JP2019136627A - Granular activated carbon manufacturing method and filtration cartridge manufacturing method - Google Patents

Granular activated carbon manufacturing method and filtration cartridge manufacturing method Download PDF

Info

Publication number
JP2019136627A
JP2019136627A JP2018019771A JP2018019771A JP2019136627A JP 2019136627 A JP2019136627 A JP 2019136627A JP 2018019771 A JP2018019771 A JP 2018019771A JP 2018019771 A JP2018019771 A JP 2018019771A JP 2019136627 A JP2019136627 A JP 2019136627A
Authority
JP
Japan
Prior art keywords
suspension
granular
activated carbon
water
granular activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018019771A
Other languages
Japanese (ja)
Other versions
JP6906867B2 (en
Inventor
秀哉 上川
Hideya Kamikawa
秀哉 上川
娟 林
Ken Lin
娟 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toclas Corp
Original Assignee
Toclas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toclas Corp filed Critical Toclas Corp
Priority to JP2018019771A priority Critical patent/JP6906867B2/en
Publication of JP2019136627A publication Critical patent/JP2019136627A/en
Application granted granted Critical
Publication of JP6906867B2 publication Critical patent/JP6906867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Paper (AREA)

Abstract

To provide a manufacturing method which allows easy adjustment of the size of obtained granular activated carbon.SOLUTION: A granular activated carbon manufacturing method includes: a molding step S2 of molding into a granular shape a suspension 100 containing 11-43 pts. wt. of cellulose nanofibers 102 based on 100 pts. wt. of a liquid dispersion medium 101; and an activation step S3 of obtaining granular activated carbon 120 by heating and activating the granular suspension 110. A manufacturing method of a filtration cartridge (20) in which the granular activated carbon 120 is accommodated in an accommodation portion (33) having an inflow portion (32) and an outflow portion 75 for a fluid (W) includes the molding step S2, the activation step S3, and an accommodation step S4 of accommodating the granular activated carbon 120 in the accommodation portion (33).SELECTED DRAWING: Figure 5

Description

本発明は、粒状活性炭、及び、濾過カートリッジを製造する技術に関する。   The present invention relates to a technique for producing granular activated carbon and a filtration cartridge.

特許文献1には、活性炭とイオン除去部材と中空糸膜とを別々の位置に格納した浄水カートリッジが示されている。活性炭は、水道水に含まれる遊離残留塩素や有機物等の微量成分を除去する。イオン除去部材は、水道水に含まれる金属イオンを除去する。中空糸膜は、水道水に含まれる鉄さびといった濁り成分等を除去する。   Patent Document 1 discloses a water purification cartridge in which activated carbon, an ion removing member, and a hollow fiber membrane are stored at different positions. Activated carbon removes trace components such as free residual chlorine and organic substances contained in tap water. The ion removing member removes metal ions contained in tap water. The hollow fiber membrane removes turbid components such as iron rust contained in tap water.

浄水カートリッジ用の活性炭としてヤシ殻活性炭といったサイズの大きい活性炭を利用する場合、元の活性炭を粉砕する必要がある。活性炭を粉砕すると、大きな粒子から小さな粒子まで幅広いサイズの粒子が混在した活性炭が得られる。この活性炭を浄水カートリッジの収容部に収容すると、活性炭中の小さな粒子は、濾過層の上面に溜まったり、大きな粒子間の空隙に入り込んだりする。   When using a large activated carbon such as coconut shell activated carbon as the activated carbon for the water purification cartridge, it is necessary to pulverize the original activated carbon. When activated carbon is pulverized, activated carbon in which particles of a wide range from large particles to small particles are mixed is obtained. When this activated carbon is accommodated in the accommodating portion of the water purification cartridge, small particles in the activated carbon accumulate on the upper surface of the filtration layer or enter into the gaps between the large particles.

特開2008−194596号公報JP 2008-194596 A

活性炭中の小さな粒子が濾過層の上面に溜まると、浄水カートリッジに水を通した時に目詰まりを起こし易く、その結果、水が流れ難くなる。また、小さな粒子が大きな粒子間の空隙に入り込むと、その空隙が塞がれ、濾過層内部の通水抵抗が不均一となる。濾過層内部の通水抵抗の高い部分には水が流れ難いため、活性炭と水との接触効率が下がり、その分、浄水性能が低下してしまう。浄水性能を上げるためには、別途、活性炭を分級する作業が必要となる。   When small particles in the activated carbon accumulate on the upper surface of the filtration layer, clogging is likely to occur when water is passed through the water purification cartridge, and as a result, water does not flow easily. Further, when small particles enter the gaps between the large particles, the gaps are blocked, and the water flow resistance inside the filtration layer becomes non-uniform. Since it is difficult for water to flow in a portion having a high water flow resistance inside the filtration layer, the contact efficiency between the activated carbon and the water decreases, and the water purification performance decreases accordingly. In order to improve the water purification performance, it is necessary to separately classify the activated carbon.

尚、上述のような問題は、空気清浄機用の濾過カートリッジ等、浄水カートリッジ以外の濾過カートリッジ等にも存在する。
本発明は、得られる粒状活性炭の大きさを調整し易くする製造方法を開示するものである。
In addition, the above problems also exist in filtration cartridges other than the water purification cartridge, such as filtration cartridges for air purifiers.
This invention discloses the manufacturing method which makes it easy to adjust the magnitude | size of the granular activated carbon obtained.

本発明の粒状活性炭の製造方法は、液状分散媒100重量部に対して11〜43重量部のセルロースナノファイバーを含む懸濁液を粒状に成形する成形工程と、
前記粒状の懸濁液を加熱して賦活することにより粒状活性炭を得る賦活工程と、を含む、態様を有する。
The method for producing granular activated carbon of the present invention comprises a molding step of molding a suspension containing 11 to 43 parts by weight of cellulose nanofibers into 100 parts by weight of a liquid dispersion medium,
And an activation step of obtaining granular activated carbon by heating and activating the granular suspension.

また、本発明は、流体の流入部及び流出部を有する収容部に粒状活性炭が収容された濾過カートリッジの製造方法であって、
液状分散媒100重量部に対して11〜43重量部のセルロースナノファイバーを含む懸濁液を粒状に成形する成形工程と、
前記粒状の懸濁液を加熱して賦活することにより前記粒状活性炭を得る賦活工程と、
前記粒状活性炭を前記収容部に収容する収容工程と、を含む、態様を有する。
Further, the present invention is a method for manufacturing a filtration cartridge in which granular activated carbon is accommodated in an accommodating portion having a fluid inflow portion and an outflow portion,
A molding step of molding a suspension containing 11 to 43 parts by weight of cellulose nanofibers into 100 parts by weight of the liquid dispersion medium;
An activation step of obtaining the granular activated carbon by heating and heating the granular suspension;
A housing step of housing the granular activated carbon in the housing portion.

本発明によれば、得られる粒状活性炭の大きさを調整し易くする製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which makes it easy to adjust the magnitude | size of the granular activated carbon obtained can be provided.

浄水機能付き水栓を組み込んだシステムキッチンの例を模式的に示す図。The figure which shows typically the example of the system kitchen incorporating the water faucet with a water purification function. (a)は浄水カートリッジを取り付けた吐水ヘッドの例を一部断面視して示す図、(b)は浄水カートリッジを取り付けた吐水部の例を示す斜視図。(A) is a perspective view showing an example of a water discharge head with a water purification cartridge attached thereto, and (b) is a perspective view showing an example of a water discharge section with a water purification cartridge attached thereto. 浄水カートリッジの例を示す縦断面図。The longitudinal cross-sectional view which shows the example of a water purification cartridge. 浄水カートリッジの例を示す分解斜視図。The disassembled perspective view which shows the example of a water purification cartridge. 粒状活性炭の製造方法を含む濾過カートリッジの製造方法の例を模式的に示す流れ図。The flowchart which shows typically the example of the manufacturing method of the filtration cartridge containing the manufacturing method of granular activated carbon. (a)〜(e)は懸濁液を粒状に成形する装置の例を模式的に示す図。(A)-(e) is a figure which shows typically the example of the apparatus which shape | molds suspension into a granule. 粒状懸濁液を丸める装置の例を模式的に示す図。The figure which shows typically the example of the apparatus which rounds granular suspension. 接触時間に対するクロロホルムの平衡吸着達成率を示すグラフ。The graph which shows the equilibrium adsorption achievement rate of chloroform with respect to contact time.

以下、本発明の実施形態を説明する。むろん、以下の実施形態は本発明を例示するものに過ぎず、実施形態に示す特徴の全てが発明の解決手段に必須になるとは限らない。   Embodiments of the present invention will be described below. Of course, the following embodiments are merely examples of the present invention, and all the features shown in the embodiments are not necessarily essential to the means for solving the invention.

(1)本発明に含まれる技術の概要:
まず、図1〜8に示される例を参照して本発明に含まれる技術の概要を説明する。尚、本願の図は模式的に例を示す図であり、これらの図に示される各方向の拡大率は異なることがあり、各図は整合していないことがある。むろん、本技術の各要素は、符号で示される具体例に限定されない。
また、本願において、数値範囲「Min〜Max」は、最小値Min以上、且つ、最大値Max以下を意味する。化学式で表される組成比は化学量論比を示し、化学式で表される物質には化学量論比から外れたものも含まれる。
(1) Summary of technology included in the present invention:
First, the outline | summary of the technique included in this invention is demonstrated with reference to the example shown by FIGS. In addition, the figure of this application is a figure which shows an example typically, The expansion ratio of each direction shown by these figures may differ, and each figure may not match. Of course, each element of the present technology is not limited to the specific example indicated by the reference numeral.
In the present application, the numerical range “Min to Max” means a minimum value Min or more and a maximum value Max or less. The composition ratio represented by the chemical formula indicates the stoichiometric ratio, and the substance represented by the chemical formula includes those that deviate from the stoichiometric ratio.

[態様1]
本技術の一態様に係る粒状活性炭の製造方法は、100重量部の液状分散媒101に対して11〜43重量部のセルロースナノファイバー102を含む懸濁液100を粒状に成形する成形工程S2、及び、前記粒状の懸濁液110を加熱して賦活することにより粒状活性炭120を得る賦活工程S3を含む。
[Aspect 1]
The manufacturing method of the granular activated carbon which concerns on 1 aspect of this technique WHEREIN: Molding process S2 which shape | molds the suspension liquid 100 containing 11-43 weight part cellulose nanofiber 102 with respect to 100 weight part liquid dispersion medium 101, And the activation process S3 which obtains the granular activated carbon 120 by heating and activating the said granular suspension 110 is included.

100重量部の液状分散媒101に対して11〜43重量部のセルロースナノファイバー102を含む懸濁液100は、液状分散媒101による流動性を有し、且つ、セルロースナノファイバー102による高い粘性を有する。このため、容易に上記懸濁液100を粒状に成形することができる。成形された粒状の懸濁液110が加熱されて賦活されると、粒状活性炭120が得られる。成形工程S2において成形される対象は流動性を有する高粘性の懸濁液100であるので、粒状の懸濁液110の大きさを調整するのは容易である。ここで、成形工程S2において得られる粒状の懸濁液110を大きくすれば得られる粒状活性炭120が大きくなる傾向があり、成形工程S2において得られる粒状の懸濁液110を小さくすれば得られる粒状活性炭120が小さくなる傾向がある。すなわち、粒状の懸濁液110の大きさを調整すれば得られる粒状活性炭120の大きさが調整されるので、本態様は、得られる粒状活性炭の大きさを調整し易くする製造方法を提供することができる。   The suspension 100 containing 11 to 43 parts by weight of the cellulose nanofibers 102 with respect to 100 parts by weight of the liquid dispersion medium 101 has fluidity due to the liquid dispersion medium 101 and high viscosity due to the cellulose nanofibers 102. Have. For this reason, the suspension 100 can be easily formed into a granular shape. When the formed granular suspension 110 is heated and activated, granular activated carbon 120 is obtained. Since the object to be molded in the molding step S2 is the highly viscous suspension 100 having fluidity, it is easy to adjust the size of the granular suspension 110. Here, if the granular suspension 110 obtained in the molding step S2 is made larger, the granular activated carbon 120 tends to be larger, and if the granular suspension 110 obtained in the molding step S2 is made smaller, the obtained granular activated carbon 120 tends to be larger. The activated carbon 120 tends to be small. That is, since the size of the granular activated carbon 120 obtained is adjusted by adjusting the size of the granular suspension 110, this embodiment provides a manufacturing method that makes it easy to adjust the size of the obtained granular activated carbon. be able to.

ここで、「粒状」は、真球状に限定されず、長球状、扁球状、円柱状を含む楕円柱状、円筒状を含む筒状、円錐状を含む楕円錘状、立方体状を含む直方体状、四面体状、多角柱状、多角錘状、これらの形状を変形した形状、等を含む。すなわち、粒状の懸濁液、及び、粒状活性炭の形状には、前述の様々な形状が含まれる。
懸濁液(suspension)は、分散質(dispersoid)としての固体粒子が液状分散媒中に分散した分散系(disperse system)を意味し、ウェットパウダー状でもよい。懸濁液の媒質すなわち分散媒(disperse medium)が液体である場合、この媒質は液状分散媒である。態様1の懸濁液には、本技術の効果を損なわない範囲において、バインダーといった添加剤の一種類以上が含まれてもよい。
上記賦活工程では、粒状の懸濁液を加熱して炭化させる不融化処理を行い、得られる粒状炭化物を加熱して賦活する賦活処理を行うことにより粒状活性炭を得てもよい。この場合も、態様1の賦活工程に含まれる。
尚、上述した付言は、以下の態様においても適用される。
Here, the “granular” is not limited to a perfect sphere, but an oval, oblate, elliptical columnar shape including a cylindrical shape, a cylindrical shape including a cylindrical shape, an elliptical pyramid shape including a conical shape, a rectangular parallelepiped shape including a cubic shape, A tetrahedral shape, a polygonal column shape, a polygonal pyramid shape, a shape obtained by deforming these shapes, and the like are included. That is, the above-mentioned various shapes are included in the shape of the granular suspension and granular activated carbon.
Suspension means a dispersion system in which solid particles as a dispersoid are dispersed in a liquid dispersion medium, and may be in the form of a wet powder. When the suspension medium, ie the dispersion medium, is a liquid, this medium is a liquid dispersion medium. The suspension of aspect 1 may contain one or more additives such as a binder as long as the effects of the present technology are not impaired.
In the activation step, granular activated carbon may be obtained by performing infusibilization treatment for heating and carbonizing the granular suspension, and performing activation treatment for heating and activating the obtained granular carbide. This case is also included in the activation step of aspect 1.
Note that the above-mentioned supplementary notes are also applied to the following aspects.

[態様2]
図6(a)〜(e)に例示するように、前記成形工程S2では、前記懸濁液100を所定の大きさの粒状に揃える手段(例えば造粒装置210,220,230,240,250)により前記懸濁液100を粒状に成形してもよい。得られる粒状の懸濁液110の大きさが揃うと、得られる粒状活性炭120の大きさが揃い、単位体積当たりに充填される粒状活性炭の量が増える。例えば、粒状活性炭120を濾過カートリッジ(例えば浄水カートリッジ20)の収容部(例えば外側不織布の内側33)に充填する場合、粒状活性炭120の充填量を増やすことができる。尚、粒状活性炭を用いる濾過には粒状活性炭間に空隙が必要であり、粒状活性炭の集合体に流体が通過する時の抵抗を均一にするためには粒状活性炭間に空隙をなるべく均一にした方がよい。粒状活性炭の大きさが揃うほど、粒状活性炭間の空隙が均一化されるので、粒状活性炭の集合体に流体が通過する時の抵抗が均一化される。従って、本態様は、浄化性能を向上させる粒状活性炭の製造方法を提供することができる。
ここで、懸濁液を所定の大きさの粒状に揃える手段には、懸濁液をダイから線状に押し出して等間隔に切断する手段、懸濁液を板状に成形して縦横に等間隔に切断する手段、各種造粒装置、等が含まれる。この付言は、以下の態様においても適用される。
[Aspect 2]
As illustrated in FIGS. 6A to 6E, in the molding step S2, means for aligning the suspension 100 into particles having a predetermined size (for example, granulators 210, 220, 230, 240, 250). ) To form the suspension 100 into a granular shape. When the size of the obtained granular suspension 110 is uniform, the size of the granular activated carbon 120 obtained is uniform, and the amount of granular activated carbon filled per unit volume is increased. For example, when the granular activated carbon 120 is filled in a housing portion (for example, the inner side 33 of the outer nonwoven fabric) of the filtration cartridge (for example, the water purification cartridge 20), the filling amount of the granular activated carbon 120 can be increased. The filtration using granular activated carbon requires gaps between the granular activated carbons. To make the resistance uniform when the fluid passes through the aggregate of granular activated carbons, the gaps between the granular activated carbons should be as uniform as possible. Is good. As the sizes of the granular activated carbons become uniform, the gaps between the granular activated carbons are made uniform, so that the resistance when the fluid passes through the aggregate of the granular activated carbons is made uniform. Therefore, this aspect can provide a method for producing granular activated carbon that improves purification performance.
Here, the means for aligning the suspension into particles of a predetermined size includes means for extruding the suspension in a line from the die and cutting it at equal intervals, forming the suspension into a plate shape, vertically and horizontally, etc. Means for cutting at intervals, various granulators, etc. are included. This appendix also applies to the following aspects.

[態様3]
図7に例示するように、前記成形工程S2は、前記粒状の懸濁液110を丸める工程(例えば丸め工程S22)を含んでもよい。粒状の懸濁液110が丸みを帯びた形状になると、得られる粒状活性炭120が丸みを帯びた形状となる。このため、単位体積当たりの粒状活性炭量を増やすことができる。例えば、粒状活性炭120を濾過カートリッジ(20)の収容部(33)に充填する場合、粒状活性炭120の充填量を増やすことができる。尚、粒状活性炭が丸みを帯びた形状になることは、粒状活性炭が真球の形状に近付くことを意味する。粒状活性炭が真球の形状に近付くほど、粒状活性炭間の空隙が均一化されるので、粒状活性炭の集合体に流体が通過する時の抵抗が均一化される。従って、本態様も、浄化性能を向上させる粒状活性炭の製造方法を提供することができる。
ここで、粒状の懸濁液を丸めることは、粒状の懸濁液において角の少なくとも一部が丸くなったり曲率半径の小さい箇所の少なくとも一部がより大きい曲率半径になったりする処理であればよく、粒状の懸濁液を球状にすることに限定されない。
粒状の懸濁液を丸める工程には、粒状の懸濁液を転がして丸める工程、粒状の懸濁液を風により流動させて丸める工程、等が含まれる。この付言は、以下の態様においても適用される。
[Aspect 3]
As illustrated in FIG. 7, the forming step S2 may include a step of rounding the granular suspension 110 (for example, a rounding step S22). When the granular suspension 110 has a rounded shape, the resulting granular activated carbon 120 has a rounded shape. For this reason, the amount of granular activated carbon per unit volume can be increased. For example, when the granular activated carbon 120 is filled in the accommodating portion (33) of the filtration cartridge (20), the filling amount of the granular activated carbon 120 can be increased. In addition, that a granular activated carbon becomes a rounded shape means that a granular activated carbon approaches the shape of a true sphere. The closer the granular activated carbon is to the shape of a true sphere, the more uniform the gaps between the granular activated carbons, and thus the resistance when the fluid passes through the aggregate of granular activated carbons is made uniform. Therefore, this aspect can also provide a method for producing granular activated carbon that improves purification performance.
Here, rounding the granular suspension is a process in which at least a part of a corner of the granular suspension is rounded or at least a part of a portion having a small radius of curvature has a larger radius of curvature. Well, it is not limited to making the granular suspension spherical.
The step of rounding the granular suspension includes a step of rolling and rolling the granular suspension, a step of rolling the granular suspension by wind, and the like. This appendix also applies to the following aspects.

[態様4]
ところで、本技術の一態様に係る濾過カートリッジ(例えば浄水カートリッジ20)の製造方法は、成形工程S2、賦活工程S3、及び、流体(例えば水W)の流入部(例えば外側不織布の外側面32)及び流出部75を有する収容部(例えば外側不織布の内側33)に前記粒状活性炭120を収容する収容工程S4を含む。態様1と同じく粒状の懸濁液110の大きさを調整すれば得られる粒状活性炭120の大きさが調整されるので、本態様は、得られる粒状活性炭の大きさを調整し易くする濾過カートリッジの製造方法を提供することができる。
[Aspect 4]
By the way, the manufacturing method of the filtration cartridge (for example, water purification cartridge 20) which concerns on 1 aspect of this technique is the formation process S2, the activation process S3, and the inflow part (for example, the outer surface 32 of an outer nonwoven fabric) of the fluid (for example, water W). And the accommodating process S4 which accommodates the said granular activated carbon 120 in the accommodating part (for example, the inner side 33 of an outer side nonwoven fabric) which has the outflow part 75 is included. Since the size of the granular activated carbon 120 to be obtained is adjusted by adjusting the size of the granular suspension 110 as in the case of the first aspect, this embodiment is a filter cartridge that makes it easy to adjust the size of the obtained granular activated carbon. A manufacturing method can be provided.

(2)粒状活性炭を収容した濾過カートリッジを有する浄水器の具体例:
まず、図1〜4に示す例を参照して、上述した態様に従って得られる粒状活性炭を収容した濾過カートリッジを有する浄水器の例を説明する。
(2) Specific example of a water purifier having a filtration cartridge containing granular activated carbon:
First, with reference to the example shown in FIGS. 1-4, the example of the water purifier which has the filtration cartridge which accommodated the granular activated carbon obtained according to the aspect mentioned above is demonstrated.

図1は、浄水機能付き水栓1(浄水器の例)を組み込んだシステムキッチンSY1を模式的に例示している。この例の浄水器は、いわゆるスパウトイン浄水器であり、本具体例の製造方法により得られる粒状活性炭を収容した浄水カートリッジ20(濾過カートリッジの例)により浄水機能を発揮する。粒状活性炭の製造方法の詳細は、後述する。尚、各部の位置関係の説明は、例示に過ぎない。従って、左右方向を上下方向又は前後方向に変更したり、上下方向を左右方向や前後方向に変更したり、前後方向を左右方向や上下方向に変更したり、回転方向を逆方向に変更したり等することも、本技術に含まれる。また、方向や位置等の同一は、厳密な一致に限定されず、誤差により厳密な一致からずれることを含む。   FIG. 1 schematically illustrates a system kitchen SY1 incorporating a faucet 1 with a water purification function (an example of a water purifier). The water purifier in this example is a so-called spout-in water purifier, and exhibits a water purifying function by a water purifying cartridge 20 (an example of a filtration cartridge) containing granular activated carbon obtained by the manufacturing method of this specific example. The detail of the manufacturing method of granular activated carbon is mentioned later. Note that the description of the positional relationship of each unit is merely an example. Therefore, change the left / right direction to the up / down direction or the front / rear direction, change the up / down direction to the left / right direction or the front / rear direction, change the front / rear direction to the left / right direction or the up / down direction, or change the rotation direction to the reverse direction. It is also included in the present technology. Further, the same direction, position, etc. are not limited to exact matching, but include deviation from exact matching due to an error.

図1に示すシステムキッチンSY1には、水平に延びるカウンター801にキャビネット802、凹状のシンク803、水栓1、等が組み込まれている。水栓1は、カウンター801の下面に配置されたシンク803を上下に貫通して取付けられた水栓本体2、この水栓本体2に対して着脱可能な吐水ヘッド(浄水器本体の例)10、水栓本体2に対して傾動可能な開栓レバー3、等を備えている。尚、本具体例の浄水器本体は、浄水カートリッジ20を除いた吐水ヘッド10を意味する。吐水ヘッド10には、水栓本体2に通されているホース19(水入口の例)が接続されている。ホース19は、開栓レバー3が開いている時に図示しない給水管からの水道水を吐水ヘッド10に供給する。水栓本体2から吐水ヘッド10が取り外されると、水栓本体2からホース19が引き出される。水栓本体2に吐水ヘッド10を取り付ける時には、水栓本体2にホース19が引き込まれる。開栓レバー3は、開位置(例えば傾動範囲の上側の位置)にある時にホース19を介して吐水ヘッド10へ水道水が供給されるようにし、閉位置(例えば傾動範囲の下側の位置)にある時に吐水ヘッド10への水道水の供給を停止させる。   In the system kitchen SY1 shown in FIG. 1, a cabinet 802, a concave sink 803, a faucet 1, and the like are incorporated in a horizontally extending counter 801. The faucet 1 includes a faucet body 2 that is attached vertically through a sink 803 disposed on the lower surface of the counter 801, and a water discharge head (an example of a water purifier body) 10 that can be attached to and detached from the faucet body 2. And an opening lever 3 that can be tilted with respect to the faucet body 2. In addition, the water purifier main body of this specific example means the water discharge head 10 excluding the water purification cartridge 20. The water discharge head 10 is connected to a hose 19 (an example of a water inlet) that is passed through the faucet body 2. The hose 19 supplies tap water from a water supply pipe (not shown) to the water discharge head 10 when the opening lever 3 is open. When the water discharge head 10 is removed from the faucet body 2, the hose 19 is pulled out from the faucet body 2. When the water discharge head 10 is attached to the faucet body 2, the hose 19 is drawn into the faucet body 2. The tap opening lever 3 is configured to supply tap water to the water discharge head 10 via the hose 19 when in the open position (for example, a position above the tilting range), and to be in the closed position (for example, a position below the tilting range). The supply of tap water to the water discharge head 10 is stopped when

図2(a)は、浄水カートリッジ20を取り付けた吐水ヘッド10を一部断面視して例示している。図2(b)は、浄水カートリッジ20を取り付けた吐水部を例示している。図2に示す吐水ヘッド10は、先端側、すなわち、水の流下方向D1の下流側にある吐水部11、及び、水栓本体2に対して着脱される把持部18を有し、交換部品である浄水カートリッジ20が組み込まれている。吐水ヘッド10の内側において浄水カートリッジ20の外側は、水道水が流れる水道水通路10aとされている。吐水部11には、浄水カートリッジ20との接続口12、及び、接続口12からの浄水を出すか水道水通路10aからの水道水を出すかの切替操作可能な切替レバー15が設けられている。切替レバー15は、浄水側(例えば回転範囲の一端側)にある時に水道水を止めて浄水を吐水部11の水出口13から吐出させ、水道水側(例えば回転範囲の他端側)にある時浄水を止めて水道水を吐水部11の水出口13から吐出させる。   FIG. 2A illustrates the water discharge head 10 to which the water purification cartridge 20 is attached as a partial cross-sectional view. FIG. 2B illustrates a water discharge portion to which the water purification cartridge 20 is attached. A water discharge head 10 shown in FIG. 2 has a water discharge part 11 on the tip side, that is, a downstream side in the water flow direction D1, and a grip part 18 that is attached to and detached from the faucet body 2, and is a replacement part. A water purification cartridge 20 is incorporated. Inside the water discharge head 10, the outside of the water purification cartridge 20 is a tap water passage 10a through which tap water flows. The water discharger 11 is provided with a connection port 12 with the water purification cartridge 20 and a switching lever 15 that can be switched between discharging purified water from the connection port 12 or discharging tap water from the tap water passage 10a. . The switching lever 15 stops the tap water when it is on the purified water side (for example, one end side of the rotation range) and discharges the purified water from the water outlet 13 of the water discharger 11 and is on the tap water side (for example, the other end side of the rotation range). Water purification is stopped and tap water is discharged from the water outlet 13 of the water discharger 11.

図2に示すように、吐水部11の上流側における端部の外周に雄ねじ11aが形成され、把持部18の下流側における端部の内周に雌ねじ18aが形成されている。両ねじ11a,18aを螺合することにより把持部18を吐水部11に取り付けることができ、雄ねじ11aから雌ねじ18aを外すことにより吐水部11から把持部18を取り外すことができる。
むろん、浄水カートリッジを取付可能な吐水ヘッドは、図1,2に示す吐水ヘッド10に限定されず、様々な構成が可能である。
As shown in FIG. 2, a male screw 11 a is formed on the outer periphery of the end portion on the upstream side of the water discharge portion 11, and a female screw 18 a is formed on the inner periphery of the end portion on the downstream side of the grip portion 18. The gripping part 18 can be attached to the water discharging part 11 by screwing both the screws 11a, 18a, and the gripping part 18 can be removed from the water discharging part 11 by removing the female screw 18a from the male screw 11a.
Of course, the water discharge head to which the water purification cartridge can be attached is not limited to the water discharge head 10 shown in FIGS. 1 and 2, and various configurations are possible.

図3は、交換可能な浄水カートリッジ20の中心軸AX1を通る縦断面を例示している。図4は、浄水カートリッジ20を分解して例示している。浄水カートリッジ20は、粒状活性炭を含む吸着剤AH1が収容された吸着剤部30、及び、中空糸膜H1を複数束ねた中空糸膜束BH1の収容部71を有する中空糸膜ケース70を備えている。吸着剤部30は流下方向D1の上流側に配置され、中空糸膜ケース70は流下方向D1の下流側に配置されている。浄水カートリッジ20に流入した水道水W(流体の例)は、吸着剤部30、中空糸膜ケース70の中空糸膜束収容部71、の順に入り、浄化される。   FIG. 3 illustrates a longitudinal section passing through the central axis AX1 of the replaceable water purification cartridge 20. FIG. 4 illustrates the water purification cartridge 20 in an exploded manner. The water purification cartridge 20 includes a hollow fiber membrane case 70 having an adsorbent portion 30 in which an adsorbent AH1 containing granular activated carbon is accommodated, and an accommodating portion 71 of a hollow fiber membrane bundle BH1 in which a plurality of hollow fiber membranes H1 are bundled. Yes. The adsorbent part 30 is disposed on the upstream side in the flow direction D1, and the hollow fiber membrane case 70 is disposed on the downstream side in the flow direction D1. The tap water W (an example of fluid) that has flowed into the water purification cartridge 20 enters the adsorbent portion 30 and the hollow fiber membrane bundle housing portion 71 of the hollow fiber membrane case 70 in this order, and is purified.

中空糸膜束収容部71は、吐水部11に対して流下方向D1へ挿入されて取り付けられる。この時、中空糸膜束収容部71の流出部75が吐水部11の接続口12に挿入される。浄水カートリッジ20は、吸着剤部30、及び、中空糸膜ケース70の外嵌部80が吐水部11から出た状態で吐水部11に固定される。浄水カートリッジ20は、吐水部11から流下方向D1とは反対の方向(延出方向D2)へ引き出すことにより取り外される。従って、浄水カートリッジ20は、吐水ヘッド10に対して着脱可能である。   The hollow fiber membrane bundle housing portion 71 is inserted and attached to the water discharge portion 11 in the flow-down direction D1. At this time, the outflow portion 75 of the hollow fiber membrane bundle housing portion 71 is inserted into the connection port 12 of the water discharge portion 11. The water purification cartridge 20 is fixed to the water discharger 11 with the adsorbent part 30 and the outer fitting part 80 of the hollow fiber membrane case 70 coming out of the water discharger 11. The water purification cartridge 20 is removed by drawing it out of the water discharger 11 in the direction opposite to the flow-down direction D1 (extending direction D2). Accordingly, the water purification cartridge 20 can be attached to and detached from the water discharge head 10.

吸着剤部30は、筒状の外側不織布31、外キャップ38、筒状の内側不織布41、内キャップ48、及び、内嵌部材50を有し、活性炭を含む吸着剤AH1が収容されている。活性炭は、原水に含まれる遊離残留塩素や有機物等の微量成分を除去する。詳細は後述するが、活性炭にはセルロースナノファイバーに由来する粒状活性炭を用いている。   The adsorbent part 30 has a cylindrical outer nonwoven fabric 31, an outer cap 38, a cylindrical inner nonwoven fabric 41, an inner cap 48, and an inner fitting member 50, and contains an adsorbent AH1 containing activated carbon. Activated carbon removes trace components such as free residual chlorine and organic matter contained in raw water. Although details will be described later, granular activated carbon derived from cellulose nanofiber is used as the activated carbon.

吸着剤AH1には、本技術の効果を損なわない範囲において、イオン交換体等が含まれてもよい。イオン交換体には、ゼオライト(沸石)といった無機系のイオン交換体、陽イオン交換樹脂や陰イオン交換樹脂といったイオン交換樹脂、キレート樹脂といったキレート化合物、これらの組合せ、等を用いることができる。ゼオライトや陽イオン交換樹脂は、陽イオン交換機能により金属イオンを吸着する。キレート化合物は、キレート結合で特定の金属イオンを選択的に吸着する。すなわち、ゼオライトや陽イオン交換樹脂やキレート化合物は、金属処理剤として機能する。また、イオン交換体には、粒状、繊維状、粉末状、等の形状のイオン交換体を用いることができる。   The adsorbent AH1 may include an ion exchanger or the like as long as the effects of the present technology are not impaired. As the ion exchanger, an inorganic ion exchanger such as zeolite (zeolite), an ion exchange resin such as a cation exchange resin or an anion exchange resin, a chelate compound such as a chelate resin, a combination thereof, or the like can be used. Zeolite and cation exchange resin adsorb metal ions by a cation exchange function. The chelate compound selectively adsorbs a specific metal ion through a chelate bond. That is, zeolite, a cation exchange resin, and a chelate compound function as a metal treating agent. Moreover, the ion exchanger of shapes, such as a granular form, a fiber form, and a powder form, can be used for an ion exchanger.

外側不織布31は、円筒状に成形され、水が内外方向へ、すなわち、浄水カートリッジ20の中心を通る仮想の軸AX1を中心とする径方向へ流通可能である。むろん、外側不織布31は、円筒状に限定されない。外側不織布31の下流側の端部31bは、中空糸膜ケース70の外嵌部80に挿入されて固定される。外嵌部80に挿入された外側不織布31の内側33(収容部の例)には、吸着剤AH1が収容される。外側不織布31の上流側の端部31aは、外キャップ38が挿入され、内側へ折り曲げられて外キャップ38の外面38aに溶着される。これにより、外側不織布31の端部31aの開口31oが閉塞される。尚、溶着の代わりに接着剤等で外側不織布31の端部31aと外キャップ38とを接合してもよい。   The outer nonwoven fabric 31 is formed in a cylindrical shape, and water can flow in the inner and outer directions, that is, in the radial direction centered on the virtual axis AX1 passing through the center of the water purification cartridge 20. Of course, the outer nonwoven fabric 31 is not limited to a cylindrical shape. The downstream end portion 31 b of the outer nonwoven fabric 31 is inserted into and fixed to the outer fitting portion 80 of the hollow fiber membrane case 70. The adsorbent AH1 is accommodated in the inner side 33 of the outer nonwoven fabric 31 inserted into the outer fitting portion 80 (an example of the accommodating portion). An outer cap 38 is inserted into the upstream end 31 a of the outer nonwoven fabric 31, is bent inward, and is welded to the outer surface 38 a of the outer cap 38. Thereby, the opening 31o of the edge part 31a of the outer side nonwoven fabric 31 is obstruct | occluded. In addition, you may join the edge part 31a of the outer side nonwoven fabric 31, and the outer cap 38 with an adhesive etc. instead of welding.

内側不織布41は、外側不織布31よりも細い円筒状に形成され、水が内外方向へ流通可能である。内側不織布41の下流側の端部41bは、中空糸膜ケース70の連絡口74に挿入されて固定される。内側不織布41の上流側の端部41aは、内キャップ48が嵌め込まれる。これにより、内側不織布41の端部41aの開口41oが閉塞される。内側不織布41の外側には、吸着剤AH1が存在する。内側不織布41の内側43は、連絡口74を介して中空糸膜束収容部71の中に繋がり、吸着対象の物質が除去された水の通路となる。   The inner nonwoven fabric 41 is formed in a cylindrical shape thinner than the outer nonwoven fabric 31, and water can flow inward and outward. The downstream end portion 41 b of the inner nonwoven fabric 41 is inserted into and fixed to the communication port 74 of the hollow fiber membrane case 70. The inner cap 48 is fitted into the upstream end 41 a of the inner nonwoven fabric 41. Thereby, the opening 41o of the edge part 41a of the inner side nonwoven fabric 41 is obstruct | occluded. Adsorbent AH1 is present outside the inner nonwoven fabric 41. The inner side 43 of the inner side nonwoven fabric 41 is connected to the hollow fiber membrane bundle accommodating part 71 via the connection port 74, and becomes a passage of water from which the substance to be adsorbed has been removed.

尚、不織布31,41には、ポリオレフィン繊維、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維、これらの組合せ、といった熱可塑性樹脂(合成樹脂)の繊維等を用いることができる。   The nonwoven fabrics 31 and 41 can be made of thermoplastic resin (synthetic resin) fibers such as polyolefin fibers, polyester fibers, polyamide fibers, polyvinyl alcohol fibers, and combinations thereof.

内嵌部材50は、環状に成形されたシール部材であり、可撓性を有する。内嵌部材50は、図3に示すように、外側不織布31の内側33に挿入され、中空糸膜ケース70の外嵌部80とで外側不織布31の下流側の端部31bを挟んで保持する。これにより、吸着剤部30の下流側の端部30bが中空糸膜ケース70の外嵌部80に保持される。内嵌部材50の材料には、アクリロニトリルブタジエンスチレン共重合体(ABS)樹脂、アクリロニトリルスチレン共重合体(AS)樹脂、ポリオレフィン樹脂、熱可塑性エラストマー、これらの組合せ、等を用いることができる。
尚、外嵌部80と吸着剤部30との固定手段は、シール部材に限定されず、接着剤等でもよい。
The inner fitting member 50 is a sealing member formed in an annular shape and has flexibility. As shown in FIG. 3, the inner fitting member 50 is inserted into the inner side 33 of the outer nonwoven fabric 31, and holds the end portion 31 b on the downstream side of the outer nonwoven fabric 31 with the outer fitting portion 80 of the hollow fiber membrane case 70. . Thereby, the downstream end portion 30 b of the adsorbent portion 30 is held by the outer fitting portion 80 of the hollow fiber membrane case 70. As the material of the internal fitting member 50, acrylonitrile butadiene styrene copolymer (ABS) resin, acrylonitrile styrene copolymer (AS) resin, polyolefin resin, thermoplastic elastomer, a combination thereof, or the like can be used.
The fixing means between the outer fitting portion 80 and the adsorbent portion 30 is not limited to the seal member, and may be an adhesive or the like.

中空糸膜ケース70は、内部空間70cに中空糸膜束BH1が収容された中空糸膜束収容部71、及び、吸着剤部30の端部30bの外嵌部80が形成されている。中空糸膜束BH1は、処理対象の水から0.1μm程度以上の細かい濁りや鉄サビや一般細菌を取り除く。例えば、U字状に曲げた中空糸膜H1を複数束ねた中空糸膜束BH1を閉塞端部BH1aから中空糸膜ケース70の内部空間70cに挿入して開口端部BH1bをポッティング剤で固定すると、中空糸膜束BH1が収容された中空糸膜ケース70が形成される。中空糸膜束収容部71には、中空糸膜束BH1の閉塞端部BH1aに対向する連絡口74が形成されている。中空糸膜束BH1において収容部71に固定された開口端部BH1bは、水の流出部75とされている。外嵌部80は、中空糸膜束収容部71から吸着剤部30側(延出方向D2)へ延出し、外側不織布31の下流側の端部31bが挿入される。
尚、中空糸膜ケース70及びキャップ38,48には、ABS樹脂、AS樹脂、ポリオレフィン、これらの組合せ、といった熱可塑性樹脂(合成樹脂)等を用いることができる。
The hollow fiber membrane case 70 is formed with a hollow fiber membrane bundle housing portion 71 in which the hollow fiber membrane bundle BH1 is accommodated in an internal space 70c and an outer fitting portion 80 of the end portion 30b of the adsorbent portion 30. The hollow fiber membrane bundle BH1 removes fine turbidity of about 0.1 μm or more, iron rust and general bacteria from the water to be treated. For example, when a hollow fiber membrane bundle BH1 in which a plurality of hollow fiber membranes H1 bent in a U-shape are bundled is inserted into the internal space 70c of the hollow fiber membrane case 70 from the closed end BH1a, and the open end BH1b is fixed with a potting agent. A hollow fiber membrane case 70 in which the hollow fiber membrane bundle BH1 is accommodated is formed. The hollow fiber membrane bundle housing portion 71 is formed with a communication port 74 that faces the closed end BH1a of the hollow fiber membrane bundle BH1. The open end BH1b fixed to the accommodating portion 71 in the hollow fiber membrane bundle BH1 is a water outflow portion 75. The outer fitting portion 80 extends from the hollow fiber membrane bundle housing portion 71 to the adsorbent portion 30 side (extending direction D2), and the downstream end portion 31b of the outer nonwoven fabric 31 is inserted.
For the hollow fiber membrane case 70 and the caps 38 and 48, a thermoplastic resin (synthetic resin) such as ABS resin, AS resin, polyolefin, or a combination thereof can be used.

次に、図1〜3を参照して、浄水カートリッジ20が取り付けられた吐水ヘッド10の水W(流体の例)の流れを説明する。
切替レバー15が浄水側にある時、図1に示すホース19からの水道水Wは、図3に示す矢印のように、外側不織布31の外側面32(流入部の例)から内側33へ入り、吸着剤AH1により吸着対象の物質(例えば遊離残留塩素や有機物等の微量成分)が除去される。外側不織布内側33の水は、内側不織布41の内側43へ入り、連絡口74から中空糸膜束収容部71の内部空間70cに入る。内部空間70cの水は、中空糸膜束BH1において閉塞端部BH1aから開口端部BH1bへ移動し、0.1μm程度以上の細かい濁りや鉄サビや一般細菌が取り除かれる。開口端部BH1b、すなわち、流出部75からの浄水は、吐水部11から吐出される。切替レバー15が水道水側にある時、ホース19からの水道水は、吐水ヘッド10の中で浄水カートリッジ20の外側を流下方向D1へ流れ、吐水部11から吐出される。
Next, with reference to FIGS. 1-3, the flow of the water W (example of fluid) of the water discharge head 10 to which the water purification cartridge 20 was attached is demonstrated.
When the switching lever 15 is on the purified water side, the tap water W from the hose 19 shown in FIG. 1 enters the inner side 33 from the outer side 32 (example of the inflow portion) of the outer nonwoven fabric 31 as shown by the arrows in FIG. The adsorbent AH1 removes the substance to be adsorbed (for example, trace components such as free residual chlorine and organic substances). The water inside the outer nonwoven fabric 33 enters the inner 43 of the inner nonwoven fabric 41 and enters the internal space 70 c of the hollow fiber membrane bundle housing portion 71 through the communication port 74. The water in the internal space 70c moves from the closed end BH1a to the open end BH1b in the hollow fiber membrane bundle BH1, and fine turbidity of about 0.1 μm or more, iron rust, and general bacteria are removed. The purified water from the open end BH 1 b, that is, the outflow part 75 is discharged from the water discharge part 11. When the switching lever 15 is on the tap water side, the tap water from the hose 19 flows in the flow direction D <b> 1 outside the water purification cartridge 20 in the water discharge head 10 and is discharged from the water discharge unit 11.

吐水ヘッド10から使用済みの浄水カートリッジ20を取り外す場合、まず、ねじ11a,18aの螺合を解除する向きに把持部18を回し、吐水部11から把持部18を取り外す。このとき、図2(b)に示すように、吐水部11から浄水カートリッジ20における吸着剤部30及び外嵌部80が出た状態となる。次に、外嵌部80を掴み、吐水部11から浄水カートリッジ20を流下方向D1とは反対の方向(延出方向D2)へ引き出せばよい。吐水ヘッド10に新しい浄水カートリッジ20を取り付ける場合、外嵌部80を掴み、吐水部11に流出部75から浄水カートリッジ20を流下方向D1へ押し込めばよい。図2(a)に示すように流出部75が吐水部11の接続口12に挿入されると、浄水カートリッジ20が吐水部11に取り付けられる。   When removing the used water purification cartridge 20 from the water discharging head 10, first, the gripping portion 18 is turned in a direction to release the screwing of the screws 11 a and 18 a, and the gripping portion 18 is removed from the water discharging portion 11. At this time, as shown in FIG. 2 (b), the adsorbent part 30 and the external fitting part 80 in the water purification cartridge 20 come out from the water discharge part 11. Next, what is necessary is just to grasp the outer fitting part 80 and to draw out the water purification cartridge 20 from the water discharge part 11 in the direction (extending direction D2) opposite to the flow-down direction D1. When the new water purification cartridge 20 is attached to the water discharge head 10, the outer fitting portion 80 may be grasped and the water purification cartridge 20 may be pushed into the water discharge portion 11 from the outflow portion 75 in the flow-down direction D1. As shown in FIG. 2A, when the outflow portion 75 is inserted into the connection port 12 of the water discharge portion 11, the water purification cartridge 20 is attached to the water discharge portion 11.

(3)粒状活性炭の製造方法を含む濾過カートリッジの製造方法の具体例:
図5は、セルロースナノファイバー(以下、CNFとも記載)に由来する粒状活性炭の製造方法を含む濾過カートリッジの製造方法の例を模式的に示している。図5に示す粒状活性炭の製造方法は、懸濁液用意工程S1、成形工程S2、及び、賦活工程S3を含んでいる。図5に示す浄水カートリッジ20(濾過カートリッジの例)の製造方法は、前述の工程S1〜S3、及び、収容工程S4を含んでいる。懸濁液用意工程S1では、100重量部の液状分散媒101に対して11〜43重量部のCNF102を含む懸濁液100を用意する。成形工程S2では、懸濁液100を粒状に成形する。賦活工程S3では、粒状の懸濁液110を加熱して賦活することにより粒状活性炭120を得る。収容工程S4では、粒状活性炭120を外側不織布31の内側33(収容部の例)に収容する。
(3) Specific example of a method for producing a filtration cartridge including a method for producing granular activated carbon:
FIG. 5 schematically shows an example of a method for producing a filtration cartridge including a method for producing granular activated carbon derived from cellulose nanofiber (hereinafter also referred to as CNF). The method for producing granular activated carbon shown in FIG. 5 includes a suspension preparation step S1, a forming step S2, and an activation step S3. The manufacturing method of the water purification cartridge 20 shown in FIG. 5 (an example of a filtration cartridge) includes the above-described steps S1 to S3 and a housing step S4. In the suspension preparation step S1, a suspension 100 containing 11 to 43 parts by weight of CNF 102 is prepared for 100 parts by weight of the liquid dispersion medium 101. In the forming step S2, the suspension 100 is formed into a granular shape. In the activation step S3, granular activated carbon 120 is obtained by heating and activating the granular suspension 110. In the housing step S4, the granular activated carbon 120 is housed inside the outer nonwoven fabric 31 (an example of a housing portion).

尚、CNF懸濁液100が用意されている場合には、懸濁液用意工程S1を省略してもよい。成形工程S2は、予備成形工程S21と丸め工程S22を含んでもいてもよい。賦活工程S3は、不融化工程S31と主賦活工程S32を含んでいてもよい。
以下の説明において、「粒状の懸濁液」を「粒状懸濁液」とも記載する。
If the CNF suspension 100 is prepared, the suspension preparation step S1 may be omitted. The molding step S2 may include a preliminary molding step S21 and a rounding step S22. The activation step S3 may include an infusibilization step S31 and a main activation step S32.
In the following description, “granular suspension” is also referred to as “granular suspension”.

(3−1)懸濁液用意工程S1の例:
液状分散媒101には、水、メタノールやエタノールといったアルコール、アルコール水溶液、極性を有する有機溶媒、等を用いることができる。CNFは、極性の高い官能基である水酸基を表面に多数有する多糖のセルロースで構成され、極めて高い親水性を示す。従って、極性の大きい水は、CNFを分散させ易いので、液状分散媒として特に好ましい。
(3-1) Example of suspension preparation step S1:
As the liquid dispersion medium 101, water, alcohol such as methanol or ethanol, an alcohol aqueous solution, a polar organic solvent, or the like can be used. CNF is composed of polysaccharide cellulose having a large number of hydroxyl groups on the surface, which are highly polar functional groups, and exhibits extremely high hydrophilicity. Accordingly, water having a large polarity is particularly preferable as a liquid dispersion medium because CNF can be easily dispersed.

CNF102には、パルプといった植物繊維を解繊して得られるナノファイバー、バクテリアに由来するミクロフィブリル化セルロース、等を用いることができる。むろん、CNFに市販品を用いてもよい。また、CNFは、カルボキシメチルセルロースナノファイバーといった、化学修飾されたセルロースナノファイバーでもよい。CNFには、例えば、繊維径(直径)が3〜400nmであって、繊維長が50nm〜50μmであるセルロース繊維を用いることができる。   As CNF102, nanofibers obtained by defibrating plant fibers such as pulp, microfibrillated cellulose derived from bacteria, and the like can be used. Of course, you may use a commercial item for CNF. CNF may also be chemically modified cellulose nanofibers such as carboxymethylcellulose nanofibers. For CNF, for example, a cellulose fiber having a fiber diameter (diameter) of 3 to 400 nm and a fiber length of 50 nm to 50 μm can be used.

CNF102は、例えば、セルロースを含有する材料であるセルロース原料を湿式粉砕することにより製造することができる。湿式粉砕は、液状分散媒(好ましくは水)の存在下で行う粉砕を意味する。セルロース原料には、木質系材料、草本系材料、海藻系材料、バクテリア系材料、動物系材料、等を用いることができる。木質系材料には、針葉樹系材料や広葉樹系材料が含まれ、木片、木粉、木材の破砕物、木材の粉砕物、木質系パルプ、これらの組合せ、等が含まれる。木質系材料に竹等が含まれてもよい。草本系材料には、麻、バガス、モミガラ、稲わら、麦わら、綿、草本系パルプ、これらの組合せ、等が含まれる。セルロース原料は、家具工場や建築現場等で発生する木材の切り屑、廃材の粉砕物、家具や建築用材といった廃棄物の粉砕物、等も用いることができ、パルプ化していてもよいし、パルプ化していなくてもよい。   CNF102 can be manufactured by wet-grinding the cellulose raw material which is a material containing a cellulose, for example. Wet pulverization means pulverization performed in the presence of a liquid dispersion medium (preferably water). Woody materials, herbaceous materials, seaweed materials, bacterial materials, animal materials, and the like can be used as the cellulose raw material. Woody materials include coniferous materials and hardwood materials, and include wood chips, wood powder, crushed wood, crushed wood, wood pulp, combinations thereof, and the like. Bamboo etc. may be contained in the woody material. Herbaceous materials include hemp, bagasse, rice straw, rice straw, straw, cotton, herbaceous pulp, combinations thereof, and the like. As the cellulose raw material, wood chips generated at furniture factories and construction sites, pulverized waste materials, pulverized waste materials such as furniture and building materials, etc. can be used, and may be pulped. It does not have to be converted.

セルロース原料を湿式粉砕する装置には、例えば特開2015-86377号公報に開示されるように、ボールミル、ビーズミル、ロッドミル、ディスクミル、リングミル、高圧ホモジナイザー、せん断型ミキサー、ニーダー、遊星回転型ミキサー、ジェットミル、アトリションミル、及び、高速ミキサーから選ばれる一種以上を用いることができる。これらの機械は、セルロース原料にせん断力を与えてセルロース原料をフィブリル化することができる。ボールミルやビーズミルやロッドミルやディスクミル等は、処理媒体を用いるミルである。処理媒体からの強い機械的エネルギーは、水により膨潤しているセルロース原料を解繊(叩解)して十分にフィブリル化させる。   For example, as disclosed in JP-A-2015-86377, for example, as disclosed in JP-A-2015-86377, an apparatus for wet-grinding a cellulose raw material includes a ball mill, a bead mill, a rod mill, a disk mill, a ring mill, a high-pressure homogenizer, a shear mixer, a kneader, a planetary rotary mixer, One or more selected from a jet mill, an attrition mill, and a high-speed mixer can be used. These machines can apply a shearing force to the cellulose raw material to fibrillate the cellulose raw material. Ball mills, bead mills, rod mills, disk mills, and the like are mills that use a processing medium. The strong mechanical energy from the treatment medium fibrillates (beats) the cellulose raw material swollen with water and sufficiently fibrillates it.

CNF102が分散質として液状分散媒101に分散した分散系である懸濁液100は、液状分散媒の存在により流動性を有するが、CNFの細い繊維により高い粘性を示す。懸濁液100において液状分散媒101に対するCNF102の重量比は、液状分散媒100重量部に対してCNFを11〜43重量部(好ましくは14〜30重量部)としている。CNFを11重量部以上にしているのは、懸濁液100の粘性を成形可能な程度に高くして粒状懸濁液110の形状を保持させるためである。CNFを14重量部以上にすると、懸濁液100の粘性がさらに高くなって粒状懸濁液110の形状保持性がさらに向上する。CNFを43重量部以下にしているのは、懸濁液100の流動性を成形可能な程度に上げて懸濁液100を粒状に成形するためである。CNFを30重量部以下にすると、懸濁液100の流動性がさらに上がって懸濁液100の成形性がさらに向上する。
同じ理由により、添加剤103が含まれていない懸濁液100の含水率は、70〜90重量%が好ましく、77〜87重量%がさらに好ましい。懸濁液100におけるCNF102の配合割合は、10〜30重量%が好ましく、13〜23重量%がさらに好ましい。
The suspension 100, which is a dispersion system in which the CNF 102 is dispersed in the liquid dispersion medium 101 as a dispersoid, has fluidity due to the presence of the liquid dispersion medium, but exhibits high viscosity due to the thin fibers of CNF. In the suspension 100, the weight ratio of the CNF 102 to the liquid dispersion medium 101 is 11 to 43 parts by weight (preferably 14 to 30 parts by weight) of CNF with respect to 100 parts by weight of the liquid dispersion medium 101. The reason why CNF is set to 11 parts by weight or more is to maintain the shape of the granular suspension 110 by increasing the viscosity of the suspension 100 to such an extent that it can be molded. When CNF is 14 parts by weight or more, the viscosity of the suspension 100 is further increased, and the shape retention of the granular suspension 110 is further improved. The reason why the CNF is set to 43 parts by weight or less is to increase the fluidity of the suspension 100 to a formable level and form the suspension 100 into a granular shape. When CNF is 30 parts by weight or less, the fluidity of the suspension 100 is further improved, and the moldability of the suspension 100 is further improved.
For the same reason, the water content of the suspension 100 not containing the additive 103 is preferably 70 to 90% by weight, and more preferably 77 to 87% by weight. The blending ratio of CNF102 in the suspension 100 is preferably 10 to 30% by weight, and more preferably 13 to 23% by weight.

懸濁液100には、本技術の効果を損なわない範囲において、液状分散媒101とCNF102に含まれない一種以上の添加剤103が含まれてもよい。添加剤103には、熱可塑性バインダーや熱硬化性バインダーや無機バインダーや水溶性バインダーや天然有機系バインダーといったバインダー、抗菌剤、防腐剤、防カビ剤、着色剤、充填材、等を用いることができる。添加剤103は、親水性(水溶性を含む。)に限定されず、疎水性でもよい。
熱可塑性バインダーには、ポリエチレン(PE)樹脂やポリプロピレン(PP)樹脂といったポリオレフィン樹脂、ポリエチレンテレフタレート樹脂といったポリエステル樹脂、熱可塑性エラストマー、これらの樹脂を親水化した樹脂、これらの樹脂に改質剤といった添加剤を添加した樹脂、これらの樹脂の混合物、等を用いることができる。親水性の熱可塑性バインダーの具体例として、三井化学株式会社製ポリオレフィン水性ディスパージョン(ケミパール(登録商標))等を挙げることができる。疎水性の熱可塑性バインダーの具体例として、三井化学株式会社社製ポリエチレンパウダー(ミペロン(登録商標)、旭化成ケミカルズ株式会社製ポリエチレンパウダー(サンファイン(登録商標))、等を挙げることができる。
The suspension 100 may include one or more additives 103 that are not included in the liquid dispersion medium 101 and the CNF 102 as long as the effects of the present technology are not impaired. As the additive 103, a binder such as a thermoplastic binder, a thermosetting binder, an inorganic binder, a water-soluble binder, or a natural organic binder, an antibacterial agent, an antiseptic, a fungicide, a colorant, a filler, or the like may be used. it can. The additive 103 is not limited to hydrophilicity (including water solubility), and may be hydrophobic.
Thermoplastic binders include polyolefin resins such as polyethylene (PE) resin and polypropylene (PP) resin, polyester resins such as polyethylene terephthalate resin, thermoplastic elastomers, resins made hydrophilic to these resins, and additives such as modifiers. A resin to which an agent is added, a mixture of these resins, and the like can be used. Specific examples of the hydrophilic thermoplastic binder include polyolefin aqueous dispersion (Chemical (registered trademark)) manufactured by Mitsui Chemicals, Inc. Specific examples of the hydrophobic thermoplastic binder include polyethylene powder manufactured by Mitsui Chemicals, Inc. (Miperon (registered trademark), polyethylene powder manufactured by Asahi Kasei Chemicals Corporation (Sunfine (registered trademark)), and the like.

無機バインダーには、p−アルミナ(Al23・nH2O)、リン酸系バインダー、ケイ素系バインダー、チタン系バインダー、等を用いることができる。また、ベントナイト(主成分がモンモリロナイト)といった層状ケイ酸塩鉱物などの粘土状鉱物も無機バインダーとして用いることができる。
水溶性バインダーには、上述したp−アルミナの他、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)樹脂、ポリアクリルアミド(PAM)樹脂、リン酸アルミニウム系バインダー、等が含まれる。
As the inorganic binder, p-alumina (Al 2 O 3 .nH 2 O), phosphoric acid binder, silicon binder, titanium binder, and the like can be used. Clay-like minerals such as layered silicate minerals such as bentonite (main component is montmorillonite) can also be used as the inorganic binder.
The water-soluble binder includes carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) resin, polyacrylamide (PAM) resin, aluminum phosphate binder, and the like in addition to the above-described p-alumina.

天然有機系バインダーには、サトウキビ糖蜜やてん菜糖蜜や精製糖廃糖蜜といった廃糖蜜、リグニンスルホン酸カルシウムやリグニンスルホン酸カルシウム・ナトリウム混合塩といったリグニンスルホン酸塩 、コーンでん粉やタピオカでん粉といったαでん粉、コンニャク飛粉、アルギン酸ナトリウム、等が含まれる。
添加剤103の配合量は、例えば、液状分散媒100重量部に対して0.1〜60重量部程度とすることができる。
Natural organic binders include molasses such as sugarcane molasses, sugar beet molasses and refined molasses molasses, lignin sulfonates such as calcium lignin sulfonate and calcium lignin sulfonate / sodium mixed salt, alpha starch such as corn starch and tapioca starch, konjac Includes flying powder, sodium alginate, and the like.
The compounding amount of the additive 103 can be, for example, about 0.1 to 60 parts by weight with respect to 100 parts by weight of the liquid dispersion medium.

尚、セルロース原料の湿式粉砕のために液状分散媒100重量部に対するCNFの配合割合が11重量部未満となっている場合、元の懸濁液から一部の液状分散媒を除去する処理を行って液状分散媒100重量部に対するCNFの配合割合を11〜43重量部にすればよい。元の懸濁液から液状分散媒を除去する処理には、元の懸濁液の液状分散媒の一部を吸収性材料に吸収させる処理、元の懸濁液の液状分散媒を一部蒸発させる処理、元の懸濁液を一部濾過して濾液を除去する処理、元の懸濁液に対して遠心分離を行って液状分散媒の一部を除去する処理、等を採用することができる。吸収性材料には、吸水紙といった吸水シート、吸水ポリマー、等を用いることができる。
以上が液状分散媒100重量部に対して11〜43重量部のCNFを含む懸濁液を用意する懸濁液用意工程S1である。
In addition, when the blending ratio of CNF with respect to 100 parts by weight of the liquid dispersion medium is less than 11 parts by weight for wet pulverization of the cellulose raw material, a treatment for removing a part of the liquid dispersion medium from the original suspension is performed. Thus, the mixing ratio of CNF to 100 parts by weight of the liquid dispersion medium may be 11 to 43 parts by weight. For the process of removing the liquid dispersion medium from the original suspension, the absorbent material absorbs a part of the liquid dispersion medium of the original suspension, and the liquid dispersion medium of the original suspension is partially evaporated. A process of removing the filtrate by partially filtering the original suspension, a process of removing a part of the liquid dispersion medium by centrifuging the original suspension, etc. it can. As the absorbent material, a water absorbent sheet such as a water absorbent paper, a water absorbent polymer, or the like can be used.
The above is the suspension preparation step S1 for preparing a suspension containing 11 to 43 parts by weight of CNF with respect to 100 parts by weight of the liquid dispersion medium.

(3−2)成形工程S2の具体例:
成形工程S2では、高粘性の懸濁液100を粒状に成形する。懸濁液100を粒状に成形する方法には、懸濁液100をダイから線状に押し出しながら繰り返し切断する方法、懸濁液100を板状に成形して縦横に切断する方法、懸濁液100を造粒する方法、等を採用することができる。
(3-2) Specific example of forming step S2:
In the forming step S2, the highly viscous suspension 100 is formed into a granular shape. The method of forming the suspension 100 into a granular form includes a method of repeatedly cutting the suspension 100 while extruding it linearly from a die, a method of forming the suspension 100 into a plate shape and cutting it vertically and horizontally, a suspension A method of granulating 100 can be employed.

図6(a)〜(e)は、懸濁液を粒状に成形する装置の例として造粒装置210,220,230,240,250を模式的に示している。これらの造粒装置210,220,230,240,250は、懸濁液を所定の粒度、すなわち、所定の大きさの粒状に揃える手段の例である。   6 (a) to 6 (e) schematically show granulators 210, 220, 230, 240, and 250 as examples of apparatuses for forming a suspension into granules. These granulators 210, 220, 230, 240 and 250 are examples of means for aligning the suspension to a predetermined particle size, that is, a particle having a predetermined size.

図6(a)に示す押出造粒装置210は、複数の貫通孔212を有する円筒状の回転ダイ211の中に2本のロール213,214が配置され、回転ダイ211の外周面にカッター215の刃先が合わせられている。各貫通孔212は、断面円形である。回転ダイ211は、カッター215の刃先に対向する向き(図6(a)では左回り)に等速度で回転する。下側のロール213は、回転ダイ211の回転に合わせて同じ向き(図6(a)では左回り)に等速度で回転する。回転ダイ211の中の懸濁液100は、回転ダイ211とロール213の回転により貫通孔212に押し込まれ、貫通孔212から線状に押し出される。押し出された懸濁液100は、回転ダイ211の1回転毎にカッター215で略等間隔に切断され、略円柱状の粒状懸濁液110となる。従って、得られる粒状懸濁液110は、ほぼ、所定の大きさの粒状に揃えられている。   In the extrusion granulator 210 shown in FIG. 6A, two rolls 213 and 214 are arranged in a cylindrical rotary die 211 having a plurality of through holes 212, and a cutter 215 is provided on the outer peripheral surface of the rotary die 211. The blade edge is matched. Each through-hole 212 has a circular cross section. The rotating die 211 rotates at a constant speed in a direction facing the cutting edge of the cutter 215 (counterclockwise in FIG. 6A). The lower roll 213 rotates at the same speed in the same direction (counterclockwise in FIG. 6A) according to the rotation of the rotary die 211. The suspension 100 in the rotary die 211 is pushed into the through hole 212 by the rotation of the rotary die 211 and the roll 213, and is pushed out from the through hole 212 in a linear shape. The extruded suspension 100 is cut at substantially equal intervals by the cutter 215 every rotation of the rotary die 211 to become a substantially cylindrical granular suspension 110. Therefore, the obtained granular suspension 110 is almost aligned in a predetermined size.

図6(b)に示す押出造粒装置220は、複数の貫通孔222を有する円板状の回転ダイ221の上にロール223が配置され、回転ダイ221の下面にカッター225の刃先が合わせられている。各貫通孔222は、断面円形である。回転ダイ221は、カッター225の刃先に対向する向き(図6(b)では手前が右方向)に等速度で回転する。ロール223は、回転ダイ221の回転に合わせて(図6(b)では左回り)に等速度で回転する。回転ダイ221の上の懸濁液100は、回転ダイ221とロール223の回転により貫通孔222に押し込まれ、貫通孔222から線状に押し出される。押し出された懸濁液100は、回転ダイ221の1回転毎にカッター225で略等間隔に切断され、略円柱状の粒状懸濁液110となる。従って、得られる粒状懸濁液110は、ほぼ、所定の大きさの粒状に揃えられている。   In the extrusion granulator 220 shown in FIG. 6B, a roll 223 is disposed on a disk-shaped rotating die 221 having a plurality of through holes 222, and the cutting edge of the cutter 225 is aligned with the lower surface of the rotating die 221. ing. Each through-hole 222 has a circular cross section. The rotary die 221 rotates at a constant speed in a direction facing the cutting edge of the cutter 225 (the front side is the right direction in FIG. 6B). The roll 223 rotates at a constant speed in accordance with the rotation of the rotary die 221 (counterclockwise in FIG. 6B). The suspension 100 on the rotary die 221 is pushed into the through hole 222 by the rotation of the rotary die 221 and the roll 223 and is pushed out from the through hole 222 in a linear shape. The extruded suspension 100 is cut at substantially equal intervals by the cutter 225 every rotation of the rotary die 221 to become a substantially cylindrical granular suspension 110. Therefore, the obtained granular suspension 110 is almost aligned in a predetermined size.

さらに、ダイの貫通孔から押し出したストランドを回転刃で切断するペレタイザーも、所定の大きさの粒状に揃える手段として使用することができる。ペレタイザーは、例えば、円筒状のバレルの先端に取り付けたダイの複数の貫通孔からバレル内の懸濁液100をスクリューの回転により線状に押し出し、ダイの前面で回転するカッターにより線状の懸濁液100を切断する。各貫通孔が断面円形であれば、粒状懸濁液110が円柱状となる。スクリューが等速度で回転し、カッターが等速度で回転すれば、ダイの貫通孔から押し出された線状の懸濁液100は等間隔に切断され、所定の大きさの粒状に揃えられた粒状懸濁液110が得られる。   Furthermore, a pelletizer that cuts the strand extruded from the through-hole of the die with a rotary blade can also be used as a means for aligning particles of a predetermined size. For example, the pelletizer extrudes suspension 100 in a barrel from a plurality of through-holes of a die attached to the tip of a cylindrical barrel by rotating a screw, and linear suspension is performed by a cutter that rotates on the front of the die. The suspension 100 is cut. If each through-hole is circular in cross section, the granular suspension 110 is cylindrical. If the screw rotates at an equal speed and the cutter rotates at an equal speed, the linear suspension 100 extruded from the through-hole of the die is cut at equal intervals, and the particles are arranged in a predetermined size. A suspension 110 is obtained.

図6(c)に示す造粒装置230は、懸濁液100を板状に成形する板状成形機(不図示)、及び、板状の懸濁液100を縦横に等間隔に切断するカッター235を有している。板状成形機には、圧縮成形機、射出成形機、等を用いることができる。カッター235は、縦方向に向いた刃235aが横方向へ等間隔に配置され、横方向に向いた刃235bが縦方向へ等間隔に配置されている。板状の懸濁液100に対して懸濁液100の厚さ方向(図6(c)では下方向)へカッター235を移動させると、板状の懸濁液100が縦横に等間隔に切断され、直方体状(図6(c)では立方体状)の粒状懸濁液110となる。従って、得られる粒状懸濁液110は、所定の大きさの粒状に揃えられている。   A granulator 230 shown in FIG. 6C includes a plate molding machine (not shown) for forming the suspension 100 into a plate shape, and a cutter for cutting the plate suspension 100 vertically and horizontally at equal intervals. 235. A compression molding machine, an injection molding machine, etc. can be used for a plate-shaped molding machine. In the cutter 235, the blades 235a facing in the vertical direction are arranged at equal intervals in the horizontal direction, and the blades 235b facing in the horizontal direction are arranged at equal intervals in the vertical direction. When the cutter 235 is moved in the thickness direction of the suspension 100 (downward in FIG. 6C) with respect to the plate-like suspension 100, the plate-like suspension 100 is cut at equal intervals vertically and horizontally. Thus, the granular suspension 110 has a rectangular parallelepiped shape (cubic shape in FIG. 6C). Therefore, the obtained granular suspension 110 is arranged in a predetermined size.

図6(d)に示す圧縮造粒装置240は、シリンダー241の中のキャビティ242に供給された懸濁液100をピストン243の移動により圧縮するタブレッティング式造粒装置である。造粒装置240は、ピストン243を移動させることによりキャビティ242を閉じて懸濁液100を圧縮し、さらにピストン243を反対方向へ移動させることによりキャビティ242を開いて粒状懸濁液110を排出する。得られる粒状懸濁液110は、閉じたキャビティ242の形状に合わせられた一定形状であり、所定の大きさの粒状に揃えられている。   The compression granulator 240 shown in FIG. 6D is a tableting granulator that compresses the suspension 100 supplied to the cavity 242 in the cylinder 241 by moving the piston 243. The granulator 240 closes the cavity 242 by moving the piston 243 to compress the suspension 100, and further opens the cavity 242 by moving the piston 243 in the opposite direction to discharge the granular suspension 110. . The resulting granular suspension 110 has a constant shape that matches the shape of the closed cavity 242, and is aligned in a predetermined size.

図6(e)に示す圧縮造粒装置250は、互いに反対方向へ回転するロール251,252により材料を一定形状に圧縮するブリケッティング式造粒装置である。ロール251,252は同形状であり、各ロール251,252は懸濁液100を賦形するための凹部を複数有している。図6(e)では、左側のロール251が右回りに等速度で回転し、右側のロール252が左回りに等速度で回転し、ロール251,252の回転速度は同じである。造粒装置250は、ロール251の凹部とロール252の凹部とでキャビティ253を形成し、ロール251,252の上に供給された懸濁液100をキャビティ253に送り込んで一定形状に圧縮成形し、ロール251,252の下方へ排出する。得られる粒状懸濁液110は、キャビティ253の形状に合わせられた一定形状であり、所定の大きさの粒状に揃えられている。   A compression granulator 250 shown in FIG. 6 (e) is a briquetting granulator that compresses a material into a fixed shape by rolls 251 and 252 that rotate in opposite directions. The rolls 251 and 252 have the same shape, and each roll 251 and 252 has a plurality of concave portions for shaping the suspension 100. In FIG. 6E, the left roll 251 rotates clockwise at a constant speed, the right roll 252 rotates counterclockwise at a constant speed, and the rotation speeds of the rolls 251 and 252 are the same. The granulator 250 forms a cavity 253 by the concave portion of the roll 251 and the concave portion of the roll 252, sends the suspension 100 supplied onto the rolls 251 and 252 to the cavity 253, and compresses it into a certain shape. The paper is discharged below the rolls 251 and 252. The obtained granular suspension 110 has a fixed shape matched to the shape of the cavity 253 and is arranged in a predetermined size.

尚、懸濁液の粘性が高いため、図6(a),(b)に示すカッター215,225に粒状懸濁液110が付着することがある。そこで、カッター215,225に風を当てる送風機を造粒装置210,220に設けてもよい。送風機によりエアーをカッター215,225に吹き付けることにより、カッター215,225に付着していた粒状懸濁液110をカッター215,225から落とすことができる。これにより、カッター215,225に粒状懸濁液110が付着することが抑制され、造粒装置210,220のメンテナンス性が向上する。
また、造粒装置210,220において、カッター215,225の代わりに直接エアーを懸濁液100に吹き付けて懸濁液100を切断するエアーカッターを設けてもよい。回転ダイ211,221の貫通孔212,222から所定の長さに押し出された懸濁液100にエアーを直接吹き付けることにより、回転ダイ211,221から粒状懸濁液110を落下させることができる。
さらに、上述した全ての造粒装置において、粒状懸濁液同士が付着する場合、粒状懸濁液110の集合物に送風機から風を当てる等により粒状懸濁液110をばらす処理、すなわち、ばらばらにする処理を行ってもよい。
Note that since the viscosity of the suspension is high, the granular suspension 110 may adhere to the cutters 215 and 225 shown in FIGS. 6 (a) and 6 (b). Therefore, the granulators 210 and 220 may be provided with a blower that applies air to the cutters 215 and 225. The granular suspension 110 adhering to the cutters 215 and 225 can be dropped from the cutters 215 and 225 by blowing air to the cutters 215 and 225 by the blower. Thereby, it is suppressed that granular suspension 110 adheres to cutters 215 and 225, and maintenance nature of granulators 210 and 220 improves.
Further, in the granulators 210 and 220, air cutters may be provided that blow the air directly onto the suspension 100 instead of the cutters 215 and 225 to cut the suspension 100. The granular suspension 110 can be dropped from the rotating dies 211 and 221 by directly blowing air onto the suspension 100 pushed out through the through holes 212 and 222 of the rotating dies 211 and 221 to a predetermined length.
Furthermore, in all the granulating apparatuses described above, when the granular suspensions adhere to each other, the granular suspension 110 is dispersed by, for example, blowing air from a blower on the aggregate of the granular suspensions 110, that is, separately. You may perform the process to do.

また、成形工程S2は、上述した造粒装置により高粘性の懸濁液100を予備成形する予備成形工程S21、及び、予備成形された粒状懸濁液110を丸める丸め工程S22を含んでもよい。
図7は、予備成形された粒状懸濁液を丸める手段の例として転動造粒装置260を模式的に示している。図7の左側に示す粒状懸濁液110Aは、造粒装置210,220,230,240,250等により懸濁液100から成形された粒状懸濁液を示している。図7の右側に示す粒状懸濁液110Bは、転動造粒装置260により粒状懸濁液110Aから丸められた粒状懸濁液を示している。尚、粒状懸濁液110の概念には、粒状懸濁液110A,110Bが含まれる。
Further, the molding step S2 may include a preforming step S21 for preforming the highly viscous suspension 100 by the above-described granulator, and a rounding step S22 for rounding the preformed granular suspension 110.
FIG. 7 schematically shows a rolling granulator 260 as an example of means for rounding the preformed granular suspension. A granular suspension 110 </ b> A shown on the left side of FIG. 7 indicates a granular suspension formed from the suspension 100 by a granulator 210, 220, 230, 240, 250, or the like. The granular suspension 110B shown on the right side of FIG. 7 shows the granular suspension rounded from the granular suspension 110A by the rolling granulator 260. The concept of the granular suspension 110 includes granular suspensions 110A and 110B.

図7に示す造粒装置260は、上面が開口して水平面から傾き角度θで傾いた回転パン261を有している。傾き角度θは、0°<θ<90°であり、好ましくは30°<θ<60°である。回転パン261の回転速度は、例えば、10〜30rpmとすることができる。回転している回転パン261に粒状懸濁液110Aを入れると、粒状懸濁液110Aにおいて角の少なくとも一部が丸くなったり曲率半径の小さい箇所の少なくとも一部がより大きい曲率半径になったりする。これにより、得られる粒状懸濁液110Bの形状は、元の粒状懸濁液110Aよりも球状に近付いている。   The granulator 260 shown in FIG. 7 has a rotating pan 261 that is open at the top and tilted from the horizontal plane at an inclination angle θ. The inclination angle θ is 0 ° <θ <90 °, and preferably 30 ° <θ <60 °. The rotational speed of the rotary pan 261 can be set to 10 to 30 rpm, for example. When the granular suspension 110A is put in the rotating rotary pan 261, at least a part of the corner of the granular suspension 110A is rounded, or at least a part of a portion having a small curvature radius becomes a larger curvature radius. . Thereby, the shape of the granular suspension 110B obtained is closer to a sphere than the original granular suspension 110A.

さらに、丸め工程S22では、粒状懸濁液110を入れた容器に送風機からの風を導入する手段により粒状懸濁液110を流動させて丸めてもよい。   Further, in the rounding step S22, the granular suspension 110 may be caused to flow and round by means of introducing air from the blower into the container in which the granular suspension 110 is placed.

成形工程S2では、粒状懸濁液110の液状分散媒101の配合割合を元の懸濁液100の液状分散媒101の配合割合よりも少なくしてもよい。例えば、液状分散媒101が水である場合、図7に示す転動造粒装置260に回転パン261を加熱する加熱機を設け、この加熱機により回転パン261を加熱すると、粒状懸濁液110Bの水を気化させて除去することができる。また、送風機から送り出される風を加熱機により加熱して粒状懸濁液110に当てても、粒状懸濁液110の水を気化させて除去することができる。   In the molding step S2, the mixing ratio of the liquid dispersion medium 101 in the granular suspension 110 may be less than the mixing ratio of the liquid dispersion medium 101 in the original suspension 100. For example, when the liquid dispersion medium 101 is water, a heating machine for heating the rotary pan 261 is provided in the rolling granulator 260 shown in FIG. 7, and when the rotary pan 261 is heated by this heater, the granular suspension 110B The water can be vaporized and removed. Moreover, even if the wind sent from a blower is heated with a heater and applied to the granular suspension 110, the water of the granular suspension 110 can be vaporized and removed.

(3−3)賦活工程S3の具体例:
賦活工程S3では、粒状の懸濁液110を加熱して賦活することにより粒状活性炭120を得る。賦活とは、活性炭となる材料の微細孔を発達させ多孔質に変える反応である。本具体例では、水蒸気や二酸化炭素や空気といったガスの存在下で高温処理するガス賦活を行うことにしている。賦活工程S3は、粒状懸濁液110を加熱して炭化させる不融化処理を行う不融化工程S31、及び、不融化処理により得られる粒状炭化物を加熱して賦活する賦活処理を行うことにより粒状活性炭120を得る主賦活工程S32を含んでいてもよい。
(3-3) Specific example of activation step S3:
In the activation step S3, granular activated carbon 120 is obtained by heating and activating the granular suspension 110. Activation is a reaction that develops micropores in a material to be activated carbon and turns it into a porous material. In this specific example, gas activation is performed by high-temperature treatment in the presence of gas such as water vapor, carbon dioxide, or air. The activation step S3 includes an infusibilization step S31 for performing an infusibilization treatment for heating and carbonizing the granular suspension 110, and an activation treatment for heating and activating the granular carbide obtained by the infusibilization treatment to thereby activate granular activated carbon. Main activation step S32 for obtaining 120 may be included.

不融化処理は、例えば、窒素やアルゴンといった不活性ガスの雰囲気下、200〜700℃で粒状懸濁液110を炭化する処理とすることができる。温度条件は、様々に設定することができる。例えば、所定の昇降温速度(ΔTiとする。)で室温から所定の炭化終了温度(Tceとする。)まで単純に上昇させ所定時間保持して所定の不融化処理終了温度(Tieとする。)まで降下させてもよい。また、所定の昇降温速度ΔTiで室温から所定の炭化開始温度(Tcsとする。)まで上昇させ所定時間保持してから炭化終了温度Tceまで上昇させ所定時間保持して所定の不融化処理終了温度Tieまで降下させてもよい。昇降温速度ΔTiは、例えば、1〜20℃/分(より好ましくは2〜10℃/分)とすることができる。炭化開始温度Tcsは、例えば、200〜350℃(より好ましくは220〜300℃)とすることができる。炭化開始温度Tcsを保持する時間は、例えば、0.1〜10時間(より好ましくは1〜7時間)とすることができる。炭化終了温度Tceは、例えば、500〜700℃(より好ましくは550〜650℃)とすることができる。炭化終了温度Tceを保持する時間は、例えば、0.1〜5時間(より好ましくは1〜3時間)とすることができる。不融化処理終了温度Tieは、例えば、40〜90℃とすることができる。   The infusibilization treatment can be, for example, a treatment of carbonizing the granular suspension 110 at 200 to 700 ° C. in an atmosphere of an inert gas such as nitrogen or argon. Various temperature conditions can be set. For example, the temperature is simply raised from room temperature to a predetermined carbonization end temperature (Tce) at a predetermined temperature increase / decrease rate (ΔTi) and held for a predetermined time to be a predetermined infusibilization end temperature (Tie). May be lowered. Further, the temperature is increased from room temperature to a predetermined carbonization start temperature (Tcs) at a predetermined temperature increase / decrease rate ΔTi, held for a predetermined time, then increased to a carbonization end temperature Tce and held for a predetermined time, and a predetermined infusibilization end temperature is reached. You may lower it to Tie. The temperature increase / decrease rate ΔTi can be, for example, 1 to 20 ° C./min (more preferably 2 to 10 ° C./min). The carbonization start temperature Tcs can be, for example, 200 to 350 ° C. (more preferably 220 to 300 ° C.). The time for maintaining the carbonization start temperature Tcs can be, for example, 0.1 to 10 hours (more preferably 1 to 7 hours). The carbonization end temperature Tce can be set to, for example, 500 to 700 ° C. (more preferably 550 to 650 ° C.). The time for maintaining the carbonization end temperature Tce can be, for example, 0.1 to 5 hours (more preferably 1 to 3 hours). The infusibilization end temperature Tie can be set to 40 to 90 ° C., for example.

尚、不融化処理を行う前処理として、粒状懸濁液110の液状分散媒101の配合割合を元の懸濁液100の液状分散媒101の配合割合よりも少なくする処理を行ってもよい。例えば、液状分散媒101が水である場合、図7に示す転動造粒装置260に回転パン261を加熱する加熱機を設け、この加熱機により回転パン261を例えば100℃以上に加熱し、回転している回転パン261に粒状懸濁液110を入れると、粒状懸濁液110の水を気化させて除去することができる。また、粒状懸濁液110の水の除去は、粒状懸濁液110を室温下で乾燥させる自然乾燥、粒状懸濁液110に対する真空乾燥、粒状懸濁液110に対する凍結乾燥、粒状懸濁液110の水をエタノールといったアルコールで置換して室温下で乾燥させるアルコール置換乾燥、アルコール置換後の粒状物を酢酸イソアミルに浸し液化炭酸ガスの臨界点を利用して乾燥させる臨界点乾燥、等でもよい。   In addition, you may perform the process which makes the compounding ratio of the liquid dispersion medium 101 of the granular suspension 110 smaller than the compounding ratio of the liquid dispersion medium 101 of the original suspension 100 as pre-processing which performs an infusibilization process. For example, when the liquid dispersion medium 101 is water, the rolling granulator 260 shown in FIG. 7 is provided with a heater that heats the rotating pan 261, and the rotating pan 261 is heated to, for example, 100 ° C. or more by this heater. When the granular suspension 110 is placed in the rotating pan 261, the water in the granular suspension 110 can be vaporized and removed. The removal of water from the granular suspension 110 includes natural drying for drying the granular suspension 110 at room temperature, vacuum drying for the granular suspension 110, freeze drying for the granular suspension 110, and granular suspension 110. Alcohol substitution drying in which water is substituted with an alcohol such as ethanol and dried at room temperature, critical point drying in which the granular substance after alcohol substitution is immersed in isoamyl acetate and dried using the critical point of liquefied carbon dioxide gas, and the like may be used.

不融化処理後の賦活処理は、例えば、水蒸気や二酸化炭素といった酸化性ガスの雰囲気下、700〜1100℃、より好ましくは800〜1000℃で粒状炭化物を活性化して粒状活性炭120を得る処理とすることができる。また、加熱中に酸化性ガスの雰囲気下から窒素やアルゴンといった不活性ガスの雰囲気下に切り替えてもよい。温度条件は、様々に設定することができる。例えば、所定の昇降温速度(ΔTaとする。)で室温から所定の賦活終了温度(Taeとする。)まで上昇させ所定時間保持して所定の賦活処理終了温度(Tcoeとする。)まで降下させてもよい。昇降温速度ΔTaは、例えば、1〜20℃/分(より好ましくは2〜10℃/分)とすることができる。賦活終了温度Taeは、例えば、700〜1100℃(より好ましくは800〜1000℃)とすることができる。賦活終了温度Taeを保持する時間は、例えば、0.1〜5時間(より好ましくは1〜3時間)とすることができる。賦活処理終了温度Tcoeは、例えば、40〜90℃とすることができる。   The activation treatment after the infusibilization treatment is, for example, a treatment for activating granular carbide at 700 to 1100 ° C., more preferably 800 to 1000 ° C. in an atmosphere of an oxidizing gas such as water vapor or carbon dioxide, to obtain granular activated carbon 120. be able to. Moreover, you may switch from the atmosphere of oxidizing gas to the atmosphere of inert gas, such as nitrogen and argon, during a heating. Various temperature conditions can be set. For example, the temperature is increased from room temperature to a predetermined activation end temperature (Tae) at a predetermined temperature increase / decrease rate (ΔTa), held for a predetermined time, and lowered to a predetermined activation processing end temperature (Tcoe). May be. The temperature increase / decrease rate ΔTa can be, for example, 1 to 20 ° C./min (more preferably 2 to 10 ° C./min). The activation end temperature Tae can be set to, for example, 700 to 1100 ° C. (more preferably 800 to 1000 ° C.). The time for holding the activation end temperature Tae can be, for example, 0.1 to 5 hours (more preferably 1 to 3 hours). The activation treatment end temperature Tcoe can be set to 40 to 90 ° C., for example.

尚、不融化処理があると活性炭としての活性が高まるので好ましいものの、不融化処理を省略して賦活処理を行うこともできる。   In addition, although there exists an infusible process, since the activity as activated carbon increases, it is preferable, but an infusible process can be abbreviate | omitted and an activation process can also be performed.

賦活工程S3により得られる粒状活性炭120は、公知の活性炭と同じく、水や空気といった流体から微量成分を吸着して除去する性質を有する。粒状活性炭120を浄水カートリッジに使用する場合、水に含まれる遊離残留塩素や有機物等の微量成分を除去することができる。粒状活性炭120を空気清浄機用の濾過カートリッジに使用する場合、空気(流体の例)に含まれる臭い成分等の微量成分を除去することができる。   The granular activated carbon 120 obtained by the activation step S3 has a property of adsorbing and removing a trace component from a fluid such as water or air, like the known activated carbon. When the granular activated carbon 120 is used for a water purification cartridge, trace components such as free residual chlorine and organic matter contained in water can be removed. When the granular activated carbon 120 is used in a filtration cartridge for an air cleaner, trace components such as odor components contained in air (an example of fluid) can be removed.

賦活工程S3により得られる粒状活性炭120は、通常、成形工程S2により得られた粒状懸濁液110よりも小さくなり、且つ、粒状懸濁液110の大きさに応じた大きさとなる。すなわち、粒状懸濁液110の大きさと粒状活性炭120の大きさとには正の相関関係があり、粒状懸濁液110が大きいほど粒状活性炭120が大きくなる傾向があり、粒状懸濁液110が小さいほど粒状活性炭120が小さくなる傾向がある。このことから、粒状懸濁液110の大きさを調整することにより、得られる粒状活性炭120の大きさを調整することができる。従って、本具体例の製造方法は、得られる粒状活性炭の大きさを調整し易い。   The granular activated carbon 120 obtained by the activation step S3 is usually smaller than the granular suspension 110 obtained by the molding step S2, and has a size corresponding to the size of the granular suspension 110. That is, there is a positive correlation between the size of the granular suspension 110 and the size of the granular activated carbon 120. The larger the granular suspension 110, the larger the granular activated carbon 120 tends to be, and the smaller the granular suspension 110 is. The granular activated carbon 120 tends to be smaller. From this, the size of the granular activated carbon 120 obtained can be adjusted by adjusting the size of the granular suspension 110. Therefore, the manufacturing method of this example is easy to adjust the size of the granular activated carbon obtained.

(3−4)収容工程S4の具体例:
上述した工程S1〜S3により製造される粒状活性炭120は、図1〜4で示した浄水カートリッジ20の製造に使用することができる。浄水カートリッジ20の製造方法に含まれる収容工程S4では、粒状活性炭120を外側不織布31の内側33に収容する。以下、収容工程S4を含めて浄水カートリッジ20の製造方法の例を説明する。
(3-4) Specific example of housing step S4:
The granular activated carbon 120 manufactured by the steps S1 to S3 described above can be used for manufacturing the water purification cartridge 20 shown in FIGS. In the housing step S <b> 4 included in the method for manufacturing the water purification cartridge 20, the granular activated carbon 120 is housed in the inner side 33 of the outer nonwoven fabric 31. Hereinafter, the example of the manufacturing method of the water purification cartridge 20 including accommodation process S4 is demonstrated.

まず、中空糸膜ケース70の連絡口74に内側不織布41の端部41bを挿入し、内側不織布41の上流側の端部41aに内キャップ48を取り付ける。これにより、内側不織布41の端部41aの開口41oが閉塞され、内側不織布41の内側43が吸着剤AH1により浄化した水の通路となる。次いで、中空糸膜ケース70の外嵌部80の内側に外側不織布31の端部31bを挿入する。次いで、内嵌部材50を外側不織布31の内側33に入れ、外側不織布31の端部31bを外嵌部80と内嵌部材50とで挟んで保持する。このため、接着剤を使用しなくても外側不織布31と中空糸膜ケース70とが接続されるが、少量の接着剤を併用することも可能である。   First, the end 41 b of the inner nonwoven fabric 41 is inserted into the communication port 74 of the hollow fiber membrane case 70, and the inner cap 48 is attached to the upstream end 41 a of the inner nonwoven fabric 41. Thereby, the opening 41o of the edge part 41a of the inner side nonwoven fabric 41 is obstruct | occluded, and the inner side 43 of the inner side nonwoven fabric 41 becomes a channel | path of the water purified with adsorption agent AH1. Next, the end 31 b of the outer nonwoven fabric 31 is inserted inside the outer fitting portion 80 of the hollow fiber membrane case 70. Next, the inner fitting member 50 is put into the inner side 33 of the outer nonwoven fabric 31, and the end portion 31 b of the outer nonwoven fabric 31 is held between the outer fitting portion 80 and the inner fitting member 50. For this reason, although the outer nonwoven fabric 31 and the hollow fiber membrane case 70 are connected even if it does not use an adhesive agent, it is also possible to use a small amount of adhesive agents together.

ここで、粒状活性炭120を含む吸着剤AH1を内側不織布41の外側であって外側不織布31の内側33に収容する。その後、外側不織布31の上流側の端部31aに外キャップ38を挿入し、外側不織布31の端部31aを内側へ曲げて外キャップ38の外面38aに溶着する。これにより、外側不織布31の端部31aの開口31oが閉塞され、内側不織布41の外側であって外側不織布31の内側33が吸着剤AH1の収容空間となり、浄水カートリッジ20の製造が完了する。   Here, the adsorbent AH1 containing the granular activated carbon 120 is accommodated inside the outer nonwoven fabric 31 and outside the inner nonwoven fabric 41. Thereafter, the outer cap 38 is inserted into the upstream end 31 a of the outer nonwoven fabric 31, and the end 31 a of the outer nonwoven fabric 31 is bent inward and welded to the outer surface 38 a of the outer cap 38. Thereby, the opening 31o of the end part 31a of the outer nonwoven fabric 31 is closed, and the outer side of the inner nonwoven fabric 41 and the inner side 33 of the outer nonwoven fabric 31 serve as a storage space for the adsorbent AH1, and the manufacture of the water purification cartridge 20 is completed.

吸着剤AH1は、全て粒状活性炭120でもよいが、本技術の効果を損なわない範囲において、図5に示すように一種以上の添加剤130が含まれてもよい。添加剤130には、上述したイオン交換体等を用いることができる。添加剤130の配合量は、例えば、100重量部の粒状活性炭120に対して0.1〜60重量部程度とすることができる。   The adsorbent AH1 may be all granular activated carbon 120, but one or more additives 130 may be included as shown in FIG. 5 as long as the effects of the present technology are not impaired. As the additive 130, the above-described ion exchanger or the like can be used. The compounding quantity of the additive 130 can be about 0.1-60 weight part with respect to 100 weight part granular activated carbon 120, for example.

(4)具体例に係る製造方法の作用、及び、効果:
成形工程S2において成形されるCNF懸濁液100は、100重量部の液状分散媒101に対して11〜43重量部のCNF102を含んでいるので、液状分散媒101による流動性を有し、且つ、CNF102による高い粘性を有する。このため、容易に懸濁液100を粒状に成形することができる。粒状活性炭120は粒状懸濁液110の大きさに応じた大きさになるので、大きさの調整が容易である粒状懸濁液110の大きさを調整することにより、粒状活性炭120の大きさ(例えば粒度)が調整される。従って、本具体例は、得られる粒状活性炭の大きさを調整し易くする製造方法を提供することができる。
(4) Effects and effects of the manufacturing method according to the specific example:
The CNF suspension 100 formed in the forming step S2 includes 11 to 43 parts by weight of CNF 102 with respect to 100 parts by weight of the liquid dispersion medium 101, and thus has fluidity due to the liquid dispersion medium 101, and , Having high viscosity due to CNF102. For this reason, the suspension 100 can be easily formed into particles. Since the granular activated carbon 120 has a size corresponding to the size of the granular suspension 110, the size of the granular activated carbon 120 (by adjusting the size of the granular suspension 110, which is easy to adjust the size) ( For example, the particle size) is adjusted. Therefore, this example can provide a production method that makes it easy to adjust the size of the obtained granular activated carbon.

また、懸濁液100を所定の粒度の粒状に揃える手段を用いると、粒状懸濁液110の粒度が揃い、得られる粒状活性炭120の粒度が揃う。これにより、浄水カートリッジ20の外側不織布の内側33に収容される粒状活性炭120の単位体積当たりの量を増やすことができる。加えて、粒状活性炭120の粒度が揃うほど、粒状活性炭間の空隙が均一化されるので、外側不織布の内側33に収容された粒状活性炭120の集合体の通水抵抗が均一化され、濾過カートリッジの浄水性能が向上する。
さらに、成形工程S2に丸め工程S22があると、粒状懸濁液110が丸みを帯びた形状となり、得られる粒状活性炭120が丸みを帯びた形状となる。これによっても、浄水カートリッジ20の外側不織布の内側33に収容される粒状活性炭120の単位体積当たりの量を増やすことができる。加えて、粒状活性炭120が真球の形状に近付くほど、粒状活性炭間の空隙が均一化されるので、外側不織布の内側33に収容された粒状活性炭120の集合体の通水抵抗が均一化され、濾過カートリッジの浄水性能が向上する。
Moreover, when the means for aligning the suspension 100 into particles having a predetermined particle size is used, the particle size of the granular suspension 110 is uniform, and the particle size of the obtained granular activated carbon 120 is uniform. Thereby, the quantity per unit volume of the granular activated carbon 120 accommodated in the inner side 33 of the outer side nonwoven fabric of the water purification cartridge 20 can be increased. In addition, as the granularity of the granular activated carbon 120 becomes uniform, the gaps between the granular activated carbons are made uniform, so that the water flow resistance of the aggregate of the granular activated carbon 120 accommodated in the inner side 33 of the outer nonwoven fabric is made uniform, and the filtration cartridge Improved water purification performance.
Furthermore, if there exists rounding process S22 in shaping | molding process S2, the granular suspension 110 will become a rounded shape, and the granular activated carbon 120 obtained will become a rounded shape. Also by this, the quantity per unit volume of the granular activated carbon 120 accommodated in the inner side 33 of the outer nonwoven fabric of the water purification cartridge 20 can be increased. In addition, since the gap between the granular activated carbons becomes more uniform as the granular activated carbon 120 approaches the true spherical shape, the water flow resistance of the aggregate of the granular activated carbons 120 accommodated in the inner side 33 of the outer nonwoven fabric is made uniform. The water purification performance of the filtration cartridge is improved.

(5)変形例:
本発明は、種々の変形例が考えられる。
例えば、流下方向へ並べられる吸着剤及び中空糸膜束は、吸着剤が上流側で中空糸膜束が下流側であることが好ましいものの、中空糸膜束が上流側で吸着剤が下流側でもよい。また、流出部を有する部材は、中空糸膜ケース70以外にも、中空糸膜束を収容せずに流出部を有する部材等でもよい。浄水カートリッジを設けた水栓は、洗面化粧台や浴室等、システムキッチン以外の場所に設けられてもよい。吐水装置は、浄水と水道水を切替可能な吐水ヘッド以外にも、浄水のみを吐出する吐水ヘッド等でもよい。むろん、濾過カートリッジは、空気から除去対象の物質を除去する空気清浄機用の濾過カートリッジ等でもよい。
(5) Modification:
Various modifications can be considered for the present invention.
For example, it is preferable that the adsorbent and the hollow fiber membrane bundle arranged in the flow-down direction are the upstream side of the adsorbent and the downstream side of the hollow fiber membrane bundle, but the upstream side of the hollow fiber membrane bundle and the downstream side of the adsorbent. Good. In addition to the hollow fiber membrane case 70, the member having the outflow portion may be a member having an outflow portion without accommodating the hollow fiber membrane bundle. The faucet provided with the water purification cartridge may be provided in a place other than the system kitchen such as a vanity table or a bathroom. The water discharge device may be a water discharge head that discharges only purified water, in addition to a water discharge head that can switch between purified water and tap water. Of course, the filtration cartridge may be a filtration cartridge for an air purifier that removes a substance to be removed from the air.

(6)実施例:
以下、実施例を示して具体的に本発明を説明するが、本発明は以下の例により限定されるものではない。
(6) Example:
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by the following examples.

[実施例1]
CNF懸濁液には、株式会社スギノマシン製BiNFi−s(登録商標)セルロースWMa-10010(標準工業材料用10wt%)を用いた。10wt%のCNF懸濁液は、含水率90重量%であり、水100重量部に対して11.1重量部のCNFを含む。
CNF懸濁液を押し出すためのノズルの内径(直径)を1.0mm、1.3mm、1.6mm、及び、2.0mmに変えてCNF懸濁液を押し出し、室温で乾燥した粒状物の直径、乾燥した粒状懸濁液に不融化処理を行って得られた粒状炭化物の直径、及び、粒状炭化物に賦活処理を行って得られた粒状活性炭の直径を測定した。不融化処理は、窒素ガスの雰囲気下、昇降温速度ΔTi=3〜4℃/分、炭化開始温度Tcs=280℃(5時間保持)、炭化終了温度Tce=600℃(1時間保持)、及び、不融化処理終了温度Tie=50℃の温度条件において行った。賦活処理は、水蒸気ガスの雰囲気下、昇降温速度ΔTa=3〜4℃/分、賦活終了温度Tme=800℃(2時間保持)、及び、賦活処理終了温度Tae=50℃の温度条件において行った。
[Example 1]
BiNFi-s (registered trademark) cellulose WMa-10010 (10 wt% for standard industrial materials) manufactured by Sugino Machine Co., Ltd. was used as the CNF suspension. The 10 wt% CNF suspension has a water content of 90 wt% and contains 11.1 parts by weight of CNF with respect to 100 parts by weight of water.
The diameter of the granular material dried by extruding the CNF suspension by changing the inner diameter (diameter) of the nozzle for extruding the CNF suspension to 1.0 mm, 1.3 mm, 1.6 mm, and 2.0 mm. The diameter of the granular carbide obtained by subjecting the dried granular suspension to infusibilization treatment and the diameter of the granular activated carbon obtained by subjecting the granular carbide to activation treatment were measured. Infusibilization treatment is performed under an atmosphere of nitrogen gas, a temperature increase / decrease rate ΔTi = 3-4 ° C./min, a carbonization start temperature Tcs = 280 ° C. (5 hours hold), a carbonization end temperature Tce = 600 ° C. (1 hour hold), and The infusibilization end temperature Tie = 50 ° C. The activation treatment is performed in a steam gas atmosphere under the temperature conditions of temperature increase / decrease rate ΔTa = 3 to 4 ° C./min, activation end temperature Tme = 800 ° C. (held for 2 hours), and activation treatment end temperature Tae = 50 ° C. It was.

試験結果を表1に示す。

表1に示すように、処理が進むほど粒状物の直径が小さくなっていることが分かる。得られた粒状活性炭の直径は、粒状懸濁液の直径に相当するノズル内径が大きくなるほど大きくなり、ノズル内径が小さくなるほど小さくなっている。従って、粒状懸濁液の直径と粒状活性炭の直径とに正の相関関係があり、粒状懸濁液の直径を調整することにより粒状活性炭の直径を調整することができることが分かる。
The test results are shown in Table 1.

As shown in Table 1, it turns out that the diameter of a granular material is so small that a process progresses. The diameter of the obtained granular activated carbon increases as the nozzle inner diameter corresponding to the diameter of the granular suspension increases, and decreases as the nozzle inner diameter decreases. Therefore, it can be seen that there is a positive correlation between the diameter of the granular suspension and the diameter of the granular activated carbon, and the diameter of the granular activated carbon can be adjusted by adjusting the diameter of the granular suspension.

[実施例2]
CNF懸濁液には、実施例1で用いた10wt%のCNF懸濁液を用いた。CNF懸濁液の含水率を調整するための吸水紙として、日本製紙クレシア製キムタオル(登録商標)を用いた。
試験区1には、10wt%のCNF懸濁液をそのまま用いた。試験区2〜7には、CNF懸濁液に吸水紙を当てて含水率をそれぞれ89.1wt%、87.5wt%、84.4wt%、82.1wt%、77.3wt%、及び、72.2wt%に調整したCNF懸濁液を用いた。各試験区について、CNF懸濁液を押し出すためのノズルの内径(直径)を2.3mmにしてCNF懸濁液を押し出し、室温で乾燥した粒状物の直径を測定した。
[Example 2]
As the CNF suspension, the 10 wt% CNF suspension used in Example 1 was used. As a water absorbent paper for adjusting the moisture content of the CNF suspension, Nippon Paper Crecia Kim Towel (registered trademark) was used.
In test group 1, a 10 wt% CNF suspension was used as it was. In test groups 2 to 7, water absorption paper was applied to the CNF suspension, and the water contents were 89.1 wt%, 87.5 wt%, 84.4 wt%, 82.1 wt%, 77.3 wt%, and 72, respectively. A CNF suspension adjusted to 2 wt% was used. In each test group, the inner diameter (diameter) of the nozzle for extruding the CNF suspension was 2.3 mm, the CNF suspension was extruded, and the diameter of the granular material dried at room temperature was measured.

試験結果を表2に示す。表2には、各試験区において、CNF懸濁液の含水率から求められるCNFの配合率、重量部に換算した水及びCNFの配合量も示している。

表2に示すように、CNF懸濁液の含水率が72.2〜90.0重量%のいずれであっても、CNF懸濁液をノズルから押し出すことができた。一方、CNF懸濁液の含水率を69.0重量%以下(水100重量部に対してCNFが44.9重量部以上)にすると、CNF懸濁液が固くなってしまい、CNF懸濁液をノズルから押し出すことができなかった。また、CNF懸濁液に水を加えて含水率を91.0重量%以上(水100重量部に対してCNFが9.9重量部以下)にすると、CNF懸濁液の流動性が高く、ノズルから押し出したCNF懸濁液が大きく拡がってしまった。
尚、含水率が低くなるほど乾燥した粒状懸濁液の直径が大きくなるので、CNF懸濁液を押し出すことができてCNF懸濁液の粒状が保たれる範囲でCNF懸濁液の含水率を調整することによっても粒状活性炭の直径を調整することができる。
The test results are shown in Table 2. Table 2 also shows the blending ratio of CNF obtained from the water content of the CNF suspension in each test section, the blending amount of water and CNF converted to parts by weight.

As shown in Table 2, even if the water content of the CNF suspension was 72.2 to 90.0% by weight, the CNF suspension could be extruded from the nozzle. On the other hand, when the water content of the CNF suspension is 69.0% by weight or less (CNF is 44.9 parts by weight or more with respect to 100 parts by weight of water), the CNF suspension becomes hard, and the CNF suspension Could not be pushed out of the nozzle. Further, when water is added to the CNF suspension to make the water content 91.0% by weight or more (CNF is 9.9 parts by weight or less with respect to 100 parts by weight of water), the fluidity of the CNF suspension is high, The CNF suspension extruded from the nozzle has spread greatly.
In addition, since the diameter of the dried granular suspension becomes larger as the moisture content becomes lower, the moisture content of the CNF suspension can be increased within a range in which the CNF suspension can be extruded and the granularity of the CNF suspension is maintained. The diameter of granular activated carbon can be adjusted also by adjusting.

[実施例3]
CNF懸濁液には、実施例1で用いた10wt%のCNF懸濁液を用いた。このCNF懸濁液を押し出し、得られたCNF懸濁液に対して40℃の温度環境下で真空乾燥を行い、乾燥した粒状物に不融化処理を行い、得られた粒状炭化物に賦活処理を行って実施例3の粒状活性炭を得た。不融化処理及び賦活処理の条件は、実施例1と同じである。
[Example 3]
As the CNF suspension, the 10 wt% CNF suspension used in Example 1 was used. This CNF suspension is extruded, the resulting CNF suspension is vacuum dried under a temperature environment of 40 ° C., the dried granular material is infusibilized, and the resulting granular carbide is activated. The granular activated carbon of Example 3 was obtained. The conditions for the infusibilization treatment and the activation treatment are the same as those in Example 1.

[比較例1]
クラレケミカル株式会社製ヤシ殻系活性炭GW48/100を実施例3の粒状活性炭の粒度に合わせて粉砕して比較例1の粒状活性炭を得た。
[Comparative Example 1]
The coconut shell activated carbon GW48 / 100 manufactured by Kuraray Chemical Co., Ltd. was pulverized according to the particle size of the granular activated carbon of Example 3 to obtain the granular activated carbon of Comparative Example 1.

[粒状活性炭の吸着速度の評価]
原水サンプルとして、60±15ppbのクロロホルム水溶液を用いた。クロロホルムは、水に含まれる微量成分の指標物質である。
実施例3及び比較例1の粒状活性炭をそれぞれ9本の採水瓶に0.1g入れ、各採水瓶に原水サンプルを100g注入した。各採水瓶の中身を回転装置により1000rpmで撹拌し、指定の接触時間(10秒、20秒、30秒、60秒、2分、5分、10分、30分、60分)において原水サンプルを注射器で吸い取って0.8μmのフィルターで濾過し、濾液をバイアル瓶に入れて、蓋で密閉した。各バイアル瓶に注入した濾液のクロロホルム濃度をガスクロマトグラフィーにより測定した。
[Evaluation of adsorption rate of granular activated carbon]
As the raw water sample, a 60 ± 15 ppb chloroform aqueous solution was used. Chloroform is an indicator substance for trace components contained in water.
0.1 g of granular activated carbon of Example 3 and Comparative Example 1 was put in each of 9 water sampling bottles, and 100 g of raw water sample was injected into each water sampling bottle. The contents of each water bottle are agitated at 1000 rpm by a rotating device, and the raw water sample is taken at the specified contact time (10 seconds, 20 seconds, 30 seconds, 60 seconds, 2 minutes, 5 minutes, 10 minutes, 30 minutes, 60 minutes). Suctioned off with a syringe and filtered through a 0.8 μm filter, the filtrate was placed in a vial and sealed with a lid. The chloroform concentration of the filtrate injected into each vial was measured by gas chromatography.

試験結果を図8に示す。図8は、実施例3及び比較例1において、接触時間(単位:秒)に対するクロロホルムの平衡吸着達成率を示している。接触時間が30分と60分である場合の平衡吸着達成率は、図8に示すグラフに示されていないが、比較例1の場合それぞれ0.98と1.00であり、実施例3の場合いずれも1.00である。尚、平衡吸着達成率が0.00である場合は原水サンプルからクロロホルムが全く除去されていないことを示し、平衡吸着達成率が1.00である場合は原水サンプルからクロロホルムが最も高い割合で除去されたことを示す。図8に示すように、CNFに由来する粒状活性炭を用いた実施例3の平衡吸着達成率は、接触時間10秒〜10分のいずれにおいても、ヤシ殻系活性炭を粉砕した粒状活性炭を用いた比較例1の平衡吸着達成率よりも高かった。これは、実施例3の粒状活性炭の方が比較例1の粒状活性炭よりも吸着が速いことを意味する。
従って、CNFを用いて本技術の製造方法により得られる粒状活性炭は活性炭としての高い浄化性能を有していることが確認された。
The test results are shown in FIG. FIG. 8 shows the equilibrium adsorption achievement rate of chloroform with respect to the contact time (unit: second) in Example 3 and Comparative Example 1. The equilibrium adsorption achievement rates when the contact time is 30 minutes and 60 minutes are not shown in the graph shown in FIG. 8, but are 0.98 and 1.00 in the case of Comparative Example 1, respectively. In either case, it is 1.00. When the equilibrium adsorption achievement rate is 0.00, it indicates that no chloroform has been removed from the raw water sample, and when the equilibrium adsorption achievement rate is 1.00, chloroform is removed from the raw water sample at the highest rate. Indicates that As shown in FIG. 8, the equilibrium adsorption achievement rate of Example 3 using granular activated carbon derived from CNF was obtained by using granular activated carbon obtained by pulverizing coconut shell activated carbon in any contact time of 10 seconds to 10 minutes. The equilibrium adsorption achievement rate of Comparative Example 1 was higher. This means that the granular activated carbon of Example 3 adsorbs faster than the granular activated carbon of Comparative Example 1.
Therefore, it was confirmed that the granular activated carbon obtained by the production method of the present technology using CNF has high purification performance as activated carbon.

(7)結び:
以上説明したように、本発明によると、種々の態様により、得られる粒状活性炭の大きさを調整し易くする製造方法等の技術を提供することができる。むろん、独立請求項に係る構成要件のみからなる技術でも、上述した基本的な作用、効果が得られる。
また、上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、公知技術及び上述した例の中で開示した各構成を相互に置換したり組み合わせを変更したりした構成、等も実施可能である。本発明は、これらの構成等も含まれる。
(7) Conclusion:
As described above, according to the present invention, techniques such as a manufacturing method that makes it easy to adjust the size of the obtained granular activated carbon can be provided according to various aspects. Needless to say, the above-described basic functions and effects can be obtained even with the technology consisting only of the constituent elements according to the independent claims.
In addition, the configurations disclosed in the above-described examples are mutually replaced or the combination is changed, the known technology and the configurations disclosed in the above-described examples are mutually replaced or the combinations are changed. The configuration described above can also be implemented. The present invention includes these configurations and the like.

1…水栓(浄水器の例)、2…水栓本体、
10…吐水ヘッド(浄水器本体の例)、10a…水道水通路、
11…吐水部、12…接続口、13…水出口、15…切替レバー、
18…把持部、19…ホース(水入口の例)、
20…浄水カートリッジ(濾過カートリッジの例)、
30…吸着剤部、30b…端部、
31…外側不織布、31a,31b…端部、31o…開口、
32…外側面(流入部の例)、33…内側(収容部の例)、
38…外キャップ、38a…外面、
41…内側不織布、41a,41b…端部、41o…開口、43…内側、
48…内キャップ、
50…内嵌部材、
70…中空糸膜ケース、70c…内部空間、71…中空糸膜束収容部、74…連絡口、
75…流出部、80…外嵌部、
100…懸濁液、
101…液状分散媒、102…セルロースナノファイバー、103…添加剤、
110,110A,110B…粒状懸濁液、120…粒状活性炭、130…添加剤、
210,220,230,240,250,260…造粒装置、
211…回転ダイ、212…貫通孔、213,214…ロール、215…カッター、
221…回転ダイ、222…貫通孔、223…ロール、225…カッター、
235…カッター、235a,235b…刃、
241…シリンダー、242…キャビティ、243…ピストン、
251,252…ロール、253…キャビティ、
261…回転パン、
AH1…吸着剤、AX1…軸、
BH1…中空糸膜束、BH1a…閉塞端部、BH1b…開口端部、
D1…流下方向、D2…延出方向、
H1…中空糸膜、
S1…懸濁液用意工程、S2…成形工程、S3…賦活工程、S4…収容工程、
S21…予備成形工程、S22…丸め工程、S31…不融化工程、S32…主賦活工程、
SY1…システムキッチン、W…水(流体の例)。
1 ... faucet (example of water purifier), 2 ... faucet body,
10 ... Water discharge head (example of water purifier body), 10a ... Tap water passage,
DESCRIPTION OF SYMBOLS 11 ... Water discharging part, 12 ... Connection port, 13 ... Water outlet, 15 ... Switching lever,
18 ... gripping part, 19 ... hose (example of water inlet),
20 ... water purification cartridge (example of filtration cartridge),
30 ... Adsorbent part, 30b ... End part,
31 ... outer nonwoven fabric, 31a, 31b ... end, 31o ... opening,
32 ... Outer side surface (example of inflow part), 33 ... Inner side (example of accommodating part),
38 ... outer cap, 38a ... outer surface,
41 ... inner nonwoven fabric, 41a, 41b ... end, 41o ... opening, 43 ... inside,
48 ... Inner cap,
50. Internal fitting member,
70 ... hollow fiber membrane case, 70c ... internal space, 71 ... hollow fiber membrane bundle housing part, 74 ... communication port,
75 ... Outflow part, 80 ... Outer fitting part,
100 ... suspension,
101 ... Liquid dispersion medium, 102 ... Cellulose nanofiber, 103 ... Additive,
110, 110A, 110B ... granular suspension, 120 ... granular activated carbon, 130 ... additive,
210, 220, 230, 240, 250, 260 ... granulator,
211: Rotating die, 212: Through hole, 213, 214 ... Roll, 215 ... Cutter,
221 ... Rotating die, 222 ... through hole, 223 ... roll, 225 ... cutter,
235 ... cutter, 235a, 235b ... blade,
241 ... Cylinder, 242 ... Cavity, 243 ... Piston,
251,252 ... roll, 253 ... cavity,
261 ... rotating pan,
AH1 ... adsorbent, AX1 ... shaft,
BH1 ... hollow fiber membrane bundle, BH1a ... closed end, BH1b ... open end,
D1 ... Flowing direction, D2 ... Extension direction,
H1 hollow fiber membrane,
S1 ... Suspension preparation step, S2 ... Molding step, S3 ... Activation step, S4 ... Storage step,
S21 ... Preliminary molding step, S22 ... Rounding step, S31 ... Infusibilization step, S32 ... Main activation step,
SY1 ... System kitchen, W ... Water (example of fluid).

Claims (4)

液状分散媒100重量部に対して11〜43重量部のセルロースナノファイバーを含む懸濁液を粒状に成形する成形工程と、
前記粒状の懸濁液を加熱して賦活することにより粒状活性炭を得る賦活工程と、を含む、粒状活性炭の製造方法。
A molding step of molding a suspension containing 11 to 43 parts by weight of cellulose nanofibers into 100 parts by weight of the liquid dispersion medium;
A method for producing granular activated carbon, comprising: an activation step of obtaining granular activated carbon by heating and heating the granular suspension.
前記成形工程では、前記懸濁液を所定の大きさの粒状に揃える手段により前記懸濁液を粒状に成形する、請求項1に記載の粒状活性炭の製造方法。   The method for producing granular activated carbon according to claim 1, wherein, in the forming step, the suspension is formed into particles by means for aligning the suspension into particles having a predetermined size. 前記成形工程は、前記粒状の懸濁液を丸める工程を含む、請求項1又は請求項2に記載の粒状活性炭の製造方法。   The said shaping | molding process is a manufacturing method of the granular activated carbon of Claim 1 or Claim 2 including the process of rounding the said granular suspension. 流体の流入部及び流出部を有する収容部に粒状活性炭が収容された濾過カートリッジの製造方法であって、
液状分散媒100重量部に対して11〜43重量部のセルロースナノファイバーを含む懸濁液を粒状に成形する成形工程と、
前記粒状の懸濁液を加熱して賦活することにより前記粒状活性炭を得る賦活工程と、
前記粒状活性炭を前記収容部に収容する収容工程と、を含む、濾過カートリッジの製造方法。
A method of manufacturing a filtration cartridge in which granular activated carbon is accommodated in an accommodating portion having an inflow portion and an outflow portion of a fluid,
A molding step of molding a suspension containing 11 to 43 parts by weight of cellulose nanofibers into 100 parts by weight of the liquid dispersion medium;
An activation step of obtaining the granular activated carbon by heating and heating the granular suspension;
A housing step of housing the granular activated carbon in the housing section.
JP2018019771A 2018-02-07 2018-02-07 Manufacturing method of granular activated carbon and manufacturing method of filtration cartridge Active JP6906867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019771A JP6906867B2 (en) 2018-02-07 2018-02-07 Manufacturing method of granular activated carbon and manufacturing method of filtration cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019771A JP6906867B2 (en) 2018-02-07 2018-02-07 Manufacturing method of granular activated carbon and manufacturing method of filtration cartridge

Publications (2)

Publication Number Publication Date
JP2019136627A true JP2019136627A (en) 2019-08-22
JP6906867B2 JP6906867B2 (en) 2021-07-21

Family

ID=67692665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019771A Active JP6906867B2 (en) 2018-02-07 2018-02-07 Manufacturing method of granular activated carbon and manufacturing method of filtration cartridge

Country Status (1)

Country Link
JP (1) JP6906867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230026127A (en) * 2021-08-17 2023-02-24 인하대학교 산학협력단 Manufacturing method of activated carbons derived from coffee ground using potassium oxalate for carbon dioxide capture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082535A (en) * 2001-09-12 2003-03-19 Shigenori Kuga Minute fibrous carbon material derived from cellulose raw material and method for producing the same
JP2016094683A (en) * 2014-11-14 2016-05-26 中越パルプ工業株式会社 Cnf formation method and cnf molded body obtained by the same method
JP2016172856A (en) * 2010-11-16 2016-09-29 王子ホールディングス株式会社 Cellulose fiber assembly and cellulose fiber complex
WO2017155455A1 (en) * 2016-03-11 2017-09-14 Innventia Ab Nanocellulose aerogel particles having controlled electrical conductance, and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082535A (en) * 2001-09-12 2003-03-19 Shigenori Kuga Minute fibrous carbon material derived from cellulose raw material and method for producing the same
JP2016172856A (en) * 2010-11-16 2016-09-29 王子ホールディングス株式会社 Cellulose fiber assembly and cellulose fiber complex
JP2016094683A (en) * 2014-11-14 2016-05-26 中越パルプ工業株式会社 Cnf formation method and cnf molded body obtained by the same method
WO2017155455A1 (en) * 2016-03-11 2017-09-14 Innventia Ab Nanocellulose aerogel particles having controlled electrical conductance, and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230026127A (en) * 2021-08-17 2023-02-24 인하대학교 산학협력단 Manufacturing method of activated carbons derived from coffee ground using potassium oxalate for carbon dioxide capture
KR102664368B1 (en) 2021-08-17 2024-05-09 인하대학교 산학협력단 Manufacturing method of activated carbons derived from coffee ground using potassium oxalate for carbon dioxide capture

Also Published As

Publication number Publication date
JP6906867B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US20200261836A1 (en) Granular filtration media mixture and uses in water purification
KR101539702B1 (en) Cellulose powder and method for the production thereof
CN102026720B (en) Filter medium and water filtration system including the same
TWI485107B (en) Activated carbon molded product and water purifier using the same
JP2019172478A (en) Activated carbon, method for producing activated carbon, filtration cartridge, and water purification device
JP4361489B2 (en) Composite adsorbent, method for producing the same, water purifier, and water purifier
WO2017199717A1 (en) Activated carbon, and adsorption filter and water purifier both including same
JP7303118B2 (en) adsorption filter
JP2010535621A (en) Liquid filtration system
WO2016080240A1 (en) Adsorption filter
TWI830845B (en) Filters for water purification and water purifiers equipped with filters
WO2016080241A1 (en) Adsorption filter
JP2019136627A (en) Granular activated carbon manufacturing method and filtration cartridge manufacturing method
JP2016059826A (en) Molded adsorbent and water purifier prepared therewith
WO2014017196A1 (en) Cylindrical carbonaceous object containing activated carbon or activated carbon material, cylindrical carbonaceous object module, filter cartridge, water purifier, water faucet, and method for producing same
JP7453463B1 (en) Carbonaceous material and its manufacturing method, and adsorption filter
JP2005013883A (en) Active carbon molding and water purifier using the same
JP5775038B2 (en) Method for producing activated carbon or cylindrical carbonaceous material containing activated carbon raw material
JP5868363B2 (en) Water purification cartridge and water purifier
JP5805033B2 (en) Cylindrical carbonaceous body module containing activated carbon or activated carbon raw material and method for producing the same
RU174088U1 (en) Filter element for drinking water purification
JP2023142935A (en) Molded adsorbent
JP6174556B2 (en) Modified activated carbon, method for producing the same, and filtration cartridge
JP2014108409A (en) Water purifier and faucet
JP2014033978A (en) Filter cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150