JP2019141300A - Biological information acquisition device - Google Patents

Biological information acquisition device Download PDF

Info

Publication number
JP2019141300A
JP2019141300A JP2018028142A JP2018028142A JP2019141300A JP 2019141300 A JP2019141300 A JP 2019141300A JP 2018028142 A JP2018028142 A JP 2018028142A JP 2018028142 A JP2018028142 A JP 2018028142A JP 2019141300 A JP2019141300 A JP 2019141300A
Authority
JP
Japan
Prior art keywords
pair
sensor
pressure sensor
axis pressure
biological information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018028142A
Other languages
Japanese (ja)
Other versions
JP7013012B2 (en
Inventor
徹次 土肥
Tetsuji Doi
徹次 土肥
俊 深掘
Shun Fukabori
俊 深掘
中村 浩行
Hiroyuki Nakamura
浩行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Chuo University
Original Assignee
Shinano Kenshi Co Ltd
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd, Chuo University filed Critical Shinano Kenshi Co Ltd
Priority to JP2018028142A priority Critical patent/JP7013012B2/en
Publication of JP2019141300A publication Critical patent/JP2019141300A/en
Application granted granted Critical
Publication of JP7013012B2 publication Critical patent/JP7013012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To solve a problem that complete cancellation has not been achieved and there is a room for improving accuracy in a scheme that perform canceling using a sensor for body motion noise acquisition in addition to a sensor for pulse wave waveform acquisition during acquisition of a pulse wave waveform with a multiaxial pressure sensor.SOLUTION: In acquisition of a pulse wave waveform with a multiaxial pressure sensor, a pair of a sensor for pulse wave waveform acquisition and a sensor for body motion noise acquisition is formed to perform cancellation. In order to increase cancellation accuracy, another sensor set is put on different places that are in substantially the same environment, for example, left and right wrists, and a correction coefficient is calculated on the basis of a pulse wave waveform acquired there and applied.SELECTED DRAWING: Figure 7

Description

本発明は、圧力センサーを用いて生体情報を取得する装置に関するものである。 The present invention relates to an apparatus for acquiring biological information using a pressure sensor.

以前より圧力センサーを用いて脈波などの生体情報を高頻度に取得しようとする試みがなされてきた。この目的ではトノメトリ法が既に知られている。しかしながら、トノメトリ法での測定を行う場合には被測定者へのセンサー装着に一定以上の技量を必要とし、かつ測定中は測定部位を静止させる必要があるため、一般の利用者が日常生活を送りながら簡便に高頻度な生体情報測定を行うには改善の余地が大いにある状況である。
別の方向性として、例えば特開2016−202908や特開2017−006672などに開示されている技術のような、3軸方向に感度を有する圧力センサーを用いて生体情報を取得する方法が存在している。
Attempts have been made to acquire biological information such as pulse waves with high frequency using a pressure sensor. The tonometry method is already known for this purpose. However, when performing measurement by the tonometry method, a certain level of skill is required to attach the sensor to the subject, and the measurement site must be stationary during the measurement, so that general users can live daily. There is much room for improvement in order to easily perform high-frequency biological information measurement while sending.
As another directionality, for example, there is a method of acquiring biological information using a pressure sensor having sensitivity in three axial directions, such as a technique disclosed in JP-A-2016-202908 and JP-A-2017-006672. ing.

特開2016−202908公報JP, 2006-202908, A 特開2017−006672公報JP 2017-006672 A

(体動キャンセル精度問題)
しかしながら、トノメトリ法であっても3軸圧力センサー方式であっても、被測定者の体動によって生体情報の取得が阻害される問題があり、スポーツはおろか日常生活での常時連続した取得を困難としており、有用な測定を行うためには体動キャンセルのための改善を必要としている。
(Body motion cancellation accuracy problem)
However, even with the tonometry method or the triaxial pressure sensor method, there is a problem that the acquisition of biological information is hindered by the body movement of the measurement subject, and it is difficult to acquire continuously continuously in daily life as well as sports. In order to perform useful measurements, improvement for body motion cancellation is required.

前述の先行技術では、3軸の圧力センサーを2つ使用して生体情報から体動成分をキャンセルする技術が開示されているが、それでも未だ十分では無く、精度よく生体情報としての脈波波形を得るためには更なる改良が求められている。 In the above-described prior art, a technique for canceling a body motion component from biological information using two triaxial pressure sensors is disclosed, but it is still not sufficient, and a pulse wave waveform as biological information is accurately obtained. Further improvements are required to obtain it.

本発明は、上記の課題を解決するために成されたものであり、2以上の軸方向成分の圧力を検出可能な多軸圧力センサーを複数用いることにより、被測定者自身が装着可能であり且つ日常生活においても連続して使用可能な生体情報取得装置を提供することにある。 The present invention has been made to solve the above-described problems, and can be worn by a person to be measured by using a plurality of multi-axis pressure sensors that can detect pressures of two or more axial components. Another object of the present invention is to provide a biological information acquisition device that can be used continuously in daily life.

上述の問題を解決すべく本発明が成された。 The present invention has been made to solve the above problems.

本発明の作動装置は、
「被測定者の生体情報を圧力センサーで測定する生体情報取得装置であって、
所定の角度で交わる2以上の軸方向の圧力を検出する複数の多軸圧力センサーと、多軸圧力センサーの各軸の成分の信号を検出する信号検出手段と、信号検出手段が検出した多軸圧力センサーの各軸の信号を演算する演算装置と、を備え、
複数の多軸圧力センサーは被測定者に取り付けられ、複数の多軸圧力センサーのうちの2つは、生体情報取得を行う点近傍に取り付ける多軸圧力センサーAと、多軸圧力センサーAから所定の距離だけ離れた位置に取り付ける多軸圧力センサーBと、で多軸圧力センサー対を構成し、
被測定者の生体情報は圧力として多軸圧力センサー対に入力され、
演算装置は、多軸圧力センサー対の多軸圧力センサーAおよびBが検出した各軸成分の信号に基づいて演算を行い、演算結果に基づいて多軸圧力センサーAが取得する生体情報に混入する体動ノイズを低減し、
多軸圧力センサー対は、2つがそれぞれ心臓からの血管インピーダンスが等しくなり且つ相互に体動の影響が生じないよう被測定者に取り付けられ、2つの多軸圧力センサー対は対Qと対Rであり、生体情報を主に取得する側が対Q、そうでない側が対Rであって、
演算装置は、対Q側で体動が生じ且つ対R側で体動が生じない状況で生体情報を取得し、対QのセンサーAと対RのセンサーAに基づいて対QセンサーAの体動成分を抽出し、対QセンサーA体動成分と対QセンサーBの検出した信号との関係から補正係数を算出し、対QセンサーAと対QセンサーBとに基づく体動キャンセルの演算に補正係数を適用して体動キャンセル演算の精度を向上する」
ことを特徴としている。
The actuating device of the present invention comprises:
“A biological information acquisition device for measuring biological information of a person being measured with a pressure sensor,
A plurality of multi-axis pressure sensors that detect pressures in two or more axial directions that intersect at a predetermined angle, a signal detection unit that detects a component signal of each axis of the multi-axis pressure sensor, and a multi-axis detected by the signal detection unit An arithmetic device that calculates the signal of each axis of the pressure sensor,
The plurality of multi-axis pressure sensors are attached to the measurement subject, and two of the plurality of multi-axis pressure sensors are predetermined from the multi-axis pressure sensor A and the multi-axis pressure sensor A attached near the point where the biological information acquisition is performed. A multi-axis pressure sensor B is mounted at a position separated by a distance of
The biological information of the person being measured is input to the multi-axis pressure sensor pair as pressure,
The arithmetic device performs an operation based on the signal of each axis component detected by the multi-axis pressure sensors A and B of the multi-axis pressure sensor pair, and mixes in the biological information acquired by the multi-axis pressure sensor A based on the operation result. Reduce body movement noise,
The two multi-axis pressure sensor pairs are attached to the subject so that the vascular impedances from the heart are equal and the movement of each other is not affected by each other, and the two multi-axis pressure sensor pairs are the pair Q and the pair R. Yes, the side that mainly acquires biometric information is the pair Q, and the other side is the pair R,
The arithmetic device acquires biological information in a situation where body movement occurs on the pair Q side and body movement does not occur on the pair R side, and the body of the pair Q sensor A is obtained based on the pair A sensor A and the pair R sensor A. The motion component is extracted, the correction coefficient is calculated from the relationship between the Q motion sensor A body motion component and the signal detected by the pair Q sensor B, and the motion cancel calculation based on the pair Q sensor A and the pair Q sensor B is performed. Apply correction factors to improve the accuracy of body movement cancellation calculations. ''
It is characterized by that.

この特徴により、多軸圧力センサー対が1つだけで生体情報を取得するよりも高精度な体動キャンセルが可能となる。 With this feature, it is possible to cancel body movements with higher accuracy than when only one multi-axis pressure sensor pair is used to acquire biological information.

結果として、高精度に生体情報が取得できる上に、測定者自身による装着や日常生活における連続した生体情報取得が可能となる。 As a result, the biological information can be acquired with high accuracy, and the biological information can be acquired by the measurer himself or continuously in daily life.

本発明により高精度且つ連続した生体情報取得が実現可能となり、前述の体動キャンセル精度問題が解決できる。 According to the present invention, it is possible to achieve highly accurate and continuous biometric information acquisition, and the above-described body motion cancellation accuracy problem can be solved.

以下、図面を参照しながら本発明を説明する。 The present invention will be described below with reference to the drawings.

従来の手法であるトノメトリ法を説明する図である。It is a figure explaining the tonometry method which is the conventional method. センサーに対する体動の影響を示す図である。It is a figure which shows the influence of the body movement with respect to a sensor. 脈波波形に対する体動の影響を示す図である。It is a figure which shows the influence of the body motion with respect to a pulse wave waveform. 体動キャンセルの概念を示す波形図である。It is a wave form diagram which shows the concept of body movement cancellation. 体動キャンセルの概念を示す波形図である。It is a wave form diagram which shows the concept of body movement cancellation. 本発明装置の概要を示す図(代用写真)である。It is a figure (substitute photograph) which shows the outline | summary of this invention apparatus. 本発明装置の実験状況を示す図(代用写真)である。It is a figure (substitute photograph) which shows the experimental condition of this invention apparatus. 本発明装置の実験状況を示す図(代用写真)である。It is a figure (substitute photograph) which shows the experimental condition of this invention apparatus. 本発明装置の実験について脈波波形を示すグラフである。It is a graph which shows a pulse wave waveform about experiment of this invention apparatus. 本発明装置の実験結果である左右手首の相関について示すグラフである。It is a graph shown about the correlation of the right and left wrist which is an experimental result of the device of the present invention. 本発明装置の実験結果である補正係数と波形について示すグラフである。It is a graph shown about the correction coefficient and waveform which are the experimental results of this invention apparatus. 本発明装置の実験結果であるノイズ除去後の波形について示すグラフである。It is a graph shown about the waveform after noise removal which is an experimental result of the device of the present invention. 本発明装置の実験結果である補正の効果について示すグラフである。It is a graph shown about the effect of amendment which is an experimental result of the device of the present invention. 本発明装置の実験結果である表1。Table 1 is an experimental result of the device of the present invention. 本発明装置の実験結果である表2。Table 2 is an experimental result of the device of the present invention.

まず、従来の技術としてのトノメトリ法について、図1を参照しながら説明する。
トノメリ法とは、手首の血管直上皮膚に圧力センサーを押し当てることで血圧計測を行う方法ある。図1に示すように計測の際は、血管上部が平坦になるよう押し当てことで血管壁に働く張力の垂直方向成分がゼロとなるため、圧力センサーを押し付けた圧力と血圧が等しくなり、血圧を計測することができする。しかし、トノメリ法による血圧計測は手首の関節の動きや腕を振った際の慣性力や心臓からの高さ変化といった体動による影響を除去しなければ、正しく計測が行えないという問題ある。
First, the tonometry method as a conventional technique will be described with reference to FIG.
The Tonomelli method is a method of measuring blood pressure by pressing a pressure sensor against the skin immediately above the blood vessel on the wrist. As shown in FIG. 1, since the vertical component of the tension acting on the blood vessel wall is zeroed by pressing the blood vessel so that the upper part of the blood vessel is flat, the pressure applied to the pressure sensor is equal to the blood pressure. Can be measured. However, blood pressure measurement by the Tonomé method has a problem that measurement cannot be performed correctly unless the influence of body motion such as the wrist joint movement, the inertial force when the arm is shaken, or the height change from the heart is removed.

そこで発明者らは、これらの影響を低減することを目的とした研究を進めてきた。図2に示すように、血圧脈波センサーにより計測される波形に含まれるノイズと同じ大きさのノイズを体動センサーにより計測し、2つの波形データの減算を行うことで体動の影響を除去していた。
しかし、血圧脈波に含まれるノイズと体動によるノイズの大きさが必ずしも一致しないため、2つの波形データの減算を単純に行っても体動による影響を十分に除去することができていなかった。
なお、本発明の装置においても図2に示すような2つの多軸圧力センサーの組みを使用する。特許請求の範囲に記載している「多軸圧力センサーA」は脈波取得用のセンサーであり、「多軸圧力センサーB」は体動によるノイズを取得するセンサーであり、「多軸圧力センサー対」はこの2つのセンサーの組みのことを意味する。
Accordingly, the inventors have advanced research aimed at reducing these effects. As shown in FIG. 2, the body motion sensor measures noise of the same magnitude as the noise included in the waveform measured by the blood pressure pulse wave sensor, and the effect of body motion is eliminated by subtracting the two waveform data. Was.
However, since the noise contained in the blood pressure pulse wave does not necessarily match the noise due to body movement, the effect of body movement could not be sufficiently removed even if the two waveform data are simply subtracted. .
The apparatus of the present invention also uses a set of two multi-axis pressure sensors as shown in FIG. The “multi-axis pressure sensor A” described in the claims is a sensor for acquiring pulse waves, and the “multi-axis pressure sensor B” is a sensor for acquiring noise due to body movement. “Pair” means a set of these two sensors.

2つの3軸圧力センサーを用いた体動ノイズの除去の原理を図2に示す。
血圧脈波の計測時は、血圧脈波を計測するためのセンサーと体動によるノイズを計測するためのセンサーの2つを使用して行う。
血圧脈波センサーには拍動によって血管に生じる力に加え、体動によるノイズが計測される。これに対して、体動センサーには拍動によって血管に生じる力は計測されず、体動によるノイズのみが計測される。これら2つのセンサーによる計測を同時に開始し、血圧脈波センサーで計測された波形から体動センサーで計測されるノイズを減算することで体動による影響を低減した血圧脈波が取得できる。しかし、この方法では血圧脈波センサー計測される波形に含まれるノイズの大きさを確認することができないため、単純な減算だけでは体動による影響を十分に除去することができなかった。そのため、体動中の血圧脈波に含まれるノイズを抽出し、体動センサーにより計測されたノイズが抽出したノイズの大きさに一致するような補正係数を算出することとした。補正係数により体動センサーで計測されたノイズの補正を行ったのち、先に述べた原理を用いる。
FIG. 2 shows the principle of body motion noise removal using two three-axis pressure sensors.
The blood pressure pulse wave is measured using two sensors, a sensor for measuring the blood pressure pulse wave and a sensor for measuring noise due to body movement.
The blood pressure pulse wave sensor measures noise caused by body movement in addition to force generated in blood vessels by pulsation. On the other hand, the force generated in the blood vessel by pulsation is not measured by the body motion sensor, and only noise due to body motion is measured. Measurement by these two sensors is started at the same time, and by subtracting noise measured by the body motion sensor from the waveform measured by the blood pressure pulse wave sensor, a blood pressure pulse wave with reduced influence due to body motion can be acquired. However, with this method, since the magnitude of noise included in the waveform measured by the blood pressure pulse wave sensor cannot be confirmed, the effect of body movement cannot be sufficiently removed by simple subtraction alone. Therefore, noise included in the blood pressure pulse wave during body movement is extracted, and a correction coefficient is calculated so that the noise measured by the body movement sensor matches the extracted noise magnitude. After correcting the noise measured by the body motion sensor using the correction coefficient, the principle described above is used.

体動中の血圧脈波データから体動によるノイズのみを抽出するために両手を用いて計測を行う。左手は計測の途中に体動の動作を行うことに対して、右手は常に安静状態で計測をする。すると、図3に示すように、左手の血圧脈波センサーからは血圧脈波と体動によるノイズが計測されるのに対して、右手の血圧脈波センサーからは血圧脈波のみが計測される。そのため、左手の血圧脈波センサーから右手の血圧脈波センサーの出力を減算することで体動によるノイズのみの抽出ができる。この手法により血圧脈波センサーで計測された波形に含まれるノイズの大きさや波形を確認することができる。
なお、特許請求の範囲で記載した「多軸圧力センサー対Q」は本実施例における左手首に装着したセンサー対を意味し、「多軸圧力センサー対R」は本実施例における右手首に装着したセンサー対を意味する。
In order to extract only noise due to body movement from blood pressure pulse wave data during body movement, measurement is performed using both hands. While the left hand performs body movement during measurement, the right hand always measures in a resting state. Then, as shown in FIG. 3, the blood pressure pulse wave sensor and the noise due to body movement are measured from the left hand blood pressure pulse wave sensor, whereas only the blood pressure pulse wave is measured from the right hand blood pressure pulse wave sensor. . Therefore, only the noise due to body movement can be extracted by subtracting the output of the right hand blood pressure pulse wave sensor from the left hand blood pressure pulse wave sensor. By this method, the magnitude and waveform of noise included in the waveform measured by the blood pressure pulse wave sensor can be confirmed.
The “multi-axial pressure sensor pair Q” described in the claims means the sensor pair attached to the left wrist in this embodiment, and the “multi-axial pressure sensor pair R” is attached to the right wrist in this embodiment. Sensor pair.

抽出したノイズと体動センサーで計測したノイズを比較し、その大きさの比率を補正係数として算出する。抽出したノイズと体動センサーで計測されたノイズの波形を図4に示す。
補正係数の算出方法は、まず2つのノイズ波形に対して振幅ごとに最大のピークと最小のピークとの差を求める。次に抽出したノイズの振幅の体動センサーで計測したノイズの振幅に対する割合をそれぞれの山ごとに算出する。その後、算出した割合の平均値を補正係数として算出する。
図5に示すように、補正係数により体動センサーで計測した波形を補正したのち、前述したように血圧脈波センサーで計測された波形から補正を施した波形を減算することで、体動によるノイズを除去することができる。
The extracted noise and the noise measured by the body motion sensor are compared, and the ratio of the magnitude is calculated as a correction coefficient. The extracted noise and the waveform of the noise measured by the body motion sensor are shown in FIG.
The correction coefficient calculation method first obtains the difference between the maximum peak and the minimum peak for each amplitude for two noise waveforms. Next, the ratio of the extracted noise amplitude to the noise amplitude measured by the body motion sensor is calculated for each mountain. Then, the average value of the calculated ratio is calculated as a correction coefficient.
As shown in FIG. 5, after correcting the waveform measured by the body motion sensor by the correction coefficient, the corrected waveform is subtracted from the waveform measured by the blood pressure pulse wave sensor as described above, thereby Noise can be removed.

本発明の装置では、最終的には片手のみで体動によるノイズの除去を行うことを意図している。本明細書で開示する手法では、体動ごとにノイズを除去するための最適な補正係数を求めることができるが、片手のみでは、それを求めることができない。しかし一方では、補正係数が一定となれば、その補正係数を適用させるだけで、片手のみでのノイズの除去が可能になる。そのため、補正係数がほぼ一定の値となるような体動の範囲、また、その範囲における補正係数の値を体動の範囲を変えて実験を行い、確認した。体動センサーの出力に対して、一定となった補正係数を適用することで、求められた体動の範囲においては片手のみでも体動によるノイズが除去できるようになる。 The apparatus of the present invention is intended to finally remove noise due to body movement with only one hand. In the method disclosed in this specification, an optimum correction coefficient for removing noise can be obtained for each body movement, but it cannot be obtained with only one hand. However, on the other hand, if the correction coefficient is constant, it is possible to remove noise with only one hand only by applying the correction coefficient. Therefore, an experiment was performed by confirming the range of body movement in which the correction coefficient becomes a substantially constant value and the value of the correction coefficient in the range while changing the body movement range. By applying a constant correction coefficient to the output of the body motion sensor, noise due to body motion can be removed with only one hand within the determined body motion range.

本発明の過程で試作した本発明装置の概要を図6に示す。
本発明装置は中央大学とシナノケンシ株式会社とで共同開発した手首に装着できるバンド型の装置となっており、大きさは92x76x24mmとなっている。また、装置はMEMS3軸圧力センサー、押し当て調節機構、固定用バンドで構成されている。押し当て調節機構は3軸の調節が可能な機構となっており、その機構は血管の走行方向に対して垂直方向に位置の調整が可能で、さらにねじ止め機構によって押し当ての角度を調整できる。また、ねじ送り機構によって血管に対して押し当て変位を調節することで、押し付け力を調節することが可能となっている。
FIG. 6 shows an outline of the device of the present invention that was prototyped in the process of the present invention.
The device of the present invention is a band-type device that can be worn on the wrist, jointly developed by Chuo University and Shinano Kenshi Co., Ltd., and has a size of 92 × 76 × 24 mm. Further, the apparatus is composed of a MEMS triaxial pressure sensor, a pressing adjustment mechanism, and a fixing band. The pressing adjustment mechanism is a mechanism that can adjust three axes. The mechanism can adjust the position in a direction perpendicular to the traveling direction of the blood vessel, and can adjust the pressing angle by a screwing mechanism. . Further, the pressing force can be adjusted by adjusting the pressing displacement against the blood vessel by the screw feeding mechanism.

血圧測定用センサーとしては、中央大学、タッチエンス株式会社、シナノケンシ株式会社とで共同開発した血圧計測用MEMS3軸圧力センサーアレイを使用した。圧力センサーは受圧面の直径が2.3mm、高さが1.0mmの円錐台の形状となっており、5素子の圧力センサーが十字型に配列されている。各センサー間の距離は3.4mmである。また、MEMS3軸圧力センサーは信号処理基板に接続されており、この基板によりセンサーからの出力を増幅し、A/D変換、演算処理、通信を可能としている。信号処理基板は本発明装置と同様に腕にバンドを用いて固定できる。本発明の実施例では両手首を用いるため、本発明装置を2つ使用する。左手に装着する装置では5素子のうち2つを使用し、1つは血圧脈波を計測し、もう1つは体動によるノイズを計測する。一方、右手に装着する装置では、5素子のセンサーのうちの1つで血圧脈波を計測する。 As the blood pressure measurement sensor, a MEMS 3-axis pressure sensor array for blood pressure measurement jointly developed with Chuo University, Touchence Corporation, and Shinano Kenshi Corporation was used. The pressure sensor is in the shape of a truncated cone having a pressure receiving surface diameter of 2.3 mm and a height of 1.0 mm, and five pressure sensors are arranged in a cross shape. The distance between each sensor is 3.4 mm. Further, the MEMS triaxial pressure sensor is connected to a signal processing board, and the output from the sensor is amplified by this board to enable A / D conversion, arithmetic processing, and communication. The signal processing board can be fixed to the arm using a band in the same manner as the device of the present invention. Since both wrists are used in the embodiment of the present invention, two devices of the present invention are used. The device worn on the left hand uses two of the five elements, one measures blood pressure pulse waves and the other measures noise due to body movement. On the other hand, in the device worn on the right hand, the blood pressure pulse wave is measured by one of the five-element sensors.

体動時の血圧脈波計測を行うためのセットアップを図7に示す。
MEMS3軸圧力センサーにより計測された出力は基板を介してパソコンへ伝送されており、計測されたデータは中央大学とシナノケンシ株式会社とで共同開発したソフトウェアによって記録する。また、両手を用いて計測を行うため、本発明装置を両手首に装着する。
図8に示すように橈骨動脈上に印を付け、計測位置が変動しないようにし、本発明装置の調節機構を調整し、また計測位置の高さが変わらないようにした。
体動は手首を曲げていない時を0°とし、分度器で角度を確認しながら前に0°〜10°、0°〜20°、0°〜30°、0°から40°、後ろに0°〜−10°、0°〜−20°、0°〜−30°、の範囲で7種類とした。両手首の計測を同時に開始し、10秒後に左手を約1Hzで10秒間にわたり体動させた。右手は左手の計測位置と同じ高さで常に安静状態を保ち、血圧脈波の計測を行った。
A setup for performing blood pressure pulse wave measurement during body movement is shown in FIG.
The output measured by the MEMS triaxial pressure sensor is transmitted to the personal computer via the substrate, and the measured data is recorded by software jointly developed by Chuo University and Shinano Kenshi Co., Ltd. Moreover, in order to perform measurement using both hands, the device of the present invention is attached to both wrists.
As shown in FIG. 8, the radial artery was marked so that the measurement position was not changed, the adjustment mechanism of the device of the present invention was adjusted, and the height of the measurement position was not changed.
The body movement is 0 ° when the wrist is not bent, and 0 ° to 10 °, 0 ° to 20 °, 0 ° to 30 °, 0 ° to 40 °, 0 ° to 40 ° before checking the angle with a protractor. There were seven types in the range of ° to -10 °, 0 ° to -20 °, and 0 ° to -30 °. Measurement of both wrists was started simultaneously, and after 10 seconds, the left hand was moved at about 1 Hz for 10 seconds. The right hand was always at rest at the same height as the measurement position of the left hand, and blood pressure pulse waves were measured.

0°〜−30°の体動の範囲での左手と同時に計測を行った右手との計測結果を図9に示す。この図9より、左手で計測された波形は計測開始10秒後から10秒間にわたり、血圧脈波の波形に乱れが発生していることが確認できる。
まず、2つの脈波の振幅を比較するために、2つの波形に対して、体動前の安静状態時における血圧脈波の相関を算出する。縦軸に右手の血圧脈波、横軸に左手の血圧脈波、とした時のグラフを図10に示す。この図において回帰直線を算出したところ、
y = 0.998x + 0.0055
となった。
体動前の2つの波形は高い相関を示したので、右手で計測した波形に対して算出された式の傾きの逆数を掛け、2つの脈波振幅に合わせた。この状態から前述の方法により体動によるノイズの抽出を行った。抽出したノイズは図9に示す通りである。
FIG. 9 shows the measurement results with the right hand measured simultaneously with the left hand in the range of body movement of 0 ° to −30 °. From FIG. 9, it can be confirmed that the waveform measured with the left hand is disturbed in the waveform of the blood pressure pulse wave for 10 seconds after 10 seconds from the start of measurement.
First, in order to compare the amplitudes of two pulse waves, a correlation between blood pressure pulse waves in a resting state before body movement is calculated for the two waveforms. FIG. 10 shows a graph in which the vertical axis represents the right hand blood pressure pulse wave and the horizontal axis represents the left hand blood pressure pulse wave. When the regression line was calculated in this figure,
y = 0.998x + 0.0055
It became.
Since the two waveforms before the body movement showed a high correlation, the waveform measured with the right hand was multiplied by the reciprocal of the slope of the calculated formula to match the two pulse wave amplitudes. From this state, noise due to body movement was extracted by the method described above. The extracted noise is as shown in FIG.

次に、補正係数の算出を行う。
前述の方法で抽出したノイズと、同時に計測を行った体動センサーの出力を図11に示す。
この波形に対して、前述の方法で補正係数を算出する。抽出したノイズの体動センサーで計測したノイズに対する割合は、0°〜−30°の範囲では0.499となった。つまり、この値が体動センサーで計測したノイズを抽出したノイズと一致させる補正係数となる。
つづけて、体動によるノイズの較正を行う。体動センサーで計測した波形に対して算出した補正係数を用いて補正を行ったのち、前述した較正手法を用いて体動によるノイズの除去を行った。
Next, a correction coefficient is calculated.
FIG. 11 shows the noise extracted by the above-described method and the output of the body motion sensor measured simultaneously.
A correction coefficient is calculated for this waveform by the method described above. The ratio of the extracted noise to the noise measured by the body motion sensor was 0.499 in the range of 0 ° to −30 °. That is, this value is a correction coefficient for matching the noise measured by the body motion sensor with the extracted noise.
Continue to calibrate noise due to body movement. After correcting using the correction coefficient calculated with respect to the waveform measured by the body motion sensor, noise due to body motion was removed using the calibration method described above.

ノイズの除去後の波形を図12に示す。図12において除去後の波形は体動による血圧脈波の乱れが低減できていることが確認できる。
ノイズの低減効果を評価するため、ノイズの除去前後の波形と安静状態で同時に計測を行った右手との波形の相関係数をそれぞれ算出した。横軸に右手の血圧脈波、縦軸にノイズ除去後の波形としたモノを図13(a)に、除去前の波形としたモノを図13(b)に、それぞれ示す。
この図13において、ノイズの除去後と右手との波形の相関係数は0.89となり、除去前と右手との波形の相関係数は0.60となった。ノイズの除去後の方が除去前よりも高い相関となったため、ノイズの除去後の波形は本実施例で開示の方法で体動によるノイズを低減することができた。
The waveform after noise removal is shown in FIG. In FIG. 12, it can be confirmed that the waveform after removal can reduce the disturbance of the blood pressure pulse wave due to body movement.
In order to evaluate the noise reduction effect, the correlation coefficient between the waveform before and after noise removal and the waveform with the right hand measured simultaneously in a resting state was calculated. FIG. 13 (a) shows the blood pressure pulse wave of the right hand on the horizontal axis, FIG. 13 (b) shows the thing with the waveform after noise removal on the vertical axis, and FIG. 13 (b) shows the thing with the waveform before removal.
In FIG. 13, the correlation coefficient between the waveform after noise removal and the right hand is 0.89, and the correlation coefficient between the waveform before removal and the right hand is 0.60. Since the correlation after noise removal was higher than that before removal, the waveform after noise removal was able to reduce noise due to body movement by the method disclosed in this example.

次に、他の6つの範囲の体動にも一連の処理を行い、ノイズの抽出から補正係数の算出、ノイズの除去前後における波形と右手との波形の相関係数を算出した。その結果を図14(表1)に示す。表1の補正係数の結果より、補正係数は各範囲においてバラツキが見られるものの手首の前と後ろの2つの体動の動作で考えた場合、それぞれの補正係数が近い値を示している。従って、手首を前と後ろに動作させた時とでは、異なる傾向があることを示している。また、表1の相関係数の結果より、全ての範囲においてノイズ除去後の波形は除去前の波形よりも高い相関を示している。これらのことより、本実施例で開示の方法によって、体動の範囲に関らず、体動によるノイズを低減できることとなる。 Next, a series of processes were also performed for body motions in the other six ranges, and correction coefficients were calculated from noise extraction, and correlation coefficients between the waveform and the right hand waveform before and after noise removal were calculated. The results are shown in FIG. 14 (Table 1). From the results of the correction coefficients in Table 1, the correction coefficients are close to each other when considered in terms of two body movements in front of and behind the wrist, although there are variations in each range. Therefore, it shows that there is a different tendency when the wrist is moved forward and backward. From the correlation coefficient results in Table 1, the waveform after noise removal shows a higher correlation than the waveform before removal in all ranges. For these reasons, noise caused by body movement can be reduced by the method disclosed in this embodiment regardless of the range of body movement.

前述したように、片手のみで体動によるノイズの除去を行うために、体動の範囲の変化による補正係数の変化を確認した。
まず、各範囲において5回ずつ測定を行い補正係数の算出を行った。各範囲において算出した補正係数の5回の平均値と標準偏差を図15(表2)に示す。
表2に示される通り、0°〜30°以内の範囲において補正係数の平均値が近しい値となった。0°〜40°の範囲においては、他の範囲の体動と比較して平均値に差が生じ、バラツキも大きいことが示された。そのため、0°〜30°以内の範囲における各補正係数の平均値を算出した。算出した補正係数は0.696となった。
As described above, in order to remove noise due to body movement with only one hand, a change in correction coefficient due to a change in body movement range was confirmed.
First, the correction coefficient was calculated by measuring five times in each range. FIG. 15 (Table 2) shows the average value and standard deviation of the correction coefficients calculated five times in each range.
As shown in Table 2, the average value of the correction coefficients was close in the range of 0 ° to 30 °. In the range of 0 ° to 40 °, it was shown that the average value was different from that of the other ranges of body movement, and the variation was large. Therefore, the average value of each correction coefficient in the range of 0 ° to 30 ° was calculated. The calculated correction coefficient was 0.696.

また、0°から−30°以内の範囲においても補正係数の平均値が近しい値となった。そのため、同様にして0°〜−30°以内の範囲における各補正係数の平均値の算出を行った。算出した補正係数は0.534となった。
最後にそれぞれ算出した補正係数の平均値を用いて、全ての計測データに対してノイズ除去を行った。ノイズの低減効果の評価はノイズの除去前後における波形と右手との波形の相関係数を用いた。
In addition, the average value of the correction coefficients was a close value even within the range of 0 ° to −30 °. Therefore, the average value of each correction coefficient in the range of 0 ° to −30 ° was calculated in the same manner. The calculated correction coefficient was 0.534.
Finally, noise was removed from all measurement data using the average value of the correction coefficients calculated. The noise reduction effect was evaluated using the correlation coefficient between the waveform and the right hand waveform before and after noise removal.

結果は、手首の前の体動においてはノイズの除去前の相関係数の平均が0.85であったのに対して、ノイズ除去後の相関係数の平均は0.92となった。ノイズの除去後は除去前よりも相関係数が8.2%向上したこととなる。
また、手首の後ろの体動においては、ノイズの除去前の相関係数の平均が0.81となり、ノイズの除去後の相関係数の平均値は0.90となった。ノイズの除去後は除去前よりも相関係数が11%向上したことになる。
これらのことより、算出した補正係数の平均値を用いることで片手のみでも体動によるノイズを除去できることとなる。
As a result, in the body movement in front of the wrist, the average correlation coefficient before noise removal was 0.85, whereas the average correlation coefficient after noise removal was 0.92. After the noise removal, the correlation coefficient is improved by 8.2% than before the removal.
In the body movement behind the wrist, the average correlation coefficient before noise removal was 0.81, and the average correlation coefficient after noise removal was 0.90. After the noise removal, the correlation coefficient is improved by 11% than before the removal.
From these facts, noise due to body movement can be removed with only one hand by using the average value of the calculated correction coefficients.

以上までに、本発明の体動ノイズ除去の原理とその根拠を示す実験の結果を説明してきた。
本発明によって開示された技術を用いることで、体動によるノイズを効果的に除去することが可能となって生体情報を精度高く計測できるようになる。
本発明の実施例では手首関節動作を一例として挙げたが、別の筋、腱、関節を動作させた場合の体動ノイズ影響を圧力センサー対により評価し、補正係数を求めることで更に精度高く計測できるようになる。
また、本発明の実施例において、多軸圧力センサー対QとRは左右の両手首としたが、これに限定されない。心臓からの血管距離とインピーダンスが概ね等しく且つ取得できる脈波波形が時間軸上で同期している箇所であれば良い。さらに両手首のように左手首の体動が右手首に直接影響しないような相互に独立している箇所であればなお良い。
Up to this point, the results of experiments showing the principle of body motion noise removal and the basis of the present invention have been described.
By using the technique disclosed by the present invention, it is possible to effectively remove noise due to body movement and to measure biological information with high accuracy.
In the embodiment of the present invention, wrist joint movement is given as an example, but the effect of body motion noise when another muscle, tendon, or joint is moved is evaluated by a pressure sensor pair, and the correction coefficient is obtained to obtain higher accuracy. It becomes possible to measure.
In the embodiment of the present invention, the pair of multi-axis pressure sensors Q and R is the left and right wrists, but is not limited thereto. Any place where the blood vessel distance from the heart and the impedance are substantially equal and the pulse waveform that can be acquired is synchronized on the time axis may be used. Furthermore, it is more preferable if the movement of the left wrist does not directly affect the right wrist as in both wrists.

量産可能な圧力センサーを使用して生体情報取得を高精度で実現でき、高い経済性と実用性、広い応用可能性を得られるなどの効果を有している。 Using pressure sensors that can be mass-produced, biometric information can be obtained with high accuracy, and there are advantages such as high economic efficiency and practicality, and wide applicability.

無し
None

Claims (1)

被測定者の生体情報を圧力センサーで測定する生体情報取得装置であって、
所定の角度で交わる2以上の軸方向の圧力を検出する複数の多軸圧力センサーと、
前記多軸圧力センサーの各軸の成分の信号を検出する信号検出手段と、
前記信号検出手段が検出した前記多軸圧力センサーの各軸の信号を演算する演算装置と、
を備え、
前記複数の多軸圧力センサーは前記被測定者に取り付けられ、
前記複数の多軸圧力センサーのうちの2つは、生体情報取得を行う点近傍に取り付ける多軸圧力センサーAと、該多軸圧力センサーAから所定の距離だけ離れた位置に取り付ける多軸圧力センサーBと、で多軸圧力センサー対を構成し、
前記被測定者の生体情報は圧力として前記多軸圧力センサー対に入力され、
前記演算装置は、前記多軸圧力センサー対の多軸圧力センサーAおよびBが検出した各軸成分の信号に基づいて演算を行い、該演算結果に基づいて多軸圧力センサーAが取得する生体情報に混入する体動ノイズを低減し、
前記多軸圧力センサー対は、2つがそれぞれ心臓からの血管インピーダンスが等しくなり且つ相互に体動の影響が生じないように被測定者に取り付けられ、
該2つの多軸圧力センサー対は対Qと対Rであり、生体情報を主に取得する側が対Q、そうでない側が対Rであって、
前記演算装置は、対Q側で体動が生じ且つ対R側で体動が生じない状況で生体情報を取得し、対QのセンサーAと対RのセンサーAに基づいて対QセンサーAの体動成分を抽出し、該対QセンサーA体動成分と対QセンサーBの検出した信号との関係から補正係数を算出し、対QセンサーAと対QセンサーBとに基づく体動キャンセルの演算に該補正係数を適用して体動キャンセル演算の精度を向上する
ことを特徴とする生体情報取得装置。


A biological information acquisition device for measuring biological information of a measurement subject with a pressure sensor,
A plurality of multi-axis pressure sensors for detecting two or more axial pressures that intersect at a predetermined angle;
Signal detection means for detecting a signal of a component of each axis of the multi-axis pressure sensor;
An arithmetic unit that calculates signals of the respective axes of the multi-axis pressure sensor detected by the signal detection means;
With
The plurality of multi-axis pressure sensors are attached to the subject,
Two of the plurality of multi-axis pressure sensors are a multi-axis pressure sensor A attached in the vicinity of a point where biological information acquisition is performed, and a multi-axis pressure sensor attached at a position away from the multi-axis pressure sensor A by a predetermined distance. B and a multi-axis pressure sensor pair,
The biological information of the measurement subject is input to the multi-axis pressure sensor pair as pressure,
The arithmetic unit performs an operation based on signals of the respective axis components detected by the multi-axis pressure sensors A and B of the multi-axis pressure sensor pair, and the biological information acquired by the multi-axis pressure sensor A based on the calculation result Body motion noise mixed in
The multi-axis pressure sensor pair is attached to the subject so that the two have the same vascular impedance from the heart and are not affected by body movements.
The two multi-axis pressure sensor pairs are a pair Q and a pair R, the side mainly acquiring biological information is the pair Q, and the other side is the pair R,
The arithmetic unit acquires biological information in a situation where body movement occurs on the pair Q side and body movement does not occur on the pair R side, and based on the pair A sensor A and the pair R sensor A, A body motion component is extracted, a correction coefficient is calculated from the relationship between the body motion component of the pair Q sensor A and the signal detected by the pair Q sensor B, and body motion cancellation based on the pair Q sensor A and the pair Q sensor B is performed. A biological information acquisition apparatus characterized in that the correction coefficient is applied to the calculation to improve the accuracy of the body motion cancellation calculation.


JP2018028142A 2018-02-20 2018-02-20 Biometric information acquisition device Active JP7013012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028142A JP7013012B2 (en) 2018-02-20 2018-02-20 Biometric information acquisition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028142A JP7013012B2 (en) 2018-02-20 2018-02-20 Biometric information acquisition device

Publications (2)

Publication Number Publication Date
JP2019141300A true JP2019141300A (en) 2019-08-29
JP7013012B2 JP7013012B2 (en) 2022-01-31

Family

ID=67773314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028142A Active JP7013012B2 (en) 2018-02-20 2018-02-20 Biometric information acquisition device

Country Status (1)

Country Link
JP (1) JP7013012B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262483A1 (en) 2019-06-28 2020-12-30 株式会社イノアックコーポレーション Honeycomb layered body and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184548A (en) * 1992-01-08 1993-07-27 Nippon Colin Co Ltd Pulse rate measuring instrument
JP2000051164A (en) * 1998-08-07 2000-02-22 Seiko Instruments Inc Pulse wave detector
JP2005021452A (en) * 2003-07-03 2005-01-27 Toshiba Corp Pulse wave measuring module and pulse wave measuring method
WO2013068955A1 (en) * 2011-11-08 2013-05-16 Winmedical S.R.L. A weareable tonometer structure
JP2016202908A (en) * 2015-04-21 2016-12-08 シナノケンシ株式会社 Biological information reading device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008321843B2 (en) 2007-11-15 2011-12-08 Fujikura Ltd. Electrode substrate for photoelectric conversion element, method of manufacturing electrode substrate for photoelectric conversion element, and photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184548A (en) * 1992-01-08 1993-07-27 Nippon Colin Co Ltd Pulse rate measuring instrument
JP2000051164A (en) * 1998-08-07 2000-02-22 Seiko Instruments Inc Pulse wave detector
JP2005021452A (en) * 2003-07-03 2005-01-27 Toshiba Corp Pulse wave measuring module and pulse wave measuring method
WO2013068955A1 (en) * 2011-11-08 2013-05-16 Winmedical S.R.L. A weareable tonometer structure
JP2016202908A (en) * 2015-04-21 2016-12-08 シナノケンシ株式会社 Biological information reading device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262483A1 (en) 2019-06-28 2020-12-30 株式会社イノアックコーポレーション Honeycomb layered body and production method therefor

Also Published As

Publication number Publication date
JP7013012B2 (en) 2022-01-31

Similar Documents

Publication Publication Date Title
US11622693B2 (en) Method and apparatus for non-contact fast vital sign acquisition based on radar signal
US10827934B2 (en) Method, device and arrangement for determining pulse transit time
WO2019177700A3 (en) System method for motion detection using a ppg sensor
US10772515B2 (en) Blood pressure measurement device
JP2018102781A5 (en)
CN104873224A (en) Ultrasonic measurement apparatus and ultrasonic measurement method
US10736520B2 (en) Blood pressure measurement device
US20150238165A1 (en) Ultrasonic measurement apparatus and ultrasonic measurement method
EP3533391A1 (en) Information processing device, information processing method, and program
DE60037712D1 (en) Method and device for measuring blood pressure and heart rate in a noisy environment
Pereira et al. Characterization of a double probe for local pulse wave velocity assessment
CN107960998B (en) Blood pressure measuring device
JP2019141300A (en) Biological information acquisition device
JP2004305268A (en) Cardiac sound detector
US10537257B2 (en) Biological information reading device
US20170007143A1 (en) Fetal state estimation apparatus, fetal state estimating method, and non-transitory computer-readable medium
Okazaki et al. Validity and reliability of leap motion controller for assessing grasping and releasing finger movements
KR102059685B1 (en) Apparatus and method for estimating heart beat using photo-plethysmogram
JP2012075820A (en) Pulse wave propagation velocity measuring device and pulse wave propagation velocity measuring program
Weenk et al. Ultrasonic range measurements on the human body
US20140039319A1 (en) Ultrasonic measuring apparatus and blood vessel inner diameter calculating method
RU2595475C2 (en) Method and device for positioning in doppler ultrasonic transducer for measuring blood flow and system for measuring blood flow
US11433242B2 (en) Pulse discrimination device and electrocardiogram analyzer
WO2021010117A1 (en) Pulse wave measurement device, measurement method, and blood pressure measurement device
WO2019186333A9 (en) Measurement of physiological parameters

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210205

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7013012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150