもよい。冷媒が液体である場合に冷媒通路3は水密に構成され、冷媒液が気体である場合に冷媒通路3は気密に構成される。また、冷媒通路3は、例えば、複数の二次電池2の下方域において複数の二次電池2の整列方向に沿って設けられる。また、冷媒通路3は、例えば、複数の二次電池2の下面を区画壁の一部とする。これにより、冷媒通路3を流れる冷媒が複数の二次電池2の下面に触れることによって直接二次電池2が冷却される。   The refrigerant passage 3 is a passage through which a refrigerant for cooling the plurality of secondary batteries 2 flows. The refrigerant is, for example, a liquid (refrigerant liquid), but is not limited to a liquid and may be a gas. When the refrigerant is a liquid, the refrigerant passage 3 is configured to be watertight, and when the refrigerant liquid is a gas, the refrigerant passage 3 is configured to be airtight. Further, the refrigerant passage 3 is provided, for example, in the lower region of the plurality of secondary batteries 2 along the alignment direction of the plurality of secondary batteries 2. Moreover, the refrigerant path 3 makes the lower surface of the some secondary battery 2 a part of partition wall, for example. Thereby, the secondary battery 2 is directly cooled by the refrigerant flowing through the refrigerant passage 3 touching the lower surfaces of the plurality of secondary batteries 2.

冷媒通路3は、例えば、複数の二次電池2の下方域において冷媒が循環可能な循環路であって、往路31と復路32とが複数の二次電池2の下方域に配置される。これにより、複数の二次電池2の下方域において冷媒が循環し、往路31と復路32とにおいて複数の二次電池2を冷却することができる。この結果、冷媒通路3は、複数の二次電池2を効率的に冷却することが可能である。   The refrigerant passage 3 is, for example, a circulation path through which refrigerant can circulate in the lower area of the plurality of secondary batteries 2, and the forward path 31 and the return path 32 are arranged in the lower area of the plurality of secondary batteries 2. Thereby, the refrigerant circulates in the lower region of the plurality of secondary batteries 2, and the plurality of secondary batteries 2 can be cooled in the forward path 31 and the return path 32. As a result, the refrigerant passage 3 can efficiently cool the plurality of secondary batteries 2.

冷媒通路3は、ポンプ6と冷却器7を含んで構成されている。ポンプ6は、冷媒を冷媒通路3に供給するためのものであり、冷媒が循環するように設けられた冷媒通路3では冷媒を冷媒通路3に循環させる。冷却器7は、冷媒を冷却するためのものであり、冷媒が循環するように設けられた冷媒通路3では冷媒通路3を循環する冷媒を冷却させる。   The refrigerant passage 3 includes a pump 6 and a cooler 7. The pump 6 is for supplying a refrigerant to the refrigerant passage 3, and causes the refrigerant to circulate in the refrigerant passage 3 in the refrigerant passage 3 provided so that the refrigerant circulates. The cooler 7 is for cooling the refrigerant. In the refrigerant passage 3 provided so that the refrigerant circulates, the refrigerant circulating in the refrigerant passage 3 is cooled.

図2及び図3に示すように、複数の分岐通路4は、複数の二次電池2を個別に冷却するための冷媒が滞留する通路である。複数の分岐通路4のそれぞれは、例えば、冷媒通路3から複数の二次電池2の側方に向けて個別に分岐している。また、複数の分岐通路4のそれぞれは、例えば、二次電池2の側面を区画壁の一部とする。これにより、複数の分岐通路4のそれぞれに滞留する冷媒が二次電池2の側面に触れることによって直接二次電池2が冷却される。複数の分岐通路4のそれぞれは、例えば、分岐通路4に滞留する冷媒によって冷却される二次電池2と隣り合う二次電池2に分岐通路4を区画する側断面が鈎の手状(L字状)の部材41が設置される。鈎の手状の部材41は、例えば、絶縁材で構成され、二次電池2と該二次電池2に隣り合う二次電池2とが絶縁される。   As shown in FIGS. 2 and 3, the plurality of branch passages 4 are passages in which refrigerants for individually cooling the plurality of secondary batteries 2 stay. Each of the plurality of branch passages 4 individually branches from the refrigerant passage 3 toward the side of the plurality of secondary batteries 2, for example. Each of the plurality of branch passages 4 has, for example, the side surface of the secondary battery 2 as a part of the partition wall. Thereby, the secondary battery 2 is directly cooled by the refrigerant staying in each of the plurality of branch passages 4 touching the side surface of the secondary battery 2. Each of the plurality of branch passages 4 has, for example, a hand-like (L-shaped) side cross section that partitions the branch passage 4 into the secondary battery 2 adjacent to the secondary battery 2 that is cooled by the refrigerant retained in the branch passage 4. Shaped member 41 is installed. The hand-like member 41 of the bag is made of, for example, an insulating material, and the secondary battery 2 and the secondary battery 2 adjacent to the secondary battery 2 are insulated.

複数の扉体5は、複数の分岐通路4のそれぞれを開閉するためのものである。複数の扉体5のそれぞれは、複数の分岐通路4と冷媒通路3との境界に設けられている。複数の扉体5は、例えば、複数の分岐通路4のそれぞれに滞留する冷媒の温度上昇によって複数の分岐通路4のそれぞれを個別に開放可能である。また、複数の扉体5は、複数の分岐通路4のそれぞれを対流する冷媒の温度が下降することによって複数の分岐通路4のそれぞれを個別に閉塞可能である。   The plurality of door bodies 5 are for opening and closing each of the plurality of branch passages 4. Each of the plurality of door bodies 5 is provided at a boundary between the plurality of branch passages 4 and the refrigerant passage 3. The plurality of door bodies 5 can individually open each of the plurality of branch passages 4 due to, for example, an increase in the temperature of the refrigerant staying in each of the plurality of branch passages 4. Further, the plurality of door bodies 5 can individually block each of the plurality of branch passages 4 as the temperature of the refrigerant that convects each of the plurality of branch passages 4 decreases.

図2及び図3に示すように、複数の扉体5のそれぞれは、例えば、上述した鈎の手状の部材41に支持されている。複数の扉体5は、冷媒の流れ方向に対して逆らう方向(冷媒を迎え入れる方向)に開放可能である。このようにすれば、扉体5が開放した場合に、冷媒通路3から分岐通路4に冷媒を流れ込ませることができ、分岐通路4に滞留する冷媒を分岐通路4から冷媒通路3に排出させることができる。   As shown in FIGS. 2 and 3, each of the plurality of door bodies 5 is supported by, for example, the above-described hand-shaped member 41 of the bag. The plurality of door bodies 5 can be opened in a direction opposite to the refrigerant flow direction (direction in which the refrigerant is received). In this way, when the door 5 is opened, the refrigerant can flow into the branch passage 4 from the refrigerant passage 3, and the refrigerant staying in the branch passage 4 can be discharged from the branch passage 4 to the refrigerant passage 3. Can do.

図4に示すように、複数の扉体5のそれぞれは、例えば、バイメタルで構成される。バイメタルは、熱膨張率が異なる二枚の金属板を貼り合わせたものであり、分岐通路4に滞留する冷媒の温度上昇によって分岐通路4を開放可能である。このようにすれば、分岐通路4に滞留する冷媒の温度上昇によって扉体5が変形することで分岐通路4を個別に開放することができる。また、分岐通路4を対流する冷媒の温度が下降することによって扉体5が元に戻ることによって分岐通路4を閉塞することができる。   As shown in FIG. 4, each of the plurality of door bodies 5 is made of, for example, bimetal. The bimetal is a laminate of two metal plates having different thermal expansion coefficients, and the branch passage 4 can be opened by a rise in the temperature of the refrigerant staying in the branch passage 4. If it does in this way, the branch channel | path 4 can be open | released separately because the door body 5 deform | transforms with the temperature rise of the refrigerant | coolant which retains in the branch channel | path 4. FIG. Also, the branch passage 4 can be closed by returning the door body 5 as the temperature of the refrigerant convection through the branch passage 4 decreases.

複数の扉体5のそれぞれは、例えば、形状記憶合金で構成しても良い。形状記憶合金は、温度変化によって記憶された元の形状に戻るものであり、分岐通路4に滞留する冷媒の温度上昇によって分岐通路4を開放可能である。このようにすれば、分岐通路4に滞留する冷媒の温度上昇によって扉体5が元の形状に戻ることで分岐通路4を個別に開放することができる。また、分岐通路4を対流する冷媒の温度が下降することによって扉体5が変形することで分岐通路4を個別に閉塞することができる。   Each of the plurality of door bodies 5 may be made of, for example, a shape memory alloy. The shape memory alloy returns to the original shape memorized by the temperature change, and the branch passage 4 can be opened by the temperature rise of the refrigerant staying in the branch passage 4. If it does in this way, the branch channel | path 4 can be open | released separately because the door body 5 returns to the original shape by the temperature rise of the refrigerant | coolant which retains in the branch channel | path 4. FIG. Moreover, the branch channel | path 4 can be obstruct | occluded separately because the door body 5 deform | transforms when the temperature of the refrigerant | coolant which convects the branch channel | path 4 falls.

図5に示すように、複数の扉体5のそれぞれは、例えば、温度変化によって伸縮可能な紐8が張られて閉塞していても良い。温度変化によって伸縮可能な紐8は、例えば、形状記憶繊維(例えば、形状記憶ポリマー)によって構成され、分岐通路4に滞留する冷媒の温度上昇によって伸長され、扉体5は自重によって分岐通路4を開放する。このようにすれば、分岐通路4に滞留する冷媒の温度上昇によって紐が伸長することで、扉体5は自重によって分岐通路4を個別に開放することができる。また、分岐通路4を対流する冷媒の温度が下降することによって紐8が縮小することで、扉体5は自重に抗して分岐通路4を個別に閉塞することができる。   As shown in FIG. 5, each of the plurality of door bodies 5 may be closed by, for example, a string 8 that can be expanded and contracted by a temperature change. The string 8 that can be expanded and contracted by a change in temperature is made of, for example, a shape memory fiber (for example, a shape memory polymer), and is extended by the temperature rise of the refrigerant staying in the branch passage 4. Open. If it does in this way, a string will extend by the temperature rise of the refrigerant | coolant which retains in the branch channel | path 4, and the door body 5 can open | release the branch channel | path 4 separately with dead weight. Further, the string 8 is reduced by the temperature of the refrigerant convection through the branch passage 4 being reduced, so that the door body 5 can individually block the branch passage 4 against its own weight.

上述した本発明の一実施形態に係る車両用二次電池の冷却構造1によれば、複数の分岐通路4のそれぞれに対流する冷媒の温度上昇によって複数の扉体5が複数の分岐通路4を個別に開放するので、開放された分岐通路4に滞留していた冷媒が入れ替わり、温度が上昇した二次電池2を冷却する。これにより、複数の二次電池2において温度を均一にすることができる。   According to the vehicular secondary battery cooling structure 1 according to the above-described embodiment of the present invention, the plurality of door bodies 5 pass through the plurality of branch passages 4 due to the rise in the temperature of the refrigerant convection to each of the plurality of branch passages 4. Since it opens separately, the refrigerant | coolant which stayed in the open branch passage 4 is replaced, and the secondary battery 2 which temperature rose is cooled. Thereby, the temperature can be made uniform in the plurality of secondary batteries 2.

本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。   The present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.

1 車両用二次電池の冷却構造
2 二次電池
3 冷却通路
4 分岐通路
41 鈎の手状の部材
5 扉体
6 ポンプ
7 冷却器
8 紐
DESCRIPTION OF SYMBOLS 1 Cooling structure of the secondary battery for vehicles 2 Secondary battery 3 Cooling passage 4 Branch passage 41 Hand-shaped member of a cage 5 Door body 6 Pump 7 Cooler 8 String

Claims (6)

一列に整列した複数の二次電池と、
前記複数の二次電池の下方域において前記複数の二次電池の整列方向に沿って設けられ、前記複数の二次電池の下面を区画壁の一部とする冷媒通路と、
前記冷媒通路から前記複数の二次電池の側方に向けて個別に分岐し、前記二次電池の側面を区画壁の一部とする複数の分岐通路と、
前記複数の分岐通路のそれぞれと前記冷媒通路との境界に設けられ、前記複数の分岐通路のそれぞれに滞留する冷媒の温度上昇によって前記複数の分岐通路のそれぞれを個別に開放可能な複数の扉体と、
を備えることを特徴とする車両用二次電池の冷却構造。
A plurality of secondary batteries arranged in a row;
A refrigerant passage provided along a direction in which the plurality of secondary batteries are aligned in a lower region of the plurality of secondary batteries, and having a lower surface of the plurality of secondary batteries as a part of a partition wall;
A plurality of branch passages individually branching from the refrigerant passage toward a side of the plurality of secondary batteries, wherein the side surfaces of the secondary batteries are part of partition walls;
A plurality of door bodies provided at the boundary between each of the plurality of branch passages and the refrigerant passage and capable of opening each of the plurality of branch passages individually by a rise in temperature of the refrigerant staying in the plurality of branch passages When,
A cooling structure for a vehicular secondary battery, comprising:
前記冷媒通路は、前記複数の二次電池の下方域において前記冷媒が循環可能な循環路であって、往路と復路とが前記複数の二次電池の下方域に配置されることを特徴とする請求項1に記載の車両用二次電池の冷却構造。   The refrigerant passage is a circulation path through which the refrigerant can circulate in a lower area of the plurality of secondary batteries, and an outward path and a return path are arranged in the lower area of the plurality of secondary batteries. The cooling structure of the secondary battery for vehicles of Claim 1. 前記複数の扉体は、前記冷媒の流れ方向に対して逆らう方向に開放可能であることを特徴とする請求項1又は2に記載の車両用二次電池の冷却構造。   The cooling structure for a secondary battery for a vehicle according to claim 1, wherein the plurality of door bodies can be opened in a direction opposite to a flow direction of the refrigerant. 前記複数の扉体のそれぞれは、熱膨張率が異なる二枚の金属板を貼り合わせたバイメタルで構成されることを特徴とする請求項1から3の何れか一項に記載の車両用二次電池の冷却構造。   4. The vehicular secondary according to claim 1, wherein each of the plurality of doors is configured by a bimetal obtained by bonding two metal plates having different thermal expansion coefficients. 5. Battery cooling structure. 前記複数の扉体のそれぞれは、温度変化によって記憶された元の形状に戻る形状記憶合金で構成されることを特徴とする請求項1から3の何れか一項に記載の車両用二次電池の冷却構造。   4. The secondary battery for a vehicle according to claim 1, wherein each of the plurality of doors is made of a shape memory alloy that returns to an original shape stored by a temperature change. 5. Cooling structure. 前記複数の扉体のそれぞれは、温度変化によって伸縮可能な紐が張られて閉塞していることを特徴とする請求項1から3の何れか一項に記載の車両用二次電池の冷却構造。   The cooling structure for a secondary battery for a vehicle according to any one of claims 1 to 3, wherein each of the plurality of door bodies is closed by a string that can be expanded and contracted by a temperature change. .
JP2018029533A 2018-02-22 2018-02-22 Cooling structure of secondary battery for vehicle Pending JP2019142390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018029533A JP2019142390A (en) 2018-02-22 2018-02-22 Cooling structure of secondary battery for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018029533A JP2019142390A (en) 2018-02-22 2018-02-22 Cooling structure of secondary battery for vehicle

Publications (1)

Publication Number Publication Date
JP2019142390A true JP2019142390A (en) 2019-08-29

Family

ID=67771805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029533A Pending JP2019142390A (en) 2018-02-22 2018-02-22 Cooling structure of secondary battery for vehicle

Country Status (1)

Country Link
JP (1) JP2019142390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040573A4 (en) * 2020-08-24 2024-03-20 Lg Energy Solution Ltd Battery module and battery pack comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040573A4 (en) * 2020-08-24 2024-03-20 Lg Energy Solution Ltd Battery module and battery pack comprising same

Similar Documents

Publication Publication Date Title
US20230352766A1 (en) Battery module and battery pack including the same
KR102189058B1 (en) Reservoir tank for integrated thermal management and integrated thermal management module including the same
US20190280356A1 (en) System and method for thermally managing battery
US8647763B2 (en) Battery coolant jacket
US20200171914A1 (en) Six-way valve and vehicle thermal management system having the same
JP6226436B2 (en) Cooling system for battery cells
WO2017033412A1 (en) Battery system and electric vehicle equipped with same battery system
TWI624102B (en) Temperature-controlling/power-supplying system of battery pack
US8861202B2 (en) Integrated thermal and structural management solution for Rechargeable Energy Storage System assembly
US11142037B2 (en) Thermal management system for vehicle
KR20110136794A (en) Temperature-controlled battery system ii
US20180331401A1 (en) Energy storage device
US10886581B2 (en) Battery pack
US10894486B2 (en) Assembly and method for cooling a traction battery of a vehicle using fuel
EP2530762B1 (en) Battery arrangement
JP2014157756A (en) Battery unit
US20210143497A1 (en) Temperature Control Device For A Battery Housing
CN108368769B (en) Cooling circuit and method on a vehicle
CN104934655A (en) Battery thermal management system including bimetallic member
WO2013111529A1 (en) Battery temperature adjustment device
KR102025861B1 (en) Cooling Apparatus for Battery Cell
US20150050539A1 (en) Spacer for a battery, battery and motor vehicle
CN109755685A (en) For cooling down the device of Vehicular battery
CN108666699B (en) Temperature control device for a vehicle battery, vehicle having such a temperature control device, and method for controlling the temperature of a vehicle battery
KR20210010121A (en) Chiller for integrated thermal management and integrated thermal management module including the same