JP2019135059A - Pipe wall thickness measuring position determination method and buckling strength prediction method - Google Patents

Pipe wall thickness measuring position determination method and buckling strength prediction method Download PDF

Info

Publication number
JP2019135059A
JP2019135059A JP2018018027A JP2018018027A JP2019135059A JP 2019135059 A JP2019135059 A JP 2019135059A JP 2018018027 A JP2018018027 A JP 2018018027A JP 2018018027 A JP2018018027 A JP 2018018027A JP 2019135059 A JP2019135059 A JP 2019135059A
Authority
JP
Japan
Prior art keywords
thickness measurement
thickness
pipe
determining
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018018027A
Other languages
Japanese (ja)
Other versions
JP7006331B2 (en
Inventor
良太 樋口
Ryota Higuchi
良太 樋口
田中 孝憲
Takanori Tanaka
孝憲 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018018027A priority Critical patent/JP7006331B2/en
Publication of JP2019135059A publication Critical patent/JP2019135059A/en
Application granted granted Critical
Publication of JP7006331B2 publication Critical patent/JP7006331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a wall thickness measuring position determination method in which a pipe shape can be modelled with precision using a minimal amount of wall thickness measuring data.SOLUTION: Provided is a pipe wall thickness measuring position determination method that is a method for determining wall thickness measuring points in measuring the wall thickness of a pipe at plural points in a circumferential direction for a vertical cross section in an axial direction of the pipe. The method includes the steps of: (1) determining a thickness deviation degree N of the pipe, when an angle θ (°) is formed by a straight line connecting an arbitrary wall thickness measuring point with an axis center, and a straight line connecting another wall thickness measuring point adjacent to the arbitrary wall thickness measuring point with the axis center; and (2) determining a wall thickness measuring point so as to attain a range satisfying 4°≤θ≤60°/N.SELECTED DRAWING: Figure 11

Description

本発明は、管の肉厚測定位置決定方法および管のコプラス強度予測方法に関する。   The present invention relates to a method for determining a pipe thickness measurement position and a method for predicting the coplus strength of a pipe.

油井またはガス井で用いられる管(以下、単に「油井管」という。)においては、敷設後に周囲の外圧などに対して十分な座屈強度(以下、「コプラス強度」という。)を有することが求められる。油井管のコプラス強度の最小値については、API規格で定められている。コラプス強度に影響する因子には、管の機械的特性のほか、幾何学形状(下記式で定義される楕円率、偏肉率など)、残留応力などがあり、コプラス強度の推定には、これらの因子を考慮する必要がある。
楕円率[%]=(外径最大値−外径最小値)/{(外径最大値+外径最小値)×0.5}×100
偏肉率[%]=(肉厚最大値−肉厚最小値)/{(肉厚最大値+肉厚最小値)×0.5}×100
Pipes used in oil wells or gas wells (hereinafter simply referred to as “oil well pipes”) may have sufficient buckling strength (hereinafter referred to as “coplus strength”) against the surrounding external pressure after laying. Desired. The minimum value of the co-plus strength of the oil well pipe is defined by the API standard. Factors affecting the collapse strength include the mechanical properties of the pipe, geometric shapes (ellipticity and thickness deviation defined by the following formulas), residual stress, etc. It is necessary to consider these factors.
Ellipticity [%] = (maximum outer diameter-minimum outer diameter) / {(maximum outer diameter + minimum outer diameter) x 0.5} x 100
Uneven thickness ratio [%] = (maximum thickness-minimum thickness) / {(maximum thickness + minimum thickness) x 0.5} x 100

図1は、継目無管の製造工程の一例を示した図である。加熱炉で加熱されたビレットは、図示しない穿孔機によって穿孔圧延され中空素管10となる。中空素管10は、マンドレルバー11および複数のスタンドからなるマンドレルミル12を用いて延伸圧延され、さらにサイザ13等によって外径・肉厚の調整がなされ、定径圧延される。   FIG. 1 is a diagram showing an example of a manufacturing process of a seamless pipe. The billet heated in the heating furnace is pierced and rolled into a hollow shell 10 by a piercing machine (not shown). The hollow shell 10 is stretch-rolled using a mandrel bar 11 and a mandrel mill 12 composed of a plurality of stands, and the outer diameter and the wall thickness are adjusted by a sizer 13 and the like, followed by constant-diameter rolling.

継目無管の製造工程において問題となるのが、周方向の管の厚さに偏りが生じるいわゆる偏肉の問題である。偏肉が生じると、肉厚の薄い部分である薄肉部において強度不足となり、高圧環境下で使用する場合、パイプが潰れるいわゆる圧潰の原因ともなり得る。図2を参照して、偏肉には、発生原因に応じた種々の形状が存在する。それぞれ、薄肉化した部分の数によって、1次偏肉、2次偏肉、3次偏肉・・・と呼ばれる。このように、継目無管の製管プロセスにおいては、様々な形態の偏肉が生じる。また、実際の管では種々の次数の偏肉が混合した状態となっている。   A problem in the seamless pipe manufacturing process is a so-called uneven thickness problem in which the thickness of the pipe in the circumferential direction is uneven. When uneven thickness occurs, strength is insufficient in a thin portion, which is a thin portion, and when used in a high pressure environment, the pipe may be crushed so as to be crushed. Referring to FIG. 2, there are various shapes of uneven thickness depending on the cause of occurrence. Depending on the number of thinned portions, they are called primary unevenness, secondary unevenness, tertiary unevenness,. Thus, various forms of uneven thickness occur in the seamless pipe-making process. In an actual tube, various orders of thickness deviation are mixed.

ここで、楕円率および偏肉率は、管の外径および肉厚から算出される。管の外径および肉厚の測定には、例えば、キャリパーゲージやマイクロメータなどを用いる方法、超音波測定技術を利用した方法などが採用されている。特許文献1では、測定に利用する放射線源および検出器の位置を設定する技術が開示されている。   Here, the ellipticity and the wall thickness ratio are calculated from the outer diameter and thickness of the tube. For measuring the outer diameter and thickness of the tube, for example, a method using a caliper gauge or a micrometer, a method using an ultrasonic measurement technique, or the like is employed. Patent Document 1 discloses a technique for setting the positions of a radiation source and a detector used for measurement.

特開2017−113790号公報Japanese Patent Application Laid-Open No. 2017-1113790

FEM解析によりコラプス強度を推定する場合、高精度な推定値を得るためには管形状を精緻にモデル化することが必要となる。キャリパーゲージやマイクロメータなどを用いる方法では手作業となるため、管の円周方向または管軸方向に多くの測定点を取ることは容易ではない。よって、これらの方法では管形状を精緻にモデル化することは困難となる。   When the collapse intensity is estimated by FEM analysis, it is necessary to accurately model the tube shape in order to obtain a highly accurate estimated value. Since a method using a caliper gauge or a micrometer is a manual operation, it is not easy to take a large number of measurement points in the circumferential direction of the tube or in the tube axis direction. Therefore, it is difficult to accurately model the tube shape by these methods.

超音波測定技術を利用した方法では、測定間隔を狭くすれば、多くの肉厚測定データを得ることができるので、より詳細な情報が得られ、管形状の精密なモデル化には役立つ。しかし、当然のことながら肉厚測定データ量も膨大となる。測定間隔を広くすれば、肉厚測定データ量を減らすことができるが、管形状を精密にモデル化することが困難となる。   In the method using the ultrasonic measurement technique, if the measurement interval is narrowed, a lot of thickness measurement data can be obtained, so that more detailed information can be obtained and it is useful for accurate modeling of the tube shape. However, as a matter of course, the amount of thickness measurement data is also enormous. If the measurement interval is widened, the amount of thickness measurement data can be reduced, but it becomes difficult to accurately model the tube shape.

本発明は、極力小さい肉厚測定データ量で、管形状を精密にモデル化することができる、肉厚測定位置決定方法を提供することを目的とする。   An object of the present invention is to provide a method for determining a wall thickness measurement position capable of accurately modeling a pipe shape with a wall thickness measurement data amount as small as possible.

本発明者らは、管形状を精密にモデル化するために最低限必要な肉厚測定位置(最大測定間隔)についての検討を行なった。以下の説明において、管の軸方向に垂直な断面において、管の肉厚を周方向に複数点測定するとき、任意の肉厚測定点aと軸中心とを結んだ直線と、肉厚測定点aに隣接する他の肉厚測定点bと軸中心とを結んだ直線とが構成する角度をθ(°)とする。   The present inventors have studied the minimum thickness measurement position (maximum measurement interval) necessary for accurately modeling the pipe shape. In the following description, when measuring a plurality of pipe thicknesses in the circumferential direction in a cross section perpendicular to the axial direction of the pipe, a straight line connecting an arbitrary thickness measuring point a and the axis center, and a thickness measuring point An angle formed by another thickness measurement point b adjacent to a and a straight line connecting the axis center is defined as θ (°).

2次偏肉を表現するには円周方向に少なくとも4点の肉厚データが必要である。6次偏肉を表現するには円周方向に少なくとも12点の肉厚データが必要である。実際の鋼管では各次数の偏肉が混合した状態であるが、肉厚分布のフーリエ解析からどの偏肉次数が強いかを判定することが可能である。   In order to express the secondary uneven thickness, the thickness data of at least four points in the circumferential direction is necessary. In order to express the sixth-order uneven thickness, thickness data of at least 12 points in the circumferential direction is necessary. In an actual steel pipe, the thickness deviation of each order is mixed, but it is possible to determine which thickness deviation order is strong from the Fourier analysis of the wall thickness distribution.

検討に際して、サイズの異なる2本の管を用意し、それぞれ超音波測定により外径および肉厚を測定した。上記2本の鋼管として、鋼管A(公称外径177.8mm、公称肉厚10.36mmの鋼管)と、鋼管B(公称外径139.7mm、公称肉厚7.72mmの鋼管)を用意した。   In the examination, two tubes having different sizes were prepared, and the outer diameter and the wall thickness were measured by ultrasonic measurement. As the above two steel pipes, a steel pipe A (a steel pipe having a nominal outer diameter of 177.8 mm and a nominal wall thickness of 10.36 mm) and a steel pipe B (a steel pipe having a nominal outer diameter of 139.7 mm and a nominal wall thickness of 7.72 mm) were prepared. .

鋼管Aについて、θ=2.65°の間隔で肉厚136点、外径68点を測定し、この測定を管軸方向5.25mm間隔で繰り返した。また、鋼管Bについて、θ=3.4°間隔で肉厚106点、外径53点を測定し、この測定を管軸方向5.25mm間隔で繰り返した。   With respect to the steel pipe A, the thickness 136 points and the outer diameter 68 points were measured at intervals of θ = 2.65 °, and this measurement was repeated at intervals of 5.25 mm in the tube axis direction. For the steel pipe B, 106 points of thickness and 53 points of outer diameter were measured at intervals of θ = 3.4 °, and this measurement was repeated at intervals of 5.25 mm in the tube axis direction.

図3は、鋼管Aの円周方向肉厚分布を示し、図4は、そのフーリエ解析から得られた振幅スペクトルを示している。図3に示すように、円周方向には薄肉部(あるいは厚肉部)が2ヶ所現れており、また、図4に示すように、振幅スペクトルにおいても2次成分が強いことが分かる。これらから、鋼管Aは、2次偏肉が比較的強い鋼管であると判断できる。   FIG. 3 shows the circumferential thickness distribution of the steel pipe A, and FIG. 4 shows the amplitude spectrum obtained from the Fourier analysis. As shown in FIG. 3, two thin portions (or thick portions) appear in the circumferential direction, and it can be seen that the secondary component is strong in the amplitude spectrum as shown in FIG. From these, it can be determined that the steel pipe A is a steel pipe having a relatively strong secondary wall thickness deviation.

図5は、鋼管Bの円周方向肉厚分布を示し、図6は、そのフーリエ解析から得られた振幅スペクトルを示している。図5に示すように、円周方向には薄肉部(あるいは厚肉部)が6ヶ所現れており、また、図6に示すように、振幅スペクトルにおいても6次成分が強いことが分かる。これらから、鋼管Bは、6次偏肉が比較的強い鋼管であると判断できる。   FIG. 5 shows the circumferential thickness distribution of the steel pipe B, and FIG. 6 shows the amplitude spectrum obtained from the Fourier analysis. As shown in FIG. 5, six thin portions (or thick portions) appear in the circumferential direction, and it can be seen that the sixth-order component is strong in the amplitude spectrum as shown in FIG. From these, it can be judged that the steel pipe B is a steel pipe having a relatively strong sixth-order thickness deviation.

次に、肉厚測定点をどの程度まで減らすことができるかを検討した。具体的には、鋼管Aおよび鋼管Bの肉厚測定データをもとに、円周方向の測定間隔を変化させた場合の鋼管形状モデルを検討した。   Next, the extent to which the thickness measurement points can be reduced was examined. Specifically, based on the thickness measurement data of the steel pipe A and the steel pipe B, a steel pipe shape model when the measurement interval in the circumferential direction was changed was examined.

図7は、実際の測定点と、平均化によって得たみなし測定点との関係を示す概念図である。図7を参照して、実際の測定点における肉厚測定データを平均化して、所定の測定間隔における肉厚測定データとみなす。平均化で得られた肉厚測定データの間は線形補間で近似した。   FIG. 7 is a conceptual diagram showing the relationship between actual measurement points and deemed measurement points obtained by averaging. Referring to FIG. 7, the thickness measurement data at the actual measurement points are averaged and regarded as the thickness measurement data at a predetermined measurement interval. The thickness measurement data obtained by averaging was approximated by linear interpolation.

すなわち、鋼管Aにおいて、実際の円周方向の測定間隔θは2.65°である。この場合の肉厚測定点は136点である。円周方向の角度が10°、30°、45°、90°となる範囲で、隣接する複数の肉厚測定点を平均し、得られたそれぞれの平均肉厚を、それぞれ測定間隔θを10°、30°、45°、90°とした時の肉厚測定データであるとみなした。同様に、鋼管Bにおいて、実際の円周方向の測定間隔θは3.4°である。この場合の肉厚測定点は106点である。円周方向の角度が10°、20°、30°、45°となる範囲で、隣接する複数の肉厚測定点を平均し、得られたそれぞれの平均肉厚を、それぞれ測定間隔θを10°、20°、30°、45°とした時の肉厚測定データであるとみなした。 That is, in the steel pipe A, the actual circumferential measurement interval θ 0 is 2.65 °. In this case, the thickness measurement points are 136 points. In the range where the angle in the circumferential direction is 10 °, 30 °, 45 °, and 90 °, a plurality of adjacent wall thickness measurement points are averaged, and the obtained average wall thicknesses are each set to a measurement interval θ of 10 It was considered to be the thickness measurement data when the angle was set to °, 30 °, 45 ° and 90 °. Similarly, in the steel pipe B, the actual circumferential measurement interval θ 0 is 3.4 °. In this case, the thickness measurement points are 106 points. In the range where the angle in the circumferential direction is 10 °, 20 °, 30 °, 45 °, a plurality of adjacent wall thickness measurement points are averaged, and the obtained average wall thicknesses are each set to a measurement interval θ of 10 It was regarded as the thickness measurement data when the angle was 20 °, 30 °, and 45 °.

ここで、測定の起点が異なれば、上記のみなし肉厚測定データにも差が生じる。その影響を調査した。図8は、測定の起点を変更した場合の平均化する測定点の変化を示す概念図である。図8を参照して、測定間隔を4分割し、例えば、起点1とした場合の平均値から、各測定間隔θにおける肉厚測定データ(みなし肉厚測定データ)を求め、次に、起点1から0.25θずれた位置にある起点2を起点とした場合の平均値から、各測定間隔θにおける肉厚測定データ(みなし肉厚測定データ)を求める。同様に、起点1から0.50θずれた位置にある起点、および、起点1から0.75θずれた位置にある起点においても、各測定間隔θにおける肉厚測定データ(みなし肉厚測定データ)を求める。例えば、測定間隔θが90°の場合、あるひとつの起点の位置を0°とすると、22.5°、45°、67.5°の位置が他の起点となる。   Here, if the starting point of the measurement is different, a difference also occurs in the above-described thickness measurement data. The effect was investigated. FIG. 8 is a conceptual diagram showing changes in measurement points to be averaged when the measurement start point is changed. Referring to FIG. 8, the measurement interval is divided into four, and, for example, the thickness measurement data (deemed thickness measurement data) at each measurement interval θ is obtained from the average value when starting point 1 is set. The thickness measurement data (deemed thickness measurement data) at each measurement interval θ is obtained from the average value when the starting point 2 at a position shifted by 0.25θ from the starting point is obtained. Similarly, the thickness measurement data (deemed thickness measurement data) at each measurement interval θ is also obtained at the starting point at a position shifted by 0.50θ from the starting point 1 and at the starting point at a position shifted by 0.75θ from the starting point 1. Ask. For example, when the measurement interval θ is 90 °, if the position of one starting point is 0 °, the positions of 22.5 °, 45 °, and 67.5 ° are the other starting points.

このようにして、鋼管Aおよび鋼管Bそれぞれについて、四つの起点に基づく、各測定間隔θにおける肉厚測定データを準備した。そして、これらの肉厚測定データからFEM解析によりコプラス強度を求めた。   Thus, for each of the steel pipe A and the steel pipe B, thickness measurement data at each measurement interval θ based on the four starting points was prepared. And coplus strength was calculated | required by FEM analysis from these thickness measurement data.

図9は、FEM解析のモデルを示す概略図である。図9を参照して、FEM解析モデルでは、全長L1が3000mmまたは2790mmである鋼管について、管軸方向をz方向、鉛直方向をy方向、これらに垂直な方向をx方向と定義した場合、鋼管の一方の端部断面では外表面の最上部P1で完全に固定し、最下部P2でx方向およびz方向を固定し、他方では外表面の最上部P3でx方向およびy方向を固定、最下部P4でx方向を固定した。長さL2:2500mmの加圧部には、境界条件として鋼管外表面に外圧を負荷する条件にて解析を行なった。   FIG. 9 is a schematic diagram showing a model of FEM analysis. Referring to FIG. 9, in the FEM analysis model, for a steel pipe having a total length L1 of 3000 mm or 2790 mm, the pipe axis direction is defined as the z direction, the vertical direction is defined as the y direction, and the direction perpendicular thereto is defined as the x direction. One end cross section of the outer surface is completely fixed at the uppermost portion P1 of the outer surface, the lowermost portion P2 is fixed in the x direction and the z direction, and the other is fixed at the uppermost portion P3 of the outer surface, the x direction and the y direction are fixed. The x direction was fixed at the lower part P4. The length L2: 2500 mm pressure part was analyzed under the condition that an external pressure was applied to the outer surface of the steel pipe as a boundary condition.

図10は、鋼管Aにおける測定間隔θとコプラス強度との関係を示し、図11は、鋼管Bにおける測定間隔θとコプラス強度との関係を示す。なお、いずれの図においても、縦軸には、実際の測定間隔θ(鋼管Aの場合、2.65°、鋼管Bの場合、3.4°)におけるコプラス強度に対する各測定間隔θにおけるコプラス強度の比を示している。 FIG. 10 shows the relationship between the measurement interval θ and the coplus strength in the steel pipe A, and FIG. 11 shows the relationship between the measurement interval θ and the coplus strength in the steel pipe B. In each figure, the vertical axis represents the coplus at each measurement interval θ relative to the coplus strength at the actual measurement interval θ 0 (2.65 ° for steel pipe A, 3.4 ° for steel pipe B). The intensity ratio is shown.

図10および図11を参照して、測定間隔が大きくなると分割の起点の違いによるコラプス強度のばらつきが大きくなることが分かる。例えば、鋼管Aに関しては、90°間隔では実際の測定間隔θ(2.65°)の場合と比べて5%以上の差が現れる場合があり、45°間隔でも2%近くの差が現れている。30°間隔では1%以内の差になり、ばらつきがほとんどない。一方、鋼管Bに関しては、45°間隔では実際の測定間隔θ(3.4°)の場合と比べて4%以上の差となる場合がある。鋼管Aではばらつきがない30°間隔でも鋼管Bではばらつきが大きく、測定間隔を10°(測定点数36)まで小さくするとようやくばらつきがなくなる。 Referring to FIGS. 10 and 11, it can be seen that as the measurement interval increases, the variation in the collapse strength due to the difference in the starting point of the division increases. For example, for steel pipe A, a difference of more than 5% may appear at 90 ° intervals compared to the actual measurement interval θ 0 (2.65 °), and a difference of close to 2% appears even at 45 ° intervals. ing. At 30 ° intervals, the difference is within 1% and there is almost no variation. On the other hand, with respect to the steel pipe B, there may be a difference of 4% or more at 45 ° intervals compared to the actual measurement interval θ 0 (3.4 °). Even at 30 ° intervals, which have no variation in the steel pipe A, the variations are large in the steel tube B, and the variation is finally eliminated when the measurement interval is reduced to 10 ° (36 measurement points).

このように、鋼管の種類、より具体的には偏肉次数の違いによってコラプス強度を適正に推定できる測定間隔が異なるといえる。すなわち、2次偏肉が強い鋼管Aでは、測定間隔は少なくとも30°間隔(12測定点)が必要であり、6次偏肉が強い鋼管Bでは、測定間隔は少なくとも10°間隔(36測定点)が必要である。   Thus, it can be said that the measurement interval at which the collapse strength can be properly estimated differs depending on the type of steel pipe, more specifically, the thickness difference. That is, in the steel pipe A having a strong secondary deviation, the measurement interval needs to be at least 30 ° (12 measurement points), and in the steel pipe B having a strong sixth deviation, the measurement interval is at least 10 ° (36 measurement points). )is necessary.

以上より、2.65°または3.4°よりも広い測定間隔、具体的には4°以上の測定間隔であっても、十分に精度よくコラプス強度を推定することができることがわかった。一方、許容できる最大測定間隔θmaxは、偏肉次数をNとするとき、次式より決定できることが分かった。
θmax=60°/N
From the above, it was found that the collapse intensity can be estimated with sufficient accuracy even at a measurement interval wider than 2.65 ° or 3.4 °, specifically, a measurement interval of 4 ° or more. On the other hand, it was found that the maximum allowable measurement interval θ max can be determined from the following equation when the thickness deviation order is N.
θ max = 60 ° / N

本発明は、このような知見に基づいてなされたものであり、下記の発明を要旨とする。   This invention is made | formed based on such knowledge, and makes the following invention a summary.

〔1〕管の軸方向に垂直な断面において前記管の肉厚を周方向に複数点測定するときの肉厚測定点を決定する方法であって、
前記断面において、任意の肉厚測定点と前記軸中心とを結んだ直線と、前記任意の肉厚測定点に隣接する他の肉厚測定点と前記軸中心とを結んだ直線とが構成する角度をθ(°)とするとき、
(1)前記管の偏肉次数Nを決定する工程、および、
(2)4°≦θ≦60°/Nを満たす範囲となるように肉厚測定点を決定する工程、
を有する、管の肉厚測定位置決定方法。
[1] A method for determining wall thickness measurement points when measuring a plurality of wall thicknesses in the circumferential direction in a cross section perpendicular to the axial direction of the pipe,
In the cross section, a straight line connecting an arbitrary thickness measurement point and the axis center, and a straight line connecting another axial thickness measurement point adjacent to the arbitrary thickness measurement point and the axis center are configured. When the angle is θ (°),
(1) determining the thickness deviation order N of the tube, and
(2) A step of determining the thickness measurement point so as to be in a range satisfying 4 ° ≦ θ ≦ 60 ° / N,
A method for determining the thickness measurement position of a tube.

〔2〕前記(1)の工程において、
予め得られた管の種類に応じた偏肉次数の統計情報に基づいて、前記管の偏肉次数を決定する、
上記〔1〕の管の肉厚測定位置決定方法。
[2] In the step (1),
Based on the statistical information of the thickness deviation order according to the tube type obtained in advance, determine the thickness deviation order of the tube,
The method for determining the thickness measurement position of the pipe according to [1].

〔3〕前記(1)の工程において、
前記統計情報が、予め、
(a1)任意の管の肉厚を周方向に複数点測定して、肉厚測定データを得る工程、
(a2)前記肉厚測定データをフーリエ解析して、振幅スペクトルを得る工程、
(a3)前記振幅スペクトルに基づいて、前記任意の管の偏肉次数を判定する工程、および、
(a4)管の種類に応じた偏肉次数を集計する工程、
を実施して得た統計情報である、
上記〔2〕の管の肉厚測定位置決定方法。
[3] In the step (1),
The statistical information is pre-
(A1) A step of measuring a plurality of wall thicknesses of an arbitrary pipe in the circumferential direction to obtain wall thickness measurement data,
(A2) Fourier analysis of the wall thickness measurement data to obtain an amplitude spectrum;
(A3) determining the thickness deviation order of the arbitrary pipe based on the amplitude spectrum; and
(A4) a step of counting the thickness deviation according to the type of pipe,
Is the statistical information obtained by
The method for determining the thickness measurement position of the pipe according to [2].

〔4〕前記(1)の工程において、
(b1)測定対象となる管の肉厚を、前記θが2°以下となる条件で周方向に複数点測定して、肉厚測定データを得る工程、
(b2)前記肉厚測定データをフーリエ解析して、振幅スペクトルを得る工程、および、
(b3)前記振幅スペクトルに基づいて、前記管の偏肉次数を決定する工程、
を実施し、
前記(2)の工程において、
決定した肉厚測定点以外の測定点の肉厚測定データを削除する、
上記〔1〕の管の肉厚測定位置決定方法。
[4] In the step (1),
(B1) A step of measuring the thickness of the pipe to be measured at a plurality of points in the circumferential direction under the condition that the θ is 2 ° or less to obtain thickness measurement data,
(B2) Fourier analysis of the wall thickness measurement data to obtain an amplitude spectrum; and
(B3) determining the thickness deviation order of the tube based on the amplitude spectrum;
Carried out
In the step (2),
Delete the thickness measurement data at measurement points other than the determined thickness measurement point.
The method for determining the thickness measurement position of the pipe according to [1].

〔5〕前記測定対象となる管が、継目無鋼管である、
上記〔1〕〜〔4〕のいずれかの管の肉厚測定位置決定方法。
[5] The pipe to be measured is a seamless steel pipe.
The method for determining the thickness measurement position of the pipe according to any one of [1] to [4].

〔6〕前記測定対象となる管の肉厚測定データと、その他の因子情報とから有限要素法を用いてコプラス強度を予測するに際して用いる、
上記〔1〕〜〔5〕のいずれかの管の肉厚測定位置決定方法。
[6] Used to predict the coplus strength using the finite element method from the wall thickness measurement data of the pipe to be measured and other factor information,
The method for determining the thickness measurement position of the pipe according to any one of the above [1] to [5].

〔7〕上記〔1〕〜〔5〕のいずれかの方法によって決定した肉厚測定点における肉厚測定データと、その他の因子情報とから有限要素法を用いてコプラス強度を予測する、
管のコプラス強度予測方法。
[7] Predict the coplus strength using the finite element method from the thickness measurement data at the thickness measurement point determined by any one of the above methods [1] to [5], and other factor information,
A method for predicting the coplus strength of a tube.

本発明によれば、極力小さい肉厚測定データ量で、管形状を精密にモデル化することができる、肉厚測定位置決定方法を提供することが可能となる。この方法により得られた肉厚測定データは、コプラス強度予測を行う際の肉厚測定データとして有用である。   According to the present invention, it is possible to provide a wall thickness measurement position determination method capable of accurately modeling a pipe shape with a wall thickness measurement data amount as small as possible. The wall thickness measurement data obtained by this method is useful as wall thickness measurement data when performing coplus strength prediction.

図1は、継目無管の製造工程の一例を示した図である。FIG. 1 is a diagram showing an example of a manufacturing process of a seamless pipe. 図2は、管に生じる偏肉状況を示す概略図である。FIG. 2 is a schematic view showing a thickness unevenness occurring in the pipe. 図3は、鋼管Aの円周方向肉厚分布を示す図である。FIG. 3 is a diagram showing a circumferential thickness distribution of the steel pipe A. As shown in FIG. 図4は、鋼管Aにおいて、フーリエ解析から得られた振幅スペクトルを示す図である。FIG. 4 is a diagram showing an amplitude spectrum obtained from Fourier analysis in the steel pipe A. 図5は、鋼管Bの円周方向肉厚分布を示す図である。FIG. 5 is a diagram showing a circumferential thickness distribution of the steel pipe B. As shown in FIG. 図6は、鋼管Bにおいて、フーリエ解析から得られた振幅スペクトルを示す図である。FIG. 6 is a diagram showing an amplitude spectrum obtained from Fourier analysis in the steel pipe B. FIG. 図7は、実際の測定点と、平均化によって得たみなし測定点との関係を示す概念図である。FIG. 7 is a conceptual diagram showing the relationship between actual measurement points and deemed measurement points obtained by averaging. 図8は、測定の起点を変更した場合の平均化する測定点の変化を示す概念図である。FIG. 8 is a conceptual diagram showing changes in measurement points to be averaged when the measurement start point is changed. 図9は、FEM解析のモデルを示す概略図である。FIG. 9 is a schematic diagram showing a model of FEM analysis. 図10は、鋼管Aにおける測定間隔θとコプラス強度との関係を示す図である。FIG. 10 is a diagram showing the relationship between the measurement interval θ and the coplus strength in the steel pipe A. 図11は、鋼管Bにおける測定間隔θとコプラス強度との関係を示す図である。FIG. 11 is a diagram showing the relationship between the measurement interval θ and the coplus strength in the steel pipe B. 図12は、鋼管Cの円周方向肉厚分布を示す図である。FIG. 12 is a diagram showing a circumferential thickness distribution of the steel pipe C. FIG. 図13は、鋼管Cについて、フーリエ解析から得られた振幅スペクトルを示す図である。FIG. 13 is a diagram illustrating an amplitude spectrum obtained from Fourier analysis for the steel pipe C. FIG. 図14は、鋼管Dの円周方向肉厚分布を示す図である。FIG. 14 is a diagram showing a circumferential thickness distribution of the steel pipe D. As shown in FIG. 図15は、鋼管Dについて、フーリエ解析から得られた振幅スペクトルを示す図である。FIG. 15 is a diagram showing an amplitude spectrum obtained from Fourier analysis for the steel pipe D. FIG.

本実施形態に係る肉厚測定位置決定方法は、管の軸方向に垂直な断面において前記管の肉厚を周方向に複数点測定するときの肉厚測定点を決定する方法である。ここで、前記断面において、任意の肉厚測定点と前記軸中心とを結んだ直線と、前記任意の肉厚測定点に隣接する他の肉厚測定点と前記軸中心とを結んだ直線とが構成する角度をθ(°)とする。このときの角度は、上記の構成角度のうち、鋭角な方を選択する。測定対象となる管としては、例えば、継目無鋼管である。   The wall thickness measurement position determination method according to the present embodiment is a method for determining wall thickness measurement points when measuring a plurality of wall thicknesses in the circumferential direction in a cross section perpendicular to the tube axial direction. Here, in the cross section, a straight line connecting an arbitrary thickness measurement point and the axis center, and a straight line connecting another axial thickness measurement point adjacent to the arbitrary thickness measurement point and the axis center Is the angle θ (°). As an angle at this time, an acute angle is selected from the above-described configuration angles. As a pipe used as a measuring object, it is a seamless steel pipe, for example.

そして、本実施形態に係る肉厚測定位置決定方法は、下記の(1)および(2)の工程を有する。
(1)前記管の偏肉次数Nを決定する工程、および、
(2)4°≦θ≦60°/Nを満たす範囲となるように肉厚測定点を決定する工程。
And the thickness measurement position determination method which concerns on this embodiment has the following process (1) and (2).
(1) determining the thickness deviation order N of the tube, and
(2) A step of determining the thickness measurement point so as to be in a range satisfying 4 ° ≦ θ ≦ 60 ° / N.

大きな偏肉次数Nは、コプラス強度の精度に悪影響を及ぼしにくくなるので、実質的には6以下の正の整数である。   Since the large thickness deviation order N is less likely to adversely affect the accuracy of the coplus strength, it is substantially a positive integer of 6 or less.

一の実施形態に係る肉厚測定位置決定方法において、上記(1)の工程は、例えば、予め得られた管の種類に応じた偏肉次数の統計情報に基づいて、管の偏肉次数を決定することができる。この統計情報は、例えば、予め、下記の(a1)〜(a4)を実施して得ることができる。
(a1)任意の管の肉厚を周方向に複数点測定して、肉厚測定データを得る工程、
(a2)前記肉厚測定データをフーリエ解析して、振幅スペクトルを得る工程、
(a3)前記振幅スペクトルに基づいて、前記任意の管の偏肉次数を判定する工程、および、
(a4)管の種類に応じた偏肉次数を集計する工程。
In the wall thickness measurement position determination method according to one embodiment, the step (1) includes, for example, calculating the thickness deviation order of the pipe based on statistical information of the thickness deviation order corresponding to the type of the pipe obtained in advance. Can be determined. This statistical information can be obtained, for example, by performing the following (a1) to (a4) in advance.
(A1) A step of measuring a plurality of wall thicknesses of an arbitrary pipe in the circumferential direction to obtain wall thickness measurement data,
(A2) Fourier analysis of the wall thickness measurement data to obtain an amplitude spectrum;
(A3) determining the thickness deviation order of the arbitrary pipe based on the amplitude spectrum; and
(A4) A step of counting the uneven thickness order according to the type of tube.

管の種類とは、管の化学組成、サイズ(外径、肉厚等)などのほか、管の製造条件(マンドレルミル時のロール数等)など、管の偏肉次数に影響を与える因子を考慮した種類を意味する。このように、管の種類毎の偏肉次数の傾向に関する統計情報を用意しておけば、測定対象である管についての偏肉次数が分かる。   The type of pipe is a factor that affects the uneven thickness of the pipe, such as the chemical composition and size (outer diameter, wall thickness, etc.) of the pipe, as well as the manufacturing conditions of the pipe (number of rolls during mandrel milling, etc.) Means the type considered. Thus, if statistical information regarding the tendency of the uneven thickness order for each type of tube is prepared, the uneven thickness order for the pipe to be measured can be known.

そして、測定対象である管の偏肉次数が決定されると、4°≦θ≦60°/Nを満たす範囲となるように肉厚測定点を決定すればよい。ここで、肉厚測定点の間隔は、広い方が保存すべき肉厚測定データの量を減らすことができる。そして、本発明者らの検討により、θが4°以上の測定間隔であっても、十分な測定精度でコラプス強度を推定することができることがわかっている。θの好ましい下限は、30°/Nであり、より好ましい下限は、10°である。一方、θが大きすぎると、十分な測定精度でコラプス強度を推定することができなくなる。ただし、θが60°/N(N:偏肉次数)以下の範囲までは許容できる。また、この範囲であれば、測定点の起点によらず、十分な測定精度でコラプス強度を推定することが可能である。   And if the thickness deviation order of the pipe | tube which is a measuring object is determined, what is necessary is just to determine a thickness measurement point so that it may become the range which satisfy | fills 4 degrees <= theta <= 60 degrees / N. Here, the larger the interval between the thickness measurement points, the smaller the amount of thickness measurement data to be stored. As a result of investigations by the present inventors, it is known that the collapse intensity can be estimated with sufficient measurement accuracy even when θ is a measurement interval of 4 ° or more. A preferable lower limit of θ is 30 ° / N, and a more preferable lower limit is 10 °. On the other hand, if θ is too large, the collapse intensity cannot be estimated with sufficient measurement accuracy. However, it is permissible up to a range where θ is 60 ° / N or less (N: thickness deviation order). In this range, the collapse intensity can be estimated with sufficient measurement accuracy regardless of the starting point of the measurement point.

このように予め統計情報を得ておれば、測定対象である管の肉厚測定時に肉厚測定点を減らす(具体的には、測定間隔θを4°以上とする)ことができるので、保存すべき肉厚測定データの量を減らすことができる。   Thus, if statistical information is obtained in advance, the thickness measurement points can be reduced (specifically, the measurement interval θ is set to 4 ° or more) when measuring the thickness of the pipe to be measured. The amount of thickness measurement data to be reduced can be reduced.

他の実施形態に係る肉厚測定位置決定方法において、上記(1)の工程は、例えば、下記の(b1)〜(b3)の工程を実施することにより決定することができる。
(b1)測定対象となる管の肉厚を、前記θが2°以下となる条件で周方向に複数点測定して、肉厚測定データを得る工程、
(b2)前記肉厚測定データをフーリエ解析して、振幅スペクトルを得る工程、および、
(b3)前記振幅スペクトルに基づいて、前記管の偏肉次数を決定する工程。
In the thickness measurement position determination method according to another embodiment, the step (1) can be determined, for example, by performing the following steps (b1) to (b3).
(B1) A step of measuring the thickness of the pipe to be measured at a plurality of points in the circumferential direction under the condition that the θ is 2 ° or less to obtain thickness measurement data,
(B2) Fourier analysis of the wall thickness measurement data to obtain an amplitude spectrum; and
(B3) A step of determining the thickness deviation order of the tube based on the amplitude spectrum.

この実施形態においては、測定対象となる管について、できる限り狭い測定間隔で肉厚測定をし、その結果から偏肉次数を把握するものである。この実施形態は、特に、偏肉次数が未知である管の偏肉次数を決定するのに有用であるが、偏肉次数が既知である管の偏肉次数を決定するのに用いてもよい。ただし、この実施形態では、測定対象となる管の肉厚測定データは膨大となるので、上記(2)の工程において、4°≦θ≦60°/Nを満たす範囲となるように肉厚測定点を決定し、決定した肉厚測定点以外の測定点の肉厚測定データを削除することによって、保存すべき肉厚測定データの量を減らすことができる。   In this embodiment, the thickness of the pipe to be measured is measured at the smallest possible measurement interval, and the thickness deviation order is grasped from the result. This embodiment is particularly useful for determining the thickness deviation order of a tube whose thickness deviation order is unknown, but may be used to determine the thickness deviation order of a pipe whose thickness deviation order is known. . However, in this embodiment, since the thickness measurement data of the pipe to be measured is enormous, the thickness measurement is performed so that the range of 4 ° ≦ θ ≦ 60 ° / N is satisfied in the step (2). By determining the points and deleting the thickness measurement data at the measurement points other than the determined thickness measurement point, the amount of the thickness measurement data to be stored can be reduced.

そして、本実施形態においては、測定対象となる管の肉厚測定データと、その他の因子情報とから有限要素法(FEM解析)を用いてコプラス強度を予測することができる。   And in this embodiment, a coplus intensity | strength can be estimated using the finite element method (FEM analysis) from the thickness measurement data of the pipe | tube used as a measuring object, and other factor information.

本発明の効果を確認するために、鋼管Cおよび鋼管D(いずれも、公称外径257.18mm、公称肉厚20.19mm)を用意し、それぞれにコラプス試験を実施した。一方、それぞれの鋼管の肉厚を円周方向の測定間隔θを10°、20°および30°とし、管軸方向に300mm間隔で測定した。   In order to confirm the effect of the present invention, a steel pipe C and a steel pipe D (both having a nominal outer diameter of 257.18 mm and a nominal wall thickness of 20.19 mm) were prepared, and a collapse test was performed on each. On the other hand, the thickness of each steel pipe was measured at intervals of 300 mm in the pipe axis direction with the measurement intervals θ in the circumferential direction being 10 °, 20 ° and 30 °.

図12には、鋼管Cの円周方向肉厚分布を示し、図13には、そのフーリエ解析から得られた振幅スペクトルを示す図である。図14には、鋼管Dの円周方向肉厚分布を示し、図15には、そのフーリエ解析から得られた振幅スペクトルを示す図である。これらの図に示すように、鋼管Cおよび鋼管Dはいずれも、4次偏肉が強い傾向が見られた。そして、よって、これらの鋼管において、許容できる最大測定間隔θmax(=60°/N)は、15°である。 FIG. 12 shows the circumferential thickness distribution of the steel pipe C, and FIG. 13 shows the amplitude spectrum obtained from the Fourier analysis. FIG. 14 shows the thickness distribution in the circumferential direction of the steel pipe D, and FIG. 15 shows the amplitude spectrum obtained from the Fourier analysis. As shown in these figures, both the steel pipe C and the steel pipe D tended to have a strong fourth-order thickness deviation. Therefore, in these steel pipes, the allowable maximum measurement interval θ max (= 60 ° / N) is 15 °.

ここで、得られた肉厚測定データと、その他の因子情報とからFEM解析によりコプラス強度を計算した。得られた結果を表1に示す。   Here, the coplus strength was calculated by FEM analysis from the obtained thickness measurement data and other factor information. The obtained results are shown in Table 1.

Figure 2019135059
Figure 2019135059

表1に示すように、測定間隔θが本発明で規定される範囲内の10°の例では、実管試験における結果との誤差が2%以下であり、両者はよく一致していたが、測定間隔θが本発明で規定される範囲外の20°または30°の例では、いずれも誤差が2%を超えていた。   As shown in Table 1, in the example where the measurement interval θ is 10 ° within the range defined by the present invention, the error from the result in the actual tube test was 2% or less, and both agreed well. In the examples where the measurement interval θ was 20 ° or 30 ° outside the range defined by the present invention, the error exceeded 2%.

本発明によれば、極力小さい肉厚測定データ量で、管形状を精密にモデル化することができる、肉厚測定位置決定方法を提供することが可能となる。この方法により得られた肉厚測定データは、コプラス強度予測を行う際の肉厚測定データとして有用である。   According to the present invention, it is possible to provide a wall thickness measurement position determination method capable of accurately modeling a pipe shape with a wall thickness measurement data amount as small as possible. The wall thickness measurement data obtained by this method is useful as wall thickness measurement data when performing coplus strength prediction.

10.中空素管
11.マンドレルバー
12.マンドレルミル
13.サイザ
10. Hollow shell 11. 11. Mandrel bar Mandrel mill 13. Sizer

Claims (7)

管の軸方向に垂直な断面において前記管の肉厚を周方向に複数点測定するときの肉厚測定点を決定する方法であって、
前記断面において、任意の肉厚測定点と前記軸中心とを結んだ直線と、前記任意の肉厚測定点に隣接する他の肉厚測定点と前記軸中心とを結んだ直線とが構成する角度をθ(°)とするとき、
(1)前記管の偏肉次数Nを決定する工程、および、
(2)4°≦θ≦60°/Nを満たす範囲となるように肉厚測定点を決定する工程、
を有する、管の肉厚測定位置決定方法。
A method of determining wall thickness measurement points when measuring a plurality of wall thicknesses in the circumferential direction in a cross section perpendicular to the axial direction of the tube,
In the cross section, a straight line connecting an arbitrary thickness measurement point and the axis center, and a straight line connecting another axial thickness measurement point adjacent to the arbitrary thickness measurement point and the axis center are configured. When the angle is θ (°),
(1) determining the thickness deviation order N of the tube, and
(2) A step of determining the thickness measurement point so as to be in a range satisfying 4 ° ≦ θ ≦ 60 ° / N,
A method for determining the thickness measurement position of a tube.
前記(1)の工程において、
予め得られた管の種類に応じた偏肉次数の統計情報に基づいて、前記管の偏肉次数を決定する、
請求項1に記載の管の肉厚測定位置決定方法。
In the step (1),
Based on the statistical information of the thickness deviation order according to the tube type obtained in advance, determine the thickness deviation order of the tube,
2. The method for determining a thickness measurement position of a pipe according to claim 1.
前記(1)の工程において、
前記統計情報が、予め、
(a1)任意の管の肉厚を周方向に複数点測定して、肉厚測定データを得る工程、
(a2)前記肉厚測定データをフーリエ解析して、振幅スペクトルを得る工程、
(a3)前記振幅スペクトルに基づいて、前記任意の管の偏肉次数を判定する工程、および、
(a4)管の種類に応じた偏肉次数を集計する工程、
を実施して得た統計情報である、
請求項2に記載の管の肉厚測定位置決定方法。
In the step (1),
The statistical information is pre-
(A1) A step of measuring a plurality of wall thicknesses of an arbitrary pipe in the circumferential direction to obtain wall thickness measurement data,
(A2) Fourier analysis of the wall thickness measurement data to obtain an amplitude spectrum;
(A3) determining the thickness deviation order of the arbitrary pipe based on the amplitude spectrum; and
(A4) a step of counting the thickness deviation according to the type of pipe,
Is the statistical information obtained by
The method for determining the thickness measurement position of a pipe according to claim 2.
前記(1)の工程において、
(b1)測定対象となる管の肉厚を、前記θが2°以下となる条件で周方向に複数点測定して、肉厚測定データを得る工程、
(b2)前記肉厚測定データをフーリエ解析して、振幅スペクトルを得る工程、および、
(b3)前記振幅スペクトルに基づいて、前記管の偏肉次数を決定する工程、
を実施し、
前記(2)の工程において、
決定した肉厚測定点以外の測定点の肉厚測定データを削除する、
請求項1に記載の管の肉厚測定位置決定方法。
In the step (1),
(B1) A step of measuring the thickness of the pipe to be measured at a plurality of points in the circumferential direction under the condition that the θ is 2 ° or less to obtain thickness measurement data,
(B2) Fourier analysis of the wall thickness measurement data to obtain an amplitude spectrum; and
(B3) determining the thickness deviation order of the tube based on the amplitude spectrum;
Carried out
In the step (2),
Delete the thickness measurement data at measurement points other than the determined thickness measurement point.
2. The method for determining a thickness measurement position of a pipe according to claim 1.
前記測定対象となる管が、継目無鋼管である、
請求項1から4までのいずれかに記載の管の肉厚測定位置決定方法。
The pipe to be measured is a seamless steel pipe,
5. A method for determining a thickness measurement position of a pipe according to claim 1.
前記測定対象となる管の肉厚測定データと、その他の因子情報とから有限要素法を用いてコプラス強度を予測するに際して用いる、
請求項1から5までのいずれかに記載の管の肉厚測定位置決定方法。
Used to predict the coplus strength using the finite element method from the wall thickness measurement data of the tube to be measured and other factor information,
6. A method for determining a thickness measurement position of a pipe according to claim 1.
請求項1から5までのいずれかに記載の方法によって決定した肉厚測定点における肉厚測定データと、その他の因子情報とから有限要素法を用いてコプラス強度を予測する、
管のコプラス強度予測方法。
Predicting the coplus strength using the finite element method from the thickness measurement data at the thickness measurement point determined by the method according to any one of claims 1 to 5 and other factor information,
A method for predicting the coplus strength of a tube.
JP2018018027A 2018-02-05 2018-02-05 Method for determining the wall thickness measurement position of the pipe and method for predicting the collapse strength of the pipe Active JP7006331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018018027A JP7006331B2 (en) 2018-02-05 2018-02-05 Method for determining the wall thickness measurement position of the pipe and method for predicting the collapse strength of the pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018018027A JP7006331B2 (en) 2018-02-05 2018-02-05 Method for determining the wall thickness measurement position of the pipe and method for predicting the collapse strength of the pipe

Publications (2)

Publication Number Publication Date
JP2019135059A true JP2019135059A (en) 2019-08-15
JP7006331B2 JP7006331B2 (en) 2022-01-24

Family

ID=67623619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018018027A Active JP7006331B2 (en) 2018-02-05 2018-02-05 Method for determining the wall thickness measurement position of the pipe and method for predicting the collapse strength of the pipe

Country Status (1)

Country Link
JP (1) JP7006331B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293503A (en) * 2000-04-13 2001-10-23 Sumitomo Metal Ind Ltd Device for rolling seamless tube and method for controlling rolling
JP2002349177A (en) * 2001-03-09 2002-12-04 Sumitomo Metal Ind Ltd Steel pipe for burying and expansion and burying method of oil well steel pipe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0408360B1 (en) 2003-03-14 2017-02-21 Nippon Steel & Sumitomo Metal Corp manufacturing method and pipe making apparatus, and thickness deviation shunt apparatus
JP6115440B2 (en) 2013-10-16 2017-04-19 新日鐵住金株式会社 Steel pipe wall thickness measuring device and steel pipe wall thickness measuring method
JP6179408B2 (en) 2014-01-24 2017-08-16 新日鐵住金株式会社 Method for measuring thickness deviation of seamless pipes
JP6641985B2 (en) 2015-12-24 2020-02-05 日本製鉄株式会社 Pipe wall thickness measuring device and wall thickness measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293503A (en) * 2000-04-13 2001-10-23 Sumitomo Metal Ind Ltd Device for rolling seamless tube and method for controlling rolling
JP2002349177A (en) * 2001-03-09 2002-12-04 Sumitomo Metal Ind Ltd Steel pipe for burying and expansion and burying method of oil well steel pipe

Also Published As

Publication number Publication date
JP7006331B2 (en) 2022-01-24

Similar Documents

Publication Publication Date Title
CA2682635C (en) Method for measuring the roundness of round profiles
JP6350771B1 (en) Crushing strength prediction method
Ren et al. Numerical study on the X80 UOE pipe forming process
US7231314B2 (en) Method and apparatus for measuring wall thickness, ovality of tubular materials
JP2015513371A (en) Method for manufacturing a welded tube from steel
Bauza et al. Study of accuracy of parts produced using additive manufacturing
JP6979307B2 (en) Crack evaluation standard formulation method, crack evaluation method by internal flaw detection inspection and maintenance management method
US8601854B2 (en) Method of bending sheet metal
JP2019135059A (en) Pipe wall thickness measuring position determination method and buckling strength prediction method
Zareei et al. Weight function for circumferential semi-elliptical cracks in cylinders due to residual stress fields induced by welding
Xu et al. Full-field geometric imperfection and effect on cross-section capacity of circular steel tubes
Aslani et al. Spiral welded tubes-imperfections, residual stresses, and buckling characteristics
CN104913746A (en) Measuring method of metallurgically-bonded thermometal composite pipe wall thickness
RU2571018C2 (en) Method to determine pipeline service life
EP3109615B1 (en) Ductile fracture evaluation method and device
KR101083215B1 (en) eddy current examination method for inside diameter circumferential cracks in steam generator tubes using motorized rotating pancake coil
JPH08141643A (en) Large tube shape correcting method and device for measuring dimension and shape of large tube
Kilambi et al. Development of a laser scan inspection tool for coiled tubing
CN111896614B (en) Quality analysis and judgment method for bent section of U-shaped heat transfer pipe for nuclear steam generator
CN111766152B (en) Method for obtaining stress parameters of steel plate for pipe making and steel plate selecting method
Ergezinger et al. Application of Noise Filtering Techniques for the Quantification of Uncertainty in Dent Strain Calculations
CN111766153B (en) Method for obtaining stress characterization parameters of steel plate for pipe making and steel plate selection method
Assanelli et al. Effect of measurement procedures on estimating geometrical parameters of pipes
JP7323857B1 (en) Steel pipe, steel pipe group, pipeline, and steel pipe manufacturing method
CN117554186B (en) Machine vision-based quality detection and analysis method for small-sized concrete prefabricated part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220