JP2019136719A - Molding material and manufacturing method thereof - Google Patents

Molding material and manufacturing method thereof Download PDF

Info

Publication number
JP2019136719A
JP2019136719A JP2018020379A JP2018020379A JP2019136719A JP 2019136719 A JP2019136719 A JP 2019136719A JP 2018020379 A JP2018020379 A JP 2018020379A JP 2018020379 A JP2018020379 A JP 2018020379A JP 2019136719 A JP2019136719 A JP 2019136719A
Authority
JP
Japan
Prior art keywords
molding material
valley
mountain
degrees
top surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018020379A
Other languages
Japanese (ja)
Inventor
秋本 一世
Kazuyo Akimoto
一世 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Packing Industry Co Ltd
Original Assignee
Sanwa Packing Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Packing Industry Co Ltd filed Critical Sanwa Packing Industry Co Ltd
Priority to JP2018020379A priority Critical patent/JP2019136719A/en
Publication of JP2019136719A publication Critical patent/JP2019136719A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a molding material which can be made light in weight, has deformability without directionality and further, in addition to deformation in a tensile direction along a prescribed direction, also has sufficient deformability for a load in a compression direction.SOLUTION: A corrugated forming material 1 is constituted such that a trough part 10 and a crest part 20 along a first direction x are alternately arranged along a second direction y, at the same time, a projecting part 30 and a recessed part 40 are alternately arranged along a first direction x on the trough part 10 and the crest part 20 to constitute a corrugated shape, a connection lateral face 50 which connects a trough bottom face 11 and a crest top face 21 formed of the trough part 10 and the crest part 20 is formed, a connection lateral face 50a on the recessed part 40 of the crest part 20 is arranged at 70° with respect to the trough bottom face 11 and the crest top face 21, and a connection lateral face 50b on the projecting part 30 of the crest part 20 is arranged at 90° with respect to the trough bottom face 11 and the crest top face 21 and is smoothly changed.SELECTED DRAWING: Figure 1

Description

この発明は、例えば、交差する第1方向と第2方向とにそれぞれ延びる凹凸によって構成されたコルゲート形状が形成された成形材及びその製造方法に関する。   The present invention relates to, for example, a molding material having a corrugated shape formed by irregularities extending in a first direction and a second direction that intersect each other, and a method for manufacturing the same.

薄板材に波付け加工(凹凸加工)された成形材について、高性能化や多様化に伴って、様々な波付け形状の成形材が提案されている。
例えば、特許文献1に記載の成形材の製造方法は、金属シートに対して二回の波付け加工を施して凹凸形状を形成するが、第2回目の波付け加工の方向を第1回目の波付け加工の方向に対して斜め方向に向けることにより、交差する第1方向と第2方向とにそれぞれ延びる凹凸において第1方向に沿って波形が形成され第2方向の凹凸形状において鋭角状をなす内曲げ連結側面を有する凹凸形状が施された成形材を形成することができるとされている。
With respect to a molding material that has been corrugated (concave and convex) on a thin plate material, molding materials having various corrugated shapes have been proposed as performance has increased and diversified.
For example, in the method for manufacturing a molding material described in Patent Document 1, a corrugated shape is formed by performing two corrugations on a metal sheet, but the direction of the second corrugation is the first By directing in an oblique direction with respect to the direction of the corrugation process, a corrugation is formed along the first direction in the unevenness extending in each of the intersecting first direction and the second direction, and an acute angle shape is formed in the uneven shape in the second direction. It is said that it is possible to form a molding material having a concave-convex shape having inner bending connection side surfaces.

しかしながら、上記特許文献1で提案された成形材では、第2方向の断面形状において鋭角状をなす内曲げ部分が第1方向に亘って形成されるため、第2方向の変形性と第1方向の変形性とが異なるとともに、引っ張り方向の負荷に対しては十分な変形性を有するものの、圧縮方向の負荷に対しては十分に対応できず、負荷の作用方向によって変形性に異なるため、用途の多様化が求められる現在のニーズに十分に対応できていなかった。   However, in the molding material proposed in the above-mentioned Patent Document 1, since the inner bent portion that forms an acute angle in the cross-sectional shape in the second direction is formed over the first direction, the deformability in the second direction and the first direction Although it is different from the deformability of the load and has sufficient deformability for the load in the pulling direction, it cannot sufficiently handle the load in the compression direction, and the deformability differs depending on the direction of the load. It was not enough to meet the current needs for diversification.

特表2001−504393号公報JP-T-2001-504393

本発明は、上述の問題に鑑み、方向性のない変形性を有するとともに、所定の向きに沿った引っ張り方向の変形に加え、圧縮方向の負荷に対しても十分な変形性を有する成形材及びその製造方法を提供することを目的とする。   In view of the above-mentioned problems, the present invention has a deformability having no directionality, and a molding material having sufficient deformability with respect to a load in the compression direction in addition to deformation in the pulling direction along a predetermined direction, and It aims at providing the manufacturing method.

この発明は、交差する第1方向と第2方向とにそれぞれ延びる凹凸によって構成されたコルゲート形状が形成された成形材であって、前記第1方向に沿って形成される凹状の谷部と凸状の山部とが前記第2方向に沿って交互に配置されるとともに、前記第1方向に沿って形成された前記谷部及び前記山部に、前記第1方向に沿って交互に凸状部と凹状部とが交互に配置されて前記コルゲート形状が構成され、前記谷部と前記山部とのそれぞれに谷底面と山上面とが形成されるとともに、前記谷底面と前記山上面とを連結する連結側面が形成され、前記谷部及び前記山部は、前記第1方向の波形に形成され、前記凸状部は前記波形の波凸部で形成され、前記凹状部は前記波形の波凹部で形成され、前記山部は、前記山部における前記凸状部の前記第2方向の幅が最も狭く、且つ前記凹状部の前記第2方向の幅が最も広くなる連続形状で形成され、前記谷部は、前記谷部における前記凹状部の前記第2方向の幅が最も狭く、且つ前記凸状部の前記第2方向の幅が最も広くなる連続形状で形成され、前記第2方向の断面において、少なくとも前記山部の前記凹状部における前記連結側面が前記谷底面及び前記山上面に対して90度未満で配置され、少なくとも前記山部の前記凸状部における前記連結側面が前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置されるとともに、前記連結側面は、前記谷底面及び前記山上面に対して90度未満で配置された前記凹状部から、前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記凸状部にかけて滑らかに変化することを特徴とする。   The present invention provides a molding material having a corrugated shape formed by irregularities extending in a first direction and a second direction intersecting each other, wherein a concave valley portion and a convex shape are formed along the first direction. Are alternately arranged along the second direction, and are alternately convex along the first direction at the valleys and the peaks formed along the first direction. The corrugated shape is configured by alternately arranging portions and concave portions, and a valley bottom surface and a mountain top surface are formed in each of the valley portion and the mountain portion, and the valley bottom surface and the mountain top surface are formed. A connecting side surface to be connected is formed, the valley portion and the peak portion are formed in a wave shape in the first direction, the convex portion is formed by a wave convex portion in the wave shape, and the concave portion is a wave in the wave shape. Formed in a recess, and the peak is in front of the convex part in the peak The width in the second direction is the narrowest and the concave portion is formed in a continuous shape in which the width in the second direction is the widest, and the valley portion has a width in the second direction of the concave portion in the valley portion. The convex portion is formed in a continuous shape having the widest width in the second direction, and in the cross section in the second direction, at least the connecting side surface of the concave portion of the peak portion is the bottom surface of the valley and It is disposed at less than 90 degrees with respect to the top surface of the mountain, and at least the connecting side surface of the convex portion of the peak portion is disposed within a range of 90 degrees to 100 degrees with respect to the bottom surface of the valley and the top surface of the mountain. The connection side surface is disposed in a range of 90 degrees to 100 degrees with respect to the valley bottom surface and the mountain top surface from the concave portion disposed at less than 90 degrees with respect to the valley bottom surface and the mountain top surface. On the convex part Wherein the smoothly varying Te.

この発明により、前記第1方向の変形性と前記第2方向の変形性とのバランスがよく、前記第2方向に沿った引っ張り方向の変形に加え、圧縮方向の負荷に対しても十分な変形性を有する成形材を構成することができる。   According to the present invention, the balance between the deformability in the first direction and the deformability in the second direction is good, and in addition to the deformation in the pulling direction along the second direction, the deformation is sufficient for the load in the compression direction. The molding material which has property can be comprised.

詳述すると、少なくとも前記山部の前記凹状部における前記連結側面が前記谷底面及び前記山上面に対して90度未満で配置され、少なくとも前記山部の前記凸状部における前記連結側面が前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置されるとともに、前記連結側面は、前記谷底面及び前記山上面に対して90度未満で配置された前記凹状部から、前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記凸状部にかけて滑らかに変化しているため、引っ張り方向の負荷に対する変形性のみならず、圧縮方向の負荷に対する変形性も備えているため、前記第2方向の変形性が高い成形材を構成することができる。   Specifically, at least the connection side surface in the concave portion of the peak portion is disposed at less than 90 degrees with respect to the valley bottom surface and the mountain top surface, and at least the connection side surface in the convex portion of the peak portion is the valley bottom. The connecting side surface is disposed in a range of 90 degrees or more and 100 degrees or less with respect to the surface and the top surface of the mountain, and the connection side surface is from the concave portion disposed at less than 90 degrees with respect to the bottom surface of the valley and the top surface of the mountain, Since it changes smoothly over the convex part arranged in the range of 90 degrees or more and 100 degrees or less with respect to the valley bottom face and the mountain top face, not only the deformability with respect to the load in the tensile direction but also the load in the compression direction Since it also has deformability, a molding material with high deformability in the second direction can be formed.

また、少なくとも前記山部の前記凹状部における前記連結側面が前記谷底面及び前記山上面に対して90度未満で配置され、少なくとも前記山部の前記凸状部における前記連結側面が前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置されるとともに、前記連結側面は、前記谷底面及び前記山上面に対して90度未満で配置された前記凹状部から、前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記凸状部にかけて滑らかに変化している、つまり、前記連結側面の前記谷底面及び前記山上面に対する角度が鋭角状である前記山部の前記凹状部から、鈍角状である前記山部の前記凸状部にかけて徐々に変化している。   Further, at least the connection side surface in the concave portion of the peak portion is disposed at less than 90 degrees with respect to the valley bottom surface and the mountain top surface, and at least the connection side surface in the convex portion of the peak portion is the valley bottom surface and The connecting side surface is disposed in a range of 90 degrees or more and 100 degrees or less with respect to the mountain top surface, and the connection side surface is formed from the concave portion disposed at less than 90 degrees with respect to the valley bottom surface and the mountain top surface. And the convex portion disposed in a range of 90 degrees or more and 100 degrees or less with respect to the top surface of the mountain is smoothly changed, that is, the angle of the connecting side surface with respect to the bottom surface of the valley and the top surface of the mountain is acute. It gradually changes from the concave part of the peak part to the convex part of the peak part that is obtuse.

殊に、前記第2方向の幅が最も広い前記山部の前記凹状部において前記連結側面は前記谷底面及び前記山上面に対して鋭角状となるように配置され、前記第2方向の幅が最も狭い前記山部の前記凸状部において前記連結側面は前記谷底面及び前記山上面に対して鈍角状となるように配置されているため、前記第2方向の幅が最も広い前記山部の凹状部における前記連結側面の基部における前記第2方向の幅と、前記第2方向の幅が最も狭い前記山部の凸状部における前記連結側面の基部における前記第2方向の幅との違いを小さくでき、コルゲート形状を形成することによって板材に作用する前記第1方向及び前記第2方向に交差する方向の負荷を低減することができる。
したがって、絞り性、及び張出し性の高い成形材を構成することができる。
In particular, in the concave portion of the peak portion having the widest width in the second direction, the connection side surface is arranged to be acute with respect to the valley bottom surface and the mountain top surface, and the width in the second direction is In the convex part of the narrowest peak part, the connecting side surface is arranged so as to be obtuse with respect to the bottom face of the valley and the top face of the peak, so that the width of the peak part in the second direction is the widest. The difference between the width in the second direction at the base portion of the connection side surface in the concave portion and the width in the second direction at the base portion of the connection side surface in the convex portion of the peak portion where the width in the second direction is the narrowest. The load in the direction intersecting the first direction and the second direction acting on the plate material can be reduced by forming a corrugated shape.
Therefore, it is possible to form a molding material having high drawability and high stretchability.

この発明の態様として、前記第2方向に沿って交互に配置された前記谷部及び前記山部の配置ピッチが、前記第1方向に沿って交互に配置された前記凸状部及び前記凹状部の配置ピッチに対して0.88乃至0.96倍に形成されてもよい。   As an aspect of the present invention, the convex portions and the concave portions that are alternately arranged along the first direction are arranged at the pitches of the valley portions and the peak portions that are alternately arranged along the second direction. The pitch may be 0.88 to 0.96 times the arrangement pitch.

この発明により、前記第2方向の変形性に対しても前記第1方向の変形性が十分に高く、前記第1方向及び前記第2方向において、さらにバランスの良い変形性を有する成形材を構成することができる。   According to the present invention, the deformability in the first direction is sufficiently high with respect to the deformability in the second direction, and a molding material having a more well-balanced deformability in the first direction and the second direction is configured. can do.

詳述すると、前記第2方向に沿って交互に配置された前記谷部及び前記山部の配置ピッチが、前記第1方向に沿って交互に配置された前記凸状部及び前記凹状部の配置ピッチに対して0.88倍以下に形成された場合、前記第2方向の変形性に対して前記第1方向の変形性が高くなり過ぎ、0.96倍に形成された場合、前記第2方向の変形性に対して前記第1方向の変形性が低くなり過ぎ、前記第1方向及び前記第2方向の変形性のバランスが悪くなる。   More specifically, the arrangement pitch of the valleys and the crests alternately arranged along the second direction is the arrangement of the convex parts and the depressions arranged alternately along the first direction. When formed to be 0.88 times or less with respect to the pitch, the deformability in the first direction becomes too high with respect to the deformability in the second direction, and when formed to be 0.96 times, the second The deformability in the first direction becomes too low with respect to the deformability in the direction, and the balance between the deformability in the first direction and the second direction becomes worse.

これに対し、前記第2方向に沿って交互に配置された前記谷部及び前記山部の配置ピッチが、前記第1方向に沿って交互に配置された前記凸状部及び前記凹状部の配置ピッチに対して0.88乃至0.96倍に形成されることで、前記第2方向の変形性に対しても前記第1方向の変形性が十分に高く、前記第1方向及び前記第2方向において、さらにバランスの良い変形性を有する成形材を構成することができる。   On the other hand, the arrangement pitch of the troughs and the crests arranged alternately along the second direction is the arrangement of the convex parts and the concave parts arranged alternately along the first direction. By forming 0.88 to 0.96 times the pitch, the deformability in the first direction is sufficiently high even with respect to the deformability in the second direction, and the first direction and the second direction. In the direction, it is possible to constitute a molding material having a more well-balanced deformability.

またこの発明の態様として、少なくとも前記凸状部において前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記連結側面の高さが、前記谷底面及び前記山上面の幅に対して0.2倍乃至0.6倍に形成されてもよい。   Moreover, as an aspect of the present invention, at least the height of the connecting side surface arranged in the range of 90 degrees or more and 100 degrees or less with respect to the bottom surface of the valley and the top surface of the mountain in the convex portion is the bottom surface of the valley and the top surface of the mountain. The width may be 0.2 to 0.6 times as large as the width.

この発明により、強度と変形性とがバランスよく両立できる成形材を形成することができる。
詳述すると、少なくとも前記凸状部において前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記連結側面の高さが、前記谷底面及び前記山上面の幅に対して0.2倍以下の場合、コルゲート形状の高さが低くなり、強度は確保できるものの変形性が低下する。逆に、少なくとも前記凸状部において前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記連結側面の高さが、前記谷底面及び前記山上面の幅に対して0.6倍以上の場合、コルゲート形状の高さが高くなり、変形性は確保できるものの強度が低下する。
According to the present invention, it is possible to form a molding material in which the strength and the deformability can be balanced.
More specifically, at least the height of the connecting side surface disposed in the range of 90 degrees or more and 100 degrees or less with respect to the bottom surface of the valley and the top surface of the mountain in the convex portion is the width of the bottom surface of the valley and the top surface of the mountain. On the other hand, in the case of 0.2 times or less, the height of the corrugated shape is lowered, and the strength can be secured, but the deformability is lowered. On the other hand, the height of the connecting side surface disposed in the range of 90 degrees or more and 100 degrees or less with respect to the bottom surface of the valley and the top surface of the mountain at least in the convex portion is greater than the width of the bottom surface of the valley and the top surface of the mountain. If it is 0.6 times or more, the height of the corrugated shape is increased, the strength is lowered although the deformability can be ensured.

これに対し、少なくとも前記凸状部において前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記連結側面の高さが、前記谷底面及び前記山上面の幅に対して0.2倍乃至0.6倍に形成することで、強度と変形性とがバランスよく両立できる成形材を形成することができる。   On the other hand, the height of the connection side surface arranged at least in the range of 90 degrees to 100 degrees with respect to the bottom surface of the valley and the top surface of the mountain in the convex portion is the width of the bottom surface of the valley and the top surface of the mountain. On the other hand, by forming from 0.2 times to 0.6 times, it is possible to form a molding material in which both strength and deformability can be balanced.

またこの発明の態様として、0.06mm以上0.10mm以下の厚みで構成された金属製の箔材で構成されてもよい。
この発明により、所定の強度を有するとともに、少なくとも前記山部の前記凹状部において前記谷底面及び前記山上面に対して90度未満で配置される前記連結側面に作用する曲げによる局所的な曲げ負荷を小さくすることができる。なお、上記厚みについては、小数三位以下の誤差を含むものとする。
Moreover, as an aspect of this invention, you may be comprised with the metal foil materials comprised by the thickness of 0.06 mm or more and 0.10 mm or less.
According to the present invention, a local bending load by bending that has a predetermined strength and acts on the connecting side surface that is disposed at less than 90 degrees with respect to the bottom surface of the valley and the top surface of the mountain at least in the concave portion of the peak portion. Can be reduced. In addition, about the said thickness, the error below three decimal places shall be included.

またこの発明の態様として、少なくとも前記山部の前記凸状部における前記連結側面の高さが、前記箔材の材厚に対して10倍乃至30倍に形成されてもよい。
この発明により、強度と変形性とがバランスよく両立できる成形材を形成することができる。
As an aspect of the present invention, at least the height of the connecting side surface of the convex portion of the peak portion may be formed 10 to 30 times the thickness of the foil material.
According to the present invention, it is possible to form a molding material in which the strength and the deformability can be balanced.

詳述すると、少なくとも前記山部の前記凸状部における前記連結側面の高さが、前記箔材の材厚に対して10倍以下の場合、コルゲート形状の高さが低くなり、強度は確保できるものの変形性が低下する。逆に、少なくとも前記山部の前記凸状部における前記連結側面の高さが、前記箔材の材厚に対して30倍以上の場合、コルゲート形状の高さが高くなり、変形性は確保できるものの強度が低下する。   More specifically, when the height of the connecting side surface at least in the convex portion of the peak portion is 10 times or less than the thickness of the foil material, the height of the corrugated shape is lowered and the strength can be secured. The deformability of things decreases. On the contrary, when the height of the connecting side surface in the convex portion of at least the peak portion is 30 times or more with respect to the thickness of the foil material, the height of the corrugated shape is increased and the deformability can be secured. The strength of things decreases.

これに対し、少なくとも前記山部の前記凸状部における前記連結側面の高さが、前記箔材の材厚に対して10倍乃至30倍に形成することで、強度と変形性とがバランスよく両立できる成形材を形成することができる。   On the other hand, at least the height of the connecting side surface of the convex portion of the peak portion is 10 to 30 times the thickness of the foil material, so that strength and deformability are well balanced. A compatible molding material can be formed.

またこの発明の態様として、前記谷底面及び前記山上面のそれぞれと前記連結側面との角部が、前記箔材の材厚の2.5倍乃至8.0倍の曲げ半径で構成されてもよい。
この発明により、十分な変形性を備えるとともに、損傷しにくく、耐久性のある成形材を構成することができる。
Moreover, as an aspect of the present invention, the corners of the bottom surface of the valley and the top surface of the mountain and the connecting side surface may be configured with a bending radius of 2.5 times to 8.0 times the thickness of the foil material. Good.
According to this invention, while having sufficient deformability, it is hard to damage and can form a durable molding material.

詳述すると、前記谷底面及び前記山上面のそれぞれと前記連結側面との角部が、材厚の2.5倍以下の曲げ半径である場合、曲げ内側と曲げ外側との曲率差による負荷が大きくなり損傷するおそれが高まり、8.0倍以上の曲げ半径の場合、前記谷底面及び前記山上面のそれぞれと前記連結側面とにおける角部が占める割合が大きくなって、変形性が低下するおそれがある。   More specifically, when the corners between the bottom surface of the valley and the top surface of the mountain and the connecting side surface have a bending radius of 2.5 times or less of the material thickness, a load due to a difference in curvature between the bending inner side and the bending outer side is applied. If the bending radius is 8.0 times or more, the ratio of the corners in each of the valley bottom surface and the top surface of the mountain and the connection side surface increases, and the deformability may be reduced. There is.

これに対し、前記谷底面及び前記山上面のそれぞれと前記連結側面との角部が、材厚の2.5倍乃至8.0倍の曲げ半径とすることにより、角部における曲げ内側と曲げ外側との曲率差による負荷を小さくできるとともに、前記谷底面及び前記山上面のそれぞれと前記連結側面とにおける角部が占める割合を変形性が損なわない範囲とすることができ、十分な変形性を備えるとともに、損傷しにくく、耐久性のある成形材を構成することができる。   On the other hand, the corners of each of the valley bottom surface and the top surface of the mountain and the connection side surface have a bending radius of 2.5 to 8.0 times the material thickness, so The load due to the difference in curvature with the outside can be reduced, and the proportion of the corners in each of the valley bottom surface and the mountain top surface and the connection side surface can be within a range where the deformability is not impaired, and sufficient deformability can be obtained. In addition to being provided, it is possible to form a durable molding material that is not easily damaged.

またこの発明の態様として、前記箔材は、304ステンレス鋼あるいは430ステンレス鋼であってもよい。
この発明により、さらに高耐久性の成形材を構成することができる。
As an aspect of the present invention, the foil material may be 304 stainless steel or 430 stainless steel.
According to the present invention, a more durable molding material can be formed.

詳述すると、304ステンレス鋼は他の一般的な金属製箔材に対して材料強度が高く、伸び性も高いため、コルゲート形状を形成するための凹凸加工において、他の一般的な金属製箔材では損傷するような高負荷が作用する加工であっても、損傷することなく所望のコルゲート形状を形成することができる。   More specifically, 304 stainless steel has higher material strength and higher extensibility than other general metal foil materials, so that other general metal foils can be used to form corrugated shapes. A desired corrugated shape can be formed without being damaged even when processing is performed with a high load that is damaged by the material.

また、他の一般的な金属製箔材に比べて材料強度が高い304ステンレス鋼は、凹凸加工によっていわゆるスプリングバックという所望の変形得られないという状態が生じるが、高い伸び性能によって、スプリングバックを考慮した凹凸加工を施すことによって損傷することなく、所望のコルゲート形状を形成することができる。   In addition, 304 stainless steel, which has a higher material strength than other general metal foil materials, may not be able to obtain the desired deformation of a so-called spring back due to uneven processing. The desired corrugated shape can be formed without being damaged by performing the uneven processing in consideration.

その反面、304ステンレス鋼に大変形加工を施すと部分的に磁化して、耐久性が低下するおそれがあるが、304ステンレス鋼に上述の凹凸加工によってコルゲート形状が形成されているため、ステンレス箔材としての変形性能が向上しているため、大変形加工を施しても磁化することなく、さらに高耐久性の成形材を構成することができる。   On the other hand, if 304 stainless steel is subjected to a large deformation process, it may partially magnetize and the durability may be lowered. However, since the corrugated shape is formed on the 304 stainless steel by the above uneven processing, the stainless steel foil Since the deformation performance as a material is improved, a more highly durable molding material can be configured without being magnetized even when subjected to a large deformation process.

詳述すると、430ステンレス鋼は、フェライト系ステンレスであり、磁性を有するとともに、熱処理により硬化せず、靭性,成形性,溶接性に優れ、加工性が良好である。また、安価であり、高品質のステンレス箔材を安定して供給することができる。なお、脆化温度が475℃付近であるが、例えば、後述するようなカバー体を、900℃前後まで温度上昇するエキゾーストマニホールドのヒートインシュレータに用いる場合であっても、カバー体は脆化温度以下の温度となるため、脆化することもなく、耐久性のよいカバー体を構成することができる。   More specifically, 430 stainless steel is a ferritic stainless steel, has magnetism, is not hardened by heat treatment, has excellent toughness, formability and weldability, and has good workability. Moreover, it is inexpensive and can stably supply a high-quality stainless steel foil material. Although the embrittlement temperature is around 475 ° C., for example, even when a cover body, which will be described later, is used for a heat insulator of an exhaust manifold that rises to about 900 ° C., the cover body is not more than the embrittlement temperature. Therefore, the cover body having good durability can be configured without being embrittled.

またこの発明の態様として、前記箔材が、複数枚積層されてもよい。
この発明により、強度を向上するとともに、仮に、間に空気層を介在させることによって、遮熱性を有する成形材を構成することができる。
As an aspect of the present invention, a plurality of the foil materials may be laminated.
According to the present invention, a molding material having a heat shielding property can be configured by improving the strength and temporarily interposing an air layer therebetween.

また、複数枚積層させた前記箔材同士を、前記谷底面及び前記山上面に対して90度未満で配置される、つまり前記谷底面及び前記山上面に対して鋭角状に配置される前記山部の前記凹状部における前記連結側面によって、いわゆるカシメ作用によって連結することができる。   Further, the plurality of the laminated foil materials are disposed at an angle of less than 90 degrees with respect to the bottom surface of the valley and the top surface of the mountain, that is, the mountain is disposed at an acute angle with respect to the bottom surface of the valley and the top surface of the mountain. It can connect by what is called a caulking effect | action by the said connection side surface in the said recessed part of a part.

なお、前記谷底面及び前記山上面に対して鋭角状に配置される前記連結側面は、前記山部の前記凹状部であり、前記凸状部における連結側面は前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置されており、鋭角状に配置されることによる前記箔材同士の連結作用を得ることができない。つまり、前記山部における前記凹状部で前記箔材同士がカシメ作用で連結されており、その他の部分では連結されていない。したがって、前記凹状部から前記凸状部に亘って全体的に箔材同士が連結されている場合、前記成形材を曲げて立体加工する際の箔材同士の曲率の違いが曲げに対する抵抗となり、曲げ加工性が低下するが、前記山部における前記凹状部で前記箔材同士がカシメ作用で連結されているものの、その他の部分では連結されていないため、前記凹状部におけるカシメ作用により前記箔材同士が分離すること防止するとともに、曲げ加工における上述のような曲げ加工性の低下を抑制することができる。   The connection side surface arranged at an acute angle with respect to the bottom surface of the valley and the top surface of the mountain is the concave portion of the peak portion, and the connection side surface of the convex portion corresponds to the bottom surface of the valley and the top surface of the mountain. It is arrange | positioned in the range of 90 degree | times or more and 100 degrees or less, and it cannot obtain the connection effect | action of the said foil materials by arrange | positioning at acute angle shape. That is, the foil members are connected by a caulking action at the concave portion in the peak portion, and are not connected at other portions. Therefore, when the foil materials are connected to each other from the concave portion to the convex portion as a whole, the difference in curvature between the foil materials when the molding material is bent and three-dimensionally processed becomes resistance to bending, Although the bending workability is lowered, the foil materials are connected by caulking action at the concave portion in the peak portion, but are not connected at other portions, so the foil material is caused by caulking action at the concave portion. While preventing each other from separating, it is possible to suppress a decrease in bending workability as described above in bending work.

またこの発明の態様として、前記箔材が、表面が有色である有色箔材であってもよい。
この発明により、放射される熱を遮ることができる遮熱性を有する成形材を構成することができる。
As an aspect of the present invention, the foil material may be a colored foil material having a colored surface.
According to the present invention, it is possible to configure a molding material having a heat shielding property capable of shielding the radiated heat.

またこの発明の態様として、前記箔材に、複数の貫通孔が所定間隔を隔てて設けられてもよい。
この発明により、制振性、遮音性及び吸音性を発揮できる成形材を構成することができる。
As an aspect of the present invention, a plurality of through holes may be provided at predetermined intervals in the foil material.
According to the present invention, it is possible to configure a molding material that can exhibit vibration damping properties, sound insulation properties, and sound absorption properties.

またこの発明は、上記成形材で構成され、対象部材の形状の応じた立体形状に加工されたカバー体であることを特徴とする。
この発明により、高変形性の成形体を対象部材の形状に適した立体形状に形成された軽量のカバー体を構成することができる。
In addition, the present invention is a cover body that is made of the above-described molding material and is processed into a three-dimensional shape corresponding to the shape of the target member.
By this invention, the lightweight cover body formed in the three-dimensional shape suitable for the shape of the object member can be comprised from the highly deformable molded object.

本発明は、方向性のない変形性を有するとともに、所定の向きに沿った引っ張り方向の変形に加え、圧縮方向の負荷に対しても十分な変形性を有する成形材及びその製造方法を提供することができる。   The present invention provides a molding material having a deformability having no directionality and having a sufficient deformability against a load in the compression direction in addition to a deformation in a pulling direction along a predetermined direction, and a method for manufacturing the same. be able to.

成形材の斜視図。The perspective view of a molding material. 成形材の平面図。The top view of a molding material. 成形材の断面図による説明図。Explanatory drawing by sectional drawing of a molding material. 成形材の第2方向の拡大断面図による説明図。Explanatory drawing by the expanded sectional view of the 2nd direction of a molding material. 成形材の製造方法を説明する説明図。Explanatory drawing explaining the manufacturing method of a molding material. 成形材で構成したヒートインシュレータの斜視図。The perspective view of the heat insulator comprised with the molding material.

この発明の一実施形態を以下図面と共に説明する。
なお、図1はコルゲート成形材1の斜視図を示し、図2はコルゲート成形材1の平面図を示し、図3はコルゲート成形材1の断面図による説明図を示し、図4はコルゲート成形材1の第2方向の拡大断面図による説明図を示している。
An embodiment of the present invention will be described below with reference to the drawings.
1 is a perspective view of the corrugated molding material 1, FIG. 2 is a plan view of the corrugated molding material 1, FIG. 3 is an explanatory view of the corrugated molding material 1, and FIG. 4 is a corrugated molding material. The explanatory view by the expanded sectional view of the 2nd direction of 1 is shown.

詳しくは、図3(a)は図2におけるA−A断面図を示し、図3(b)は図2におけるB−B断面図を示し、図3(c)は図2におけるC−C断面図を示し、図3(d)は図2におけるD−D断面図を示している。また、図4(a)は図3(a)におけるa部拡大図を示し、図4(b)は図3(b)におけるb部拡大図を示している。   Specifically, FIG. 3 (a) shows an AA cross-sectional view in FIG. 2, FIG. 3 (b) shows a BB cross-sectional view in FIG. 2, and FIG. 3 (c) shows a CC cross-section in FIG. FIG. 3D is a cross-sectional view taken along the line DD in FIG. FIG. 4A shows an enlarged view of a portion in FIG. 3A, and FIG. 4B shows an enlarged view of the portion b in FIG. 3B.

さらに、図5はコルゲート成形材1の製造方法を説明する説明図を示し、図6はコルゲート成形材1で構成したヒートインシュレータ300の斜視図を示している。   Further, FIG. 5 shows an explanatory view for explaining a method for manufacturing the corrugated molding material 1, and FIG. 6 shows a perspective view of a heat insulator 300 constituted by the corrugated molding material 1.

詳述すると、図5(a)は加工前のステンレス箔材100の斜視図を示し、図5(b)はステンレス箔材100に第1波付け加工を施して波形111を形成した一方向波付け材110の斜視図を示し、図5(c)は一方向波付け材110に第2波付け加工を施して形成したコルゲート成形材1の斜視図を示している。   More specifically, FIG. 5A shows a perspective view of the stainless steel foil material 100 before processing, and FIG. 5B shows a one-way wave in which the corrugation 111 is formed by subjecting the stainless steel foil material 100 to the first corrugation. FIG. 5C shows a perspective view of the corrugated molding material 1 formed by subjecting the one-way corrugating material 110 to the second corrugating process.

図1に示すコルゲート成形材1は、ステンレス箔材100(図5参照)に対して、平面方向に直交する第1方向xと第2方向yに延びる凹凸の波付け加工が施され、第1方向xと第2方向yに延びる凹凸によって構成されるコルゲート形状が形成された成形材である。詳しくは、コルゲート成形材1は、厚みtが0.08mmである304ステンレス鋼製の箔材(以下、304ステンレス箔という)に上記コルゲート形状を形成して構成している。   The corrugated molding material 1 shown in FIG. 1 is subjected to corrugation processing of unevenness extending in a first direction x and a second direction y perpendicular to the plane direction on a stainless foil material 100 (see FIG. 5). It is a molding material in which a corrugated shape constituted by unevenness extending in the direction x and the second direction y is formed. Specifically, the corrugated molding material 1 is configured by forming the corrugated shape on a foil material made of 304 stainless steel (hereinafter referred to as 304 stainless steel foil) having a thickness t of 0.08 mm.

コルゲート成形材1に形成されたコルゲート形状について詳述すると、第1方向xに沿って形成される凹状の谷部10と凸状の山部20とが第2方向yに沿って交互に配置されるとともに、第1方向xに沿って形成された谷部10及び山部20に、第1方向xに沿って交互に凸状部30と凹状部40とが交互に配置されてコルゲート形状が構成されている。   The corrugated shape formed on the corrugated molding material 1 will be described in detail. The concave valley portions 10 and the convex mountain portions 20 formed along the first direction x are alternately arranged along the second direction y. In addition, the corrugated shape is formed by alternately arranging the convex portions 30 and the concave portions 40 along the first direction x in the valley portions 10 and the peak portions 20 formed along the first direction x. Has been.

なお、凸状部30は波形の波凸部であり、凹状部40は波形の波凹部で形成され、山部20における凸状部30の第2方向yの幅が最も狭く、且つ谷部10の第2方向yの幅が最も広くなる連続形状で形成され、谷部10における凹状部40の第2方向yの幅が最も狭く、且つ凸状部30の第2方向yの幅が最も広くなる連続形状で形成されている。   The convex portion 30 is a corrugated wave convex portion, the concave portion 40 is formed by a corrugated wave concave portion, the width of the convex portion 30 in the peak portion 20 in the second direction y is the narrowest, and the trough portion 10. The width of the concave portion 40 in the valley portion 10 is the narrowest in the second direction y, and the width of the convex portion 30 in the second direction y is the widest. It is formed in a continuous shape.

また、谷部10には谷底面11が形成され、山部20には山上面21が形成されるとともに、谷底面11と山上面21とを連結する連結側面50(50a,50b)が形成され、換言すると、第2方向yの断面において、谷部10は谷底面11と第2方向y両側の連結側面50(50a,50b)とで略角型凹状に形成され、山部20は山上面21と第2方向y両側の連結側面50(50a,50b)とで略角型逆凹状に形成されている。   In addition, a valley bottom surface 11 is formed in the valley portion 10, a mountain top surface 21 is formed in the mountain portion 20, and connection side surfaces 50 (50 a, 50 b) that connect the valley bottom surface 11 and the mountain top surface 21 are formed. In other words, in the cross section in the second direction y, the valley portion 10 is formed in a substantially square concave shape with the valley bottom surface 11 and the connecting side surfaces 50 (50a, 50b) on both sides of the second direction y, and the peak portion 20 is 21 and the connecting side surfaces 50 (50a, 50b) on both sides in the second direction y are formed in a substantially square reverse concave shape.

さらに詳しくは、図3(a)及び図4(a)に示すように、第2方向yの断面において、連結側面50のうち凸状部30における連結側面50aが山上面21または谷底面11となす角60a(61a,62a)の角度Ra(Ra1,Ra2)は90°乃至100°の範囲の略90°で形成されている。   More specifically, as shown in FIGS. 3A and 4A, in the cross section in the second direction y, the connection side surface 50a of the convex portion 30 of the connection side surface 50 is connected to the mountain top surface 21 or the valley bottom surface 11. The angle Ra (Ra1, Ra2) of the formed angle 60a (61a, 62a) is formed at approximately 90 ° in the range of 90 ° to 100 °.

また、図3(b)及び図4(b)に示すように、第2方向yの断面において、連結側面50のうち凹状部40における連結側面50bが山上面21または谷底面11となす角60b(61b,62b)の角度Rb(Rb1,Rb2)は90°未満の略70°で形成されている。   3B and FIG. 4B, in the cross section in the second direction y, an angle 60b formed by the connection side surface 50b of the concave portion 40 of the connection side surface 50 and the mountain top surface 21 or the valley bottom surface 11 is formed. The angle Rb (Rb1, Rb2) of (61b, 62b) is formed at approximately 70 ° which is less than 90 °.

そして、凸状部30において山上面21または谷底面11に対して略90°で形成された連結側面50aと、凹状部40において山上面21または谷底面11に対して略70°で形成された連結側面50bとは、山上面21または谷底面11となす角60を滑らかに変化させながら連続的に形成されている。   And in the convex part 30, it was formed at the connection side surface 50a formed at about 90 degrees with respect to the mountain top surface 21 or the valley bottom surface 11, and at the concave part 40 formed at about 70 degrees with respect to the mountain top surface 21 or the valley bottom surface 11. The connection side surface 50b is continuously formed while smoothly changing the angle 60 formed with the mountain top surface 21 or the valley bottom surface 11.

なお、凸状部30において山上面21または谷底面11と連結側面50aとでなす角度Raが略90°である角60aにおける曲げ半径ra(ra1,ra2)は、コルゲート成形材1を構成する304ステンレス箔の厚みt:0.08mmの2.5倍乃至7.5倍の範囲となる0.2mm乃至0.6mmの範囲のうち0.4mm(5.0倍)で形成している。   Note that the bending radius ra (ra1, ra2) at the corner 60a where the angle Ra formed by the crest top surface 21 or the trough bottom surface 11 and the connecting side surface 50a in the convex portion 30 is approximately 90 ° constitutes the corrugated molding 1 304. The thickness t of the stainless steel foil is 0.4 mm (5.0 times) out of the range of 0.2 mm to 0.6 mm that is 2.5 times to 7.5 times 0.08 mm.

また、凹状部40において山上面21または谷底面11と連結側面50bとでなす角度Rbが略90°である角60bにおける曲げ半径rb(rb1,rb2)は、コルゲート成形材1を構成する304ステンレス箔の厚みt:0.08mmの2.5倍乃至8.0倍の範囲となる0.8mm乃至2.4mmの範囲のうち2.0mmで形成している。   In addition, the bending radius rb (rb1, rb2) at the corner 60b where the angle Rb formed between the top surface 21 or the bottom surface 11 and the connecting side surface 50b in the concave portion 40 is approximately 90 ° is 304 stainless steel constituting the corrugated molding 1. The foil thickness t is 2.0 mm in the range of 0.8 mm to 2.4 mm, which is 2.5 to 8.0 times 0.08 mm.

また、凸状部30における連結側面50aは、山上面21または谷底面11の幅w:4.0mmの0.2倍乃至0.6倍の範囲となる0.8mm乃至2.4mmの範囲のうち2.0mmの高さHであり、304ステンレス箔の厚みt:0.08mmの10倍乃至30倍の範囲のうち25.0倍となる。   Moreover, the connection side surface 50a in the convex part 30 is in the range of 0.8 mm to 2.4 mm which is 0.2 to 0.6 times the width w of the top surface 21 or the bottom surface 11 of 4.0 mm. Of these, the height H is 2.0 mm, and the thickness t of 304 stainless steel foil is 25.0 times in a range of 10 to 30 times 0.08 mm.

このような断面形状で形成されたコルゲート形状では、図2に示すように、第2方向yに沿って交互に配置された谷部10及び山部20の配置ピッチPy:11.74mmが、第1方向xに沿って交互に配置された凸状部30及び凹状部40の配置ピッチPx:12.75mmmに対して0.88乃至0.96倍の範囲のうち0.92倍で形成されている。   In the corrugated shape formed with such a cross-sectional shape, as shown in FIG. 2, the arrangement pitch Py of the valley portions 10 and the mountain portions 20 alternately arranged along the second direction y is 11.74 mm. Arrangement pitch Px of convex portions 30 and concave portions 40 alternately arranged along one direction x: 0.92 times out of a range of 0.88 to 0.96 times with respect to 12.75 mm. Yes.

このように構成されたコルゲート成形材1は、例えば、図6に示すように、エキゾーストマニホールド(以下においてエキマニという)や触媒などの対象部材の形状の応じた立体形状にプレス加工してヒートインシュレータ300を構成することができる。   For example, as shown in FIG. 6, the corrugated molding material 1 configured in this way is pressed into a three-dimensional shape corresponding to the shape of a target member such as an exhaust manifold (hereinafter referred to as “exhaust manifold”) or a catalyst, and the heat insulator 300. Can be configured.

このような構成のコルゲート成形材1は、図5に示すように、一対の波付けローラ(図示省略)を用い、ステンレス箔材を波付けローラ間に通して波形111を有する一方向波付け材110を構成し、一方向波付け材110の向きを平面視方向において90度回転させてから、波付けローラ間に通してコルゲート成形材1を製造する。   As shown in FIG. 5, the corrugated molding material 1 having such a configuration uses a pair of corrugating rollers (not shown), and a stainless foil material is passed between the corrugating rollers so as to have a corrugated 111. 110, the direction of the one-way corrugating material 110 is rotated 90 degrees in the plan view direction, and then passed between the corrugating rollers to produce the corrugated molding material 1.

なお、波付けローラはギヤ歯頂角や対向方向の間隔を調整可能しており、1回目の波付加工と2回目の波付け加工とにおいて、これらを調整することで上述のコルゲート形状が形成されたコルゲート成形材1を製造することができる。   The corrugated roller can adjust the gear tooth crest angle and the interval in the opposite direction, and the corrugated shape described above is formed by adjusting these in the first corrugation process and the second corrugation process. The corrugated molding material 1 made can be manufactured.

また、コルゲート成形材1の製造方法としては、上述の一対の波付けローラを用いた製造方法のみならず、例えば、所定方向の波形が交差方向に複数並列配置した一対のプレス(図示省略)を用い、ステンレス箔材100に対してプレス加工を施して波形111を有する一方向波付け材110を形成し、一方向波付け材110を交差する方向に向けて2回目のプレス加工を施すことによって上述のコルゲート形状を形成してコルゲート成形材1を製造してもよい。   Moreover, as a manufacturing method of the corrugated molding 1, not only the manufacturing method using the above-described pair of corrugating rollers, but also a pair of presses (not shown) in which a plurality of waveforms in a predetermined direction are arranged in parallel in the intersecting direction, for example. Used, by pressing the stainless steel foil material 100 to form a one-way corrugating material 110 having a corrugation 111, and by performing a second press working in a direction crossing the one-way corrugating material 110. The corrugated molding 1 may be manufactured by forming the corrugated shape described above.

また、所定方向に移動するステンレス箔材100の表裏両側から、所定方向に適宜の間隔を隔てて配置した一対の波形部材を押し付けて波形を形成する加工装置を用いて波形111を有する一方向波付け材110を形成し、一方向波付け材110を交差する方向に向けて所定方向に移動させながら2回目の押し付け加工によって上述のコルゲート形状を形成してコルゲート成形材1を製造してもよい。
このように、コルゲート成形材1の製造方法としては、一対の波付けローラを用いた製造方法に限定されず、さまざまな製造方法によって製造することができる。
したがって、絞り性、及び張出し性の高い成形材を構成することができる。
Further, a unidirectional wave having a waveform 111 is formed using a processing device that forms a waveform by pressing a pair of corrugated members arranged at an appropriate interval in a predetermined direction from both sides of the stainless steel foil material 100 moving in a predetermined direction. The corrugated molding material 1 may be manufactured by forming the corrugated material 110 and forming the corrugated shape by the second pressing while moving the one-way corrugating material 110 in a predetermined direction toward the intersecting direction. .
Thus, the manufacturing method of the corrugated molding 1 is not limited to the manufacturing method using a pair of corrugating rollers, and can be manufactured by various manufacturing methods.
Therefore, it is possible to form a molding material having high drawability and high stretchability.

上述のように、交差する第1方向xと第2方向yとにそれぞれ延びる凹凸によって構成されたコルゲート形状が形成されたコルゲート成形材1は、第1方向xに沿って形成される凹状の谷部10と凸状の山部20とが第2方向yに沿って交互に配置されるとともに、第1方向xに沿って形成された谷部10及び山部20に、第1方向xに沿って交互に凸状部30と凹状部40とが交互に配置されてコルゲート形状が構成され、谷部10と山部20とのそれぞれに谷底面11と山上面21とが形成されるとともに、谷底面11と山上面21とを連結する連結側面50(50a,50b)が形成され、谷部10及び山部20は、第1方向xの波形に形成され、凸状部30は波形の波凸部で形成され、凹状部40は波形の波凹部で形成され、山部20は、山部20における凸状部30の第2方向yの幅wが最も狭く、且つ凹状部40の第2方向yの幅wが最も広くなる連続形状で形成され、谷部10は、谷部10における凹状部40の第2方向yの幅wが最も狭く、且つ凸状部30の第2方向yの幅wが最も広くなる連続形状で形成され、第2方向yの断面において、凹状部40における連結側面50bが谷底面11及び山上面21に対して90度未満で配置され、凸状部30における連結側面50aが谷底面11及び山上面21に対して90度以上100度以下の範囲で配置されるとともに、連結側面50(50a,50b)は、谷底面11及び山上面21に対して90度未満で配置された凹状部40から、谷底面11及び山上面21に対して90度以上100度以下の範囲で配置された凸状部30にかけて滑らかに変化している。   As described above, the corrugated molding material 1 having the corrugated shape formed by the unevenness extending in the intersecting first direction x and the second direction y is a concave valley formed along the first direction x. The portions 10 and the convex ridges 20 are alternately arranged along the second direction y, and the valleys 10 and the ridges 20 formed along the first direction x are arranged along the first direction x. The convex portions 30 and the concave portions 40 are alternately arranged to form a corrugated shape, and a valley bottom surface 11 and a mountain top surface 21 are formed in each of the valley portion 10 and the mountain portion 20, and the valley bottom The connection side surface 50 (50a, 50b) which connects the surface 11 and the crest upper surface 21 is formed, the trough part 10 and the crest part 20 are formed in the waveform of the 1st direction x, and the convex-shaped part 30 is the waveform convexity of a waveform. The concave portion 40 is formed by a corrugated wave concave portion, and the peak portion 2 is formed. Is formed in a continuous shape in which the width w in the second direction y of the convex portion 30 in the peak portion 20 is the smallest and the width w in the second direction y of the concave portion 40 is the largest. In the portion 10, the concave portion 40 is formed in a continuous shape in which the width w in the second direction y is the smallest and the width w in the second direction y of the convex portion 30 is the largest. The connection side surface 50b in the portion 40 is disposed at less than 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21, and the connection side surface 50a in the convex portion 30 is 90 degrees to 100 degrees with respect to the valley bottom surface 11 and the mountain top surface 21. The connecting side surfaces 50 (50 a, 50 b) are disposed in a range from the concave portion 40 disposed at less than 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21, and 90 with respect to the valley bottom surface 11 and the mountain top surface 21. Arranged in the range of 100 degrees or more It is smoothly changed toward the convex portion 30.

そのため、第1方向xの変形性と第2方向yの変形性とのバランスがよく、第2方向yに沿った引っ張り方向の変形に加え、圧縮方向の負荷に対しても十分な変形性を有するコルゲート成形材1を構成することができる。   Therefore, the balance between the deformability in the first direction x and the deformability in the second direction y is good, and in addition to the deformation in the pulling direction along the second direction y, sufficient deformability is also obtained for the load in the compression direction. The corrugated molding material 1 which has can be comprised.

詳述すると、凹状部40における連結側面50bが谷底面11及び山上面21に対して90度未満で配置され、凸状部30における連結側面50aが谷底面11及び山上面21に対して90度以上100度以下の範囲で配置されるとともに、連結側面50(50a,50b)は、谷底面11及び山上面21に対して90度未満で配置された凹状部40から、谷底面11及び山上面21に対して90度以上100度以下の範囲で配置された凸状部30にかけて滑らかに変化しているため、引っ張り方向の負荷に対する変形性のみならず、圧縮方向の負荷に対する変形性も備えているため、第2方向yの変形性が高いコルゲート成形材1を構成することができる。したがって、絞り性、及び張出し性の高い成形材を構成することができる。   More specifically, the connecting side surface 50b in the concave portion 40 is disposed at less than 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21, and the connecting side surface 50a in the convex portion 30 is 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21. The connecting side surface 50 (50a, 50b) is disposed within the range of 100 degrees or less and the valley bottom surface 11 and the mountain top surface from the concave portion 40 disposed at less than 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21. Since it changes smoothly over the convex part 30 arranged in the range of 90 degrees or more and 100 degrees or less with respect to 21, not only the deformability with respect to the load in the tensile direction but also the deformability with respect to the load in the compression direction is provided. Therefore, the corrugated molding material 1 having high deformability in the second direction y can be configured. Therefore, it is possible to form a molding material having high drawability and high stretchability.

また、凹状部40における連結側面50bが谷底面11及び山上面21に対して90度未満で配置され、凸状部30における連結側面50aが谷底面11及び山上面21に対して90度以上100度以下の範囲で配置されるとともに、連結側面50(50a,50b)は、谷底面11及び山上面21に対して90度未満で配置された凹状部40から、谷底面11及び山上面21に対して90度以上100度以下の範囲で配置された凸状部30にかけて滑らかに変化している、つまり、連結側面50(50a,50b)の谷底面11及び山上面21に対する角度が鋭角状である山部20の凹状部40から、鈍角状である山部20の凸状部30にかけて徐々に変化している。   Further, the connecting side surface 50b in the concave portion 40 is disposed at less than 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21, and the connecting side surface 50a in the convex portion 30 is 90 degrees to 100 degrees with respect to the valley bottom surface 11 and the mountain top surface 21. The connecting side surfaces 50 (50a, 50b) are arranged on the valley bottom surface 11 and the mountain top surface 21 from the concave portions 40 arranged at less than 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21. On the other hand, it changes smoothly over the convex part 30 arrange | positioned in the range of 90 degree | times or more and 100 degrees or less, that is, the angle with respect to the valley bottom face 11 and the mountain top face 21 of the connection side surface 50 (50a, 50b) is acute-angle shape. It gradually changes from the concave portion 40 of a certain peak 20 to the convex portion 30 of the peak 20 having an obtuse angle.

殊に、第2方向yの幅wが最も広い山部20の凹状部40において連結側面50(50a,50b)は谷底面11及び山上面21に対して鋭角状となるように配置され、第2方向yの幅wが最も狭い山部20の凸状部30において連結側面50(50a,50b)は谷底面11及び山上面21に対して鈍角状となるように配置されているため、第2方向yの幅wが最も広い山部20の凹状部40における連結側面50bの基部における第2方向yの幅wと、第2方向yの幅wが最も狭い山部20の凸状部30における連結側面50aの基部における第2方向yの幅wとの違いを小さくでき、コルゲート形状を形成することによって板材に作用する第1方向x及び第2方向yに交差する方向の負荷を低減することができる。   In particular, the connecting side surface 50 (50a, 50b) is disposed so as to have an acute angle with respect to the valley bottom surface 11 and the mountain top surface 21 in the concave portion 40 of the peak portion 20 having the widest width w in the second direction y. Since the connecting side surface 50 (50a, 50b) is arranged to be obtuse with respect to the bottom surface 11 and the top surface 21 of the convex portion 30 of the peak portion 20 having the narrowest width w in the two directions y, the first The width w in the second direction y at the base of the connecting side surface 50b of the concave portion 40 of the peak 20 having the widest width w in the two directions y and the convex portion 30 of the peak 20 having the narrowest width w in the second direction y. The difference between the width w in the second direction y at the base portion of the connecting side surface 50a in the sheet can be reduced, and the load in the direction intersecting the first direction x and the second direction y acting on the plate material can be reduced by forming a corrugated shape. be able to.

なお、第2方向yに沿って交互に配置された谷部10及び山部20の配置ピッチPyが、第1方向xに沿って交互に配置された凸状部30及び凹状部40の配置ピッチPxに対して0.88乃至0.96倍の範囲の0.92倍に形成されているため、第2方向yの変形性に対しても第1方向xの変形性が十分に高く、第1方向x及び第2方向yにおいて、さらにバランスの良い変形性を有するコルゲート成形材1を構成することができる。   Note that the arrangement pitch Py of the valleys 10 and the peaks 20 alternately arranged along the second direction y is the arrangement pitch of the convex parts 30 and the concave parts 40 arranged alternately along the first direction x. Since it is formed to be 0.92 times in the range of 0.88 to 0.96 times with respect to Px, the deformability in the first direction x is sufficiently high with respect to the deformability in the second direction y. In the first direction x and the second direction y, it is possible to configure the corrugated molding material 1 having further balanced deformability.

詳述すると、第2方向yに沿って交互に配置された谷部10及び山部20の配置ピッチPyが、第1方向xに沿って交互に配置された凸状部30及び凹状部40の配置ピッチPxに対して0.88倍以下に形成された場合、第2方向yの変形性に対して第1方向xの変形性が高くなり過ぎ、0.96倍に形成された場合、第2方向yの変形性に対して第1方向xの変形性が低くなり過ぎ、第1方向x及び第2方向yの変形性のバランスが悪くなる。   More specifically, the arrangement pitch Py of the valleys 10 and the peaks 20 alternately arranged along the second direction y is the same as that of the convex parts 30 and the concave parts 40 arranged alternately along the first direction x. When formed at 0.88 times or less with respect to the arrangement pitch Px, the deformability in the first direction x becomes too high compared to the deformability in the second direction y, and when formed at 0.96 times, The deformability in the first direction x is too low relative to the deformability in the two directions y, and the balance between the deformability in the first direction x and the second direction y is deteriorated.

これに対し、第2方向yに沿って交互に配置された谷部10及び山部20の配置ピッチPyが、第1方向xに沿って交互に配置された凸状部30及び凹状部40の配置ピッチPxに対して0.88乃至0.96倍に形成されることで、第2方向yの変形性に対しても第1方向xの変形性が十分に高く、第1方向x及び第2方向yにおいて、さらにバランスの良い変形性を有するコルゲート成形材1を構成することができる。   On the other hand, the arrangement pitch Py of the valleys 10 and the peaks 20 alternately arranged along the second direction y is equal to that of the convex parts 30 and the concave parts 40 arranged alternately along the first direction x. By forming 0.88 to 0.96 times the arrangement pitch Px, the deformability in the first direction x is sufficiently high with respect to the deformability in the second direction y. In the two directions y, it is possible to configure the corrugated molding material 1 having further balanced deformability.

また、少なくとも凸状部30において谷底面11及び山上面21に対して90度以上100度以下の範囲で配置された連結側面50aの高さHが、谷底面11及び山上面21の幅wに対して0.2倍乃至0.6倍に形成されているため、強度と変形性とがバランスよく両立できるコルゲート成形材1を形成することができる。   Further, the height H of the connecting side surface 50a arranged in the range of 90 degrees or more and 100 degrees or less with respect to the valley bottom surface 11 and the mountain top surface 21 at least in the convex portion 30 is the width w of the valley bottom surface 11 and the mountain top surface 21. On the other hand, since it is formed 0.2 to 0.6 times, it is possible to form the corrugated molded material 1 in which the strength and the deformability can be balanced.

詳述すると、少なくとも凸状部30において谷底面11及び山上面21に対して90度以上100度以下の範囲で配置された連結側面50aの高さHが、谷底面11及び山上面21の幅wに対して0.2倍以下の場合、コルゲート形状の高さが低くなり、強度は確保できるものの変形性が低下する。逆に、少なくとも凸状部30において谷底面11及び山上面21に対して90度以上100度以下の範囲で配置された連結側面50aの高さHが、谷底面11及び山上面21の幅wに対して0.6倍以上の場合、コルゲート形状の高さが高くなり、変形性は確保できるものの強度が低下する。   More specifically, the height H of the connecting side surface 50a arranged in the range of 90 degrees to 100 degrees with respect to the valley bottom surface 11 and the mountain top surface 21 at least in the convex portion 30 is the width of the valley bottom surface 11 and the mountain top surface 21. In the case of 0.2 times or less with respect to w, the height of the corrugated shape is lowered, and although the strength can be ensured, the deformability is lowered. On the other hand, the height H of the connecting side surface 50a arranged in the range of 90 degrees or more and 100 degrees or less with respect to the valley bottom surface 11 and the mountain top surface 21 at least in the convex portion 30 is the width w of the valley bottom surface 11 and the mountain top surface 21. In contrast, when the ratio is 0.6 times or more, the height of the corrugated shape is increased, and although the deformability can be ensured, the strength is decreased.

これに対し、少なくとも凸状部30において谷底面11及び山上面21に対して90度以上100度以下の範囲で配置された連結側面50aの高さHが、谷底面11及び山上面21の幅wに対して0.2倍乃至0.6倍に形成することで、強度と変形性とがバランスよく両立できるコルゲート成形材1を形成することができる。   On the other hand, the height H of the connection side surface 50a arranged in the range of 90 degrees or more and 100 degrees or less with respect to the valley bottom surface 11 and the mountain top surface 21 at least in the convex portion 30 is the width of the valley bottom surface 11 and the mountain top surface 21. By forming 0.2 to 0.6 times w, it is possible to form the corrugated molding material 1 in which both strength and deformability can be balanced.

また、0.06mm以上0.10mm以下の範囲のうち厚みtが0.08mmである金属製のステンレス箔材100で構成されているため、所定の強度を有するとともに、凹状部40において谷底面11及び山上面21に対して90度未満で配置される連結側面50bに作用する曲げによる局所的な曲げ負荷を小さくすることができる。   Moreover, since it is comprised with the metal stainless steel foil material 100 whose thickness t is 0.08 mm among the range of 0.06 mm or more and 0.10 mm or less, while having predetermined intensity | strength, in the recessed part 40, the valley bottom face 11 And the local bending load by the bending which acts on the connection side surface 50b arrange | positioned with respect to the mountain top surface 21 at less than 90 degree | times can be made small.

また、凸状部30における連結側面50aの高さHが、ステンレス箔材100の厚みtに対して10倍乃至30倍の範囲のうち2.0mmに形成されているため、強度と変形性とがバランスよく両立できるコルゲート成形材1を形成することができる。   Moreover, since the height H of the connection side surface 50a in the convex-shaped part 30 is formed in 2.0 mm in the range of 10 times thru | or 30 times with respect to the thickness t of the stainless steel foil material 100, strength and deformability Therefore, it is possible to form the corrugated molding material 1 that can balance both in a balanced manner.

詳述すると、凸状部30における連結側面50aの高さHが、ステンレス箔材100の厚みtに対して10倍以下の場合、コルゲート形状の高さが低くなり、強度は確保できるものの変形性が低下する。逆に、凸状部30における連結側面50aの高さHが、ステンレス箔材100の厚みtに対して30倍以上の場合、コルゲート形状の高さが高くなり、変形性は確保できるものの強度が低下する。   More specifically, when the height H of the connecting side surface 50a in the convex portion 30 is 10 times or less than the thickness t of the stainless steel foil material 100, the corrugated shape is lowered and the strength can be ensured, but the deformability. Decreases. Conversely, when the height H of the connecting side surface 50a in the convex portion 30 is 30 times or more the thickness t of the stainless steel foil material 100, the height of the corrugated shape is increased, and the strength of the deformability can be ensured. descend.

これに対し、凸状部30における連結側面50aの高さHが、ステンレス箔材100の厚みtに対して10倍乃至30倍に形成することで、強度と変形性とがバランスよく両立できるコルゲート成形材1を形成することができる。   On the other hand, the height H of the connecting side surface 50a in the convex portion 30 is 10 times to 30 times the thickness t of the stainless steel foil material 100, so that the corrugation can balance strength and deformability in a balanced manner. The molding material 1 can be formed.

また、谷底面11及び山上面21のそれぞれと連結側面50aとの角60aが、ステンレス箔材100の厚みtの2.5倍乃至8.0倍の曲げ半径raで構成されているため、十分な変形性を備えるとともに、損傷しにくく、耐久性のあるコルゲート成形材1を構成することができる。   Further, the corner 60a between each of the valley bottom surface 11 and the mountain top surface 21 and the connecting side surface 50a is configured with a bending radius ra that is 2.5 to 8.0 times the thickness t of the stainless steel foil material 100. Thus, the corrugated molding material 1 can be configured which has excellent deformability, is hardly damaged, and is durable.

詳述すると、谷底面11及び山上面21のそれぞれと連結側面50aとの角60aが、厚みtの2.5倍以下の曲げ半径raである場合、曲げ内側と曲げ外側との曲率差による負荷が大きくなり損傷するおそれが高まり、8.0倍以上の曲げ半径raの場合、谷底面11及び山上面21のそれぞれと連結側面50aとにおける角60aが占める割合が大きくなって、変形性が低下するおそれがある。   More specifically, when the corner 60a between each of the valley bottom surface 11 and the mountain top surface 21 and the connecting side surface 50a has a bending radius ra of 2.5 times or less of the thickness t, the load due to the difference in curvature between the bending inner side and the bending outer side. If the bend radius ra is 8.0 times or more, the ratio of the corner 60a in each of the valley bottom surface 11 and the mountain top surface 21 to the connection side surface 50a increases, and the deformability decreases. There is a risk.

これに対し、谷底面11及び山上面21のそれぞれと連結側面50aとの角60aが、厚みtの2.5倍乃至8.0倍の曲げ半径raとすることにより、角60aにおける曲げ内側と曲げ外側との曲率差による負荷を小さくできるとともに、谷底面11及び山上面21のそれぞれと連結側面50aとにおける角60aが占める割合を変形性が損なわない範囲とすることができ、十分な変形性を備えるとともに、損傷しにくく、耐久性のあるコルゲート成形材1を構成することができる。   On the other hand, the corner 60a between each of the valley bottom surface 11 and the mountain top surface 21 and the connecting side surface 50a has a bending radius ra that is 2.5 to 8.0 times the thickness t, so The load caused by the difference in curvature from the outer side of the bend can be reduced, and the ratio of the corner 60a in each of the valley bottom surface 11 and the mountain top surface 21 and the connecting side surface 50a can be set within a range in which the deformability is not impaired. In addition, the corrugated molding material 1 which is not easily damaged and has durability can be configured.

また、ステンレス箔材100は、304ステンレス鋼であるため、さらに高耐久性のコルゲート成形材1を構成することができる。
詳述すると、304ステンレス鋼は他の一般的な金属製箔材に対して材料強度が高く、伸び性も高いため、コルゲート形状を形成するための凹凸加工において、他の一般的な金属製箔材では損傷するような高負荷が作用する加工であっても、損傷することなく所望のコルゲート形状を形成することができる。
Moreover, since the stainless steel foil material 100 is 304 stainless steel, the highly durable corrugated molding material 1 can be comprised.
More specifically, 304 stainless steel has higher material strength and higher extensibility than other general metal foil materials, so that other general metal foils can be used to form corrugated shapes. A desired corrugated shape can be formed without being damaged even when processing is performed with a high load that is damaged by the material.

また、他の一般的な金属製箔材に比べて材料強度が高い304ステンレス鋼は、凹凸加工によっていわゆるスプリングバックという所望の変形得られないという状態が生じるが、高い伸び性能によって、スプリングバックを考慮した凹凸加工を施すことによって損傷することなく、所望のコルゲート形状を形成することができる。   In addition, 304 stainless steel, which has a higher material strength than other general metal foil materials, may not be able to obtain the desired deformation of a so-called spring back due to uneven processing. The desired corrugated shape can be formed without being damaged by performing the uneven processing in consideration.

その反面、304ステンレス鋼に大変形加工を施すと部分的に磁化して、耐久性が低下するおそれがあるが、304ステンレス鋼に上述の凹凸加工によってコルゲート形状が形成されているため、ステンレス箔材100としての変形性能が向上しているため、大変形加工を施しても磁化することなく、さらに高耐久性のコルゲート成形材1を構成することができる。   On the other hand, if 304 stainless steel is subjected to a large deformation process, it may partially magnetize and the durability may be lowered. However, since the corrugated shape is formed on the 304 stainless steel by the above uneven processing, the stainless steel foil Since the deformation performance as the material 100 is improved, the corrugated molding material 1 having higher durability can be configured without being magnetized even when subjected to a large deformation process.

また上述のように、上記コルゲート成形材1で構成され、対象部材の形状の応じた立体形状に加工されたヒートインシュレータ300は、高変形性の成形体を対象部材の形状に適した立体形状に形成された軽量化して構成することができる。   In addition, as described above, the heat insulator 300 that is configured by the corrugated molding material 1 and processed into a three-dimensional shape corresponding to the shape of the target member has a three-dimensional shape suitable for the shape of the target member. The formed weight can be reduced.

この発明の構成と、上述の実施形態との対応において、
この発明の第1方向は第1方向xに対応し、以下同様に、
第2方向は第2方向yに対応し、
谷部は谷部10に対応し、
山部は山部20に対応し、
凸状部は凸状部30に対応し、
凹状部は凹状部40に対応し、
連結側面は連結側面50(50a,50b)に対応し、
成形材はコルゲート成形材1に対応し、
山部の配置ピッチは配置ピッチPyに対応し、
凹状部の配置ピッチは配置ピッチPxに対応し、
谷底面は谷底面11に対応し、
山上面は山上面21に対応し、
幅は幅wに対応し、
箔材はステンレス箔材100に対応し、
角部は角60aに対応し、
曲げ半径は曲げ半径raに対応し、
カバー体はヒートインシュレータ300に対応するが、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In correspondence between the configuration of the present invention and the above-described embodiment,
The first direction of the invention corresponds to the first direction x, and so on.
The second direction corresponds to the second direction y,
The valley corresponds to the valley 10
The mountain corresponds to the mountain 20
The convex part corresponds to the convex part 30,
The concave portion corresponds to the concave portion 40,
The connecting side surface corresponds to the connecting side surface 50 (50a, 50b),
The molding material corresponds to corrugated molding material 1,
The mountain pitch corresponds to the pitch Py,
The arrangement pitch of the concave portions corresponds to the arrangement pitch Px,
The valley bottom corresponds to the valley bottom 11,
The top surface of the mountain corresponds to the top surface 21 of the mountain,
The width corresponds to the width w
The foil material corresponds to the stainless steel foil material 100,
The corner corresponds to the corner 60a,
The bending radius corresponds to the bending radius ra,
The cover body corresponds to the heat insulator 300,
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.

例えば、金属製のステンレス箔材100は、厚みtが0.10mm以下であれば、上述の厚みt:0.08mmに限定されない。なお、例えば、厚みtが0.08mmのステンレス箔材100を用いる場合、曲げ半径ra(ra1,ra2)は、コルゲート成形材1を構成する304ステンレス箔の厚みt:0.08mmの2.5倍乃至8.0倍の範囲となる0.20mm乃至0.65mmの範囲で形成するが、一例としては上記範囲のうち0.57mmで形成することとなる。   For example, the metal stainless steel foil material 100 is not limited to the above-described thickness t: 0.08 mm as long as the thickness t is 0.10 mm or less. For example, when the stainless steel foil material 100 having a thickness t of 0.08 mm is used, the bending radius ra (ra1, ra2) is 2.5 of the 304 stainless steel foil constituting the corrugated molding material 1 having a thickness t of 0.08 mm. It is formed in the range of 0.20 mm to 0.65 mm that is in the range of double to 8.0 times, but as an example, it is formed in the range of 0.57 mm.

また、コルゲート形状は、上記形状の見ならず、楕円状、半球状、錐台状などが相互に交差する方向に整列配置された、いわゆるコルゲート形状あるいはエンボス形状としてもよい。   In addition, the corrugated shape may be a so-called corrugated shape or embossed shape in which an elliptical shape, a hemispherical shape, a frustum shape, and the like are arranged in a direction intersecting each other, without looking at the above shape.

また、ステンレス箔材100を複数枚積層してもよく、強度を向上するとともに、仮に、間に空気層を介在させることによって、遮熱性を有するコルゲート成形材1を構成することができる。   Moreover, you may laminate | stack the several stainless steel foil material 100, and while improving intensity | strength, the corrugated molding material 1 which has heat insulation can be comprised by interposing an air layer in between.

また、複数枚積層させたステンレス箔材100同士を、谷底面11及び山上面21に対して90度未満で配置される、つまり谷底面11及び山上面21に対して鋭角状に配置される山部20の凹状部40における連結側面50bによって、いわゆるカシメ作用によって連結することができる。   Further, a plurality of laminated stainless steel foil materials 100 are disposed at an angle of less than 90 degrees with respect to the valley bottom surface 11 and the mountain top surface 21, that is, a mountain disposed at an acute angle with respect to the valley bottom surface 11 and the mountain top surface 21. The connecting side surface 50b in the concave portion 40 of the portion 20 can be connected by a so-called caulking action.

なお、谷底面11及び山上面21に対して鋭角状に配置される連結側面50bは、山部20の凹状部40であり、凸状部30における連結側面50aは谷底面11及び山上面21に対して90度以上100度以下の範囲で配置されており、鋭角状に配置されることによるステンレス箔材100同士の連結作用を得ることができない。つまり、山部20における凹状部40でステンレス箔材100同士がカシメ作用で連結されており、その他の部分では連結されていない。したがって、凹状部40から凸状部30に亘って全体的にステンレス箔材100同士が連結されている場合、コルゲート成形材1を曲げて立体加工する際のステンレス箔材100同士の曲率の違いが曲げに対する抵抗となり、曲げ加工性が低下するが、山部20における凹状部40でステンレス箔材100同士がカシメ作用で連結されているものの、その他の部分では連結されていないため、凹状部40におけるカシメ作用によりステンレス箔材100同士が分離すること防止するとともに、曲げ加工における上述のような曲げ加工性の低下を抑制することができる。   The connecting side surface 50b disposed at an acute angle with respect to the valley bottom surface 11 and the mountain top surface 21 is the concave portion 40 of the peak portion 20, and the connection side surface 50a in the convex portion 30 is on the valley bottom surface 11 and the mountain top surface 21. On the other hand, it arrange | positions in 90 degrees or more and 100 degrees or less, and cannot obtain the connection effect | action of the stainless steel foil materials 100 by arrange | positioning at acute angle | corner shape. That is, the stainless steel foil materials 100 are connected by the caulking action at the concave portion 40 in the peak portion 20 and are not connected at other portions. Therefore, when the stainless steel foil materials 100 are connected to each other from the concave portion 40 to the convex portion 30, there is a difference in curvature between the stainless steel foil materials 100 when the corrugated molding material 1 is bent and three-dimensionally processed. Although it becomes resistance to bending and bending workability is lowered, although the stainless steel foil materials 100 are connected to each other by the caulking action at the concave portion 40 in the peak portion 20, the other portions are not connected. While preventing the stainless steel foil materials 100 from being separated from each other by the caulking action, it is possible to suppress a decrease in the bending workability as described above in the bending work.

なお、ステンレス箔材100として、表面が有色である有色ステンレス箔材100であってもよく、これにより、放射される熱を遮ることができる遮熱性を有するコルゲート成形材1を構成することができる。
また、ステンレス箔材100に、複数の貫通孔が所定間隔を隔てて設けてもよく、制振性、遮音性及び吸音性を発揮できるコルゲート成形材1を構成することができる。
The stainless steel foil material 100 may be a colored stainless steel foil material 100 having a colored surface, whereby the corrugated molding material 1 having a heat shielding property capable of shielding the radiated heat can be configured. .
Further, a plurality of through holes may be provided at predetermined intervals in the stainless steel foil material 100, and the corrugated molding material 1 that can exhibit vibration damping properties, sound insulation properties, and sound absorption properties can be configured.

なお、上述の説明では、ステンレス箔材100として304ステンレス鋼を用いたが、430ステンレス鋼を用いてもよく、さらに高耐久性のコルゲート成形材1を構成することができる。   In the above description, 304 stainless steel is used as the stainless steel foil material 100. However, 430 stainless steel may be used, and the highly durable corrugated molding material 1 can be configured.

詳述すると、430ステンレス鋼は、フェライト系ステンレスであり、磁性を有するとともに、熱処理により硬化せず、靭性,成形性,溶接性に優れ、加工性が良好である。また、安価であり、高品質のステンレス箔材100を安定して供給することができる。なお、脆化温度が475℃付近であるが、900℃前後まで温度上昇するエキゾーストマニホールドに装着するヒートインシュレータ300は脆化温度以下の温度にまでしか上昇しないため、脆化することもなく、耐久性のよいヒートインシュレータを構成することができる。
また、ステンレス箔材100でなく、アルミニウム製やアルミニウム合金製などその他の金属製箔材で構成してもよいし、上述のコルゲート形状が構成できる厚みと強度の金属製板材で構成してもよい。
More specifically, 430 stainless steel is a ferritic stainless steel, has magnetism, is not hardened by heat treatment, has excellent toughness, formability and weldability, and has good workability. Moreover, it is inexpensive and can stably supply the high-quality stainless steel foil material 100. Although the embrittlement temperature is around 475 ° C, the heat insulator 300 attached to the exhaust manifold that rises to around 900 ° C only rises to a temperature below the embrittlement temperature. A heat insulator with good characteristics can be configured.
Moreover, you may comprise not only the stainless steel foil material 100 but other metal foil materials, such as the product made from aluminum, the product made from an aluminum alloy, and may comprise the metal plate material of the thickness and intensity | strength which can comprise the above-mentioned corrugated shape. .

1…コルゲート成形材
10…谷部
11…谷底面
20…山部
21…山上面
30…凸状部
40…凹状部
50(50a,50b)…連結側面
60a…角
100…ステンレス箔材
300…ヒートインシュレータ
r…曲げ半径
Py…配置ピッチ
Px…配置ピッチ
x…第1方向
y…第2方向
w…幅
DESCRIPTION OF SYMBOLS 1 ... Corrugated molding material 10 ... Valley part 11 ... Valley bottom surface 20 ... Mountain part 21 ... Mountain top surface 30 ... Convex part 40 ... Concave part 50 (50a, 50b) ... Connection side surface 60a ... Corner 100 ... Stainless steel foil material 300 ... Heat Insulator r ... Bending radius Py ... Arrangement pitch Px ... Arrangement pitch x ... First direction y ... Second direction w ... Width

Claims (11)

交差する第1方向と第2方向とにそれぞれ延びる凹凸によって構成されたコルゲート形状が形成された成形材であって、
前記第1方向に沿って形成される凹状の谷部と凸状の山部とが前記第2方向に沿って交互に配置されるとともに、
前記第1方向に沿って形成された前記谷部及び前記山部に、前記第1方向に沿って交互に凸状部と凹状部とが交互に配置されて前記コルゲート形状が構成され、
前記谷部と前記山部とのそれぞれに谷底面と山上面とが形成されるとともに、前記谷底面と前記山上面とを連結する連結側面が形成され、
前記谷部及び前記山部は、前記第1方向の波形に形成され、
前記凸状部は前記波形の波凸部で形成され、前記凹状部は前記波形の波凹部で形成され、
前記山部は、前記山部における前記凸状部の前記第2方向の幅が最も狭く、且つ前記凹状部の前記第2方向の幅が最も広くなる連続形状で形成され、
前記谷部は、前記谷部における前記凹状部の前記第2方向の幅が最も狭く、且つ前記凸状部の前記第2方向の幅が最も広くなる連続形状で形成され、
前記第2方向の断面において、
少なくとも前記山部の前記凹状部における前記連結側面が前記谷底面及び前記山上面に対して90度未満で配置され、少なくとも前記山部の前記凸状部における前記連結側面が前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置されるとともに、
前記連結側面は、
前記谷底面及び前記山上面に対して90度未満で配置された前記凹状部から、前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記凸状部にかけて滑らかに変化する
成形材。
It is a molding material in which a corrugated shape constituted by irregularities extending in the intersecting first direction and the second direction is formed,
While the concave valleys and the convex peaks formed along the first direction are alternately arranged along the second direction,
The corrugated shape is configured by alternately arranging convex portions and concave portions along the first direction in the valley portion and the mountain portion formed along the first direction,
A valley bottom surface and a mountain top surface are formed in each of the valley portion and the mountain portion, and a connecting side surface that connects the valley bottom surface and the mountain top surface is formed,
The valley and the peak are formed in a waveform in the first direction,
The convex portion is formed by the corrugated wave convex portion, and the concave portion is formed by the corrugated wave concave portion,
The peak portion is formed in a continuous shape in which the width in the second direction of the convex portion in the peak portion is the smallest and the width in the second direction of the concave portion is the largest.
The trough is formed in a continuous shape in which the width of the concave portion in the trough is narrowest in the second direction and the width of the convex portion in the second direction is widest,
In the cross section in the second direction,
At least the connection side surface in the concave portion of the peak portion is disposed at less than 90 degrees with respect to the valley bottom surface and the mountain top surface, and at least the connection side surface in the convex portion of the peak portion is the valley bottom surface and the peak. While being arranged in the range of 90 degrees or more and 100 degrees or less with respect to the upper surface,
The connecting side surface is
Smoothly from the concave portion arranged at less than 90 degrees with respect to the bottom surface of the valley and the top surface of the mountain to the convex portion arranged within a range of 90 degrees to 100 degrees with respect to the bottom surface of the valley and the top surface of mountain. Molding material that changes into
前記第2方向に沿って交互に配置された前記谷部及び前記山部の配置ピッチが、
前記第1方向に沿って交互に配置された前記凸状部及び前記凹状部の配置ピッチに対して0.88乃至0.96倍に形成された
請求項1に記載の成形材。
The arrangement pitch of the valleys and the peaks arranged alternately along the second direction,
2. The molding material according to claim 1, wherein the molding material is formed to be 0.88 to 0.96 times the arrangement pitch of the convex portions and the concave portions alternately arranged along the first direction.
少なくとも前記凸状部において前記谷底面及び前記山上面に対して90度以上100度以下の範囲で配置された前記連結側面の高さが、前記谷底面及び前記山上面の幅に対して0.2倍乃至0.6倍に形成された
請求項1または2に記載の成形材。
At least the height of the connecting side surface arranged in the range of 90 degrees or more and 100 degrees or less with respect to the bottom surface of the valley and the top surface of the mountain in the convex portion is 0. 0 with respect to the width of the bottom surface of the valley and the top surface of the mountain. The molding material according to claim 1, wherein the molding material is formed to be 2 to 0.6 times.
0.06mm以上0.10mm以下の厚みで構成された金属製の箔材で構成された
請求項1乃至3のうちいずれかに記載の成形材。
The molding material in any one of Claims 1 thru | or 3 comprised with the metal foil materials comprised by 0.06 mm or more and 0.10 mm or less thickness.
少なくとも前記山部の前記凸状部における前記連結側面の高さが、前記箔材の材厚に対して10倍乃至30倍に形成された
請求項4に記載の成形材。
5. The molding material according to claim 4, wherein at least a height of the connection side surface in the convex portion of the peak portion is formed 10 to 30 times as large as a material thickness of the foil material.
前記谷底面及び前記山上面のそれぞれと前記連結側面との角部が、前記箔材の材厚の2.5倍乃至8.0倍の曲げ半径で構成された
請求項4又は5に記載の成形材。
The corner part of each of the said valley bottom face and the said mountain top surface, and the said connection side surface was comprised by the bending radius of 2.5 to 8.0 times the material thickness of the said foil material. Molding material.
前記箔材は、304ステンレス箔あるいは430ステンレス鋼である
請求項4乃至6のうちいずれかに記載の成形材。
The molding material according to claim 4, wherein the foil material is 304 stainless steel foil or 430 stainless steel.
前記箔材が、複数枚積層された
請求項4乃至7のうちいずれかに記載の成形材。
The molding material according to claim 4, wherein a plurality of the foil materials are laminated.
前記箔材が、表面が有色である有色箔材である
請求項4乃至8のうちいずれかに記載の成形材。
The molding material according to any one of claims 4 to 8, wherein the foil material is a colored foil material having a colored surface.
前記箔材に、複数の貫通孔が所定間隔を隔てて設けられた
請求項4乃至9のうちいずれかに記載の成形材。
The molding material according to claim 4, wherein a plurality of through holes are provided at predetermined intervals in the foil material.
請求項1乃至10のうちいずれかに記載の成形材で構成され、
対象部材の形状の応じた立体形状に加工された
カバー体。
It is comprised with the molding material in any one of Claims 1 thru | or 10,
A cover body processed into a three-dimensional shape according to the shape of the target member.
JP2018020379A 2018-02-07 2018-02-07 Molding material and manufacturing method thereof Pending JP2019136719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018020379A JP2019136719A (en) 2018-02-07 2018-02-07 Molding material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018020379A JP2019136719A (en) 2018-02-07 2018-02-07 Molding material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2019136719A true JP2019136719A (en) 2019-08-22

Family

ID=67694807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018020379A Pending JP2019136719A (en) 2018-02-07 2018-02-07 Molding material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2019136719A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131074A1 (en) * 2008-04-21 2009-10-29 三和パッキング工業株式会社 Material for processing and molding member using material for processing
JP2011189358A (en) * 2010-03-12 2011-09-29 Sanwa Packing Kogyo Co Ltd Metal plate
WO2014162724A1 (en) * 2013-04-03 2014-10-09 ニチアス株式会社 Shield and method for producing shield
WO2017022301A1 (en) * 2015-07-31 2017-02-09 日産自動車株式会社 Metal plate and metal cover employing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131074A1 (en) * 2008-04-21 2009-10-29 三和パッキング工業株式会社 Material for processing and molding member using material for processing
JP2011189358A (en) * 2010-03-12 2011-09-29 Sanwa Packing Kogyo Co Ltd Metal plate
WO2014162724A1 (en) * 2013-04-03 2014-10-09 ニチアス株式会社 Shield and method for producing shield
WO2017022301A1 (en) * 2015-07-31 2017-02-09 日産自動車株式会社 Metal plate and metal cover employing same

Similar Documents

Publication Publication Date Title
US9090288B2 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
US9108239B2 (en) Sheet material having concave-convex section, and laminated structure and vehicle panel using the same
JP2011101893A (en) Plate having uneven part, and layered structure using the same
JP6291106B1 (en) Molded material and manufacturing method thereof
JP2011027248A (en) Plate material having irregular part and method for designing irregular shape thereof
WO2019167793A1 (en) Production method for pressed components, press molding device, and metal plate for press molding
JP2011230174A (en) Plate material having recess-projection part, vehicle panel using the plate material, and laminated structure
CN107923298A (en) Metallic plate and the metal cover using the metallic plate
JP2011174689A (en) Method of manufacturing plate type heat exchanger and the plate type heat exchanger
JP2018176176A (en) Method for manufacturing metal embossed plate
US8993096B2 (en) Structured metal heat shield
KR20020045603A (en) Constructional Sandwich Panel for High Strength Wall and Covering Assemblies, and Method for Making Said Panel
JP6551637B1 (en) Press part manufacturing method, press molding apparatus, and metal plate for press molding
JP2019136719A (en) Molding material and manufacturing method thereof
JPH05231791A (en) Thermal sheet laminate body for heat storage type heat exchanger and method and apparatus for making molded sheet for the same
US20130288015A1 (en) Sheet material having a concave-convex part, and a vehicle panel and laminated structure using the same
JP2011110983A (en) Vehicle panel
JP2012096694A (en) Plate material having uneven part, vehicle panel using the same, and laminated structure
JP2011147950A (en) Sheet having uneven part, vehicle panel using the same, and layered structure
US20130295405A1 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
JP2002060878A (en) Embossed plate with excellent formability
JP2018167280A (en) Molded material
JP2018176271A (en) Method for manufacturing metal embossed plate
JP2019124200A (en) Shielding material molding blank and shielding material
WO2020084820A1 (en) Embossed metal plate and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201