JP2019135423A - Heat pump cold water heat source machine - Google Patents

Heat pump cold water heat source machine Download PDF

Info

Publication number
JP2019135423A
JP2019135423A JP2018018102A JP2018018102A JP2019135423A JP 2019135423 A JP2019135423 A JP 2019135423A JP 2018018102 A JP2018018102 A JP 2018018102A JP 2018018102 A JP2018018102 A JP 2018018102A JP 2019135423 A JP2019135423 A JP 2019135423A
Authority
JP
Japan
Prior art keywords
refrigerant
water
heat exchanger
cold
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018018102A
Other languages
Japanese (ja)
Other versions
JP6943785B2 (en
Inventor
佐々木 勝
Masaru Sasaki
勝 佐々木
大島 正之
Masayuki Oshima
正之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2018018102A priority Critical patent/JP6943785B2/en
Publication of JP2019135423A publication Critical patent/JP2019135423A/en
Application granted granted Critical
Publication of JP6943785B2 publication Critical patent/JP6943785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

To suppress an increase in an amount of dew condensation generated by the circulation of air in a machine room.SOLUTION: An outdoor unit 2 includes a vertical partition wall 33 for partitioning a blast room 35 and a machine room 36 provided inside a housing 31. A water-refrigerant heat exchanger 11 housed in the machine room 36 is disposed so as to separate the inside of the machine room 36 into a front side space 36a and a back side space 36b, the back side space 36b being a dew condensation room where dew condensation is generated. A compressor 7 is disposed in the front side space 36a. By this configuration, ambient air of the compressor 7 is almost blocked from ambient air of a refrigerant pipe 15, and the ambient air of the compressor 7 is inhibited from being circulated into the refrigerant pipe 15, thereby preventing an increase in an amount of dew condensation.SELECTED DRAWING: Figure 5

Description

この発明は、水−冷媒熱交換器において、室内熱交換器に接続される冷水循環回路と冷媒循環回路との熱の送受を行う、ヒートポンプ冷水熱源機に関するものである。   The present invention relates to a heat pump chilled water heat source device that transfers heat between a chilled water circulation circuit connected to an indoor heat exchanger and a refrigerant circulation circuit in a water-refrigerant heat exchanger.

従来よりこの種のヒートポンプ冷水熱源機においては、特許文献1に記載のように、冷媒循環回路と冷水循環回路とが水−冷媒熱交換器で熱を送受するものがあった。   Conventionally, in this type of heat pump cold water heat source machine, as described in Patent Document 1, there is one in which a refrigerant circulation circuit and a cold water circulation circuit transmit and receive heat with a water-refrigerant heat exchanger.

特開2014−16112号公報JP 2014-16112 A

上記従来のものでは、筐体の内部が仕切壁によって送風室と機械室とに仕切られており、機械室内に前記圧縮機、前記膨張弁、前記水−冷媒熱交換器等が設けられている。前記冷媒循環回路側で吸熱を行う場合、前記水−冷媒熱交換器近傍の冷媒配管内には低温の冷媒が流れることから、その低温の影響により、前記機械室内における冷媒配管の周囲空気が冷やされ、前記水−冷媒熱交換器に接続される冷媒配管に結露が生じやすい傾向となる。特に、機械室内に配置される前記圧縮機の周囲空気は比較的高温となることから、当該圧縮機の周囲と前記冷媒配管の周囲空気とが(遮断されることなく)流通していると、高温の空気が前記冷媒配管の周囲に呼び込まれる空気の流れが生じ、特に結露量が増大することとなるという問題があった。   In the above conventional one, the interior of the housing is partitioned into a blower chamber and a machine chamber by a partition wall, and the compressor, the expansion valve, the water-refrigerant heat exchanger, and the like are provided in the machine chamber. . When heat is absorbed on the refrigerant circuit side, low-temperature refrigerant flows in the refrigerant pipe in the vicinity of the water-refrigerant heat exchanger. Therefore, due to the low temperature, the ambient air around the refrigerant pipe in the machine room is cooled. Therefore, condensation tends to occur in the refrigerant pipe connected to the water-refrigerant heat exchanger. In particular, since the ambient air around the compressor disposed in the machine room is relatively hot, the ambient air around the compressor and the ambient air around the refrigerant pipe are circulated (without being interrupted). There was a problem that a flow of air in which high-temperature air was drawn around the refrigerant pipe occurred, and in particular, the amount of condensation increased.

上記課題を解決するために、本発明の請求項1では、筐体の内部に配置された圧縮機と空気熱交換器と膨張弁と水−冷媒熱交換器とを冷媒配管で接続して冷媒循環回路を形成するとともに、前記水−冷媒熱交換器において、室内熱交換器に接続される冷水配管を備えた冷水循環回路と前記冷媒循環回路との熱の送受を行う、ヒートポンプ冷水熱源機において、前記筐体の内部の一方側に設けられ、前記空気熱交換器に外気を送り込む送風ファンを備えた送風室と、前記筐体の内部の他方側に設けられ、前記圧縮機と前記膨張弁と前記水−冷媒熱交換器とを備えた機械室と、前記送風室と前記機械室とを仕切る仕切壁と、を有し、前記水−冷媒熱交換器は、前記機械室の内部を前面側空間と背面側空間とに区分するとともに、前記背面側空間を結露が生じる結露室とするように、配置されており、前記圧縮機は、前記前面側空間に配置されているものである。   In order to solve the above-mentioned problem, according to claim 1 of the present invention, a compressor, an air heat exchanger, an expansion valve, and a water-refrigerant heat exchanger, which are disposed inside a casing, are connected by a refrigerant pipe. In a heat pump chilled water heat source unit that forms a circulation circuit and performs heat transfer between the chilled water circulation circuit having a chilled water pipe connected to an indoor heat exchanger and the refrigerant circulation circuit in the water-refrigerant heat exchanger. A blower chamber provided on one side of the casing and provided with a blower fan for sending outside air to the air heat exchanger; and provided on the other side of the casing, the compressor and the expansion valve And a machine room provided with the water-refrigerant heat exchanger, and a partition wall that partitions the air blowing chamber and the machine room, and the water-refrigerant heat exchanger has a front surface inside the machine room. While dividing into a side space and a back side space, the back side space is As the condensation chamber dew occurs, is arranged, the compressor is one that is located on the front side space.

また、請求項2では、前記水−冷媒熱交換器は、前記結露室側において前記冷媒配管及び前記冷水配管に接続されているものである。   According to a second aspect of the present invention, the water-refrigerant heat exchanger is connected to the refrigerant pipe and the cold water pipe on the condensation chamber side.

また、請求項3では、前記水−冷媒熱交換器と、前記仕切壁の一部と、前記空気熱交換器の前記他方側の端部プレートと、前記筐体の一部とで、前記結露室を包囲する外郭が構成されているものである。   According to a third aspect of the present invention, the dew condensation is caused by the water-refrigerant heat exchanger, a part of the partition wall, the other end plate of the air heat exchanger, and a part of the housing. An outer shell surrounding the chamber is configured.

また、請求項4では、前記水−冷媒熱交換器及び前記結露室の下方に、結露水受け部材を設けたものである。   According to a fourth aspect of the present invention, a dew condensation water receiving member is provided below the water-refrigerant heat exchanger and the dew condensation chamber.

この発明の請求項1によれば、冷媒循環回路と冷水循環回路とが水−冷媒熱交換器で熱を送受することにより、冷水循環回路に備えられる室内熱交換器が室内に対し吸熱を行う。すなわち、冷媒循環回路において低温・低圧で吸入されたガスの冷媒が前記圧縮機で圧縮されて高温・高圧となった後、前記室外熱交換器(凝縮器)において前記送風ファンの送風で冷却されることで外気に熱を放出し高圧の液体に変化する。液体の冷媒は前記膨張弁で減圧されて低圧の液体となった後、前記水−冷媒熱交換器(蒸発器)で蒸発しガスに変化することで冷水循環回路側から吸熱する。吸熱されて(すなわち放熱して)低温となった前記冷水循環回路内の冷水は、室内熱交換器へ導かれて室内空気から吸熱し冷却を行う。   According to the first aspect of the present invention, the refrigerant circulation circuit and the cold water circulation circuit transmit and receive heat with the water-refrigerant heat exchanger, so that the indoor heat exchanger provided in the cold water circulation circuit absorbs heat into the room. . That is, after the refrigerant of the gas sucked at low temperature and low pressure in the refrigerant circulation circuit is compressed by the compressor to become high temperature and high pressure, it is cooled by the blower fan in the outdoor heat exchanger (condenser). This releases heat to the outside air and changes to a high-pressure liquid. The liquid refrigerant is depressurized by the expansion valve to become a low-pressure liquid, and is then evaporated by the water-refrigerant heat exchanger (evaporator) to be converted into gas, thereby absorbing heat from the cold water circulation circuit side. The chilled water in the chilled water circulation circuit that has absorbed heat (i.e., radiated heat) and has a low temperature is led to the indoor heat exchanger to absorb heat from the indoor air and cool it.

そして、請求項1によれば、前記水−冷媒熱交換器が、前記機械室の内部を前面側空間と背面側空間とに区分するように、かつ、前記背面側空間を前記結露が生じる結露室とするように、配置される。そして、前記圧縮機は、前記結露室とは反対側の、前記前面側空間に配置される。これにより、前記圧縮機の周囲空気と前記冷媒配管の周囲空気とが略遮断され、前記のような空気の流通が生じるのが抑制される。この結果、結露量の増大を防ぐことができる。   According to claim 1, the water-refrigerant heat exchanger divides the interior of the machine room into a front side space and a back side space, and the dew condensation occurs in the back side space. It is arranged to be a chamber. And the said compressor is arrange | positioned in the said front side space on the opposite side to the said dew condensation chamber. Thereby, the ambient air of the compressor and the ambient air of the refrigerant pipe are substantially blocked, and the occurrence of the air circulation as described above is suppressed. As a result, an increase in the amount of condensation can be prevented.

また、請求項2によれば、水−冷媒熱交換器の背面側の結露室内において冷媒配管及び冷水配管の周囲に生じる結露量の増大を防ぐことができる。   According to claim 2, it is possible to prevent an increase in the amount of condensation that occurs around the refrigerant piping and the cold water piping in the condensation chamber on the back side of the water-refrigerant heat exchanger.

また、請求項3によれば、前記水−冷媒熱交換器と、前記仕切壁の一部と、前記空気熱交換器のエンドプレートと、前記筐体の一部とで形成される外郭によって、結露室を略密閉することができる。   According to claim 3, by the outer shell formed by the water-refrigerant heat exchanger, a part of the partition wall, an end plate of the air heat exchanger, and a part of the housing, The condensation chamber can be substantially sealed.

また、請求項4によれば、前記水−冷媒熱交換器の背面側において前記結露室内の結露で生じた液滴(結露水)を受け止め、適宜に導水して排出することができる。   According to the fourth aspect of the present invention, it is possible to receive droplets (condensation water) generated by dew condensation in the dew condensation chamber on the back side of the water-refrigerant heat exchanger, and conduct water appropriately and discharge it.

本発明の一実施形態の室外機を備えたヒートポンプ冷温水機の全体概略構成図The whole schematic block diagram of the heat pump cold / hot water machine provided with the outdoor unit of one Embodiment of this invention ヒートポンプ冷温水機の冷房運転時における冷凍サイクルを模式的に表した図Schematic representation of the refrigeration cycle during cooling operation of a heat pump water heater 室外機の分解斜視図Exploded perspective view of outdoor unit 冷温水回路室及び機械室の内部を露出させた状態で室外機を右側後方の斜め上方から見た斜視図The perspective view which looked at the outdoor unit from the diagonally upper part on the right rear side with the inside of the cold / hot water circuit room and the machine room exposed. 室外機の要部構造を表す平面図Plan view showing the main structure of the outdoor unit

以下、本発明の一実施の形態を図1〜図5に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態に係わるヒートポンプ冷温水機の全体概略構成を図1に示す。図1において、このヒートポンプ冷温水機1は、室外に設置される室外機2(ヒートポンプ冷水熱源機に相当)と、この室外機2と冷温水配管3(冷水配管に相当)を介して接続されて室内に設置される室内機4と、室内に配置されて各種の操作指示や情報の入出力を行うリモコン5と、前記冷温水配管3に接続されて室外に配置される膨張タンク51と、を有する。   The whole schematic structure of the heat pump cold / hot water machine concerning this embodiment is shown in FIG. In FIG. 1, this heat pump cold / hot water machine 1 is connected via the outdoor unit 2 (equivalent to a heat pump cold water heat source machine) installed outside, and this outdoor unit 2 and the cold / hot water pipe 3 (equivalent to cold water pipe). An indoor unit 4 installed indoors, a remote controller 5 arranged in the room for inputting / outputting various operation instructions and information, an expansion tank 51 connected to the cold / hot water pipe 3 and arranged outdoors, Have

次に、前記ヒートポンプ冷温水機1の概略的なシステム構成を図2に示す。図2において、ヒートポンプ冷温水機1は、例えばHFCなどの合成化合ガスを冷媒として循環させヒートポンプとして機能して室外での吸放熱を行う冷媒循環回路21と、例えば不凍液などを冷温水として循環させ室内での吸放熱を行う冷温水循環回路22(冷水循環回路に相当)と、の間における熱交換により、室内の空気温度を調整するものである。   Next, a schematic system configuration of the heat pump cold / hot water machine 1 is shown in FIG. In FIG. 2, a heat pump chiller / heater 1 circulates, for example, a synthetic compound gas such as HFC as a refrigerant and circulates a refrigerant circulation circuit 21 that functions as a heat pump and absorbs and dissipates heat outside the room, and circulates, for example, antifreeze as cold / hot water. The indoor air temperature is adjusted by heat exchange between a cold / hot water circulation circuit 22 (corresponding to a cold water circulation circuit) that absorbs and releases heat in the room.

すなわち、前記冷媒循環回路21は、前記室外機2に備えられた、前記冷媒の循環方向を切り替える四方弁6と、前記冷媒を圧縮する圧縮機7と、前記冷媒と外気との熱交換を行う空気熱交換器8と、前記冷媒を減圧膨張させる膨張弁9と、冷媒と冷温水との熱交換を行う水−冷媒熱交換器11とを、冷媒配管15で接続して形成されている。なお、前記室外機2には、前記空気熱交換器8に送風する室外ファン10(送風ファンに相当)が設けられている。   That is, the refrigerant circulation circuit 21 performs heat exchange between the four-way valve 6 provided in the outdoor unit 2 for switching the refrigerant circulation direction, the compressor 7 that compresses the refrigerant, and the refrigerant and the outside air. An air heat exchanger 8, an expansion valve 9 that decompresses and expands the refrigerant, and a water-refrigerant heat exchanger 11 that performs heat exchange between the refrigerant and cold / hot water are connected by a refrigerant pipe 15. The outdoor unit 2 is provided with an outdoor fan 10 (corresponding to a blower fan) that blows air to the air heat exchanger 8.

前記四方弁6は4つのポートを備える弁であり、(前記冷媒配管15の一部を構成する)冷媒主経路15a用の2つのポートのそれぞれに対して、(前記冷媒配管15の一部を構成する)他の冷媒副経路15b用の2つのポートのいずれに接続するかを切り替える。冷媒副経路15b用の2つのポートどうしはループ状に配置された冷媒副経路15bで接続されており、この冷媒副経路15b上に圧縮機7が設けられている。   The four-way valve 6 is a valve having four ports. For each of two ports for the refrigerant main path 15a (which constitutes a part of the refrigerant pipe 15), a part of the refrigerant pipe 15 is provided. Configure) Switch which of the two ports for the other refrigerant sub-path 15b is connected. The two ports for the refrigerant sub-path 15b are connected by a refrigerant sub-path 15b arranged in a loop, and the compressor 7 is provided on the refrigerant sub-path 15b.

前記圧縮機7は、低圧ガス状態の冷媒を昇圧して高圧ガス状態にするとともに、室外機2内における冷媒配管15全体の冷媒を循環させるポンプとしても機能する。   The compressor 7 pressurizes the refrigerant in the low-pressure gas state to make it into a high-pressure gas state, and also functions as a pump for circulating the refrigerant in the entire refrigerant pipe 15 in the outdoor unit 2.

また、前記四方弁6の冷媒主経路15a用の2つのポートどうしは、ループ状に配置された前記冷媒主経路15aで接続されており、この冷媒主経路15a上に空気熱交換器8、膨張弁9、及び水−冷媒熱交換器11が順に(図示する例では冷媒主経路15a左回りの順に)設けられている。   Further, the two ports for the refrigerant main path 15a of the four-way valve 6 are connected by the refrigerant main path 15a arranged in a loop, and the air heat exchanger 8 and the expansion are provided on the refrigerant main path 15a. The valve 9 and the water-refrigerant heat exchanger 11 are sequentially provided (in the illustrated example, in the order of counterclockwise refrigerant main path 15a).

前記空気熱交換器8は、その内部を通過するガス状態の前記冷媒の温度が室外の外気温度より高い場合は、その冷媒の熱を放熱して液体状態に凝縮させる凝縮器として機能する。また、その内部を通過する液体状態の前記冷媒の温度が室外の外気温度より低い場合は外気の熱を冷媒に吸熱してガス状態に蒸発させる蒸発器として機能する。   The air heat exchanger 8 functions as a condenser that dissipates heat of the refrigerant and condenses it into a liquid state when the temperature of the refrigerant in the gas state passing through the inside thereof is higher than the outdoor outside air temperature. Moreover, when the temperature of the said refrigerant | coolant in the liquid state which passes through the inside is lower than outdoor outdoor temperature, it functions as an evaporator which absorbs the heat of external air to a refrigerant | coolant, and evaporates to a gas state.

前記室外ファン10は、前記空気熱交換器8に対して送風することで、空気熱交換器8の性能を向上させる。   The outdoor fan 10 improves the performance of the air heat exchanger 8 by sending air to the air heat exchanger 8.

前記膨張弁9は、高圧液体状態の前記冷媒を減圧膨張させて低圧液体状態とするよう機能する。   The expansion valve 9 functions to decompress and expand the refrigerant in a high-pressure liquid state to a low-pressure liquid state.

水−冷媒熱交換器11は、前記のように冷媒主経路15aに接続されてその内部に冷媒を通過させるとともに、冷温水配管3にも接続されてその内部に冷温水を通過させる。水−冷媒熱交換器11の内部を通過するガス状態の冷媒の温度が冷温水の温度より高い場合は、冷媒に対してその熱を冷温水に放熱し液体状態に凝縮させる凝縮器として機能する。また、その内部を通過する液体状態の冷媒の温度が冷温水の温度より低い場合は、冷媒に対して冷温水の熱を吸熱しガス状態に蒸発させる蒸発器として機能する。   As described above, the water-refrigerant heat exchanger 11 is connected to the refrigerant main path 15a to allow the refrigerant to pass through it, and is also connected to the cold / hot water pipe 3 to pass the cold / hot water therein. When the temperature of the gaseous refrigerant passing through the inside of the water-refrigerant heat exchanger 11 is higher than the temperature of the cold / hot water, it functions as a condenser that radiates the heat to the cold / hot water and condenses it into the liquid state. . Further, when the temperature of the liquid refrigerant passing through the inside is lower than the temperature of the cold / hot water, the refrigerant functions as an evaporator that absorbs the heat of the cold / hot water and evaporates it into a gas state.

一方、冷温水循環回路22は、前記室外機2に備えられた、前記水−冷媒熱交換器11、前記冷温水に循環圧力を加える循環ポンプ12、及び冷温水タンク13と、前記室内機4に備えられ冷温水と室内空気との熱交換を行う室内熱交換器14とを、前記冷温水配管3で接続して形成されている。   On the other hand, the cold / hot water circulation circuit 22 is provided in the outdoor unit 2, the water-refrigerant heat exchanger 11, the circulation pump 12 that applies circulation pressure to the cold / hot water, the cold / hot water tank 13, and the indoor unit 4. An indoor heat exchanger 14 that is provided and exchanges heat between cold / hot water and room air is connected by the cold / hot water pipe 3.

前記水−冷媒熱交換器11は、ループ状に配置された前記冷温水配管3に接続されており、この冷温水配管3上に、室内熱交換器14、冷温水タンク13、及び循環ポンプ12が順に(図示する例では冷温水配管3右回りの順に)設けられ、また前記室内熱交換器14と前記冷温水タンク13との間の冷温水配管3から分岐した配管が、前記膨張タンク51に接続されている。   The water-refrigerant heat exchanger 11 is connected to the cold / hot water pipe 3 arranged in a loop. On the cold / hot water pipe 3, an indoor heat exchanger 14, a cold / hot water tank 13, and a circulation pump 12 are connected. Are provided in order (in the example shown in the clockwise order of the cold / hot water pipe 3), and a pipe branched from the cold / hot water pipe 3 between the indoor heat exchanger 14 and the cold / hot water tank 13 is connected to the expansion tank 51. It is connected to the.

前記室内熱交換器14は、その内部を通過する前記冷温水の温度が室内空気の温度より高い場合は、その冷温水の熱を放熱する放熱器として機能する。また、その内部を通過する前記冷温水の温度が室内空気の温度より低い場合は、室内空気の熱を冷温水に吸熱させる吸熱器として機能する。なお、この例では、室内機4は、図1に示すように、冷温水を循環させる前記冷温水配管3を露出させた冷温水パネルの形態の前記室内熱交換器14を備えており、前記冷温水の熱又は冷気を輻射的に放出する態様で室内空気との熱交換を行う。   The indoor heat exchanger 14 functions as a radiator that radiates the heat of the cold / hot water when the temperature of the cold / hot water passing through the indoor heat exchanger 14 is higher than the temperature of the room air. Moreover, when the temperature of the said cold / hot water which passes through the inside is lower than the temperature of indoor air, it functions as a heat absorber which makes the cold / hot water absorb the heat of indoor air. In this example, the indoor unit 4 includes the indoor heat exchanger 14 in the form of a cold / hot water panel in which the cold / hot water pipe 3 for circulating cold / hot water is exposed, as shown in FIG. Heat exchange with room air is performed in a manner that radiates heat or cold air of cold / hot water.

前記冷温水タンク13は、キャビテーションなどで冷温水中に生じた気泡の分離(気水分離機能)を行い貯留し、上部に備えた気水分離弁13b(後述の図3及び図4参照)の更に上部に設けた摘みを操作することで貯留された空気を放出するものである。前記膨張タンク51は、前記冷温水循環回路22の冷温水配管3内における冷温水の膨張収縮の変動を吸収する、いわゆるアキュムレーターとして機能するものである。   The cold / hot water tank 13 separates and stores bubbles generated in the cold / warm water by cavitation or the like (air / water separation function), and further stores an air / water separation valve 13b (see FIGS. 3 and 4 to be described later) provided in the upper part. The stored air is released by operating a knob provided on the upper part. The expansion tank 51 functions as a so-called accumulator that absorbs fluctuations in the expansion and contraction of the cold / hot water in the cold / hot water pipe 3 of the cold / hot water circulation circuit 22.

前記循環ポンプ12は、室外機2と室内機4の間に渡って配設される前記冷温水配管3全体に冷温水を循環させるよう機能する。   The circulation pump 12 functions to circulate cold / hot water through the entire cold / hot water pipe 3 disposed between the outdoor unit 2 and the indoor unit 4.

なお、室外機2は、当該室外機2の制御を行う室外機制御部(図示省略)を備えている。この室外機制御部は、主にCPU,ROM、RAM等を備えたマイクロコンピュータで構成され、前記リモコン5を介したユーザからの指示に基づいて室外機2全体の制御を行う。   The outdoor unit 2 includes an outdoor unit control unit (not shown) that controls the outdoor unit 2. The outdoor unit control unit is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like, and controls the entire outdoor unit 2 based on an instruction from the user via the remote controller 5.

上記構成の冷媒循環回路21において、前記圧縮機7は冷媒副経路15b上において一方向に冷媒を循環させるものであり、前記四方弁6の切り替えによって冷媒主経路15a上の冷媒の循環方向を制御する。例えば、図2は冷房運転時の循環方向を示しており、圧縮機7から吐出した冷媒が空気熱交換器8、膨張弁9、水−冷媒熱交換器11の順で流通する。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機7で圧縮されて高温・高圧のガスとなった後、前記空気熱交換器8(凝縮器として機能)において前記室外ファン10の送風で冷却されることで外気に熱を放出しながら高圧の液体に変化する。こうして液体になった冷媒は前記膨張弁9で減圧されて低圧の液体となり蒸発しやすい状態となる。その後、低圧の液体が接続口11aから前記水−冷媒熱交換器11へ流入し、水−冷媒熱交換器11(蒸発器として機能)において蒸発してガスに変化することで前記冷温水循環回路22の冷温水から吸熱を行う。そして冷媒は、前記水−冷媒熱交換器11の接続口11bから低温・低圧のガスとして流出した後、再び前記圧縮機7へと戻る。   In the refrigerant circulation circuit 21 configured as described above, the compressor 7 circulates the refrigerant in one direction on the refrigerant sub-path 15b, and controls the circulation direction of the refrigerant on the refrigerant main path 15a by switching the four-way valve 6. To do. For example, FIG. 2 shows the circulation direction during the cooling operation, and the refrigerant discharged from the compressor 7 flows in the order of the air heat exchanger 8, the expansion valve 9, and the water-refrigerant heat exchanger 11. Thereby, after the refrigerant in the gas state sucked at a low temperature and a low pressure is compressed by the compressor 7 to become a high temperature and a high pressure gas, the outdoor fan 10 in the air heat exchanger 8 (functions as a condenser). It is changed to a high-pressure liquid while releasing heat to the outside air by being cooled by blowing air. The refrigerant that has become liquid in this manner is decompressed by the expansion valve 9 to become a low-pressure liquid that is easily evaporated. Thereafter, the low-pressure liquid flows into the water-refrigerant heat exchanger 11 from the connection port 11a, evaporates in the water-refrigerant heat exchanger 11 (functions as an evaporator), and changes into gas, whereby the cold / hot water circulation circuit 22 Endothermic from cold and hot water. The refrigerant flows out from the connection port 11b of the water-refrigerant heat exchanger 11 as a low-temperature and low-pressure gas, and then returns to the compressor 7 again.

一方、冷温水循環回路22において、循環ポンプ12により冷温水配管3を循環する前記冷温水は、接続口11cから前記のようにして流入して水−冷媒熱交換器11で冷却された後に接続口11dから流出して室内熱交換器14において室内空気から吸熱して室内を冷却し、その後に冷温水タンク13を通過して再び循環ポンプ12へ戻る。以上のような冷媒循環回路21の冷凍サイクルと冷温水循環回路22との間で熱交換を行うことにより、室内空気の温度を下げる冷房運転が行われる。   On the other hand, in the cold / hot water circulation circuit 22, the cold / hot water circulating through the cold / hot water pipe 3 by the circulation pump 12 flows from the connection port 11 c as described above and is cooled by the water-refrigerant heat exchanger 11. It flows out from 11d, absorbs heat from indoor air in the indoor heat exchanger 14, cools the room, then passes through the cold / hot water tank 13 and returns to the circulation pump 12 again. By performing heat exchange between the refrigeration cycle of the refrigerant circuit 21 and the cold / hot water circuit 22 as described above, a cooling operation for lowering the temperature of the room air is performed.

なお、特に図示しないが、このヒートポンプ冷温水機1では、前記四方弁6を切り替えて冷媒の循環方向を逆転することにより、空気熱交換器8を蒸発器として機能させ、水−冷媒熱交換器11を凝縮器として機能させて、冷温水及び室内空気の温度を上げる暖房運転を行うことができる。   Although not specifically shown, in the heat pump chiller / heater 1, the air heat exchanger 8 functions as an evaporator by switching the four-way valve 6 to reverse the direction of circulation of the refrigerant, so that a water-refrigerant heat exchanger is obtained. Heating operation which raises the temperature of cold / hot water and room air can be performed by making 11 function as a condenser.

図3に、前記室外機2の分解斜視図を示し、図4に、冷温水回路室34及び機械室36の内部を露出させた状態で室外機2を右側後方の斜め上方から見た斜視図を示す。また図5に、前記室外機の要部構造を表す平面図を示す。   FIG. 3 is an exploded perspective view of the outdoor unit 2, and FIG. 4 is a perspective view of the outdoor unit 2 as viewed from diagonally upward on the right rear side with the insides of the cold / hot water circuit chamber 34 and the machine room 36 exposed. Indicates. FIG. 5 is a plan view showing the main structure of the outdoor unit.

これら図3〜図5において、前記室外機2は、略直方体中空形状に形成された筐体31を備えている。前記筐体31は、天板部分31aUと前面上方部分31aLが一体となった上方カバー31aと、前面下方部分の前面パネル31bと、上方部分の後方カバー31cと、下方部分の右側方及び右後方を覆う右側板31dと、下方部分の左側方を覆う左側板31eと、底板31fとから構成されている。   In these FIGS. 3-5, the said outdoor unit 2 is provided with the housing | casing 31 formed in the substantially rectangular parallelepiped hollow shape. The casing 31 includes an upper cover 31a in which a top plate portion 31aU and a front upper portion 31aL are integrated, a front panel 31b in a lower front portion, a rear cover 31c in an upper portion, a right side and a right rear in a lower portion. 31d, a left side plate 31e covering the left side of the lower part, and a bottom plate 31f.

前記筐体31の内部では、設置された状態の上方カバー31aと前面パネル31bの境目に相当する高さに水平仕切壁32が設けられ、この水平仕切壁32の下方に垂直仕切壁33が設けられている。これにより、筐体31の内部においては、前記水平仕切壁32より上方の空間が冷温水回路室34として区画され、前記水平仕切壁32より下方の空間で前記垂直仕切壁33より左右方向一方側(この例では左側)が送風室35として区画され、前記垂直仕切壁33より左右方向他方側(この例では右側)が機械室36として区画されている。なお、前記垂直仕切壁33が、各請求項記載の仕切壁に相当する。   Inside the casing 31, a horizontal partition wall 32 is provided at a height corresponding to the boundary between the installed upper cover 31a and the front panel 31b, and a vertical partition wall 33 is provided below the horizontal partition wall 32. It has been. As a result, in the housing 31, a space above the horizontal partition wall 32 is partitioned as a cold / hot water circuit chamber 34, and a space below the horizontal partition wall 32 is one side in the left-right direction from the vertical partition wall 33. (The left side in this example) is partitioned as the blower chamber 35, and the other side in the left-right direction (the right side in this example) is partitioned as the machine chamber 36 from the vertical partition wall 33. The vertical partition wall 33 corresponds to the partition wall described in each claim.

前記機械室36には、前記四方弁6、前記圧縮機7、前記膨張弁9、及び前記水−冷媒熱交換器11等が収納されている。   The machine chamber 36 accommodates the four-way valve 6, the compressor 7, the expansion valve 9, the water-refrigerant heat exchanger 11, and the like.

前記冷温水回路室34には、前記循環ポンプ12と前記冷温水タンク13とが収納されている。これら冷温水タンク13及び循環ポンプ12は、この例では、冷温水配管3の接続ヘッダ3A1,3A2(前記の図2も参照)を筐体31の右側に設けたのに対応し、前記送風室35の上方位置に配置されている。   In the cold / hot water circuit chamber 34, the circulation pump 12 and the cold / hot water tank 13 are accommodated. In this example, the cold / hot water tank 13 and the circulation pump 12 correspond to the provision of the connection headers 3A1 and 3A2 (see also FIG. 2 above) of the cold / hot water pipe 3 on the right side of the casing 31. 35 is disposed at an upper position.

前記冷温水タンク13は、前記冷温水を貯留し流通させる缶体であるタンク本体13aを備え、前記したように、前記冷温水循環回路22で発生する空気の貯留・分離を行う。そのために、冷温水を貯留する前記タンク本体13aの上部に気水分離弁13bが設けられ、タンク本体13a内の気水分離を行ってタンク本体13a内で発生する空気を排出するものである。   The cold / hot water tank 13 includes a tank body 13a which is a can body for storing and circulating the cold / hot water, and stores / separates air generated in the cold / hot water circulation circuit 22 as described above. For this purpose, an air / water separation valve 13b is provided at the upper part of the tank body 13a for storing cold / hot water, and air generated in the tank body 13a is discharged by performing air / water separation in the tank body 13a.

前記送風室35には、前記空気熱交換器8と前記室外ファン10とが収納されている。空気熱交換器8は、左右方向の一方側(この例では左側)に送風室35の前部に臨む左エンドプレート8L(図3、図5参照)を有し、左右方向の他方側(この例では右側)に機械室36の後部に臨む右エンドプレート8R(他方側の端部プレートに相当。図4、図5参照)を有する。この例の空気熱交換器8は、その厚さ方向に通風可能なパネル体のフィンチューブ式熱交換器であり、送風室35の後面(背面)側及び左側面側において当該送風室35の高さ方向略全域に配置されている。この例の室外ファン10は、図示しない駆動モータにより駆動される回転軸10bと、この回転軸10bに固定された羽根車10aとを備えており、室外機2の後方側から前方側へ向かう方向(図3中の右上から左下へ向かう方向)に送風する軸流ファンである。   The blower chamber 35 accommodates the air heat exchanger 8 and the outdoor fan 10. The air heat exchanger 8 has a left end plate 8L (see FIGS. 3 and 5) facing the front portion of the blower chamber 35 on one side in the left-right direction (left side in this example), and the other side in the left-right direction (this The right end plate 8R (corresponding to the other end plate, see FIGS. 4 and 5) facing the rear of the machine room 36 is provided on the right side in the example. The air heat exchanger 8 in this example is a fin-tube heat exchanger of a panel body that can ventilate in the thickness direction, and the height of the air blowing chamber 35 on the rear surface (rear surface) side and the left side surface side of the air blowing chamber 35. It is arranged in substantially the entire length direction. The outdoor fan 10 of this example includes a rotating shaft 10b driven by a drive motor (not shown) and an impeller 10a fixed to the rotating shaft 10b, and is a direction from the rear side to the front side of the outdoor unit 2. This is an axial fan that blows air (in the direction from the upper right to the lower left in FIG. 3).

次に、上記の基本構成である、本実施形態の室外機2の特徴を詳細に説明する。上述したように、前記室外機2において、前記筐体31の内部(詳細には水平仕切壁32より下方の空間)は、前記垂直仕切壁33によって送風室35と機械室36とに仕切られている。このとき、前記垂直仕切壁33は、図5に示すように、前記筐体31の前端から略後方向に延びる縦壁部33aと、縦壁部33aの後端部から前記空気熱交換器8の右エンドプレート8R付近まで略右方向に延びる横壁部33bとを有している。   Next, the features of the outdoor unit 2 of the present embodiment, which is the basic configuration described above, will be described in detail. As described above, in the outdoor unit 2, the interior of the casing 31 (specifically, the space below the horizontal partition wall 32) is partitioned into the blower chamber 35 and the machine chamber 36 by the vertical partition wall 33. Yes. At this time, as shown in FIG. 5, the vertical partition wall 33 includes a vertical wall portion 33a extending substantially rearward from the front end of the housing 31, and the air heat exchanger 8 from the rear end portion of the vertical wall portion 33a. And a lateral wall portion 33b extending substantially rightward to the vicinity of the right end plate 8R.

ここで、前記図2に示した冷房運転時等には、前記水−冷媒熱交換器11近傍の冷媒配管15内に低温の冷媒が流れることから、その低温の影響により、前記機械室36内における、前記水−冷媒熱交換器11に接続される前記冷媒循環回路21(詳細には前記冷媒配管15)の周囲空気が冷やされ、前記水−冷媒熱交換器11に接続される前記冷媒循環回路21(詳細には前記冷媒配管15)に結露が生じやすい傾向となる。特に、機械室36内に配置される前記圧縮機7の周囲空気は比較的高温となることから、仮に、当該圧縮機7の周囲と前記冷媒配管15の周囲空気とが(遮断されることなく)流通していると、高温の空気が前記冷媒配管15の周囲に呼び込まれる空気の流れが生じ、特に結露量が増大することとなる。   Here, at the time of the cooling operation shown in FIG. 2 and the like, since the low-temperature refrigerant flows in the refrigerant pipe 15 in the vicinity of the water-refrigerant heat exchanger 11, the inside of the machine chamber 36 is affected by the low temperature. The refrigerant circulation circuit 21 connected to the water-refrigerant heat exchanger 11 is cooled and the ambient air of the refrigerant circulation circuit 21 (specifically, the refrigerant pipe 15) connected to the water-refrigerant heat exchanger 11 is cooled. Condensation tends to occur easily in the circuit 21 (specifically, the refrigerant pipe 15). In particular, since the ambient air around the compressor 7 disposed in the machine room 36 becomes relatively high temperature, the ambient air around the compressor 7 and the ambient air around the refrigerant pipe 15 are not interrupted. ) If it is in circulation, a flow of air in which high-temperature air is drawn around the refrigerant pipe 15 occurs, and in particular, the amount of condensation increases.

そこで、本実施形態では、特に図5に明示されるように、前記機械室36の内部を、前面側空間36aと、前記結露が生じる結露室として機能する背面側空間36bと、に区分するように、前記水−冷媒熱交換器11が配置される。詳細には、前記水−冷媒熱交換器11は、右端部が右側板31dの右壁略中間部に略突き当たるように、かつ、左端部が垂直仕切壁33の横壁部33bの略先端部に突き当たるように、前記機械室36の内部の後方寄りの位置において斜めに配置される(図5参照)。これにより、前記水−冷媒熱交換器11と、前記垂直仕切壁33の前記横壁部33b(仕切壁の一部に相当)と、前記空気熱交換器8の右エンドプレート8R(他方側の端部プレートに相当)と、前記右側板31d(図5参照。筐体の一部に相当)とで、結露室として機能する前記背面側空間36bを包囲する外郭が構成されている。   Therefore, in the present embodiment, as clearly shown in FIG. 5, the inside of the machine room 36 is divided into a front side space 36a and a back side space 36b that functions as a dew condensation chamber in which condensation occurs. In addition, the water-refrigerant heat exchanger 11 is arranged. In detail, the water-refrigerant heat exchanger 11 has a right end substantially hitting the right middle of the right side plate 31d and a left end at a substantially tip of the horizontal wall 33b of the vertical partition wall 33. It is disposed obliquely at a position closer to the rear inside the machine room 36 so as to abut (see FIG. 5). Thereby, the water-refrigerant heat exchanger 11, the lateral wall portion 33b of the vertical partition wall 33 (corresponding to a part of the partition wall), and the right end plate 8R of the air heat exchanger 8 (end on the other side). And the right side plate 31d (see FIG. 5, corresponding to a part of the housing) constitute an outer shell that surrounds the back space 36b that functions as a dew condensation chamber.

このとき、上述したように、前記水−冷媒熱交換器11は、前記背面側空間36b側に位置する前記接続口11a,11b(図4、図5、図2参照)において前記冷媒配管15に接続されると共に、同様に前記背面側空間36b側に位置する前記接続口11c,11d(図4、図5、図2参照)において前記冷温水配管3に接続されている。   At this time, as described above, the water-refrigerant heat exchanger 11 is connected to the refrigerant pipe 15 in the connection ports 11a and 11b (see FIGS. 4, 5, and 2) located on the back space 36b side. In addition, it is connected to the cold / hot water pipe 3 at the connection ports 11c and 11d (see FIGS. 4, 5, and 2) similarly located on the back side space 36b side.

そして、(前記水−冷媒熱交換器11の下方を含む)前記背面側空間36bの下方にはトレイ部材38(結露水受け部材に相当)が設けられている。このトレイ部材38は、前記のようにして水−冷媒熱交換器11の背面側に接続される前記冷媒配管15及び前記冷温水配管3の低温で生じ得る、前記背面側空間36b内の結露の液滴(結露水)を受け止めて集積し、底板31fに設けられた図示しないドレン排水孔に向けて導水し排出する。   A tray member 38 (corresponding to a dew condensation water receiving member) is provided below the back side space 36b (including below the water-refrigerant heat exchanger 11). This tray member 38 is capable of dew condensation in the back side space 36b, which can occur at a low temperature of the refrigerant pipe 15 and the cold / hot water pipe 3 connected to the back side of the water-refrigerant heat exchanger 11 as described above. The liquid droplets (condensed water) are received and accumulated, and water is introduced and discharged toward a drain drain hole (not shown) provided on the bottom plate 31f.

一方、前記圧縮機7は、前記機械室36内において、当該圧縮機7の周囲空気と前記冷媒配管15の周囲空気とが略遮断されるように、前記背面側空間36bとは反対側の前記前面側空間36aに、前記四方弁6と共に配置されている。   On the other hand, in the machine room 36, the compressor 7 is disposed on the opposite side to the back space 36b so that the ambient air of the compressor 7 and the ambient air of the refrigerant pipe 15 are substantially blocked. The four-way valve 6 is disposed in the front space 36a.

以上のように、本実施形態の室外機2においては、前記水−冷媒熱交換器11が、前記機械室36の内部を前面側空間36aと背面側空間36bとに区分するように、かつ、前記背面側空間36bを冷媒循環回路21の低温により前記結露が生じる結露室とするように、配置される。そして、前記圧縮機7は、前記背面側空間36bとは反対側の、前記前面側空間36aに配置される。これにより、前記圧縮機7の周囲空気と前記冷媒配管15の周囲空気とが略遮断され、前記のような空気の流通が生じるのが抑制される。この結果、結露量の増大を防ぐことができる。   As described above, in the outdoor unit 2 of the present embodiment, the water-refrigerant heat exchanger 11 divides the inside of the machine room 36 into the front side space 36a and the back side space 36b, and The rear side space 36b is arranged to be a dew condensation chamber where dew condensation occurs due to the low temperature of the refrigerant circuit 21. And the said compressor 7 is arrange | positioned in the said front side space 36a on the opposite side to the said back side space 36b. Thereby, the ambient air of the compressor 7 and the ambient air of the refrigerant pipe 15 are substantially cut off, and the occurrence of the air circulation as described above is suppressed. As a result, an increase in the amount of condensation can be prevented.

また、本実施形態では、前記水−冷媒熱交換器11が、前記機械室36の内部を前面側空間36aと背面側空間36bとに区分するように配置され、特に、前記水−冷媒熱交換器11は、前記背面側空間36b側において前記冷媒配管15及び前記冷温水配管3に接続されている。これにより、前記圧縮機7の周囲空気と前記冷媒配管15の周囲空気とが略遮断され、前面側空間36aから背面側空間36bへの高温の空気の流入が抑制され、水−冷媒熱交換器11の背面側の背面側空間36b内の温度は低温に保たれ、新たな結露を招く空気の流入がないので、冷媒配管15の周囲に生じる結露量のみならず、冷温水配管3の周囲に生じる結露量の増大を防ぐことができる。   In the present embodiment, the water-refrigerant heat exchanger 11 is arranged so as to divide the inside of the machine room 36 into a front side space 36a and a back side space 36b, and in particular, the water-refrigerant heat exchange. The vessel 11 is connected to the refrigerant pipe 15 and the cold / hot water pipe 3 on the back side space 36b side. As a result, the ambient air around the compressor 7 and the ambient air around the refrigerant pipe 15 are substantially blocked, and the inflow of high-temperature air from the front side space 36a to the back side space 36b is suppressed, and the water-refrigerant heat exchanger 11, the temperature in the back side space 36 b on the back side is kept low, and there is no inflow of air that causes new condensation, so that not only the amount of condensation that occurs around the refrigerant pipe 15 but also around the cold and hot water pipe 3. An increase in the amount of dew condensation that occurs can be prevented.

また、本実施形態では特に、前記水−冷媒熱交換器11と、前記垂直仕切壁33の横壁部33bと、前記空気熱交換器8の右エンドプレート8Rと、前記筐体31の右側板31dとで、前記背面側空間36bを包囲する外郭が構成されている。このようにして形成される外郭によって、結露室として機能する背面側空間36bを略密閉することができる。   In the present embodiment, in particular, the water-refrigerant heat exchanger 11, the lateral wall portion 33 b of the vertical partition wall 33, the right end plate 8 R of the air heat exchanger 8, and the right side plate 31 d of the housing 31. The outer shell surrounding the back space 36b is formed. The outer space thus formed can substantially seal the back space 36b functioning as a dew condensation chamber.

また、本実施形態では特に、前記水−冷媒熱交換器11及び前記背面側空間36bの下方に、トレイ部材38を設ける。これにより、前記水−冷媒熱交換器11の背面側において前記背面側空間36b内の結露で生じた液滴(結露水)を受け止め、適宜に導水して排出することができる。   In the present embodiment, in particular, a tray member 38 is provided below the water-refrigerant heat exchanger 11 and the back space 36b. Thereby, on the back side of the water-refrigerant heat exchanger 11, droplets (condensation water) generated by condensation in the back space 36b can be received and appropriately introduced and discharged.

なお、本発明は上記実施形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、上記実施形態においては、前記四方弁6の切り替えによって冷房運転及び暖房運転の両方を行えるヒートポンプ冷温水機1に本発明を適用したが、これに限られない。すなわち、暖房運転を行わず冷房運転のみを行うヒートポンプ冷水機に、本発明を適用しても良い。   In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not change the summary of invention. For example, in the said embodiment, although this invention was applied to the heat pump cold / hot water machine 1 which can perform both air_conditionaing | cooling operation and heating operation by switching the said four-way valve 6, it is not restricted to this. That is, the present invention may be applied to a heat pump chiller that performs only a cooling operation without performing a heating operation.

1 ヒートポンプ冷温水機
2 室外機(ヒートポンプ冷水熱源機)
3 冷温水配管
7 圧縮機
8 空気熱交換器
8R 右エンドプレート(他方側の端部プレート)
9 膨張弁
10 室外ファン(送風ファン)
11 水―冷媒熱交換器
14 室内熱交換器
15 冷媒配管
21 冷媒循環回路
22 冷温水循環回路
31 筐体
31d 右側板(筐体の一部)
33 垂直仕切壁(仕切壁)
33b 横壁部(仕切壁の一部)
35 送風室
36 機械室
36a 前面側空間
36b 背面側空間(結露室)
38 トレイ部材(結露水受け部材)
1 Heat pump cold / hot water machine 2 Outdoor unit (heat pump cold water heat source machine)
3 Cold and hot water piping 7 Compressor 8 Air heat exchanger 8R Right end plate (end plate on the other side)
9 Expansion valve 10 Outdoor fan (fan)
DESCRIPTION OF SYMBOLS 11 Water-refrigerant heat exchanger 14 Indoor heat exchanger 15 Refrigerant piping 21 Refrigerant circulation circuit 22 Cold / hot water circulation circuit 31 Case 31d Right side board (a part of case)
33 Vertical partition wall (partition wall)
33b Horizontal wall (part of the partition wall)
35 Blower chamber 36 Machine room 36a Front side space 36b Back side space (condensation chamber)
38 Tray member (condensation water receiving member)

Claims (4)

筐体の内部に配置された圧縮機と空気熱交換器と膨張弁と水−冷媒熱交換器とを冷媒配管で接続して冷媒循環回路を形成するとともに、前記水−冷媒熱交換器において、室内熱交換器に接続される冷水配管を備えた冷水循環回路と前記冷媒循環回路との熱の送受を行う、ヒートポンプ冷水熱源機において、
前記筐体の内部の一方側に設けられ、前記空気熱交換器に外気を送り込む送風ファンを備えた送風室と、
前記筐体の内部の他方側に設けられ、前記圧縮機と前記膨張弁と前記水−冷媒熱交換器とを備えた機械室と、
前記送風室と前記機械室とを仕切る仕切壁と、
を有し、
前記水−冷媒熱交換器は、
前記機械室の内部を前面側空間と背面側空間とに区分するとともに、前記背面側空間を結露が生じる結露室とするように、配置されており、
前記圧縮機は、前記前面側空間に配置されている
ことを特徴とするヒートポンプ冷水熱源機。
In the water-refrigerant heat exchanger, a compressor, an air heat exchanger, an expansion valve, and a water-refrigerant heat exchanger that are arranged inside the housing are connected by a refrigerant pipe to form a refrigerant circulation circuit. In a heat pump chilled water heat source machine that transmits and receives heat between a chilled water circulation circuit having a chilled water pipe connected to an indoor heat exchanger and the refrigerant circulation circuit,
A blower chamber provided on one side of the inside of the housing and provided with a blower fan for sending outside air to the air heat exchanger;
A machine room provided on the other side of the housing, comprising the compressor, the expansion valve, and the water-refrigerant heat exchanger;
A partition wall that partitions the blower chamber and the machine chamber;
Have
The water-refrigerant heat exchanger is
The interior of the machine room is divided into a front side space and a back side space, and the back side space is arranged to be a dew condensation chamber in which condensation occurs,
The said compressor is arrange | positioned in the said front side space, The heat pump cold water heat source machine characterized by the above-mentioned.
前記水−冷媒熱交換器は、
前記結露室側において前記冷媒配管及び前記冷水配管に接続されている
ことを特徴とする請求項1記載のヒートポンプ冷水熱源機。
The water-refrigerant heat exchanger is
The heat pump cold water heat source apparatus according to claim 1, wherein the heat pump cold water heat source unit is connected to the refrigerant pipe and the cold water pipe on the dew condensation chamber side.
前記水−冷媒熱交換器と、前記仕切壁の一部と、前記空気熱交換器の前記他方側の端部プレートと、前記筐体の一部とで、前記結露室を包囲する外郭が構成されている
ことを特徴とする請求項1又は2記載のヒートポンプ冷水熱源機。
The water-refrigerant heat exchanger, a part of the partition wall, the end plate on the other side of the air heat exchanger, and a part of the casing constitute an outer wall that surrounds the dew condensation chamber. The heat pump cold water heat source machine according to claim 1 or 2, wherein the heat pump cold water heat source machine is provided.
前記水−冷媒熱交換器及び前記結露室の下方に、結露水受け部材を設けた
ことを特徴とする請求項1乃至請求項3の何れか1項に記載のヒートポンプ冷水熱源機。
The heat pump cold water heat source apparatus according to any one of claims 1 to 3, wherein a dew condensation water receiving member is provided below the water-refrigerant heat exchanger and the dew condensation chamber.
JP2018018102A 2018-02-05 2018-02-05 Heat pump Cold water heat source machine Active JP6943785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018018102A JP6943785B2 (en) 2018-02-05 2018-02-05 Heat pump Cold water heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018018102A JP6943785B2 (en) 2018-02-05 2018-02-05 Heat pump Cold water heat source machine

Publications (2)

Publication Number Publication Date
JP2019135423A true JP2019135423A (en) 2019-08-15
JP6943785B2 JP6943785B2 (en) 2021-10-06

Family

ID=67624076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018018102A Active JP6943785B2 (en) 2018-02-05 2018-02-05 Heat pump Cold water heat source machine

Country Status (1)

Country Link
JP (1) JP6943785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117346386A (en) * 2023-10-08 2024-01-05 佛山市景途信息科技有限公司 Air can integration heat pump set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090658A (en) * 2004-09-24 2006-04-06 Denso Corp Heat pump apparatus
JP2008196776A (en) * 2007-02-13 2008-08-28 Mitsubishi Electric Corp Heat exchange apparatus for water
JP2013015287A (en) * 2011-07-05 2013-01-24 Mitsubishi Electric Corp Hot water heat source machine
US20130074534A1 (en) * 2011-09-23 2013-03-28 Lennox Industries Inc. Multi-staged water manifold system for a water source heat pump
JP2014016112A (en) * 2012-07-10 2014-01-30 Panasonic Corp Heat pump hot water heating device
JP2014066489A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Heat source unit and hot water system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090658A (en) * 2004-09-24 2006-04-06 Denso Corp Heat pump apparatus
JP2008196776A (en) * 2007-02-13 2008-08-28 Mitsubishi Electric Corp Heat exchange apparatus for water
JP2013015287A (en) * 2011-07-05 2013-01-24 Mitsubishi Electric Corp Hot water heat source machine
US20130074534A1 (en) * 2011-09-23 2013-03-28 Lennox Industries Inc. Multi-staged water manifold system for a water source heat pump
JP2014016112A (en) * 2012-07-10 2014-01-30 Panasonic Corp Heat pump hot water heating device
JP2014066489A (en) * 2012-09-27 2014-04-17 Daikin Ind Ltd Heat source unit and hot water system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117346386A (en) * 2023-10-08 2024-01-05 佛山市景途信息科技有限公司 Air can integration heat pump set
CN117346386B (en) * 2023-10-08 2024-05-14 北京华远同创控股有限公司 Air can integration heat pump set

Also Published As

Publication number Publication date
JP6943785B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
US11204180B2 (en) Integrated air conditioner
JP3821153B2 (en) Air conditioner outdoor unit
CN111065868B (en) Heat exchanger unit and refrigeration cycle device
JP2014202398A (en) Cooling system for air conditioner control box and air conditioner incorporating cooling system therein
JP6416700B2 (en) Heat pump water heater
JP2006214633A (en) Outdoor unit of air conditioner
JP6938396B2 (en) Heat pump outdoor unit
JP6943785B2 (en) Heat pump Cold water heat source machine
KR20030062872A (en) Accumulator/receiver assembly for air conditioner
JP4935474B2 (en) vending machine
JP7086269B2 (en) Indoor unit
JP4583230B2 (en) Low temperature showcase
JP5575083B2 (en) Air conditioner outdoor unit and air conditioner equipped with the outdoor unit
JP7327630B2 (en) Heat pump device and hot water storage type water heater
JP5992735B2 (en) Air conditioner
JP2008145001A (en) Heat pump unit
JPWO2016185689A1 (en) Air conditioning and hot water supply system
JP5481824B2 (en) vending machine
JP2017072317A (en) refrigerator
JP2005214556A (en) Heating/cooling system
JP2005226911A (en) Heating/cooling system
JP2021110492A (en) Heat pump type hot water heating device
JP2019049402A (en) Outdoor unit and freezer equipped with the same
JP2008133978A (en) Refrigerating device
CN117029118A (en) Electric cabinet structure, air condensing units and air conditioner

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210909

R150 Certificate of patent or registration of utility model

Ref document number: 6943785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150