JP2019136837A - Double-sided polishing method - Google Patents
Double-sided polishing method Download PDFInfo
- Publication number
- JP2019136837A JP2019136837A JP2018023969A JP2018023969A JP2019136837A JP 2019136837 A JP2019136837 A JP 2019136837A JP 2018023969 A JP2018023969 A JP 2018023969A JP 2018023969 A JP2018023969 A JP 2018023969A JP 2019136837 A JP2019136837 A JP 2019136837A
- Authority
- JP
- Japan
- Prior art keywords
- radius
- flow rate
- supply hole
- slurry
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000002002 slurry Substances 0.000 claims abstract description 76
- 235000012431 wafers Nutrition 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/27—Work carriers
- B24B37/28—Work carriers for double side lapping of plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
- B24B57/02—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
本発明は、スラリー供給が圧送形式である両面研磨装置を用い、供給孔へのスラリー供給量分布が一定の法則下になるように両面研磨加工することでウェーハのフラットネスのばらつきを抑制する両面研磨方法に関する。 The present invention uses a double-side polishing apparatus in which slurry supply is a pressure feed type, and double-side polishing processing so that the slurry supply amount distribution to the supply hole is under a certain rule, thereby suppressing variations in wafer flatness. The present invention relates to a polishing method.
両面研磨におけるスラリーの代表的な供給方法に、定盤上のスラリーリングで一度スラリーを受け、重力に従って研磨面へと流す自然落下形式と、ロータリージョイントを介して圧力をかけながら研磨面に送る圧送形式がある。圧送形式は送液するポンプの圧力を制御することで、任意のスラリー量を研磨面に供給することができることを長所としてもつ。しかし、しばしば、圧送形式においてはウェーハの平坦度のばらつき、特にグローバル形状のばらつきが大きいケースが見受けられた(特許文献1、特許文献2)。 A typical supply method of slurry in double-sided polishing is a natural fall type in which the slurry is once received by the slurry ring on the surface plate and flows to the polishing surface according to gravity, and pressure feeding to the polishing surface while applying pressure through a rotary joint. There is a format. The pumping type has an advantage that an arbitrary amount of slurry can be supplied to the polishing surface by controlling the pressure of the pump for feeding liquid. However, there are often cases where variations in wafer flatness, particularly global shapes, are large in the pumping format (Patent Documents 1 and 2).
本発明は上記問題に鑑みてなされたものであり、スラリー供給が圧送形式である両面研磨装置において、ウェーハのグローバル形状(GBIR)のばらつきを抑制しようとするものであり、圧送形式下でGBIRのばらつきを小さくすることができるウェーハの両面研磨方法を提供することを目的とする。 The present invention has been made in view of the above problems, and in a double-side polishing apparatus in which slurry supply is a pressure-feed type, it is intended to suppress variations in the global shape (GBIR) of a wafer. An object of the present invention is to provide a wafer double-side polishing method capable of reducing variations.
上記目的を達成するため、本発明は、両面研磨装置を用い、キャリアに形成されたワーク保持孔にウェーハを保持して、研磨パッドがそれぞれ貼付された上定盤と下定盤とで挟み込み、スラリーを上定盤に備えられたN個の供給孔からロータリージョイントを介して圧送形式により研磨面に供給しながら両面研磨するウェーハの両面研磨方法であって、前記供給孔が、前記上定盤の任意の半径から回転角度αだけ回転した半径上にM1個備えられ、前記回転角度αよりも180度大きい回転角度をβとしたとき、前記供給孔が、前記任意の半径から回転角度βだけ回転した半径上にM2個備えられ、前記任意の半径から回転角度αだけ回転した半径と前記任意の半径から回転角度βだけ回転した半径とがなす直径上の供給孔に、前記直径の一端より1からM1+M2までの番号を付し、前記直径上の供給孔のうち、i番目の供給孔の前記上定盤の中心からの距離をriとし、前記任意の半径から回転角度αだけ回転した半径上の前記i番目の供給孔から供給されるスラリーの流量をx(ri,α)とし、前記直径上の供給孔のうち、j番目の供給孔の前記上定盤の中心からの距離をrjとし、前記任意の半径から回転角度βだけ回転した半径上の前記j番目の供給孔から供給されるスラリーの流量をx(rj,β)とし、前記上定盤に備えられたN個全ての供給孔から供給されるスラリーの流量の平均値をxaveとしたとき、前記任意の半径から回転角度αだけ回転した半径上の供給孔から供給されるスラリーの流量の平均値と前記任意の半径から回転角度βだけ回転した半径上の供給孔から供給されるスラリーの流量の平均値との差の絶対値の全ての供給孔から供給されるスラリーの流量の平均値xaveに対する割合Diffが下記式(1)の関係を満たすように制御しながら研磨することを特徴とする両面研磨方法を提供する。 To achieve the above object, the present invention uses a double-side polishing apparatus, holds a wafer in a work holding hole formed in a carrier, and sandwiches between an upper surface plate and a lower surface plate to which a polishing pad is attached, Is a double-side polishing method for wafers that are double-side polished while being supplied to a polishing surface by a pressure-feeding method from N supply holes provided on the upper surface plate through a rotary joint. provided one M on a radius that is rotated by the rotation angle alpha of any radius, when the said rotational angle rotation angle of 180 degrees greater than the alpha beta, wherein the supply hole is by the rotation angle beta from the arbitrary radius provided two M on rotating radius, a supply hole diametrically formed between the rotation angle β by rotating the radius rotation angle α by rotating the radius from the arbitrary radius from the arbitrary radius, one end of said diameter 1 are numbered up to M 1 + M 2 from Ri, among supply hole on the diameter, the distance from the center of the upper surface plate of the i-th supply hole and r i, the rotation angle from the arbitrary radius The flow rate of the slurry supplied from the i-th supply hole on the radius rotated by α is x (r i , α), and among the supply holes on the diameter, the upper platen of the j-th supply hole The distance from the center is r j , the flow rate of the slurry supplied from the j-th supply hole on the radius rotated by the rotation angle β from the arbitrary radius is x (r j , β), and the upper surface plate The flow rate of the slurry supplied from the supply hole on the radius rotated by the rotation angle α from the arbitrary radius, where x ave is the average value of the flow rate of the slurry supplied from all N supply holes provided in On the radius rotated by the rotation angle β from the mean value of the above and the arbitrary radius As the proportion Diff to the average value x ave of the flow rate of the slurry supplied from all the supply hole of the absolute value of the difference between the average value of the flow rate of the slurry supplied from the supply hole satisfies the following relationship formula (1) Provided is a double-side polishing method characterized by polishing while controlling.
このような両面研磨方法であれば、上定盤の任意の直径の一方の半径上の供給孔群の平均流量ともう一方の半径上の供給孔群の平均流量との差が、理想平均流量(全流量/全供給孔数)の25%以下であるように両面研磨加工することで、バッチ内のウェーハすべてのGBIRばらつきを小さくすることが可能となる。 In such a double-side polishing method, the difference between the average flow rate of the supply hole group on one radius of the upper surface plate and the average flow rate of the supply hole group on the other radius is the ideal average flow rate. By performing double-side polishing so that it is 25% or less of (total flow rate / total number of supply holes), it becomes possible to reduce GBIR variation of all wafers in the batch.
このとき、前記上定盤が、前記上定盤に配列されたスラリーの供給孔が定盤の中心に対して点対称に配列されたものを用いることが好ましい。 At this time, it is preferable to use the upper platen in which the slurry supply holes arranged on the upper platen are arranged symmetrically with respect to the center of the platen.
このような上定盤を用いた両面研磨方法であれば、ウェーハのGBIRのばらつきを小さくすることが可能となる。 With such a double-side polishing method using an upper surface plate, it becomes possible to reduce the GBIR variation of the wafer.
また、このとき、前記ロータリージョイントを介して前記研磨面に圧送するスラリーの全流量が4L/min以上となるように供給しながら両面研磨することが好ましい。 At this time, it is preferable to perform double-side polishing while supplying the slurry so that the total flow rate of the slurry fed to the polishing surface through the rotary joint is 4 L / min or more.
このような両面研磨方法であれば、スラリーによる潤滑作用を保ち、研磨面が異常な発熱を引き起こしてしまうことを防ぐことが可能となる。 With such a double-side polishing method, it is possible to keep the lubricating action by the slurry and prevent the polished surface from causing abnormal heat generation.
前述した課題を解決するため、本発明者らが鋭意研究を行ったところ、供給孔から供給されるスラリーの流量のバランスが崩れると、グローバル形状(GBIR)のばらつきが大きくなることが判明した。 In order to solve the above-described problems, the present inventors conducted extensive research and found that the variation in global shape (GBIR) increases when the balance of the flow rate of the slurry supplied from the supply hole is lost.
そこで本発明では、上定盤の任意の直径のうち、一方の半径上の供給孔群の平均流量ともう一方の半径上の供給孔群の平均流量の差が理想平均流量(全流量/全供給孔数)の25%以下であるように両面研磨加工することで、バッチ内ウェーハすべてのGBIRのばらつきが製品規格内に収まるようにした。 Therefore, in the present invention, among the arbitrary diameters of the upper surface plate, the difference between the average flow rate of the supply hole group on one radius and the average flow rate of the supply hole group on the other radius is the ideal average flow rate (total flow rate / total flow rate). By performing double-side polishing so that it is 25% or less of the number of supply holes), the GBIR variation of all wafers in the batch was kept within the product specification.
すなわち、本発明の両面研磨方法は、両面研磨装置を用い、キャリアに形成されたワーク保持孔にウェーハを保持して、研磨パッドがそれぞれ貼付された上定盤と下定盤とで挟み込み、スラリーを上定盤に備えられたN個の供給孔からロータリージョイントを介して圧送形式により研磨面に供給しながら両面研磨するウェーハの両面研磨方法であって、前記供給孔が、前記上定盤の任意の半径から回転角度αだけ回転した半径上にM1個備えられ、前記回転角度αよりも180度大きい回転角度をβとしたとき、前記供給孔が、前記任意の半径から回転角度βだけ回転した半径上にM2個備えられ、前記任意の半径から回転角度αだけ回転した半径と前記任意の半径から回転角度βだけ回転した半径とがなす直径上の供給孔に、前記直径の一端より1からM1+M2までの番号を付し、前記直径上の供給孔のうち、i番目の供給孔の前記上定盤の中心からの距離をriとし、前記任意の半径から回転角度αだけ回転した半径上の前記i番目の供給孔から供給されるスラリーの流量をx(ri,α)とし、前記直径上の供給孔のうち、j番目の供給孔の前記上定盤の中心からの距離をrjとし、前記任意の半径から回転角度βだけ回転した半径上の前記j番目の供給孔から供給されるスラリーの流量をx(rj,β)とし、前記上定盤に備えられたN個全ての供給孔から供給されるスラリーの流量の平均値をxaveとしたとき、前記任意の半径から回転角度αだけ回転した半径上の供給孔から供給されるスラリーの流量の平均値と前記任意の半径から回転角度βだけ回転した半径上の供給孔から供給されるスラリーの流量の平均値との差の絶対値の全ての供給孔から供給されるスラリーの流量の平均値xaveに対する割合Diffが下記式(1)の関係を満たすように制御しながら研磨することを特徴とする両面研磨方法である。 That is, the double-side polishing method of the present invention uses a double-side polishing apparatus to hold a wafer in a work holding hole formed in a carrier, and sandwich the slurry between an upper surface plate and a lower surface plate to which a polishing pad is attached, respectively. A double-side polishing method for a wafer that is double-side polished while being supplied to a polishing surface by a pressure-feeding method from N supply holes provided in the upper surface plate through a rotary joint, wherein the supply holes are optional on the upper surface plate provided one M from the radius to the rotation angle alpha by rotating the on radius when the rotational angle of 180 degrees greater than the angle of rotation alpha beta, wherein the supply hole is rotated by the rotation angle beta from the arbitrary radius to provided two M on the radius, the supply holes on the arbitrary diameter radius from the arbitrary radius rotated by the rotation angle α from a radial form and is rotated by the rotation angle β radius, one end of said diameter 1 are numbered up to M 1 + M 2 from Ri, among supply hole on the diameter, the distance from the center of the upper surface plate of the i-th supply hole and r i, the rotation angle from the arbitrary radius The flow rate of the slurry supplied from the i-th supply hole on the radius rotated by α is x (r i , α), and among the supply holes on the diameter, the upper platen of the j-th supply hole The distance from the center is r j , the flow rate of the slurry supplied from the j-th supply hole on the radius rotated by the rotation angle β from the arbitrary radius is x (r j , β), and the upper surface plate The flow rate of the slurry supplied from the supply hole on the radius rotated by the rotation angle α from the arbitrary radius, where x ave is the average value of the flow rate of the slurry supplied from all N supply holes provided in On the radius rotated by the rotation angle β from the mean value of the above and the arbitrary radius As the proportion Diff to the average value x ave of the flow rate of the slurry supplied from all the supply hole of the absolute value of the difference between the average value of the flow rate of the slurry supplied from the supply hole satisfies the following relationship formula (1) It is a double-side polishing method characterized by polishing while controlling.
以下、本発明について具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, although this invention is demonstrated concretely, this invention is not limited to this.
本発明の両面研磨方法について説明する。図1は、本発明のウェーハの両面研磨方法に使用することができる両面研磨装置の一例の断面図を示した図である。 The double-side polishing method of the present invention will be described. FIG. 1 is a cross-sectional view of an example of a double-side polishing apparatus that can be used in the double-side polishing method for a wafer of the present invention.
本発明で使用することができる両面研磨装置10は、図1に示すように、上定盤12、下定盤13、上定盤12と下定盤13の間の中心部のサンギア14、周縁部のインターナルギア15の各駆動部を有する4way式両面研磨装置である。
As shown in FIG. 1, the double-
ウェーハWを保持するワーク保持孔を有するキャリア11を具備した両面研磨装置10は、上定盤12と下定盤13の対向面側に、それぞれ研磨布(パッド)が貼付されている。研磨布としては、例えば、発砲ポリウレタンパッドを用いることができる。
In the double-
上定盤12には、上定盤12と下定盤13の間にスラリーを供給するための供給孔16が設けられている。また、スラリーは、供給孔16からロータリージョイントを介して圧送形式により研磨面に供給される。
The
スラリーとしては、コロイダルシリカを含有した無機アルカリ水溶液を用いることができる。 As the slurry, an inorganic alkaline aqueous solution containing colloidal silica can be used.
キャリア11は金属のものを用いることができる。キャリア11には、半導体シリコンウェーハなどのウェーハWを保持するためのワーク保持孔が形成されている。ウェーハWの周縁部を金属製のキャリア11によるダメージから保護するために、例えば、樹脂製のインサート材がキャリア11のワーク保持孔の内周部に沿って取り付けられている。
The
このような両面研磨装置を用いてウェーハの両面研磨加工を行った。加工時間はウェーハの中心厚みのバッチ平均値が狙いの厚みとなるように、研磨レートから算出した。 The wafer was subjected to double-side polishing using such a double-side polishing apparatus. The processing time was calculated from the polishing rate so that the batch average value of the center thickness of the wafer was the target thickness.
発明者らの研究により、供給孔16から供給されるスラリーの流量のバランスが崩れると、GBIRのばらつきが大きくなることが判明した。具体的には、図2に示すように、同一直径上に配設された上定盤12の中心に対して向かい合う供給孔群において流量に差が生じた場合、上定盤12の中心を起点として上定盤12の流量が大きい側端が浮き上がり、上定盤12の流量の小さい側端が沈み込むことによって、各ウェーハに対する圧力差が生じるためにGBIRのばらつきが大きくなることが明らかとなった。
According to the inventors' research, when the balance of the flow rate of the slurry supplied from the
本発明の両面研磨方法では、上定盤12の任意の直径の片側の半径上の供給孔群の平均流量ともう片側の半径上の供給孔群の平均流量の差が理想平均流量(=全流量/全供給孔数)の25%以下であるように両面研磨加工することで、バッチ内ウェーハすべてのGBIRが製品規格内に収まるようにした。
In the double-side polishing method of the present invention, the difference between the average flow rate of the supply hole group on one radius of the
すなわち、図3に示す上定盤の任意の半径Rから回転角度αだけ回転した半径上に配設されたM1個の供給孔と回転角度αよりも180度大きい回転角度βだけ回転した半径上に配設されたM2個の供給孔に、半径Rから回転角度αだけ回転した半径と半径Rから回転角度βだけ回転した半径とがなす直径Lの一端より1からM1+M2までの番号を付し、i番目の供給孔の前記上定盤の中心からの距離をri、j番目の供給孔の前記上定盤の中心からの距離をrjとし、前記任意の半径から回転角度αだけ回転した半径上の前記i番目の供給孔から供給されるスラリーの流量をx(ri,α)とし、前記任意の半径から回転角度βだけ回転した半径上の前記j番目の供給孔から供給されるスラリーの流量をx(rj,β)としたとき、直径Lの一方の半径上の供給孔から供給されるスラリーの流量の平均値と、直径Lのもう一方の半径上の供給孔から供給されるスラリーの流量の平均値との差の絶対値の全ての供給孔から供給されるスラリーの流量の平均値xave(理想平均流量)に対する割合Diffが下記式(1)の関係を満たすようにすることで、供給孔から供給されるスラリーの流量のバランスを保ち、GBIRのばらつきを小さくすることが可能となる。 That is, M 1 supply holes arranged on a radius rotated by a rotation angle α from an arbitrary radius R of the upper surface plate shown in FIG. 3 and a radius rotated by a rotation angle β 180 degrees larger than the rotation angle α. From one end of the diameter L formed by the radius rotated by the rotation angle α from the radius R and the radius rotated by the rotation angle β from the radius R to 1 to M 1 + M 2 in the M 2 supply holes arranged above The distance from the center of the upper surface plate of the i-th supply hole is r i , the distance from the center of the upper surface plate of the j-th supply hole is r j, and from the arbitrary radius The flow rate of the slurry supplied from the i-th supply hole on the radius rotated by the rotation angle α is x (r i , α), and the j-th on the radius rotated by the rotation angle β from the arbitrary radius. when the flow rate of the slurry supplied from the supply hole has a x (r j, β), linear All of the absolute values of the difference between the average value of the flow rate of the slurry supplied from the supply hole on one radius of L and the average value of the flow rate of the slurry supplied from the supply hole on the other radius of L The ratio Diff of the flow rate of the slurry supplied from the supply holes to the average value x ave (ideal average flow rate) satisfies the relationship of the following formula (1), so that the flow rate of the slurry supplied from the supply holes is balanced. And the variation in GBIR can be reduced.
上定盤12は、上定盤12に配列されたスラリーの供給孔16が定盤の中心に対して点対称に配列されたものを用いることができる。このような上定盤12であれば、上定盤の任意の直径のうち、一方の半径上の供給孔群の平均流量ともう一方の半径上の供給孔群の平均流量との差を理想平均流量の25%以下に制御することで、より容易にバッチ内ウェーハすべてのGBIRのばらつきを小さくすることが可能となる
The
ロータリージョイントを介して研磨面に圧送するスラリーの全流量は4L/min以上とすることができる。このようにすれば、スラリーによる潤滑作用を保ち、研磨面が異常な発熱を引き起こしてしまうことを防止することが可能となる。 The total flow rate of the slurry pumped to the polishing surface via the rotary joint can be 4 L / min or more. In this way, it is possible to keep the lubricating action by the slurry and prevent the polished surface from causing abnormal heat generation.
以下、実施例及び比較例を示して、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to these.
(実施例1)
図3に示される回転角度αが83°、回転角度βが263°の場合に着目した。半径Rを回転角度αだけ回転した半径上及び回転角度βだけ回転した半径上の、定盤中心から距離500mmに配設された向かい合う供給孔17及び供給孔18の2個の供給孔に着目し、それらの供給孔から供給されるスラリーの流量をボールバルブで変化させた。他の角度の供給孔のスラリーの流量に関しては、上記式1を満たした状態で実施した。
Example 1
Attention was paid to the case where the rotation angle α shown in FIG. 3 is 83 ° and the rotation angle β is 263 °. Pay attention to the two supply holes, the
スラリーは、上定盤の36個の供給孔に対して圧送形式により供給した。各供給孔の流量は、供給孔に繋がっているプラスチックチューブに手動のボールバルブを取り付け、開閉の度合で調整を行った。各供給孔の流量測定は、上定盤を上昇させた状態で研磨時と同じようにスラリーを1分間供給し、孔の直下に設置したビーカーで採取されたスラリーの量で定義した。例えば、1分間で200mL得られた場合は、200mL/min。 The slurry was supplied to the 36 supply holes of the upper surface plate by a pressure feeding method. The flow rate of each supply hole was adjusted by adjusting the degree of opening and closing by attaching a manual ball valve to the plastic tube connected to the supply hole. The flow rate measurement of each supply hole was defined by the amount of slurry collected with a beaker placed immediately below the hole after supplying the slurry for 1 minute in the same manner as during polishing with the upper platen raised. For example, when 200 mL is obtained in 1 minute, it is 200 mL / min.
供給孔17から供給されるスラリーの流量と供給孔18から供給されるスラリーの流量の差の絶対値の全ての供給孔から供給されるスラリーの流量の平均値xaveに対する割合Diffが9%となるように、供給孔から供給されるスラリーの流量を制御して実施した。また、このときの全ての供給孔から供給されるスラリーの流量の平均値xaveは155ml/minであった。
The ratio Diff of the absolute value of the difference between the flow rate of the slurry supplied from the
ウェーハは直径300mmのP型シリコン単結晶ウェーハを用いた。 As the wafer, a P-type silicon single crystal wafer having a diameter of 300 mm was used.
ウェーハは、Lapmaster WoltersのAC2000を用いて加工した。
研磨パッドは、ショアA硬度80の発泡ポリウレタンパッドを用いた。
キャリアは、SUS基板にDLCコーティングを行ったものを母材として、フッ素樹脂であるPVDFをインサートとしたものを用いた。
スラリーはシリカ砥粒含有、平均粒径35nm、砥粒濃度1.0wt%、pH10.5、KOHベースのものを用いた。
The wafer was processed using an AC2000 from Lapmaster Wolters.
As the polishing pad, a foamed polyurethane pad having a Shore A hardness of 80 was used.
As the carrier, a material obtained by applying DLC coating to a SUS substrate as a base material and using PVDF as a fluororesin as an insert was used.
A slurry containing silica abrasive grains, an average particle diameter of 35 nm, an abrasive grain concentration of 1.0 wt%, a pH of 10.5, and a KOH base was used.
加工荷重は150gf/cm2に設定した。
加工時間はウェーハの中心厚みのバッチ平均値が775±0.3μmに収まるように、研磨レートから逆算して設定した。
The processing load was set to 150 gf / cm 2 .
The processing time was set by calculating backward from the polishing rate so that the batch average value of the center thickness of the wafer was within 775 ± 0.3 μm.
各駆動部の回転速度は、上定盤を23.0rpm、下定盤を−20.0rpm、サンギアを−23.9rpm、インターナルギアを7.7rpmに設定した。 The rotational speed of each drive unit was set to 23.0 rpm for the upper platen, -20.0 rpm for the lower platen, -23.9 rpm for the sun gear, and 7.7 rpm for the internal gear.
測定前のウェーハ処理は、SC−1洗浄を条件NH4OH:H2O2:H2O = 1:1:15で行った。 The wafer processing before the measurement was performed by SC-1 cleaning under the conditions NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 15.
ウェーハは1バッチ15枚で加工し、洗浄後にWaferSight(KLA Tencor社製)で全数測定した。測定したデータ群からグローバル形状(GBIR)を算出し、それらの中から最大値と最小値の差をGBIR Rangeとし、ばらつきの指標とした。GBIRの算出は、M49 modeの2mm E.E.に設定して行った。また、GBIR Rangeは同一装置を同部材・条件で重力落下形式にした場合の値を1と定義した。つまり、1以下となれば、重力落下形式よりも改善したことになる。 The wafers were processed in 15 batches, and after cleaning, all the wafers were measured with WaferSight (manufactured by KLA Tencor). A global shape (GBIR) was calculated from the measured data group, and the difference between the maximum value and the minimum value was determined as GBIR Range, and used as an index of variation. GBIR was calculated using 2 mm E.M of M49 mode. E. I went to set. Moreover, GBIR Range defined 1 as the value when the same apparatus is made into the gravity drop type with the same members and conditions. In other words, if it is 1 or less, it is an improvement over the gravity drop type.
(実施例2)
Diffが18%となるようにした以外は、全て実施例1と同じ条件で実施した。
(Example 2)
All were performed under the same conditions as in Example 1 except that Diff was set to 18%.
(実施例3)
Diffが23%となるようにした以外は、全て実施例1と同じ条件で実施した。
(Example 3)
All the conditions were the same as in Example 1 except that the Diff was 23%.
(比較例1)
Diffが27%となるようにした以外は、全て実施例1と同じ条件で実施した。
(Comparative Example 1)
All were carried out under the same conditions as in Example 1 except that Diff was 27%.
(比較例2)
Diffが37%となるようにした以外は、全て実施例1と同じ条件で実施した。
(Comparative Example 2)
All the conditions were the same as in Example 1 except that the Diff was 37%.
供給孔17及び供給孔18の2個の供給孔に着目した例をケース1として、実施例1−3、比較例1、2におけるそれぞれの供給孔から供給されるスラリーの供給量、Diff、GBIR Rangeを表1に示す。
As an example focusing on the two supply holes of the
また、図5に実施例1−3及び比較例1、2におけるDiffとGBIR Rangeとの関係を示す。 FIG. 5 shows the relationship between Diff and GBIR Range in Example 1-3 and Comparative Examples 1 and 2.
(実施例4)
図4に示される回転角度αが45°、回転角度βが225°の場合に着目した。半径Rを回転角度αだけ回転した半径上の定盤中心から550/450/342mmに配設された供給孔19−21及び回転角度βだけ回転した半径上の定盤中心から400/500mmに配設された供給孔22、23の向かい合う5個の供給孔に着目し、それらの供給孔から供給されるスラリーの流量をボールバルブで変化させた。他の角度の供給孔のスラリーの流量に関しては、上記式1を満たした状態で実施した。
Example 4
Attention was paid to the case where the rotation angle α shown in FIG. 4 is 45 ° and the rotation angle β is 225 °. Supply hole 19-21 arranged 550/450 / 342mm from the center of the surface plate on the radius rotated by the rotation angle α and 400 / 500mm from the center of the surface plate on the radius rotated by the rotation angle β. Focusing on the five supply holes facing the provided
供給孔19−21から供給されるスラリーの流量の平均値と供給孔22、23から供給されるスラリーの流量の平均値の差の絶対値の全ての供給孔から供給されるスラリーの流量の平均値xaveに対する割合Diffが13%となるように、供給孔から供給されるスラリーの流量を制御して実施した。また、このときの全ての供給孔から供給されるスラリーの流量の平均値xaveは211ml/minであった。 The average of the flow rate of the slurry supplied from all the supply holes of the absolute value of the difference between the average value of the flow rate of the slurry supplied from the supply holes 19-21 and the average value of the flow rate of the slurry supplied from the supply holes 22 and 23 The flow rate of the slurry supplied from the supply hole was controlled so that the ratio Diff to the value x ave was 13%. Moreover, the average value x ave of the flow rate of the slurry supplied from all the supply holes at this time was 211 ml / min.
着目する供給孔群、Diff、xave以外は、全て実施例1と同じ条件で実施した。 Except for the supply hole group of interest, Diff, and x ave , all were performed under the same conditions as in Example 1.
(実施例5)
Diffが18%となるようにした以外は、全て実施例4と同じ条件で実施した。
(Example 5)
All were carried out under the same conditions as in Example 4 except that the Diff was 18%.
(実施例6)
Diffが22%となるようにした以外は、全て実施例4と同じ条件で実施した。
(Example 6)
All were carried out under the same conditions as in Example 4 except that the Diff was 22%.
(比較例3)
Diffが27%となるようにした以外は、全て実施例4と同じ条件で実施した。
(Comparative Example 3)
All the conditions were the same as in Example 4 except that Diff was 27%.
(比較例4)
Diffが34%となるようにした以外は、全て実施例4と同じ条件で実施した。
(Comparative Example 4)
All were carried out under the same conditions as in Example 4 except that the Diff was set to 34%.
供給孔19−23の5個の供給孔に着目した例をケース2として、実施例4−6、比較例3、4におけるそれぞれの供給孔から供給されるスラリーの供給量、Diff、GBIR Rangeを表2に示す。 As an example focusing on the five supply holes 19-23, the supply amount of slurry supplied from the respective supply holes in Example 4-6 and Comparative Examples 3 and 4, Diff, GBIR Range It shows in Table 2.
また、図6に実施例4−6及び比較例3、4におけるDiffとGBIR Rangeとの関係を示す。 FIG. 6 shows the relationship between Diff and GBIR Range in Example 4-6 and Comparative Examples 3 and 4.
表1、2及び図5、6に示すように、任意の直径の一方の半径上の供給孔から供給されるスラリーの流量平均値ともう一方の半径上の供給孔から供給されるスラリーの流量の平均値との差を、25%以内におさめることで、GBIR Rangeが小さくなり、圧送形式下でGBIRのばらつきを小さくすることができることが分かる。 As shown in Tables 1 and 2 and FIGS. 5 and 6, the average flow rate of the slurry supplied from the supply hole on one radius of any diameter and the flow rate of the slurry supplied from the supply hole on the other radius It can be seen that by keeping the difference from the average value within 25%, the GBIR Range is reduced, and the GBIR variation can be reduced under the pumping type.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な効果を奏するいかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and the technical scope of the present invention is anything that has substantially the same configuration as the technical idea described in the claims of the present invention and has the same effect. Is included.
10…両面研磨装置、 11…キャリア、 12…上定盤、
13…下定盤、 14…サンギア、 15…インターナルギア、
16−23…供給孔、
W…ウェーハ、 L…直径、 R…半径、 α、β…回転角度。
10 ... Double-side polishing machine, 11 ... Carrier, 12 ... Upper surface plate,
13 ... lower surface plate, 14 ... sun gear, 15 ... internal gear,
16-23 ... supply hole,
W ... wafer, L ... diameter, R ... radius, α, β ... rotation angle.
Claims (3)
前記供給孔が、前記上定盤の任意の半径から回転角度αだけ回転した半径上にM1個備えられ、
前記回転角度αよりも180度大きい回転角度をβとしたとき、
前記供給孔が、前記任意の半径から回転角度βだけ回転した半径上にM2個備えられ、
前記任意の半径から回転角度αだけ回転した半径と前記任意の半径から回転角度βだけ回転した半径とがなす直径上の供給孔に、前記直径の一端より1からM1+M2までの番号を付し、
前記直径上の供給孔のうち、i番目の供給孔の前記上定盤の中心からの距離をriとし、
前記任意の半径から回転角度αだけ回転した半径上の前記i番目の供給孔から供給されるスラリーの流量をx(ri,α)とし、
前記直径上の供給孔のうち、j番目の供給孔の前記上定盤の中心からの距離をrjとし、
前記任意の半径から回転角度βだけ回転した半径上の前記j番目の供給孔から供給されるスラリーの流量をx(rj,β)とし、
前記上定盤に備えられたN個全ての供給孔から供給されるスラリーの流量の平均値をxaveとしたとき、
前記任意の半径から回転角度αだけ回転した半径上の供給孔から供給されるスラリーの流量の平均値と前記任意の半径から回転角度βだけ回転した半径上の供給孔から供給されるスラリーの流量の平均値との差の絶対値の全ての供給孔から供給されるスラリーの流量の平均値xaveに対する割合Diffが下記式(1)の関係を満たすように制御しながら研磨することを特徴とする両面研磨方法。
M 1 supply holes are provided on a radius rotated by a rotation angle α from an arbitrary radius of the upper surface plate,
When the rotation angle 180 degrees larger than the rotation angle α is β,
M 2 supply holes are provided on a radius rotated by a rotation angle β from the arbitrary radius,
A number from 1 to M 1 + M 2 from one end of the diameter is given to the supply hole on the diameter formed by the radius rotated by the rotation angle α from the arbitrary radius and the radius rotated by the rotation angle β from the arbitrary radius. Attached,
Of supply hole on the diameter, the distance from the center of the upper surface plate of the i-th supply hole and r i,
The flow rate of the slurry supplied from the i-th supply hole on the radius rotated by the rotation angle α from the arbitrary radius is x (r i , α),
Among the supply holes on the diameter, the distance from the center of the upper platen of the jth supply hole is r j ,
The flow rate of the slurry supplied from the j-th supply hole on the radius rotated from the arbitrary radius by the rotation angle β is x (r j , β),
When the average value of the flow rate of the slurry supplied from all N supply holes provided in the upper surface plate is x ave ,
The average value of the flow rate of the slurry supplied from the supply hole on the radius rotated from the arbitrary radius by the rotation angle α and the flow rate of the slurry supplied from the supply hole on the radius rotated from the arbitrary radius by the rotation angle β. The polishing is performed while controlling the ratio Diff to the average value x ave of the flow rate of the slurry supplied from all supply holes with the absolute value of the difference from the average value of Double-side polishing method.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018023969A JP2019136837A (en) | 2018-02-14 | 2018-02-14 | Double-sided polishing method |
KR1020207016401A KR102677827B1 (en) | 2018-02-14 | 2019-01-21 | Double-sided polishing method |
CN201980005966.5A CN111405963B (en) | 2018-02-14 | 2019-01-21 | Double-side polishing method |
PCT/JP2019/001574 WO2019159603A1 (en) | 2018-02-14 | 2019-01-21 | Double-sided polishing method |
TW108103811A TWI817982B (en) | 2018-02-14 | 2019-01-31 | Double-sided grinding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018023969A JP2019136837A (en) | 2018-02-14 | 2018-02-14 | Double-sided polishing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019136837A true JP2019136837A (en) | 2019-08-22 |
Family
ID=67619038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018023969A Pending JP2019136837A (en) | 2018-02-14 | 2018-02-14 | Double-sided polishing method |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2019136837A (en) |
KR (1) | KR102677827B1 (en) |
CN (1) | CN111405963B (en) |
TW (1) | TWI817982B (en) |
WO (1) | WO2019159603A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115427193A (en) * | 2020-05-13 | 2022-12-02 | 信越半导体株式会社 | Double-side polishing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11262862A (en) * | 1998-03-17 | 1999-09-28 | Speedfam Co Ltd | Double side polishing device and slurry supply method |
JP2004142040A (en) * | 2002-10-25 | 2004-05-20 | Fujikoshi Mach Corp | Double-sided lapping device and lapping method using the same |
JP2010221370A (en) * | 2009-03-25 | 2010-10-07 | Hoya Corp | Method of manufacturing substrate for mask blank, method of manufacturing mask blank, and method of manufacturing mask |
JP2011235425A (en) * | 2010-05-13 | 2011-11-24 | Asahi Glass Co Ltd | Polishing pad and polishing device using the same |
JP2012171042A (en) * | 2011-02-21 | 2012-09-10 | Asahi Glass Co Ltd | Method of polishing glass substrate |
JP2015098065A (en) * | 2013-11-18 | 2015-05-28 | 株式会社Sumco | Double surface polishing device and double surface polishing method of workpiece |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4308344B2 (en) | 1998-07-24 | 2009-08-05 | 不二越機械工業株式会社 | Double-side polishing equipment |
US6705928B1 (en) * | 2002-09-30 | 2004-03-16 | Intel Corporation | Through-pad slurry delivery for chemical-mechanical polish |
JP2007021680A (en) | 2005-07-19 | 2007-02-01 | Shin Etsu Handotai Co Ltd | Double-side lapping method for wafer |
DE102006032455A1 (en) * | 2006-07-13 | 2008-04-10 | Siltronic Ag | Method for simultaneous double-sided grinding of a plurality of semiconductor wafers and semiconductor wafer with excellent flatness |
JP2009061526A (en) * | 2007-09-05 | 2009-03-26 | Seiko Instruments Inc | Wafer polishing device, method of polishing wafer, method for manufacturing piezoelectric oscilator, piezoelectric, oscillator, electronic device, and radio clock |
JP2013078808A (en) * | 2011-09-30 | 2013-05-02 | Sony Corp | Polishing apparatus and polishing method |
CN104669105B (en) * | 2013-11-26 | 2017-12-29 | 浙江汇锋塑胶科技有限公司 | A kind of two sides Ginding process of sapphire touch panel |
WO2016047451A1 (en) * | 2014-09-24 | 2016-03-31 | 東洋ゴム工業株式会社 | Grinding pad |
CN105215838B (en) * | 2015-10-29 | 2017-11-28 | 江苏吉星新材料有限公司 | The lapping device and its Ginding process of a kind of sapphire wafer |
JP6546845B2 (en) * | 2015-12-18 | 2019-07-17 | 株式会社荏原製作所 | Polishing apparatus, control method and program |
-
2018
- 2018-02-14 JP JP2018023969A patent/JP2019136837A/en active Pending
-
2019
- 2019-01-21 KR KR1020207016401A patent/KR102677827B1/en active IP Right Grant
- 2019-01-21 WO PCT/JP2019/001574 patent/WO2019159603A1/en active Application Filing
- 2019-01-21 CN CN201980005966.5A patent/CN111405963B/en active Active
- 2019-01-31 TW TW108103811A patent/TWI817982B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11262862A (en) * | 1998-03-17 | 1999-09-28 | Speedfam Co Ltd | Double side polishing device and slurry supply method |
JP2004142040A (en) * | 2002-10-25 | 2004-05-20 | Fujikoshi Mach Corp | Double-sided lapping device and lapping method using the same |
JP2010221370A (en) * | 2009-03-25 | 2010-10-07 | Hoya Corp | Method of manufacturing substrate for mask blank, method of manufacturing mask blank, and method of manufacturing mask |
JP2011235425A (en) * | 2010-05-13 | 2011-11-24 | Asahi Glass Co Ltd | Polishing pad and polishing device using the same |
JP2012171042A (en) * | 2011-02-21 | 2012-09-10 | Asahi Glass Co Ltd | Method of polishing glass substrate |
JP2015098065A (en) * | 2013-11-18 | 2015-05-28 | 株式会社Sumco | Double surface polishing device and double surface polishing method of workpiece |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115427193A (en) * | 2020-05-13 | 2022-12-02 | 信越半导体株式会社 | Double-side polishing method |
KR20230007344A (en) | 2020-05-13 | 2023-01-12 | 신에쯔 한도타이 가부시키가이샤 | Double-sided polishing method |
CN115427193B (en) * | 2020-05-13 | 2024-02-13 | 信越半导体株式会社 | Double-sided grinding method |
Also Published As
Publication number | Publication date |
---|---|
CN111405963A (en) | 2020-07-10 |
KR20200117982A (en) | 2020-10-14 |
TWI817982B (en) | 2023-10-11 |
WO2019159603A1 (en) | 2019-08-22 |
CN111405963B (en) | 2022-10-11 |
TW201934259A (en) | 2019-09-01 |
KR102677827B1 (en) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW546724B (en) | Method and apparatus for processing a semiconductor wafer using final polishing method | |
WO2012002525A1 (en) | Method for polishing silicon wafer | |
US10272537B2 (en) | Method for polishing GaN single crystal material | |
JPWO2012005142A1 (en) | Abrasive and polishing method | |
KR20060062028A (en) | Method for polishing wafer | |
JP6652202B2 (en) | Carrier for double-side polishing apparatus, double-side polishing apparatus, and double-side polishing method | |
CN109676437A (en) | Silicon carbide wafer and its manufacturing method | |
JP2014128877A (en) | Surface processing apparatus and method | |
JP6566112B2 (en) | Double-side polishing method and double-side polishing apparatus | |
CN1981990A (en) | Chemical-mechanical polishing grinding pad | |
JP2006205265A (en) | Polishing method and polishing composition | |
WO2015072050A1 (en) | Device for double-sided polishing and method for double-sided polishing of workpiece | |
TW201618177A (en) | Grinding method for SiC substrate | |
WO2019159603A1 (en) | Double-sided polishing method | |
JP5401683B2 (en) | Double-sided mirror semiconductor wafer and method for manufacturing the same | |
JP2013099831A (en) | Grinding stone | |
CN100526017C (en) | Chemomechanical grinder and its grinding pad regulating method | |
WO2018116690A1 (en) | Single-wafer one-side polishing method for silicon wafer | |
JP2011216884A (en) | Polishing method of semiconductor wafer | |
JP2005205542A (en) | Sapphire polishing grinding wheel and sapphire polishing method | |
JP2013110201A (en) | Supply method and supply device of polishing slurry, and polishing apparatus | |
CN105729250A (en) | Self-adjustment magnetorheological flexible polishing abrasive wheel and polishing method thereof | |
WO2022137934A1 (en) | Method for polishing carrier plate, carrier plate, and method for polishing semiconductor wafer | |
JP6885492B1 (en) | Double-sided polishing method | |
JP2009135180A (en) | Method for manufacturing semiconductor wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210804 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210804 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210816 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210817 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20210917 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20210928 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220104 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20220405 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220720 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220906 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20221011 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20221011 |