JP2019140005A - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP2019140005A
JP2019140005A JP2018023533A JP2018023533A JP2019140005A JP 2019140005 A JP2019140005 A JP 2019140005A JP 2018023533 A JP2018023533 A JP 2018023533A JP 2018023533 A JP2018023533 A JP 2018023533A JP 2019140005 A JP2019140005 A JP 2019140005A
Authority
JP
Japan
Prior art keywords
spark
spark plug
combustion
extension
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018023533A
Other languages
Japanese (ja)
Other versions
JP7018601B2 (en
Inventor
訓正 飯田
Norimasa Iida
訓正 飯田
剛 横森
Takeshi Yokomori
剛 横森
店橋 護
Mamoru Tanahashi
護 店橋
河原 伸幸
Nobuyuki Kawahara
伸幸 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Keio University
Tokyo Institute of Technology NUC
Original Assignee
Okayama University NUC
Keio University
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC, Keio University, Tokyo Institute of Technology NUC filed Critical Okayama University NUC
Priority to JP2018023533A priority Critical patent/JP7018601B2/en
Publication of JP2019140005A publication Critical patent/JP2019140005A/en
Application granted granted Critical
Publication of JP7018601B2 publication Critical patent/JP7018601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

To provide a spark plug capable of enhancing ignition and flame propagation even in ultra lean combustion and ultra high EGR combustion, and suitable for realizing ultra lean combustion and ultra high EGR combustion.SOLUTION: A spark plug suitable for ultra lean combustion and ultra high EGR combustion includes a housing 31 having a lower limit projecting into the combustion chamber, an insulator 32 placed on the inside of the housing 31, center electrodes (11, 12) placed on the inside of the insulator 32, and partially projecting into the combustion chamber from the lower end of the insulator 32, and ground electrodes (21, 22, 23) including an arm 21 having one end connected with the housing 31, extending downward from the housing 31, and bending to the medial axis O side of the center electrodes (11, 12), and a spark discharge expansion section 22 connected with the other end of the arm 21, having crown facing the medial axis O, and where the area in the direction perpendicular to the medial axis O becomes wider gradually downward from the crown.SELECTED DRAWING: Figure 2

Description

本発明は、超希薄燃焼(スーパーリーンバーン)や超高排気再循環(超高EGR)燃焼を実現するための技術に関し、特に超希薄燃焼や超高EGR燃焼に好適な点火プラグに関する。   The present invention relates to a technique for realizing ultra lean combustion (super lean burn) and ultra high exhaust gas recirculation (ultra high EGR) combustion, and more particularly to an ignition plug suitable for ultra lean combustion and ultra high EGR combustion.

自動車が排出する地球温暖化の原因となる二酸化炭素を低減するために、ガソリンエンジンの熱効率の向上が重要である。近年、ガソリンエンジンの熱効率を向上する手段として、超希薄燃焼や超高EGR燃焼を実現する技術の開発が進められている。超希薄燃焼や超高EGR燃焼を安定して実現するためには、着火及び火炎伝播を促進する技術が必要である。   In order to reduce carbon dioxide, which causes global warming, emitted from automobiles, it is important to improve the thermal efficiency of gasoline engines. In recent years, as a means for improving the thermal efficiency of a gasoline engine, development of technology for realizing ultra lean combustion and ultra high EGR combustion has been advanced. In order to stably realize ultra lean combustion and ultra high EGR combustion, a technique for promoting ignition and flame propagation is necessary.

従来の点火プラグとして、接地電極の近傍の気流を剥離させて下流側に後流渦を発生させる渦発生部を形成し、中心電極及び接地電極を、両電極の間を流れる気流によって変形した火花又は火炎が後流渦内に進入するように配置することにより、着火の安定化を図る方法が提案されている(特許文献1参照)。   As a conventional spark plug, a spark that is formed by forming a vortex generating portion that separates the airflow in the vicinity of the ground electrode to generate a wake vortex downstream, and the center electrode and the ground electrode are deformed by the airflow flowing between both electrodes. Alternatively, a method for stabilizing the ignition by arranging the flame so as to enter the wake vortex has been proposed (see Patent Document 1).

しかしながら、特許文献1に記載された点火プラグでは、中心電極及び接地電極の間で生じる放電経路を、積極的に点火プラグの中心軸に平行な方向に伸長させることは考慮されていない。このため、特許文献1に記載された点火プラグを超希薄燃焼や超高EGR燃焼に適用した場合に、着火及び火炎伝播の促進を図ることは困難である。   However, in the spark plug described in Patent Document 1, it is not considered to positively extend the discharge path generated between the center electrode and the ground electrode in a direction parallel to the center axis of the spark plug. For this reason, when the spark plug described in Patent Document 1 is applied to ultra lean combustion or ultra high EGR combustion, it is difficult to promote ignition and flame propagation.

特開2017−147087号公報JP 2017-147087 A

上記課題に鑑み、本発明は、超希薄燃焼や超高EGR燃焼においても着火及び火炎伝播を促進することができ、超希薄燃焼や超高EGR燃焼を安定して実現するのに好適な点火プラグを提供することを目的とする。   In view of the above problems, the present invention can promote ignition and flame propagation even in ultra lean combustion and ultra high EGR combustion, and is an ignition plug suitable for stably realizing ultra lean combustion and ultra high EGR combustion. The purpose is to provide.

上記目的を達成するために、本発明の一態様は、上記目的を達成するために、本発明の好適な一態様は、燃焼室内の空気過剰率が1.5以上の混合気、又は空気過剰率が1.5未満で且つEGR率が20%以上の混合気に点火する点火プラグであって、(a)燃焼室内に下端が突出するハウジングと、(b)ハウジングの中心軸に沿ってハウジングの内側に配置された絶縁碍子と、(c)中心軸に沿って絶縁碍子の内側に配置され、絶縁碍子の下端から一部が燃焼室内に突出する中心電極と、(d)ハウジングに一端が接続され、ハウジングから下方に延在し、中心軸側に屈曲した腕部と、腕部の他端に接続され、中心軸と頂部が対向し、頂部から下方向になるに従い中心軸に垂直方向の面積が次第に広くなる形状の火花伸長部とを含む接地電極とを備える点火プラグであることを要旨とする。ここで、当該点火プラグは、燃焼室内の空気過剰率が1.5以上、又は空気過剰率が1.5未満で且つEGR率が20%以上の範囲以外の混合気に点火する場合にも適用可能である。   In order to achieve the above object, one aspect of the present invention is to achieve the above object, and a preferred aspect of the present invention is to provide an air-fuel mixture having an excess air ratio of 1.5 or more in the combustion chamber, or an excess air A spark plug for igniting an air-fuel mixture having a rate of less than 1.5 and an EGR rate of 20% or more, (a) a housing whose lower end protrudes into the combustion chamber, and (b) a housing along the central axis of the housing An insulator disposed on the inside of the insulator, (c) a central electrode disposed on the inner side of the insulator along the central axis and partially protruding from the lower end of the insulator into the combustion chamber, and (d) one end of the housing Connected, extending downward from the housing, bent to the center axis side, connected to the other end of the arm, the center axis and the top face each other, and perpendicular to the center axis as it goes downward from the top Including a spark extension with a gradually increasing area. And summarized in that a spark plug and a pole. Here, the spark plug is also applicable when igniting an air-fuel mixture outside the range where the excess air ratio in the combustion chamber is 1.5 or more, or the excess air ratio is less than 1.5 and the EGR rate is 20% or more. Is possible.

本発明によれば、超希薄燃焼や超高EGR燃焼においても着火及び火炎伝播を促進することができ、超希薄燃焼や超高EGR燃焼を安定して実現するのに好適な点火プラグを提供することができる。   According to the present invention, it is possible to promote ignition and flame propagation even in ultra lean combustion and ultra high EGR combustion, and to provide a spark plug suitable for stably realizing ultra lean combustion and ultra high EGR combustion. be able to.

図1は、本発明の実施形態に係る内燃機関の一例を示す概略図である。FIG. 1 is a schematic diagram illustrating an example of an internal combustion engine according to an embodiment of the present invention. 図2(a)は本発明の実施形態に係る点火プラグの一例を示す要部正面図であり、図2(b)は図2(a)の側面図であり、図2(c)は図2(a)の接地電極部分の平面図である。2A is a main part front view showing an example of a spark plug according to an embodiment of the present invention, FIG. 2B is a side view of FIG. 2A, and FIG. It is a top view of the ground electrode part of 2 (a). 図3は、本発明の実施形態に係る点火装置の一例を示す概略図である。FIG. 3 is a schematic diagram illustrating an example of an ignition device according to an embodiment of the present invention. 図4(a)〜図4(c)は、本発明の実施形態に係る点火プラグの点火時の要部正面図である。4 (a) to 4 (c) are main part front views at the time of ignition of the spark plug according to the embodiment of the present invention. 図5は、乱流燃焼ダイアグラム上の燃焼軌跡を示す概略図である。FIG. 5 is a schematic diagram showing a combustion trajectory on a turbulent combustion diagram. 図6は、比較例に係る点火プラグの要部正面図である。FIG. 6 is a main part front view of a spark plug according to a comparative example. 図7(a)及び図7(b)は、比較例に係る点火プラグを用いて、通常点火で空気過剰率を変化させて放電した場合の積算熱発生量の時間的変化を示すグラフである。FIG. 7A and FIG. 7B are graphs showing temporal changes in the accumulated heat generation amount when discharging by changing the excess air ratio by normal ignition using the spark plug according to the comparative example. . 図8(a)〜図8(c)は、比較例に係る点火プラグを用いて、強力点火で空気過剰率を変化させて放電した場合の積算熱発生量の時間的変化を示すグラフである。FIG. 8A to FIG. 8C are graphs showing temporal changes in the accumulated heat generation amount when the ignition plug according to the comparative example is used to discharge by changing the excess air ratio with strong ignition. . 図9(a)〜図9(d)は、比較例に係る点火プラグを用いて、強力点火且つ強タンブル流で、空気過剰率を変化させて放電した場合の積算熱発生量の時間的変化を示すグラフである。9 (a) to 9 (d) show changes over time in the amount of heat generated when the spark plug according to the comparative example is discharged with strong ignition and strong tumble flow while changing the excess air ratio. It is a graph which shows. 図10(a)〜図10(c)は、実施例に係る点火プラグを用いて、強力点火且つ強タンブル流で、空気過剰率を変化させて放電した場合の積算熱発生量の時間的変化を示すグラフである。FIGS. 10 (a) to 10 (c) show temporal changes in the amount of accumulated heat generated when the ignition plug according to the embodiment is used to discharge with a strong ignition and a strong tumble flow while changing the excess air ratio. It is a graph which shows. 図11(a)は、図10(a)及び図10(b)に示した放電時の放電パターンを表すグラフであり、図11(b)は、図10(c)に示した放電時の放電パターンを表すグラフである。FIG. 11A is a graph showing a discharge pattern at the time of discharge shown in FIGS. 10A and 10B, and FIG. 11B is a graph at the time of discharge shown in FIG. 10C. It is a graph showing a discharge pattern. 図12(a)〜図12(d)は、強タンブル流とした場合の点火プラグ近傍のタンブル流の向きを示すグラフである。12A to 12D are graphs showing the direction of the tumble flow in the vicinity of the spark plug when the strong tumble flow is used. 図13(a)は本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図であり、図13(b)は図13(a)の側面図であり、図13(c)は図13(a)の接地電極部分の平面図である。FIG. 13 (a) is a main part front view showing an example of a spark plug according to a modification of the embodiment of the present invention, FIG. 13 (b) is a side view of FIG. 13 (a), and FIG. ) Is a plan view of the ground electrode portion of FIG. 図14(a)は本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図であり、図14(b)は図14(a)の側面図であり、図14(c)は図14(a)の接地電極部分の平面図である。FIG. 14 (a) is a front view of a main part showing an example of a spark plug according to a modification of the embodiment of the present invention, FIG. 14 (b) is a side view of FIG. 14 (a), and FIG. ) Is a plan view of the ground electrode portion of FIG. 図15(a)は本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図であり、図15(b)は図15(a)の側面図であり、図15(c)は図15(a)の接地電極部分の平面図である。FIG. 15 (a) is a front view of a main part showing an example of a spark plug according to a modification of the embodiment of the present invention, FIG. 15 (b) is a side view of FIG. 15 (a), and FIG. ) Is a plan view of the ground electrode portion of FIG. 図16(a)は本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図であり、図16(b)は図16(a)の側面図である。FIG. 16A is a main part front view showing an example of a spark plug according to a modification of the embodiment of the present invention, and FIG. 16B is a side view of FIG. 図17(a)及び図17(b)は、本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図である。FIG. 17A and FIG. 17B are main part front views showing an example of a spark plug according to a modification of the embodiment of the present invention. 図18は、本発明の実施形態の変形例に係る点火プラグの一例を示す要部側面図である。FIG. 18 is a side view of an essential part showing an example of a spark plug according to a modification of the embodiment of the present invention. 図19は、本発明の実施形態の変形例に係る点火プラグの一例を示す要部側面図である。FIG. 19 is a main part side view showing an example of a spark plug according to a modification of the embodiment of the present invention. 図20(a)は本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図であり、図20(b)は図20(a)の側面図であり、図20(c)は図20(a)の接地電極部分の平面図である。20 (a) is a front view of a main part showing an example of a spark plug according to a modification of the embodiment of the present invention, FIG. 20 (b) is a side view of FIG. 20 (a), and FIG. ) Is a plan view of the ground electrode portion of FIG. 図21(a)は本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図であり、図21(b)は図21(a)の側面図であり、図21(c)は図21(a)の接地電極部分の平面図である。FIG. 21A is a main part front view showing an example of a spark plug according to a modification of the embodiment of the present invention, FIG. 21B is a side view of FIG. 21A, and FIG. ) Is a plan view of the ground electrode portion of FIG. 図22(a)〜図22(c)は、図21(a)〜図21(c)に示した点火プラグの点火時の要部正面図である。22 (a) to 22 (c) are front views of essential parts during ignition of the spark plug shown in FIGS. 21 (a) to 21 (c). 図23(a)は本発明の実施形態の変形例に係る点火プラグの一例を示す要部正面図であり、図23(b)は図23(a)の側面図であり、図23(c)は図23(a)の接地電極部分の平面図である。FIG. 23A is a main part front view showing an example of a spark plug according to a modification of the embodiment of the present invention, FIG. 23B is a side view of FIG. 23A, and FIG. ) Is a plan view of the ground electrode portion of FIG. 図24(a)〜図24(c)は、接地電極部分の一例を示す断面図である。24A to 24C are cross-sectional views showing an example of the ground electrode portion.

次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を貼付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、厚みの比率等は現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。   Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are affixed with the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness, and the like are different from the actual ones. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, and arrangement of components. Etc. are not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.

また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。   In addition, the definition of the vertical direction in the following description is merely a definition for convenience of description, and does not limit the technical idea of the present invention. For example, if the object is observed by rotating 90 °, the upper and lower parts are read after being converted to the left and right, and if observed by rotating 180 °, the upper and lower parts are read in an inverted manner.

<点火プラグ>
本発明の実施形態に係る点火プラグは、超希薄燃焼(スーパーリーンバーン)及び超高EGR燃焼に適用可能である。超希薄燃焼は、理論混合気(ストイキ)よりも超希薄な混合気を燃焼させることをいう。本明細書においては、説明の便宜上、超希薄燃焼の領域を例えば空気過剰率λ=1.5程度以上であり、例えば空気過剰率λ=1.5〜3.0程度の範囲とする。なお、超希薄燃焼の領域は、空気過剰率λ=1.5未満の範囲を含んでいてもよく、空気過剰率λ=3.0より高い範囲を含んでいてもよい。空気過剰率λは、実際に供給された空気の質量を理論上必要な最少空気質量で除した値である。超希薄燃焼では、従来の理論混合気(ストイキ)の温度(2600K程度)よりも低温(2000K程度)での燃焼により冷却損失を低減することができ、熱効率を大幅に向上させることができる。一方、超希薄燃焼では混合気の希薄化に伴い燃焼の安定性が低下するため、着火及び火炎伝播を促進する技術が求められる。
<Ignition plug>
The spark plug according to the embodiment of the present invention is applicable to super lean combustion (super lean burn) and ultra high EGR combustion. Super lean combustion refers to burning an ultra lean mixture rather than a stoichiometric mixture. In the present specification, for convenience of explanation, the region of the super lean combustion is, for example, an excess air ratio λ = about 1.5 or more, for example, an excess air ratio λ = 1.5 to 3.0. Note that the region of the super lean combustion may include a range where the excess air ratio λ is less than 1.5, or may include a range where the excess air ratio λ is greater than 3.0. The excess air ratio λ is a value obtained by dividing the mass of actually supplied air by the minimum air mass theoretically necessary. In ultra lean combustion, the cooling loss can be reduced by combustion at a lower temperature (about 2000 K) than the temperature (about 2600 K) of the conventional stoichiometric mixture (stoichiometric), and the thermal efficiency can be greatly improved. On the other hand, in ultra lean combustion, the stability of combustion decreases with the dilution of the air-fuel mixture, so a technique for promoting ignition and flame propagation is required.

また、排気再循環(EGR)は、排気ガス中の窒素酸化物(NOx)低減や燃費向上を目的として、内燃機関において燃焼後の排気ガスの一部を再度吸気させる技術である。超高EGR燃焼の領域は、例えばEGR率が20%程度以上、例えばEGR率が20%〜70%程度の範囲とする。なお、超高EGR燃焼の領域は、EGR率が20%程度未満の範囲を含んでいてもよく、EGR率が70%程度より高い範囲を含んでいても良い。EGR率は、吸気系に還流させる排出ガス(還流ガス)量を吸入空気(吸気ガス)量で除した数値である。空気過剰率λが1以上、1.5未満であっても、EGR率が20%以上の多量のEGRガスが導入された混合気を用いた超高EGR燃焼では、超希薄燃焼と同様に、低温燃焼のため熱効率を大幅に向上させることができる一方で、混合気の希薄化に伴い燃焼の安定性が低下する。本発明の実施形態に係る点火プラグは、燃焼室内の空気過剰率λが1.5以上の混合気、又は空気過剰率λが1.5未満で且つEGR率が20%以上の混合気に点火する場合に好適である。なお、本発明の実施形態に係る点火プラグは、空気過剰率λが1.5未満で且つEGR率が20%未満の混合気に点火する場合にも使用可能である。   Exhaust gas recirculation (EGR) is a technique for reintake a part of exhaust gas after combustion in an internal combustion engine for the purpose of reducing nitrogen oxide (NOx) in the exhaust gas and improving fuel consumption. The region of ultra-high EGR combustion is, for example, an EGR rate of about 20% or more, for example, an EGR rate of about 20% to 70%. Note that the region of the ultra-high EGR combustion may include a range where the EGR rate is less than about 20%, and may include a range where the EGR rate is higher than about 70%. The EGR rate is a numerical value obtained by dividing the amount of exhaust gas (reflux gas) to be recirculated to the intake system by the amount of intake air (intake gas). Even if the excess air ratio λ is 1 or more and less than 1.5, in ultra-high EGR combustion using a mixture into which a large amount of EGR gas having an EGR rate of 20% or more is introduced, While the thermal efficiency can be greatly improved due to the low temperature combustion, the stability of the combustion decreases with the dilution of the air-fuel mixture. The spark plug according to the embodiment of the present invention ignites an air-fuel mixture having an excess air ratio λ of 1.5 or more in a combustion chamber or an air-fuel mixture having an air excess ratio λ of less than 1.5 and an EGR rate of 20% or more. It is suitable when doing. Note that the spark plug according to the embodiment of the present invention can also be used when an air-fuel mixture having an excess air ratio λ of less than 1.5 and an EGR ratio of less than 20% is ignited.

本発明の実施形態に係る内燃機関として、ガソリンエンジンを例示的に説明する。本発明の実施形態に係る内燃機関は、図1に示すように、シリンダ3と、シリンダ3内に配置されたピストン4と、シリンダ3上に配置されたシリンダヘッド2と、シリンダヘッド2に取り付けた点火プラグ1とを備える。ピストン4はシリンダ3内に上下方向に運動可能に配置されている。シリンダヘッド2の内壁とシリンダ3の内壁で囲まれる空間により燃焼室5が形成されている。シリンダヘッド2には、燃焼室5に連通する吸気ポート8と、吸気ポート8を開閉する吸気弁6が配置されている。更に、シリンダヘッド2には、燃焼室5に連通する排気ポート9と、排気ポート9を開閉する排気弁7が配置されている。点火プラグ1は、例えばシリンダヘッド2の略中央付近に取り付けられ、点火プラグ1の一部が燃焼室5に突出する。なお、本発明の実施形態に係る内燃機関は、超高EGR燃焼を実現するための外部EGRシステムとして、吸気ポート8と排気ポート9とを接続する通路と、通路に設けられ、還流ガス量を調節するEGR弁を備えていてもよい。或いは、本発明の実施形態に係る内燃機関は、超高EGR燃焼を実現するための内部EGRシステムを備えていてもよい。   A gasoline engine will be exemplarily described as an internal combustion engine according to an embodiment of the present invention. As shown in FIG. 1, the internal combustion engine according to the embodiment of the present invention is attached to a cylinder 3, a piston 4 disposed in the cylinder 3, a cylinder head 2 disposed on the cylinder 3, and the cylinder head 2. A spark plug 1 is provided. The piston 4 is disposed in the cylinder 3 so as to be movable in the vertical direction. A combustion chamber 5 is formed by a space surrounded by the inner wall of the cylinder head 2 and the inner wall of the cylinder 3. In the cylinder head 2, an intake port 8 communicating with the combustion chamber 5 and an intake valve 6 for opening and closing the intake port 8 are disposed. Further, an exhaust port 9 that communicates with the combustion chamber 5 and an exhaust valve 7 that opens and closes the exhaust port 9 are disposed in the cylinder head 2. The spark plug 1 is attached, for example, near the center of the cylinder head 2, and a part of the spark plug 1 projects into the combustion chamber 5. The internal combustion engine according to the embodiment of the present invention is provided as an external EGR system for realizing ultra-high EGR combustion, a passage that connects the intake port 8 and the exhaust port 9, and a passage, and the amount of recirculated gas is reduced. You may provide the EGR valve to adjust. Or the internal combustion engine which concerns on embodiment of this invention may be equipped with the internal EGR system for implement | achieving ultra-high EGR combustion.

本発明の実施形態に係る内燃機関の動作(サイクル)の概要としては、吸気行程においてピストン4が下降し、シリンダヘッド2の吸気ポート8から燃料と空気との混合気が燃焼室5内に導入される。次に、圧縮行程において、ピストン4が上昇し、燃焼室5内に導入された混合気が圧縮される。次に、燃焼行程において、圧縮された混合気が点火プラグ1の火花により点火されて燃焼し、燃焼ガスが膨張してピストン4が押し下げられる。その後、排気行程において、慣性によりピストン4が上昇し、燃焼室5内の燃焼ガスがシリンダヘッド2の排気ポート9へ排出される。   As an outline of the operation (cycle) of the internal combustion engine according to the embodiment of the present invention, the piston 4 descends in the intake stroke, and a mixture of fuel and air is introduced into the combustion chamber 5 from the intake port 8 of the cylinder head 2. Is done. Next, in the compression stroke, the piston 4 rises and the air-fuel mixture introduced into the combustion chamber 5 is compressed. Next, in the combustion stroke, the compressed air-fuel mixture is ignited by the spark of the spark plug 1 and burns, and the combustion gas expands and the piston 4 is pushed down. Thereafter, in the exhaust stroke, the piston 4 rises due to inertia, and the combustion gas in the combustion chamber 5 is discharged to the exhaust port 9 of the cylinder head 2.

吸気行程において燃焼室5に導入された混合気は、燃焼室5内でタンブル流を形成する。タンブル流は、シリンダ3の中心軸回りを旋回する横渦(スワール流)に対して垂直方向に旋回する流れを主な流れとする縦渦である。超希薄燃焼では、混合気の希薄化に伴い燃焼の安定性が低下するが、タンブル流(ガス流動)を強化することにより燃焼の安定性を向上させることができる。本発明の実施形態においては、点火プラグ1近傍のタンブル流を、15m/秒〜50m/秒程度の流速の強タンブル流に制御する。タンブル流の流速や向きは、吸気ポート8に取り付けるノズル(アダプタ)の形状や吸気ポート8の形状等により調整可能である。タンブル流の流速や向きはマイクロ粒子画像流速計(μPIV)等により計測可能である。   The air-fuel mixture introduced into the combustion chamber 5 during the intake stroke forms a tumble flow in the combustion chamber 5. The tumble flow is a vertical vortex whose main flow is a flow swirling in a direction perpendicular to a horizontal vortex swirling around the central axis of the cylinder 3 (swirl flow). In ultra lean combustion, the stability of combustion decreases with the dilution of the air-fuel mixture, but the stability of combustion can be improved by enhancing the tumble flow (gas flow). In the embodiment of the present invention, the tumble flow in the vicinity of the spark plug 1 is controlled to a strong tumble flow having a flow rate of about 15 m / second to 50 m / second. The flow rate and direction of the tumble flow can be adjusted by the shape of the nozzle (adapter) attached to the intake port 8, the shape of the intake port 8, and the like. The flow rate and direction of the tumble flow can be measured with a microparticle image velocimeter (μPIV) or the like.

本発明の実施形態に係る点火プラグ1の下部の燃焼室5に突出する部分を、図2(a)〜図2(c)に示す。図2(a)〜図2(c)において、説明の便宜上、本発明の実施形態に係る点火プラグ1の中心軸Oに平行な方向をZ方向とし、Z方向に直交する方向をX方向とし、Z方向及びX方向に直交する方向をY方向と定義する。X方向は、図1の左右方向に対応し、シリンダヘッド2の吸気ポート8と排気ポート9が並ぶ方向とする。なお、本発明の実施形態に係る点火プラグ1の向きは適宜設定可能である。本発明の実施形態に係る点火プラグ1にアクチュエータを取り付け、点火プラグ1を中心軸O周りに回転することで、点火プラグ1の向きを調整可能としてもよい。   The part which protrudes into the combustion chamber 5 of the lower part of the ignition plug 1 which concerns on embodiment of this invention is shown to Fig.2 (a)-FIG.2 (c). 2 (a) to 2 (c), for convenience of explanation, a direction parallel to the central axis O of the spark plug 1 according to the embodiment of the present invention is defined as a Z direction, and a direction orthogonal to the Z direction is defined as an X direction. The direction perpendicular to the Z direction and the X direction is defined as the Y direction. The X direction corresponds to the left-right direction in FIG. 1 and is a direction in which the intake port 8 and the exhaust port 9 of the cylinder head 2 are arranged. The direction of the spark plug 1 according to the embodiment of the present invention can be set as appropriate. The orientation of the spark plug 1 may be adjustable by attaching an actuator to the spark plug 1 according to the embodiment of the present invention and rotating the spark plug 1 around the central axis O.

本発明の実施形態に係る点火プラグ1は、図2(a)〜図2(c)に示すように、円筒状のハウジング31と、ハウジング31の内側に配置された円筒状の絶縁碍子32と、絶縁碍子32の内側に配置され、燃焼室5に一部が突出した中心電極(11,12)と、中心電極(11,12)と対向して配置された接地電極(21,22,23)とを備える。   As shown in FIGS. 2A to 2C, the spark plug 1 according to the embodiment of the present invention includes a cylindrical housing 31 and a cylindrical insulator 32 arranged inside the housing 31. The center electrode (11, 12) disposed inside the insulator 32 and partially protruding into the combustion chamber 5, and the ground electrode (21, 22, 23) disposed opposite the center electrode (11, 12) ).

ハウジング31は導電材料からなり、図1に示したシリンダヘッド2に固定されている。ハウジング31の下端は燃焼室5内に突出する。絶縁碍子32は、ハウジング31の中心軸O(点火プラグ1の中心軸Oともいう。)に沿って配置されている。絶縁碍子32の下端はハウジング31の下端よりも下方の燃焼室5内に突出する。   The housing 31 is made of a conductive material and is fixed to the cylinder head 2 shown in FIG. The lower end of the housing 31 protrudes into the combustion chamber 5. The insulator 32 is disposed along the central axis O of the housing 31 (also referred to as the central axis O of the spark plug 1). The lower end of the insulator 32 protrudes into the combustion chamber 5 below the lower end of the housing 31.

中心電極(11,12)は、ハウジング31の中心軸Oに沿っては位置されている。中心電極(11,12)は、絶縁碍子32の下端から燃焼室5内に突出する本体部12と、本体部12の下端に接続された針状の先端部11を有する。本体部12の材料としては、ニッケル(Ni)やNi合金等が使用可能である。先端部11の材料としては、白金(Pt)やイリジウム(Ir)等の貴金属やその合金等が使用可能である。先端部11は、本体部12にレーザ溶接や抵抗溶接等により接合されている。   The center electrodes (11, 12) are positioned along the center axis O of the housing 31. The center electrode (11, 12) has a main body portion 12 protruding into the combustion chamber 5 from the lower end of the insulator 32 and a needle-like tip end portion 11 connected to the lower end of the main body portion 12. As a material of the main body 12, nickel (Ni), Ni alloy, or the like can be used. As the material of the tip portion 11, a noble metal such as platinum (Pt) or iridium (Ir), an alloy thereof, or the like can be used. The tip portion 11 is joined to the main body portion 12 by laser welding, resistance welding, or the like.

図2(a)〜図2(c)に示すように、接地電極(21,22,23)は、ハウジング31の下端に一端が接続された腕部21と、腕部21の他端に接続された火花伸長部22と、火花伸長部22上に配置された針状の突起部23とを備える。腕部21の材料としてはNiやNi合金等が使用可能である。腕部21は、例えば四角柱の棒状体からなり、図2(b)に示すようにハウジング31の下端から下方に延在し、中心軸O側にL字型に近い形状に屈曲(湾曲)している。図2(a)から見た腕部21の幅W1は例えば2mm〜3mm程度であり、図2(b)から見た腕部21の幅W2は例えば1mm〜2mm程度である。   As shown in FIGS. 2A to 2C, the ground electrodes (21, 22, 23) are connected to the arm portion 21 having one end connected to the lower end of the housing 31 and to the other end of the arm portion 21. The spark extension 22 and the needle-like protrusion 23 arranged on the spark extension 22 are provided. Ni, Ni alloy, or the like can be used as the material of the arm portion 21. The arm portion 21 is formed of, for example, a rectangular rod-like body, extends downward from the lower end of the housing 31 as shown in FIG. 2B, and bends (curves) in a shape close to an L shape on the center axis O side. doing. The width W1 of the arm portion 21 viewed from FIG. 2A is, for example, about 2 mm to 3 mm, and the width W2 of the arm portion 21 viewed from FIG. 2B is, for example, about 1 mm to 2 mm.

火花伸長部22の材料としてはNiやNi合金等が使用可能である。火花伸長部22の材料は、腕部21と同一材料であってもよく、異なる材料であってもよい。火花伸長部22は、腕部21にレーザ溶接や抵抗溶接等により接合されていてもよく、予め一体的に形成されていてもよい。ここでは、火花伸長部22の側面222の上部が腕部21と接合された場合を例示するが、火花伸長部22と腕部21との接合位置は特に限定されない。火花伸長部22と腕部21との接合位置は、タンブル流の流れと、中心電極(11,12)と接地電極(21,22,23)の間で生じる放電経路の伸長を阻害しない位置とすることが好ましい。   Ni, Ni alloy, or the like can be used as the material for the spark extension 22. The material of the spark extension 22 may be the same material as the arm 21 or a different material. The spark extension 22 may be joined to the arm 21 by laser welding, resistance welding, or the like, or may be integrally formed in advance. Here, the case where the upper part of the side surface 222 of the spark extension part 22 is joined to the arm part 21 is illustrated, but the joining position of the spark extension part 22 and the arm part 21 is not particularly limited. The joining position of the spark extension 22 and the arm 21 is a position that does not hinder the flow of the tumble flow and the extension of the discharge path generated between the center electrode (11, 12) and the ground electrode (21, 22, 23). It is preferable to do.

火花伸長部22は、中心軸Oと頂部221が対向し、頂部221から下方向になるに従い中心軸Oに垂直方向の面積が次第に広くなる形状を有する。火花伸長部22は、略円錐形状(頂部221を上底とする円錐台形状)をなし、火花伸長部22の側面が円錐面(傾斜面)222となる。図2(b)に示すように、火花伸長部22の底面223は、火花伸長部22に接続する位置の腕部21の下端よりも下方に位置する。傾斜面222を延長した場合の円錐の頂角θ1は、例えば60°〜100°程度である。即ち、傾斜面222は、点火プラグ1の中心軸Oに対して例えば30°〜50°程度の傾斜角(θ1/2)で傾斜している。火花伸長部22の底面223の直径D1は例えば4mm〜10mm程度であり、シリンダヘッド2に設けられたプラグ穴を通る範囲で適宜設定可能である。点火プラグ1の中心軸Oに平行な方向(軸方向)における火花伸長部22の高さH1は例えば3mm〜6mm程度である。   The spark extension portion 22 has a shape in which the central axis O and the top portion 221 face each other, and the area in the direction perpendicular to the central axis O gradually increases as it goes downward from the top portion 221. The spark extending portion 22 has a substantially conical shape (conical truncated cone shape with the top portion 221 as an upper base), and the side surface of the spark extending portion 22 is a conical surface (inclined surface) 222. As shown in FIG. 2B, the bottom surface 223 of the spark extension 22 is positioned below the lower end of the arm portion 21 at a position connected to the spark extension 22. The apex angle θ1 of the cone when the inclined surface 222 is extended is, for example, about 60 ° to 100 °. That is, the inclined surface 222 is inclined with respect to the central axis O of the spark plug 1 at an inclination angle (θ1 / 2) of about 30 ° to 50 °, for example. The diameter D1 of the bottom surface 223 of the spark extension 22 is, for example, about 4 mm to 10 mm, and can be set as appropriate within a range passing through a plug hole provided in the cylinder head 2. The height H1 of the spark extension 22 in the direction (axial direction) parallel to the center axis O of the spark plug 1 is, for example, about 3 mm to 6 mm.

突起部23は、火花伸長部22の頂部221よりも小径の円柱形状等からなる。なお、突起部23の直径は、火花伸長部22の頂部221の直径と同一であってもよい。突起部23の高さH2は0.5mm〜1mm程度である。突起部23は、火花伸長部22にレーザ溶接や抵抗溶接等により接合されている。突起部23の材料としては、PtやIr等の貴金属又はその合金等が使用可能である。突起部23と先端部11の放電ギャップG1は、例えば0.5mm〜1.5mm程度であり、イグニションコイルの出力等に応じて適宜選択可能である。放電ギャップG1が大きいほど、突起部23と先端部11の間に生じる火花(放電経路)が長くなるため火炎伝播がし易くなる一方、放電ギャップG1間に印加する電圧が高くなる。   The protrusion 23 has a cylindrical shape having a smaller diameter than the top 221 of the spark extension 22. The diameter of the protrusion 23 may be the same as the diameter of the top 221 of the spark extension 22. The height H2 of the protrusion 23 is about 0.5 mm to 1 mm. The protrusion 23 is joined to the spark extension 22 by laser welding, resistance welding, or the like. As the material of the protrusion 23, a noble metal such as Pt or Ir or an alloy thereof can be used. The discharge gap G1 between the protrusion 23 and the tip 11 is, for example, about 0.5 mm to 1.5 mm, and can be appropriately selected according to the output of the ignition coil. As the discharge gap G1 is larger, the spark (discharge path) generated between the protrusion 23 and the tip 11 is longer, so that flame propagation is easier, while the voltage applied between the discharge gap G1 is higher.

本発明の実施形態に係る点火プラグ1を用いた点火装置は、図3に示すように、点火プラグ1にディストリビュータ43を介して接続された複数個(10個)のイグニションコイル51,52,53,54,55,56,57,58,59,60と、イグニションコイル51〜60に接続された制御回路41及び定電圧源42を備える。イグニションコイル51〜60のそれぞれは、定電圧源42に接続された一次コイルと、点火プラグ1に接続された二次コイルとで構成される。定電圧源42は定電圧(例えば12V)をイグニションコイル51〜60に供給する。制御回路41は、イグニションコイル51〜60の動作を制御する。   As shown in FIG. 3, the ignition device using the spark plug 1 according to the embodiment of the present invention includes a plurality (10) of ignition coils 51, 52, 53 connected to the spark plug 1 via a distributor 43. , 54, 55, 56, 57, 58, 59, 60, and a control circuit 41 and a constant voltage source 42 connected to the ignition coils 51-60. Each of the ignition coils 51 to 60 includes a primary coil connected to the constant voltage source 42 and a secondary coil connected to the spark plug 1. The constant voltage source 42 supplies a constant voltage (for example, 12V) to the ignition coils 51-60. The control circuit 41 controls the operation of the ignition coils 51-60.

本発明の実施形態に係る点火プラグ1を含む点火装置によれば、複数のイグニションコイル51〜60を用いて点火エネルギーを強化することで、超希薄燃焼において強タンブル流とした場合でも、着火及び火炎伝播を促進することができる。更に、複数のイグニションコイル51〜60を順次用いて、1サイクル内で所定の間隔で複数回の放電を行ってもよい。例えば、複数のイグニションコイル51〜60を2個1組として、1サイクル内で5回放電を行う。1サイクル内で複数回の放電を行うことにより、着火及び火炎伝播の安定化を図ることができ、サイクル毎の着火及び火炎伝播の変動を抑制することができる。   According to the ignition device including the ignition plug 1 according to the embodiment of the present invention, the ignition energy is enhanced by using the plurality of ignition coils 51 to 60, so that even when a strong tumble flow is obtained in ultra lean combustion, Flame propagation can be promoted. Furthermore, a plurality of ignition coils 51 to 60 may be sequentially used to discharge a plurality of times at a predetermined interval within one cycle. For example, two sets of a plurality of ignition coils 51 to 60 are taken as a set, and discharge is performed five times within one cycle. By performing a plurality of discharges within one cycle, it is possible to stabilize ignition and flame propagation, and to suppress fluctuations in ignition and flame propagation for each cycle.

次に、本発明の実施形態に係る点火プラグ1による混合気の点火方法を説明する。圧縮行程における上死点の位置をクランク角度θ=0°として、例えばクランク角度θ=−40°程度で放電を開始する。図4(a)に示すように、放電により、中心電極(11,12)の先端部11と、接地電極(21,22,23)の突起部23の間の放電ギャップG1で火花を発生させると、最短距離で略直線状に放電経路Sが形成される。本発明の実施形態に係る点火プラグ1の向きや、吸気ポート8に取り付けるノズルの形状等を調整することで、放電ギャップG1におけるタンブル流Fの向きを、点火プラグ1の中心軸Oに直交する方向に制御する。なお、放電ギャップG1におけるタンブル流Fの向きはこれに限定されず、タンブル流Fの流れが阻害されないように異なる向きに制御してもよい。例えば、タンブル流Fの向きが点火プラグ1の中心軸Oに直交する方向に対して傾いていてもよく、図2(a)に示した向きと逆向きであってもよい。   Next, a method for igniting the air-fuel mixture using the spark plug 1 according to the embodiment of the present invention will be described. The position of the top dead center in the compression stroke is set to a crank angle θ = 0 °, and discharge is started at a crank angle θ = −40 °, for example. As shown to Fig.4 (a), a spark is generated by the discharge gap G1 between the front-end | tip part 11 of a center electrode (11,12) and the projection part 23 of a ground electrode (21,22,23) by discharge. Then, the discharge path S is formed in a substantially straight line at the shortest distance. By adjusting the direction of the spark plug 1 according to the embodiment of the present invention, the shape of the nozzle attached to the intake port 8, and the like, the direction of the tumble flow F in the discharge gap G1 is orthogonal to the central axis O of the spark plug 1. Control in the direction. In addition, the direction of the tumble flow F in the discharge gap G1 is not limited to this, and may be controlled in different directions so that the flow of the tumble flow F is not hindered. For example, the direction of the tumble flow F may be inclined with respect to the direction orthogonal to the central axis O of the spark plug 1 or may be opposite to the direction shown in FIG.

その後、放電を継続させ、図4(b)に示すように、タンブル流Fにより放電経路Sを変形させて、タンブル流Fの下流側に放電経路Sを伸長させる。放電経路Sが伸長する際、火花は電気抵抗値が小さい経路を選ぶため、放電経路Sの火花伸長部22側の付け根の放電点Pが、突起部23から火花伸長部22の頂部221に移動し、頂部221から傾斜面(円錐面)222へ移動する。更に放電を継続させると、放電経路Sの火花伸長部22側の放電点Pが、火花伸長部22の傾斜面(円錐面)222に沿って、火花伸長部22の傾斜面(円錐面)222の下端側(火花伸長部22の底面223側)に向かって移動していく。ここで、理論混合気(ストイキ)近傍(例えば空気過剰率λ=1.3程度)の場合には絶縁破壊と略同時に初期火炎核が形成し伝播するため、放電経路を僅かしか伸長できない。これに対して、本発明者らは実験により、超希薄燃焼時には理論混合気(ストイキ)近傍とは燃焼メカニズムが異なり、放電経路Sを取り囲むように初期火炎帯が形成され、初期火炎帯が直ちに伝播しないことを見出した。そこで、この現象を利用して、初期火炎帯が伝播する前に放電経路Sを大きく伸長させるものである。また、これにより燃焼室5内の予混合気内に初期火炎帯を分散させる効果が得られる。   Thereafter, the discharge is continued, and the discharge path S is deformed by the tumble flow F, and the discharge path S is extended downstream of the tumble flow F, as shown in FIG. When the discharge path S extends, the spark selects a path having a small electric resistance value, and therefore, the discharge point P at the root on the spark extension part 22 side of the discharge path S moves from the protrusion part 23 to the top part 221 of the spark extension part 22. Then, it moves from the top 221 to the inclined surface (conical surface) 222. When the discharge is further continued, the discharge point P on the spark extension portion 22 side of the discharge path S extends along the inclined surface (conical surface) 222 of the spark extension portion 22 and the inclined surface (conical surface) 222 of the spark extension portion 22. Toward the lower end side (the bottom surface 223 side of the spark extension 22). Here, in the vicinity of the stoichiometric mixture (stoichiometric) (for example, the excess air ratio λ = about 1.3), the initial flame nucleus is formed and propagates almost simultaneously with the dielectric breakdown, so that the discharge path can be extended only slightly. On the other hand, the inventors of the present invention have experimentally determined that during ultra lean combustion, the combustion mechanism is different from that in the vicinity of the theoretical mixture (stoichiometric), an initial flame zone is formed so as to surround the discharge path S, and the initial flame zone is immediately I found that it did not propagate. Therefore, this phenomenon is used to greatly extend the discharge path S before the initial flame zone propagates. This also has the effect of dispersing the initial flame zone in the premixed gas in the combustion chamber 5.

その後、図4(c)に示すように、放電経路Sの火花伸長部22側の放電点Pが、火花伸長部22の傾斜面(円錐面)222の下端(火花伸長部22の底面223の外周部)に到達すると、この位置で放電経路Sが安定的に維持される。この時点で放電経路Sの周囲に初期火炎帯が形成されて伝播し、着火する。このように、点火プラグ1の中心軸Oに平行な方向(軸方向)における実質的な放電ギャップG2を、先端部11と突起部23の間の放電ギャップG1よりも大きくすることができる。   Thereafter, as shown in FIG. 4C, the discharge point P on the spark extension portion 22 side of the discharge path S is at the lower end of the inclined surface (conical surface) 222 of the spark extension portion 22 (on the bottom surface 223 of the spark extension portion 22). When reaching the outer periphery), the discharge path S is stably maintained at this position. At this point, an initial flame zone is formed around the discharge path S, propagates, and ignites. In this way, the substantial discharge gap G2 in the direction (axial direction) parallel to the central axis O of the spark plug 1 can be made larger than the discharge gap G1 between the tip portion 11 and the protrusion 23.

図5は、乱流燃焼ダイアグラム上の空気過剰率λ=2.0の燃焼軌跡(細線で図示)と、空気過剰率λ=1.0の場合の燃焼軌跡(太線で図示)を示す。図5の縦軸は乱れ強さu’/層流燃焼速度Sを示し、横軸は積分長さスケールl/火炎帯厚さδを示す。図5中の「Ka」は乱流カルロビッツ数であり、以下の式(1)で表される。

Ka=(l/δ)−1/2(u’/S3/2 …(1)
FIG. 5 shows a combustion locus (indicated by a thin line) of the excess air ratio λ = 2.0 on the turbulent combustion diagram and a combustion locus (indicated by a thick line) in the case of the excess air ratio λ = 1.0. The vertical axis of FIG. 5 shows the turbulence intensity u '/ laminar burning velocity S L, the horizontal axis represents the integral length scale l / flame zone thickness [delta]. “Ka” in FIG. 5 is a turbulent Karlovitz number and is represented by the following equation (1).

Ka = (l / δ) −1/2 (u ′ / S L ) 3/2 (1)

Kaが大きいほど、反応(燃焼)に対する乱れの影響が大きくなる。図5において、Ka<1の皺状層流火炎片(corrugated flamelets)領域と定義される領域では、火炎の内部構造は変化しないと考えられる。100≧Ka≧1の薄層反応帯(Thin reaction zones)領域と定義される領域では、乱流運動によって火炎構造の一部が変化すると考えられる。Ka>100の分散反応帯(Broken reaction zones)領域と定義される領域では、熱発生に関連する化学反応にまで乱流運動の影響が現れ、火炎を実現するのが困難と考えられる。   The greater the Ka, the greater the effect of turbulence on the reaction (combustion). In FIG. 5, it is considered that the internal structure of the flame does not change in a region defined as a corrugated flamelet region where Ka <1. In a region defined as a thin reaction zone region where 100 ≧ Ka ≧ 1, it is considered that a part of the flame structure changes due to turbulent motion. In an area defined as a dispersion reaction zone area with Ka> 100, the influence of turbulent motion appears in the chemical reaction related to heat generation, and it is considered difficult to realize a flame.

空気過剰率λ=2.0の超希薄燃焼の場合、圧縮行程における上死点の位置をクランク角度θ=0°として、クランク角度θ=−40°に火花放電が開始され、放電経路を取り囲むように形成された火炎帯はストレッチ効果で伝播阻害を受け、火炎帯の数及び分散領域が増す。その後、クランク角度θ=−10°付近でKa=10となり火炎伝播が開始され、クランク角度θ=−5°で燃焼割合が10%となるクランク角度(CA10)に到達する。一方、空気過剰率λ=1.0の理論混合気の燃焼の場合、放電開始直後に火炎伝播が開始されて熱発生が始まり、クランク角度θ=−5°にはCA10に到達する。このように、空気過剰率λ=2.0の超希薄燃焼の場合と、空気過剰率λ=1.0の理論混合気の燃焼の場合では火花放電メカニズムが大きく異なる。   In the case of ultra lean combustion with an excess air ratio λ = 2.0, a spark discharge is started at a crank angle θ = −40 ° with the top dead center position in the compression stroke being set to a crank angle θ = 0 °, and surrounds the discharge path. The flame zone formed in this way is subjected to propagation inhibition by the stretch effect, and the number of flame zones and the dispersion area increase. Thereafter, Ka = 10 near the crank angle θ = −10 ° and flame propagation is started, and the crank angle (CA10) at which the combustion rate becomes 10% at the crank angle θ = −5 ° is reached. On the other hand, in the case of combustion of a theoretical air-fuel mixture with an excess air ratio λ = 1.0, flame propagation starts immediately after the start of discharge, heat generation starts, and CA10 is reached at a crank angle θ = −5 °. As described above, the spark discharge mechanism is greatly different between the ultra lean combustion with the excess air ratio λ = 2.0 and the combustion with the theoretical air-fuel mixture with the excess air ratio λ = 1.0.

本発明の実施形態に係る点火プラグ1によれば、火花伸長部22が、中心軸Oと頂部221が対向し、頂部221から下方向になるに従い中心軸Oに垂直方向の面積が次第に広くなる形状を有する。このため、超希薄、超高EGR、高乱流での燃焼において、タンブル流Fにより放電経路Sがタンブル流Fの下流側に伸長する際に、放電経路Sの放電点Pを、火花伸長部22の傾斜面(円錐面)222に沿って下方に移動させることができる。即ち、本発明の実施形態では放電経路Sの放電点Pを積極的に、点火プラグ1の中心軸Oと平行な方向(軸方向)に伸長させる。この際、圧縮行程でタンブル流が潰れることにより、点火プラグ1近傍には1mm程度の微細な渦が多数形成されている。放電経路Sの火花伸長部22側の放電点Pを点火プラグ1の中心軸Oと平行な方向に伸長させると、この微細な渦間を跨いで伸長することができ、点火プラグ1の中心軸Oに対して直交する方向に伸長させる場合と比べて安定的に伸長することができる。このため、放電経路Sの放電点Pを積極的に、点火プラグ1の中心軸Oと平行な方向(軸方向)に伸長させることにより、放電経路Sを安定的に伸長させることができ、実質的な放電ギャップG2を大きくすることができる。したがって、放電開始のための電圧を高くすることなく、着火及び火炎伝播を促進することができる。   According to the spark plug 1 according to the embodiment of the present invention, the spark extending portion 22 has the central axis O and the top portion 221 facing each other, and the area in the direction perpendicular to the central axis O gradually increases as it goes downward from the top portion 221. Has a shape. For this reason, when the discharge path S extends to the downstream side of the tumble flow F by the tumble flow F in the combustion in the ultra-lean, ultra-high EGR, and high turbulent flow, the discharge point P of the discharge path S is changed to the spark extension portion. It can be moved downward along the 22 inclined surfaces (conical surfaces) 222. That is, in the embodiment of the present invention, the discharge point P of the discharge path S is positively extended in a direction (axial direction) parallel to the central axis O of the spark plug 1. At this time, the tumble flow is crushed in the compression stroke, so that many fine vortices of about 1 mm are formed in the vicinity of the spark plug 1. When the discharge point P on the spark extension portion 22 side of the discharge path S is extended in a direction parallel to the central axis O of the spark plug 1, the discharge point P can be extended across the fine vortex, and the central axis of the spark plug 1 can be extended. Compared with the case of extending in a direction orthogonal to O, the film can be stably extended. For this reason, the discharge path P can be stably extended by positively extending the discharge point P of the discharge path S in a direction (axial direction) parallel to the central axis O of the spark plug 1. The effective discharge gap G2 can be increased. Therefore, ignition and flame propagation can be promoted without increasing the voltage for starting discharge.

更に、点火プラグ1近傍のタンブル流を、15m/秒〜50m/秒程度の流速の強タンブル流に制御する場合、点火プラグ1近傍でのタンブル流の向きは、サイクル毎に360°の範囲で大きく変動し易く、更には1サイクル内でもクランク角度毎に360°の範囲で大きく変動し易いことを見出した。そこで、発明の実施形態に係る点火プラグ1によれば、火花伸長部22を略円錐形状(円錐台形状)とすることにより、タンブル流Fの向きが360°の範囲で大きく変動した場合でも、タンブル流Fの向きに係わらず、放電経路Sを火花伸長部22の傾斜面(円錐面)222に沿って安定して下方に伸長させることができる。したがって、サイクル毎及びクランク角度毎の着火及び燃焼の変動を減少し、サイクル毎及びクランク角度毎の着火及び燃焼の安定性を向上させることができる。   Furthermore, when the tumble flow in the vicinity of the spark plug 1 is controlled to a strong tumble flow having a flow velocity of about 15 m / second to 50 m / second, the direction of the tumble flow in the vicinity of the spark plug 1 is in a range of 360 ° for each cycle. It has been found that it is likely to fluctuate greatly, and even within one cycle, it tends to fluctuate greatly within a range of 360 ° for each crank angle. Therefore, according to the spark plug 1 according to the embodiment of the present invention, even when the direction of the tumble flow F greatly fluctuates in the range of 360 ° by making the spark extension portion 22 have a substantially conical shape (conical frustum shape), Regardless of the direction of the tumble flow F, the discharge path S can be stably extended downward along the inclined surface (conical surface) 222 of the spark extension 22. Therefore, fluctuations in ignition and combustion for each cycle and each crank angle can be reduced, and the stability of ignition and combustion for each cycle and each crank angle can be improved.

<第1の実施例>
本発明の実施形態に係る点火プラグ1の実施例を作製すると共に、実施例と比較するための比較例を作製した。比較例に係る点火プラグは、図6に示すように、中心電極101と接地電極(102,103)とを備える。接地電極(102,103)は、火花伸長部を有さず、L字型の腕部102と、腕部102上の突起部103を有する。比較例に係る点火プラグでは、図6に示すように、タンブル流Fにより放電経路Sがタンブル流Fの下流側に伸長するが、放電経路Sの突起部103側の放電点は突起部103に留まる。作製した実施例及び比較例に係る点火プラグを用いて放電試験を行い、サイクル毎の積算熱発生量の時間的変化を測定した。
<First embodiment>
An example of the spark plug 1 according to the embodiment of the present invention was produced, and a comparative example for comparison with the example was produced. The spark plug according to the comparative example includes a center electrode 101 and ground electrodes (102, 103) as shown in FIG. The ground electrodes (102, 103) do not have a spark extension, but have an L-shaped arm 102 and a protrusion 103 on the arm 102. In the spark plug according to the comparative example, as shown in FIG. 6, the discharge path S extends to the downstream side of the tumble flow F by the tumble flow F, but the discharge point on the protrusion 103 side of the discharge path S is at the protrusion 103. stay. A discharge test was performed using the spark plugs according to the manufactured Examples and Comparative Examples, and the temporal change in the integrated heat generation amount for each cycle was measured.

図7(a)及び図7(b)は、比較例に係る点火プラグを用いて、エンジンの出力を600kPa、通常点火(1個のコイル)を共通とし、空気過剰率λをλ=1、λ=1.6と変化させた場合の積算熱発生量の時間的変化をそれぞれ示す。図7(a)では、クランク角度θ=−12°で放電を開始し、クランク角度θ=20°程度で燃焼が完了している。図7(b)では、燃焼が不完全なサイクルがあり、図7(a)の場合よりも比較して燃焼が不安定であることが分かる。   7 (a) and 7 (b) show that the spark plug according to the comparative example is used, the engine output is 600 kPa, the normal ignition (one coil) is common, the excess air ratio λ is λ = 1, The change with time of the integrated heat generation amount when changed to λ = 1.6 is shown. In FIG. 7A, discharge is started at a crank angle θ = −12 °, and combustion is completed at a crank angle θ = 20 °. In FIG. 7B, it can be seen that there is a cycle in which combustion is incomplete, and combustion is more unstable than in the case of FIG.

図8(a)〜図8(c)は、比較例に係る点火プラグを用いて、エンジンの出力を600kPa、強力点火(10個のコイル)且つ通常のタンブル流を共通とし、空気過剰率λをλ=1.01、λ=1.68、λ=1.87と変化させた場合の積算熱発生量の時間的変化をそれぞれ示す。図8(a)〜図8(c)に示すように、強力点火とすることで、図7(a)及び図7(b)の場合よりも燃焼が安定化するが、空気過剰率λ=1.87となると燃焼が不安定となることが分かる。   8 (a) to 8 (c) show that the ignition output according to the comparative example is used, the engine output is 600 kPa, the strong ignition (10 coils) and the normal tumble flow are common, and the excess air ratio λ Changes in accumulated heat generation when λ is changed to λ = 1.01, λ = 1.68, and λ = 1.87, respectively. As shown in FIGS. 8 (a) to 8 (c), by using strong ignition, combustion is stabilized more than in the cases of FIGS. 7 (a) and 7 (b), but the excess air ratio λ = It turns out that combustion becomes unstable when it becomes 1.87.

図9(a)〜図9(d)は、比較例に係る点火プラグを用いて、エンジンの出力を600kPa、強力点火(10個のコイル)且つアダプタによる強タンブル流(30m/秒)を共通とし、空気過剰率λをλ=1、λ=1.60、λ=1.89、λ=1.99と変化させた場合の積算熱発生量の時間的変化をそれぞれ示す。図9(d)〜図9(d)に示すように、強力点火且つ強タンブル流とすることで、図8(a)〜図8(c)の場合よりも燃焼が安定化するが、空気過剰率λ=1.99となると燃焼が不安定となることが分かる。   9 (a) to 9 (d) use an ignition plug according to a comparative example, and the engine output is 600 kPa, strong ignition (10 coils), and strong tumble flow (30 m / sec) by an adapter are common. And the time variation of the accumulated heat generation amount when the excess air ratio λ is changed to λ = 1, λ = 1.60, λ = 1.89, and λ = 1.99, respectively. As shown in FIGS. 9 (d) to 9 (d), combustion is more stable than in the cases of FIGS. 8 (a) to 8 (c) by using strong ignition and strong tumble flow. It can be seen that combustion becomes unstable when the excess ratio λ = 1.99.

図10(a)及び図10(b)は、実施例に係る点火プラグを用いて、エンジンの出力を800kPa、強力点火(10個のコイル)且つアダプタによる強タンブル流(30m/秒)を共通とし、空気過剰率λをλ=1.95、λ=2.07と変化させた場合の積算熱発生量の時間的変化をそれぞれ示す。図10(a)及び図10(b)に示す放電では、図11(a)に示すように、10個のコイルを一括して用いて、1サイクル内で1回放電した。図10(a)及び図10(b)に示すように、実施例に係る点火プラグによれば、空気過剰率λ=1.95、λ=2.07でも安定した燃焼を実現できたことが分かる。   10 (a) and 10 (b) use the spark plug according to the embodiment and share the engine output of 800 kPa, strong ignition (10 coils), and strong tumble flow (30 m / sec) by the adapter. And the time variation of the integrated heat generation amount when the excess air ratio λ is changed to λ = 1.95 and λ = 2.07, respectively. In the discharge shown in FIGS. 10 (a) and 10 (b), as shown in FIG. 11 (a), 10 coils were collectively used and discharged once in one cycle. As shown in FIGS. 10 (a) and 10 (b), according to the spark plug according to the example, stable combustion could be realized even when the excess air ratio λ = 1.95 and λ = 2.07. I understand.

図10(c)は、本発明の実施形態に係る点火プラグを用いて、エンジンの出力を600kPa、強力点火(10個のコイル)且つアダプタによる強タンブル流(30m/秒)とし、空気過剰率λ=2.06とした場合の積算熱発生量の時間的変化を示す。図10(c)に示す放電では、図11(b)に示すように、10個のコイルを用いて2個ずつ5組用いて、1サイクル内で放電間隔を0.2ミリ秒として5回放電を繰り返した。図10(c)に示すように、空気過剰率λ=2.06でも安定した燃焼を実現でき、更には図10(b)に示した1サイクル内で1回放電した場合よりもサイクル毎の変動を低減できたことが分かる。   FIG. 10 (c) shows an excess air ratio using an ignition plug according to an embodiment of the present invention, with an engine output of 600 kPa, strong ignition (10 coils), and a strong tumble flow (30 m / sec) by an adapter. The time change of the integrated heat generation amount when λ = 2.06 is shown. In the discharge shown in FIG. 10 (c), as shown in FIG. 11 (b), five sets of two using 10 coils are used and the discharge interval is 0.2 milliseconds within 5 cycles. The discharge was repeated. As shown in FIG. 10 (c), stable combustion can be realized even with an excess air ratio λ = 2.06, and moreover, in each cycle than in the case of discharging once in one cycle shown in FIG. 10 (b). It can be seen that the fluctuation was reduced.

<第2の実施例>
上死点の位置をクランク角度θ=0°として、クランク角度θ=−40°〜−10°における点火プラグ近傍のタンブル流を15m/秒程度の強タンブル流に制御した場合の、点火プラグ近傍のタンブル流の向きを、μPIVを用いて計測した。計測結果を図12(a)〜図12(d)に示す。図12(a)〜図12(d)中の円周に沿った数字は、点火プラグの位置から見た方位(単位は[°])を示し、排気ポート側へ向かう方位を0°とし、吸気ポート側へ向かう方位を180°とする。また、図12(a)〜図12(d)中の矢印の方向がタンブル流の向きを示し、矢印の長さがタンブル流の向きの頻度を示している。
<Second embodiment>
When the top dead center position is the crank angle θ = 0 ° and the tumble flow in the vicinity of the spark plug at the crank angle θ = −40 ° to −10 ° is controlled to a strong tumble flow of about 15 m / sec, the vicinity of the spark plug The direction of tumble flow was measured using μPIV. The measurement results are shown in FIGS. 12 (a) to 12 (d). The numbers along the circumference in FIGS. 12A to 12D indicate the azimuth (unit: [°]) viewed from the position of the spark plug, and the azimuth toward the exhaust port side is 0 °. The direction toward the intake port side is 180 °. Moreover, the direction of the arrow in FIGS. 12A to 12D indicates the direction of the tumble flow, and the length of the arrow indicates the frequency of the direction of the tumble flow.

図12(a)に示すように、クランク角度θ=−40°におけるタンブル流の向きは、0°付近に集中する。図12(b)に示すように、クランク角度θ=−30°におけるタンブル流の向きは、0°〜120°程度で広く分散する。図12(c)に示すように、クランク角度θ=−20°におけるタンブル流の向きは、120°〜150°程度の頻度が高まり、より広範囲に分散する。図12(d)に示すように、クランク角度θ=−10°におけるタンブル流の向きは、120°〜180°程度の頻度が高まり、0°〜360°の全範囲に分散する。このように、1サイクル内でも、クランク角度θ=−40°〜−10°でタンブル流の向きは360°の範囲で大きく変動する。   As shown in FIG. 12A, the direction of the tumble flow at the crank angle θ = −40 ° is concentrated around 0 °. As shown in FIG. 12B, the direction of the tumble flow at the crank angle θ = −30 ° is widely dispersed in the range of about 0 ° to 120 °. As shown in FIG. 12 (c), the direction of the tumble flow at the crank angle θ = −20 ° increases with a frequency of about 120 ° to 150 °, and is dispersed in a wider range. As shown in FIG. 12 (d), the direction of the tumble flow at the crank angle θ = −10 ° increases in the frequency of about 120 ° to 180 ° and is dispersed over the entire range of 0 ° to 360 °. Thus, even within one cycle, the direction of the tumble flow varies greatly in the range of 360 ° at a crank angle θ = −40 ° to −10 °.

<変形例>
本発明の実施形態では、図2(a)〜図2(c)に示した略円錐形状の接地電極(21,22,23)を例示したが、接地電極の形状はこれに限定されない。例えば、図13(a)〜図13(c)に示すように、接地電極(21,22,23)の火花伸長部22の側面が、2つの傾斜面222a,222bを有していてもよい。2つの傾斜面222a,222bは、X方向に互いに対向して設けられている。例えば、火花伸長部22のX方向の長さL1は5mm〜10mm程度であり、Y方向の幅W3は2mm〜3mm程度であり、2つの傾斜面222a,222bの曲率半径Rは1mm〜1.5mm程度である。図13(a)〜図13(c)に示した接地電極(21,22,23)を有する場合でも、先端部11と突起部23との間の放電ギャップで発生した放電経路がタンブル流の下流側に伸長する際に、放電経路の突起部23側の放電点を、2つの傾斜面222a,222bのいずれかに沿って下方に移動させることができる。
<Modification>
In the embodiment of the present invention, the substantially conical ground electrodes (21, 22, 23) illustrated in FIGS. 2A to 2C are illustrated, but the shape of the ground electrode is not limited thereto. For example, as shown in FIGS. 13A to 13C, the side surface of the spark extension 22 of the ground electrode (21, 22, 23) may have two inclined surfaces 222a, 222b. . The two inclined surfaces 222a and 222b are provided to face each other in the X direction. For example, the length L1 in the X direction of the spark extension 22 is about 5 mm to 10 mm, the width W3 in the Y direction is about 2 mm to 3 mm, and the curvature radius R of the two inclined surfaces 222a and 222b is 1 mm to 1.mm. It is about 5 mm. Even when the ground electrodes (21, 22, 23) shown in FIGS. 13 (a) to 13 (c) are provided, the discharge path generated in the discharge gap between the tip 11 and the protrusion 23 is a tumble flow. When extending downstream, the discharge point on the protrusion 23 side of the discharge path can be moved downward along one of the two inclined surfaces 222a and 222b.

また、図14(a)〜図14(c)に示すように、接地電極(21,22,23)の火花伸長部22が、1つの傾斜面222bを有していてもよい。図14(a)〜図14(c)に示した接地電極(21,22,23)を有する場合、先端部11と突起部23との間の放電ギャップで発生した放電経路がタンブル流の下流側に伸長する際に、放電経路の突起部23側の放電点を、傾斜面222bに沿って下方に移動させることができる。   Moreover, as shown to Fig.14 (a)-FIG.14 (c), the spark extension part 22 of the ground electrode (21,22,23) may have one inclined surface 222b. When the ground electrodes (21, 22, 23) shown in FIGS. 14 (a) to 14 (c) are provided, the discharge path generated in the discharge gap between the tip 11 and the protrusion 23 is downstream of the tumble flow. When extending to the side, the discharge point on the protrusion 23 side of the discharge path can be moved downward along the inclined surface 222b.

また、図15(a)〜図15(c)に示すように、接地電極(21,22,23)の火花伸長部22が、略角錐形状(角錐台形状)であってもよい。火花伸長部22は、4つの傾斜面222e,222f,222g,222hを有する。図15(a)〜図15(c)に示した接地電極(21,22,23)を有する場合には、先端部11と突起部23の間の放電ギャップで発生した放電経路をタンブル流の下流に伸長する際に、火花伸長部22の4つの傾斜面222e,222f,222g,222hのうちの2つの境界(尾根)に沿って下方に移動させることができる。なお、図15(a)〜図15(c)では四角錐形状を例示するがこれに限定されず、三角錐形状(三角錐台形状)や、五角錐以上の多角錐形状(多角錐台形状)であってもよい。   Further, as shown in FIGS. 15A to 15C, the spark extension 22 of the ground electrode (21, 22, 23) may have a substantially pyramid shape (pyramidal frustum shape). The spark extension 22 has four inclined surfaces 222e, 222f, 222g, and 222h. When the ground electrodes (21, 22, 23) shown in FIGS. 15 (a) to 15 (c) are provided, the discharge path generated in the discharge gap between the tip 11 and the protrusion 23 is caused to flow in a tumble flow. When extending downstream, the spark extension 22 can be moved downward along two boundaries (ridges) of the four inclined surfaces 222e, 222f, 222g, and 222h. 15A to 15C exemplify a quadrangular pyramid shape, but the present invention is not limited to this, and a triangular pyramid shape (triangular frustum shape) or a polygonal pyramid shape having more than a pentagonal pyramid (polygonal frustum shape) ).

また、図16(a)に示すように、接地電極(21,22,23)の火花伸長部22が、外側に凸形状(椀状)の傾斜面222を有していてもよい。また、図16(b)に示すように、接地電極(21,22,23)の火花伸長部22が、内側に凸形状の傾斜面222を有していてもよい。図16(a)又は図16(b)に示した接地電極(21,22,23)を有する場合でも、先端部11と突起部23との間の放電ギャップで発生した放電経路がタンブル流の下流側に伸長する際に、放電経路の突起部23側の放電点を、火花伸長部22の傾斜面222に沿って下方に移動させることができる。   Moreover, as shown to Fig.16 (a), the spark extension part 22 of a ground electrode (21,22,23) may have the convex-shaped (saddle-shaped) inclined surface 222 on the outer side. Moreover, as shown in FIG.16 (b), the spark extension part 22 of a ground electrode (21,22,23) may have the convex inclined surface 222 inside. Even when the ground electrode (21, 22, 23) shown in FIG. 16 (a) or FIG. 16 (b) is provided, the discharge path generated in the discharge gap between the tip 11 and the protrusion 23 is a tumble flow. When extending to the downstream side, the discharge point on the projection 23 side of the discharge path can be moved downward along the inclined surface 222 of the spark extension 22.

また、図17(a)〜図17(c)に示すように、接地電極(21,22,23)の火花伸長部22の傾斜面(円錐面)222の下端(火花伸長部22の底面223の外周部)が、R加工(面取り)されて曲率を有していてもよい。火花伸長部22の傾斜面(円錐面)222と底面223が鋭角をなす場合、高速・高負荷運転条件において傾斜面(円錐面)222の下端が局所的に高温になり易い。これに対して、火花伸長部22の傾斜面(円錐面)222の下端が曲率を有することにより、高速・高負荷運転条件においても、火花伸長部22の傾斜面(円錐面)222の下端が局所的に高温になることを抑制でき、熱面点火を抑制できる。また、接地電極(21,22,23)の腕部21の径を太くすることでも、火花伸長部22で発生した熱が腕部21を介して逃げ易くなり、火花伸長部22の高温化を抑制することができる。なお、図13(a)〜図13(c)に示した傾斜面222a,222b、図14(a)〜図14(c)に示した傾斜面222b、図15(a)〜図15(c)に示した傾斜面222e,222f,222g,222h、図16(a)及び図16(b)に示した傾斜面222のそれぞれの下端も曲率を有していてもよい。   Also, as shown in FIGS. 17A to 17C, the lower end (the bottom surface 223 of the spark extension 22) of the inclined surface (conical surface) 222 of the spark extension 22 of the ground electrode (21, 22, 23). May be rounded (chamfered) and have a curvature. When the inclined surface (conical surface) 222 and the bottom surface 223 of the spark extension 22 form an acute angle, the lower end of the inclined surface (conical surface) 222 is likely to be locally high temperature under high speed and high load operation conditions. On the other hand, since the lower end of the inclined surface (conical surface) 222 of the spark extending portion 22 has a curvature, the lower end of the inclined surface (conical surface) 222 of the spark extending portion 22 is even under high-speed and high-load operation conditions. Locally high temperature can be suppressed, and hot surface ignition can be suppressed. Further, by increasing the diameter of the arm portion 21 of the ground electrode (21, 22, 23), the heat generated in the spark extension portion 22 can easily escape through the arm portion 21, thereby increasing the temperature of the spark extension portion 22. Can be suppressed. The inclined surfaces 222a and 222b shown in FIGS. 13A to 13C, the inclined surfaces 222b shown in FIGS. 14A to 14C, and FIGS. 15A to 15C. The inclined surfaces 222e, 222f, 222g, and 222h shown in FIG. 16 and the lower ends of the inclined surfaces 222 shown in FIGS. 16A and 16B may also have a curvature.

また、図18に示すように、接地電極(21a,21b,22,23)が、火花伸長部22に接続された複数(2本)の腕部21a,21bを有していてもよい。複数の腕部21a,21bは、例えばX方向に互いに対向するように配置されている。これにより、火花伸長部22で発生した熱を複数の腕部21a,21bを介して逃がすことができる。したがって、高速・高負荷運転条件においても、火花伸長部22の傾斜面(円錐面)222の下端が局所的に高温になることを抑制でき、熱面点火を抑制できる。なお、図18では2本の腕部21a,21bを有する場合を例示したが、火花伸長部22に接続された3本以上の腕部を有していてもよい。例えば、3本の腕部を点火プラグ1の中心軸O周りに120°離間するように等間隔で配置してもよい。また、4本の腕部を点火プラグ1の中心軸O周りに90°離間するように等間隔で配置してもよい。   As shown in FIG. 18, the ground electrode (21 a, 21 b, 22, 23) may have a plurality of (two) arm portions 21 a, 21 b connected to the spark extension 22. The plurality of arm portions 21a and 21b are arranged so as to face each other in the X direction, for example. Thereby, the heat which generate | occur | produced in the spark extension | expansion part 22 can be released via several arm part 21a, 21b. Therefore, even under high-speed and high-load operation conditions, the lower end of the inclined surface (conical surface) 222 of the spark extension 22 can be prevented from locally becoming high temperature, and hot surface ignition can be suppressed. In addition, although the case where it has two arm parts 21a and 21b was illustrated in FIG. 18, you may have three or more arm parts connected to the spark extension part 22. FIG. For example, the three arms may be arranged at equal intervals so as to be separated by 120 ° around the center axis O of the spark plug 1. Further, the four arm portions may be arranged at equal intervals so as to be separated by 90 ° around the center axis O of the spark plug 1.

また、図19に示すように、接地電極(21,22,23)の火花伸長部22と腕部21との接合位置を、火花伸長部22の傾斜面(円錐面)222の下端部としてもよい。これにより、火花伸長部22の傾斜面(円錐面)222の下端で発生した熱を、腕部21を介して逃がし易くすることができる。したがって、高速・高負荷運転条件においても、火花伸長部22の傾斜面(円錐面)222の下端が局所的に高温になることを抑制でき、熱面点火を抑制できる。   In addition, as shown in FIG. 19, the joining position of the spark extension 22 and the arm 21 of the ground electrode (21, 22, 23) may be the lower end of the inclined surface (conical surface) 222 of the spark extension 22. Good. Thereby, the heat generated at the lower end of the inclined surface (conical surface) 222 of the spark extension 22 can be easily released via the arm 21. Therefore, even under high-speed and high-load operation conditions, the lower end of the inclined surface (conical surface) 222 of the spark extension 22 can be prevented from locally becoming high temperature, and hot surface ignition can be suppressed.

また、図20(a)〜図20(c)に示すように、接地電極(21,22)が突出部を有していなくてもよい。接地電極(21,22)の火花伸長部22は円錐形状を有する。この場合、先端部11と火花伸長部22の頂部(頂点)221との間の放電ギャップで発生した放電経路をタンブル流の下流に伸長する際に、放電経路の頂部(頂点)221側の放電点は、火花伸長部22の傾斜面(円錐面)222に沿って下方に移動し、火花伸長部22の傾斜面(円錐面)222の下端で安定する。なお、接地電極(21,22)が突出部を有しない場合の火花伸長部22の形状はこれに限定されない。例えば、接地電極(21,22)の火花伸長部22は、図2(a)〜図2(c)に示した円錐台形状であってもよく、或いは角錐形状であってもよい。   Moreover, as shown to Fig.20 (a)-FIG.20 (c), the ground electrode (21, 22) does not need to have a protrusion part. The spark extension 22 of the ground electrode (21, 22) has a conical shape. In this case, when the discharge path generated in the discharge gap between the tip 11 and the top (vertex) 221 of the spark extension 22 is extended downstream of the tumble flow, the discharge on the top (vertex) 221 side of the discharge path The point moves downward along the inclined surface (conical surface) 222 of the spark extension 22 and stabilizes at the lower end of the inclined surface (conical surface) 222 of the spark extension 22. Note that the shape of the spark extension 22 when the ground electrode (21, 22) does not have a protrusion is not limited to this. For example, the spark extension 22 of the ground electrode (21, 22) may have a truncated cone shape as shown in FIGS. 2 (a) to 2 (c), or may have a pyramid shape.

また、図21(a)〜図21(c)に示すように、接地電極(21,22,23)の火花伸長部22が、腕部21の端部の下側に配置されていてもよい。火花伸長部22は略円錐形状(円錐台形状)をなし、点火プラグ1の中心軸Oに対して傾斜した傾斜面(円錐面)222を有する。火花伸長部22の頂部221が腕部21の端部の下面にレーザ溶接や抵抗溶接等により接合されている。   Further, as shown in FIGS. 21A to 21C, the spark extension 22 of the ground electrode (21, 22, 23) may be disposed below the end of the arm 21. . The spark extension 22 has a substantially conical shape (conical frustum shape) and has an inclined surface (conical surface) 222 that is inclined with respect to the central axis O of the spark plug 1. The top 221 of the spark extension 22 is joined to the lower surface of the end of the arm 21 by laser welding, resistance welding, or the like.

この場合、図22(a)に示すように、先端部11と突起部23の放電ギャップG1で放電が開始し、放電経路Sが略直線状に形成される。その後、タンブル流Fにより放電経路Sがタンブル流Fの下流側に伸長する際に、放電経路Sの放電点Pが腕部21の側面に移動した後、図22(b)に示すように、放電経路Sが更に伸長して、放電経路Sの放電点Pが火花伸長部22の傾斜面(円錐面)222に移動する。その後、放電経路Sの放電点Pが傾斜面(円錐面)222に沿って下方に移動し、図22(c)に示すように、放電経路Sが火花伸長部22の底面223の外周部まで到達して安定する。図21(a)〜図21(c)に示した接地電極(21,22,23)によれば、火花伸長部22が、腕部21の端部の下側に配置されているので、腕部21の端部の下端よりも下方まで実質的な放電ギャップG2を大きくすることができる。   In this case, as shown in FIG. 22A, discharge starts at the discharge gap G1 between the tip 11 and the protrusion 23, and the discharge path S is formed in a substantially linear shape. Thereafter, when the discharge path S is extended to the downstream side of the tumble flow F by the tumble flow F, after the discharge point P of the discharge path S moves to the side surface of the arm portion 21, as shown in FIG. The discharge path S further extends, and the discharge point P of the discharge path S moves to the inclined surface (conical surface) 222 of the spark extension 22. Thereafter, the discharge point P of the discharge path S moves downward along the inclined surface (conical surface) 222, and the discharge path S reaches the outer periphery of the bottom surface 223 of the spark extension 22 as shown in FIG. Reach and stabilize. According to the ground electrodes (21, 22, 23) shown in FIG. 21 (a) to FIG. 21 (c), the spark extension 22 is disposed below the end of the arm 21. The substantial discharge gap G2 can be increased below the lower end of the end portion of the portion 21.

なお、接地電極(21,22,23)の火花伸長部22が、腕部21の下に配置されている場合にも、種々の形状の火花伸長部22を採用することができる。例えば、図23(a)〜図23(c)に示すように、接地電極(21,22,23)の火花伸長部22が、2つの傾斜面222g,222hを有していてもよい。2つの傾斜面222g,222hは、X軸方向に互いに対向して設けられている。図23(a)〜図23(c)に示した接地電極(21,22,23)を有する場合でも、先端部11と突起部23との間の放電ギャップで発生した放電経路がタンブル流の下流側に伸長する際に、放電経路の突起部23側の放電点を、突起部23から腕部21の側面を介して、2つの傾斜面222g,222hのいずれかに移動させて、2つの傾斜面222g,222hのいずれかに沿って下方に移動させることができる。なお、火花伸長部22が腕部21の下に配置されている場合に、火花伸長部22の形状を図14(a)〜図14(c)に示した形状、図15(a)〜図15(c)に示した形状、図16(a)に示した形状、図16(b)に示した形状、図17(a)及び図17(b)に示した形状等とすることができる。   In addition, even when the spark extension 22 of the ground electrode (21, 22, 23) is disposed below the arm 21, the spark extension 22 of various shapes can be employed. For example, as shown in FIGS. 23A to 23C, the spark extension 22 of the ground electrode (21, 22, 23) may have two inclined surfaces 222g and 222h. The two inclined surfaces 222g and 222h are provided to face each other in the X-axis direction. Even when the ground electrodes (21, 22, 23) shown in FIGS. 23 (a) to 23 (c) are provided, the discharge path generated in the discharge gap between the tip 11 and the protrusion 23 is a tumble flow. When extending downstream, the discharge point on the protrusion 23 side of the discharge path is moved from the protrusion 23 to one of the two inclined surfaces 222 g and 222 h via the side surface of the arm 21. It can be moved downward along one of the inclined surfaces 222g and 222h. In addition, when the spark extension part 22 is arrange | positioned under the arm part 21, the shape of the spark extension part 22 is shown in Fig.14 (a)-FIG.14 (c), FIG.15 (a)-figure. The shape shown in FIG. 15 (c), the shape shown in FIG. 16 (a), the shape shown in FIG. 16 (b), the shape shown in FIG. 17 (a) and FIG. .

また、図24(a)は、図2(a)〜図2(c)に示した接地電極(21,22,23)の火花伸長部22及び突起部23をX方向で切った断面形状を示す。図24(a)に示すように、火花伸長部22は例えば台形の断面形状を有する。図24(b)に示すように、火花伸長部22の底面側に凹部224を設けて、円錐内部を空洞化した形状であってもよい。高希薄燃焼や高EGR燃焼では点火プラグの冷却損失の影響が大きいが、火花伸長部22の円錐内部を空洞化することにより、接地電極(21,22,23)の熱容量を小さくし、冷却損失を低減することができる。   FIG. 24A shows a cross-sectional shape obtained by cutting the spark extension 22 and the protrusion 23 of the ground electrode (21, 22, 23) shown in FIGS. 2A to 2C in the X direction. Show. As shown in FIG. 24A, the spark extension 22 has, for example, a trapezoidal cross-sectional shape. As shown in FIG. 24 (b), the concave portion 224 may be provided on the bottom surface side of the spark extending portion 22 so that the inside of the cone is hollow. High lean combustion and high EGR combustion are greatly affected by the cooling loss of the spark plug, but by making the inside of the cone of the spark extension 22 hollow, the heat capacity of the ground electrodes (21, 22, 23) is reduced, and the cooling loss is reduced. Can be reduced.

また、図21(a)〜図2(c)に示した接地電極(21,22,23)の火花伸長部22も同様に、図24(c)に示す断面形状のように、火花伸長部22の底面側に凹部224を設け、円錐内部を空洞化した形状であってもよい。なお、火花伸長部22が、図13(a)〜図13(c)に示した形状、図14(a)〜図14(c)に示した形状、図15(a)〜図15(c)に示した形状、図16(a)及び図16(b)に示した形状、図17(a)及び図17(b)に示した形状、図20(a)〜図20(c)に示した形状、図23(a)〜図23(c)に示した形状等の場合でも、火花伸長部22の底面に凹部を設けて、火花伸長部22の内側に空洞を設けた形状としてもよい。   Similarly, the spark extension 22 of the ground electrode (21, 22, 23) shown in FIGS. 21 (a) to 2 (c) has a spark extension as in the cross-sectional shape shown in FIG. 24 (c). The shape which provided the recessed part 224 in the bottom face side of 22, and hollowed the cone inside may be sufficient. Note that the spark extension 22 has the shape shown in FIGS. 13 (a) to 13 (c), the shape shown in FIGS. 14 (a) to 14 (c), and FIGS. 15 (a) to 15 (c). ), The shape shown in FIGS. 16 (a) and 16 (b), the shape shown in FIGS. 17 (a) and 17 (b), and FIGS. 20 (a) to 20 (c). Even in the case of the shown shape, the shape shown in FIGS. 23A to 23C, etc., it is also possible to provide a recess on the bottom surface of the spark extension 22 and a cavity on the inside of the spark extension 22. Good.

(その他の実施形態)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the statement and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. It goes without saying that the present invention includes various embodiments not described herein. The technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…点火プラグ
2…シリンダヘッド
3…シリンダ
4…ピストン
5…燃焼室
6…吸気弁
7…排気弁
8…吸気ポート
9…排気ポート
11…先端部
12…本体部
21,21a,21b…腕部
22…火花伸長部
23…突起部
31…ハウジング
32…絶縁碍子
41…制御回路
42…定電圧源
43…ディストリビュータ
51,52,53,54,55,56,57,58,59,60…イグニションコイル
221…頂部
222,222a,222b,222e,222f,222g,222h…傾斜面
223…底面
DESCRIPTION OF SYMBOLS 1 ... Spark plug 2 ... Cylinder head 3 ... Cylinder 4 ... Piston 5 ... Combustion chamber 6 ... Intake valve 7 ... Exhaust valve 8 ... Intake port 11 ... Exhaust port 11 ... End part 12 ... Main-body part 21, 21a, 21b ... Arm part 22 ... Spark extension 23 ... Projection 31 ... Housing 32 ... Insulator 41 ... Control circuit 42 ... Constant voltage source 43 ... Distributor 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 ... Ignition coil 221: Top portions 222, 222a, 222b, 222e, 222f, 222g, 222h ... Inclined surface 223 ... Bottom surface

Claims (11)

燃焼室内の空気過剰率が1.5以上の混合気、又は前記空気過剰率が1.5未満で且つ排気再循環率が20%以上の混合気に点火する点火プラグであって、
前記燃焼室内に下端が突出するハウジングと、
前記ハウジングの中心軸に沿って前記ハウジングの内側に配置された絶縁碍子と、
前記中心軸に沿って前記絶縁碍子の内側に配置され、前記絶縁碍子の下端から一部が前記燃焼室内に突出する中心電極と、
前記ハウジングに一端が接続され、前記ハウジングから下方に延在し、前記中心軸側に屈曲した腕部と、前記腕部の他端に接続され、前記中心軸と頂部が対向し、前記頂部から下方向になるに従い前記中心軸に垂直方向の面積が次第に広くなる形状の火花伸長部とを含む接地電極と、
を備えることを特徴とする点火プラグ。
An ignition plug for igniting an air-fuel mixture having an excess air ratio of 1.5 or more in a combustion chamber, or an air-fuel mixture having an excess air ratio of less than 1.5 and an exhaust gas recirculation rate of 20% or more,
A housing whose lower end protrudes into the combustion chamber;
An insulator disposed inside the housing along a central axis of the housing;
A central electrode disposed inside the insulator along the central axis and partially protruding from the lower end of the insulator into the combustion chamber;
One end is connected to the housing, extends downward from the housing, is bent to the central axis side, is connected to the other end of the arm part, the central axis is opposite to the top, and from the top A ground electrode including a spark extension having a shape in which the area in the direction perpendicular to the central axis gradually increases as it goes downward;
A spark plug comprising:
前記中心電極と前記接地電極の間の放電ギャップに生じた放電経路を、前記放電ギャップにおけるタンブル流により当該タンブル流の下流に伸長する際に、前記放電経路の前記接地電極側の放電点を、前記火花伸長部により下方に移動させることを特徴とする請求項1に記載の点火プラグ。   When the discharge path generated in the discharge gap between the center electrode and the ground electrode is extended downstream of the tumble flow by the tumble flow in the discharge gap, the discharge point on the ground electrode side of the discharge path is The spark plug according to claim 1, wherein the spark plug is moved downward by the spark extension portion. 前記タンブル流の流速が15m/秒〜50m/秒であることを特徴とする請求項2に記載の点火プラグ。   The spark plug according to claim 2, wherein the flow rate of the tumble flow is 15 m / sec to 50 m / sec. 前記火花伸長部が、円錐形状又は角錐形状の錐面を有することを特徴とする請求項1〜3のいずれか1項に記載の点火プラグ。   The spark plug according to any one of claims 1 to 3, wherein the spark extension has a conical or pyramidal conical surface. 前記火花伸長部が、円錐台形状又は角錐台形状を有し、
前記接地電極が、前記火花伸長部上に配置され、前記中心電極と対向する突起部を更に含むことを特徴とする請求項1〜3のいずれか1項に記載の点火プラグ。
The spark extension has a truncated cone shape or a truncated pyramid shape,
The spark plug according to any one of claims 1 to 3, wherein the ground electrode further includes a protrusion disposed on the spark extension and facing the center electrode.
前記火花伸長部が、前記腕部の前記他端の下側に配置されていることを特徴とする請求項1〜3のいずれか1項に記載の点火プラグ。   The spark plug according to any one of claims 1 to 3, wherein the spark extension portion is disposed below the other end of the arm portion. 前記火花伸長部の底面が、前記腕部の下端よりも下方に位置することを特徴とする請求項1〜6のいずれか1項に記載の点火プラグ。   The spark plug according to any one of claims 1 to 6, wherein a bottom surface of the spark extension portion is positioned below a lower end of the arm portion. 前記火花伸長部の底面の外周部が曲率を有することを特徴とする請求項1〜7のいずれか1項に記載の点火プラグ。   The spark plug according to any one of claims 1 to 7, wherein an outer peripheral portion of a bottom surface of the spark extension portion has a curvature. 前記火花伸長部の内側に空洞が設けられていることを特徴とする請求項1〜8のいずれか1項に記載の点火プラグ。   The spark plug according to any one of claims 1 to 8, wherein a cavity is provided inside the spark extension portion. 前記接地電極が、前記火花伸長部に接続された前記腕部を複数備えることを特徴とする請求項1〜9のいずれか1項に記載の点火プラグ。   The spark plug according to claim 1, wherein the ground electrode includes a plurality of the arm portions connected to the spark extension portion. 複数のイグニションコイルにより、1サイクル内で繰り返し放電することを特徴とする請求項1〜10のいずれか1項に記載の点火プラグ。
The spark plug according to any one of claims 1 to 10, wherein discharge is repeatedly performed within one cycle by a plurality of ignition coils.
JP2018023533A 2018-02-13 2018-02-13 Spark plug Active JP7018601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018023533A JP7018601B2 (en) 2018-02-13 2018-02-13 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023533A JP7018601B2 (en) 2018-02-13 2018-02-13 Spark plug

Publications (2)

Publication Number Publication Date
JP2019140005A true JP2019140005A (en) 2019-08-22
JP7018601B2 JP7018601B2 (en) 2022-02-14

Family

ID=67694268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023533A Active JP7018601B2 (en) 2018-02-13 2018-02-13 Spark plug

Country Status (1)

Country Link
JP (1) JP7018601B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232066A (en) * 1996-02-27 1997-09-05 Harumitsu Matsushita Ignition plug
JP2002106455A (en) * 2000-10-03 2002-04-10 Ngk Spark Plug Co Ltd Ignition system for internal combustion engine
JP2008311185A (en) * 2007-06-18 2008-12-25 Nippon Soken Inc Spark plug for internal combustion engine
JP2013185466A (en) * 2012-03-06 2013-09-19 Osaka Gas Co Ltd Engine and control method for the same
JP2014238999A (en) * 2013-06-10 2014-12-18 株式会社デンソー Spark plug for internal combustion engine
JP2018014162A (en) * 2016-07-18 2018-01-25 株式会社Soken Spark plug for internal combustion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232066A (en) * 1996-02-27 1997-09-05 Harumitsu Matsushita Ignition plug
JP2002106455A (en) * 2000-10-03 2002-04-10 Ngk Spark Plug Co Ltd Ignition system for internal combustion engine
JP2008311185A (en) * 2007-06-18 2008-12-25 Nippon Soken Inc Spark plug for internal combustion engine
JP2013185466A (en) * 2012-03-06 2013-09-19 Osaka Gas Co Ltd Engine and control method for the same
JP2014238999A (en) * 2013-06-10 2014-12-18 株式会社デンソー Spark plug for internal combustion engine
JP2018014162A (en) * 2016-07-18 2018-01-25 株式会社Soken Spark plug for internal combustion

Also Published As

Publication number Publication date
JP7018601B2 (en) 2022-02-14

Similar Documents

Publication Publication Date Title
JP5451490B2 (en) Spark plug and engine
JP4740339B2 (en) Internal combustion engine and method for operating an internal combustion engine with a laser ignition device
US5408961A (en) Ignition plug
JP4762110B2 (en) Spark plug for internal combustion engine
JP5115654B2 (en) Fuel injection valve and internal combustion engine
JP2016053370A (en) Pre-chamber ignition system
US9331458B2 (en) Ignition system
JP6610323B2 (en) Internal combustion engine
JP6731230B2 (en) Spark plug for internal combustion engine and ignition device equipped with the same
JP2016512914A (en) Controlled flow of flame kernels by spark ignition.
JP2011106377A (en) Direct-injection internal combustion engine and method of controlling the same
JP2019184179A (en) Combustion apparatus for fuel
US9343875B2 (en) Spark plug for internal combustion engines and mounting structure for the spark plug
JP2011117356A (en) Cylinder injection type internal combustion engine
JP7018601B2 (en) Spark plug
US11973323B2 (en) Spark plug for internal combustion engine
JP6035232B2 (en) Ignition device
JP6731298B2 (en) Spark plugs for internal combustion engines
JP7468257B2 (en) Spark plug for internal combustion engine and internal combustion engine equipped with same
JP2017166381A (en) Ignition device of internal combustion engine
GB2325492A (en) Spark plug for i.c. engines
JP2021170478A (en) Spark plug
JP7360966B2 (en) Spark plug and its manufacturing method
WO1998053540A1 (en) Spark plug
JP7390240B2 (en) Spark plug

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7018601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150