JP2019133742A - Sealing body and non-aqueous electrolyte secondary battery using the same - Google Patents

Sealing body and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2019133742A
JP2019133742A JP2016109371A JP2016109371A JP2019133742A JP 2019133742 A JP2019133742 A JP 2019133742A JP 2016109371 A JP2016109371 A JP 2016109371A JP 2016109371 A JP2016109371 A JP 2016109371A JP 2019133742 A JP2019133742 A JP 2019133742A
Authority
JP
Japan
Prior art keywords
sealing body
gas discharge
discharge valve
metal plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016109371A
Other languages
Japanese (ja)
Inventor
堂上 和範
Kazunori Dojo
和範 堂上
武田 勝利
Katsutoshi Takeda
勝利 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016109371A priority Critical patent/JP2019133742A/en
Priority to PCT/JP2017/014496 priority patent/WO2017208620A1/en
Publication of JP2019133742A publication Critical patent/JP2019133742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a sealing body for a power storage device that is capable of discharging gas at an appropriate speed only from a gas discharge valve without causing breakage at a portion other than a gas discharge valve when the internal pressure of the device is increased.SOLUTION: A sealing body 13 which is an example of the embodiment includes a metal plate 14 and closes the opening of an outer can 12. The sealing body 13 includes a gas discharge valve 20 that is integrally formed with the metal plate 14 and opens when the internal pressure of a device rises to a predetermined pressure, and a reinforcing portion 22 provided around the gas discharge valve 20 and having a heat capacity of twice or more per unit area than a base portion P which is another portion of the metal plate 14 excluding the gas discharge valve 20.SELECTED DRAWING: Figure 2

Description

本開示は、封口体及びこれを用いた非水電解質二次電池に関する。   The present disclosure relates to a sealing body and a nonaqueous electrolyte secondary battery using the same.

非水電解質二次電池等の蓄電装置は、例えば電極体及び非水電解質を収容する外装缶と、外装缶の開口を塞ぐ封口体とを備える。そして、多くの封口体には、蓄電装置の内圧が所定圧力まで上昇したときに開口するガス排出弁が設けられている。例えば、特許文献1には、取り付け孔に溶接されたガス排出弁を備える蓄電装置用の封口体が開示されている。なお、特許文献1には、取り付け孔の内面とガス排出弁の周囲にアルミニウム系金属層を設けることが記載されている。   A power storage device such as a non-aqueous electrolyte secondary battery includes, for example, an outer can that contains an electrode body and a non-aqueous electrolyte, and a sealing body that closes an opening of the outer can. Many sealing bodies are provided with a gas discharge valve that opens when the internal pressure of the power storage device rises to a predetermined pressure. For example, Patent Document 1 discloses a sealing body for a power storage device including a gas discharge valve welded to a mounting hole. Patent Document 1 describes that an aluminum-based metal layer is provided around the inner surface of the mounting hole and the gas discharge valve.

特開2014−135140号公報JP 2014-135140 A

ところで、蓄電装置の高エネルギー密度化に伴い、内部短絡等の異常発生時における発熱量が大きくなり、排出されるガス量も多くなっている。このため、従来の封口体を備えた蓄電装置では、ガス排出弁の周囲で封口体が破断し、弁以外の部分からガスが排出されることが想定される。この場合、目的とするガス排出速度が維持できず、発火に至るおそれがある。他方、封口体の軽量化、材料コストの低減も重要な課題である。   By the way, with the increase in energy density of power storage devices, the amount of heat generated when an abnormality such as an internal short circuit occurs increases, and the amount of gas discharged increases. For this reason, in a power storage device having a conventional sealing body, it is assumed that the sealing body breaks around the gas discharge valve and gas is discharged from a portion other than the valve. In this case, the target gas discharge speed cannot be maintained, and there is a risk of ignition. On the other hand, weight reduction of the sealing body and reduction of material cost are also important issues.

本開示に係る封口体は、金属板から構成され、外装缶の開口を塞ぐ蓄電装置用の封口体であって、金属板と一体的に形成され、装置の内圧が所定圧力まで上昇したときに開口するガス排出弁と、ガス排出弁の周囲に設けられ、ガス排出弁を除く金属板の他の部分である基部よりも単位面積当たり2倍以上の熱容量を有する補強部とを備える。   A sealing body according to the present disclosure is a sealing body for a power storage device that is made of a metal plate and closes an opening of an outer can, and is formed integrally with the metal plate, and the internal pressure of the device rises to a predetermined pressure. A gas exhaust valve that opens and a reinforcing portion that is provided around the gas exhaust valve and has a heat capacity that is twice or more per unit area than a base that is the other part of the metal plate excluding the gas exhaust valve.

本開示に係る非水電解質二次電池は、外装缶と、外装缶の開口を塞ぐ上記封口体と、外装缶に収容された電極体及び非水電解質とを備える。   A nonaqueous electrolyte secondary battery according to the present disclosure includes an outer can, the sealing body that closes the opening of the outer can, an electrode body that is accommodated in the outer can, and a nonaqueous electrolyte.

本開示に係る封口体によれば、装置の内圧上昇時にガス排出弁以外の部分で破断が起こらず、ガス排出弁のみから適切な速度でガスを排出することが可能である。   According to the sealing body according to the present disclosure, when the internal pressure of the apparatus is increased, the portion other than the gas discharge valve is not broken, and the gas can be discharged from the gas discharge valve only at an appropriate speed.

実施形態の一例である非水電解質二次電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of the nonaqueous electrolyte secondary battery which is an example of embodiment. 実施形態の一例である封口体のガス排出弁及びその近傍の平面図である。It is a top view of the gas exhaust valve of the sealing body which is an example of embodiment, and its vicinity. 図2中のAA線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2. 実施形態の他の一例である封口体を示す図である。It is a figure which shows the sealing body which is another example of embodiment. 実施形態の他の一例である封口体を示す図である。It is a figure which shows the sealing body which is another example of embodiment. 実施形態の他の一例である封口体を示す図である。It is a figure which shows the sealing body which is another example of embodiment.

上述のように、ガス排出弁以外の部分で封口体が破断することを防止する必要がある。ガス排出弁は、内部短絡等により高温のガスが発生して装置の内圧が上昇したときにガスを排出させるが、高温のガスが多量に発生すると、例えばガス排出弁の周囲が溶融して弁以外の部分で封口体が破断するおそれがある。ガス排出弁以外の部分の破断は弁の縁を起点として生じ、破断箇所は一気に広がる。そして、設計通りのガス排出速度が維持できなくなり、発火に至る可能性がある。   As described above, it is necessary to prevent the sealing body from being broken at portions other than the gas discharge valve. The gas discharge valve discharges gas when high temperature gas is generated due to an internal short circuit and the internal pressure of the device rises. However, if a large amount of high temperature gas is generated, the surroundings of the gas discharge valve are melted, for example. There is a possibility that the sealing body breaks at other portions. The breakage of the portion other than the gas discharge valve occurs starting from the edge of the valve, and the breakage point spreads at a stretch. In addition, the designed gas discharge rate cannot be maintained, which may lead to ignition.

本発明者らは、軽量化及び材料コストの削減を図りながら、ガス排出弁以外の部分の破断を防止すべく鋭意検討した結果、ガス排出弁の周囲に他の部分(基部)よりも単位面積当たり2倍以上の熱容量を有する補強部を設けることで、ガス排出弁以外の部分で破断が起こらず、ガス排出弁のみから適切な速度でガスを排出することができることを見出した。例えば、基部と同一の材料で、ガス弁の周囲を補強する際は、基部の厚みの2倍を超える厚みを有する厚肉部をガス排出弁の周囲に設ける構造としてもよい。かかる封口体によれば、ガス排出弁以外の部分で破断が起こらず、ガス排出弁のみから適切な速度でガスを排出することができる。   As a result of intensive studies to prevent breakage of portions other than the gas discharge valve while reducing the weight and reducing the material cost, the present inventors have determined that the unit area is larger than the other portion (base) around the gas discharge valve. It has been found that by providing a reinforcing portion having a heat capacity of twice or more per hit, the gas can be discharged at an appropriate rate only from the gas discharge valve without breaking at portions other than the gas discharge valve. For example, when reinforcing the periphery of the gas valve with the same material as the base portion, a thick portion having a thickness exceeding twice the thickness of the base portion may be provided around the gas discharge valve. According to such a sealing body, breakage does not occur in portions other than the gas discharge valve, and gas can be discharged at an appropriate speed only from the gas discharge valve.

封口体を構成する金属板は、軽量化、材料コストの削減等を考慮すると、薄肉化することが好ましい。このため、金属板の基部の厚みは、ガス排出弁の周囲をその厚みとした場合には内圧上昇時に金属板が破断する程度にまで薄くされる。本開示に係る封口体では、基部を薄肉化し、ガス排出弁の周囲のみを局部的に厚肉化することで、軽量化及び材料コストの削減を図りながら弁以外の部分における破断を防止している。本発明者らは、補強部の単位面積当たりの熱容量を基部の同じ単位面積当たりの熱容量の2倍以上とすることで、ガス排出弁以外の部分の破断を効率良く防止できることをつきとめた。なお、補強部の熱容量が基部の熱容量の2倍未満である場合、弁の周囲で破断が生じる確率が大きく上昇する。或いは、封口体の全体の厚みを大きくする必要があり、重量増、コスト増につながる。   The metal plate constituting the sealing body is preferably thinned in consideration of weight reduction, material cost reduction, and the like. For this reason, the thickness of the base portion of the metal plate is reduced to such an extent that the metal plate breaks when the internal pressure rises when the thickness around the gas discharge valve is set to the thickness. In the sealing body according to the present disclosure, the base is thinned, and only the periphery of the gas discharge valve is locally thickened to prevent breakage in parts other than the valve while reducing the weight and reducing the material cost. Yes. The inventors of the present invention have found that breakage of portions other than the gas discharge valve can be efficiently prevented by setting the heat capacity per unit area of the reinforcing portion to be twice or more the heat capacity per unit area of the base. In addition, when the heat capacity of the reinforcement part is less than twice the heat capacity of the base part, the probability that breakage occurs around the valve is greatly increased. Alternatively, it is necessary to increase the overall thickness of the sealing body, leading to an increase in weight and cost.

ところで、熱暴走時に発生するガスは、リチウムイオン電池等の非水電解質二次電池の場合、一般的には700℃以上である。また、発火防止の観点から適切なガスの排出時間(排出速度)は、一般的に1秒〜30秒である。即ち、ガス排出弁の周囲は、700℃以上のガスに1秒〜30秒曝されても破断しないことが求められる。本発明者らによる検討の結果、好適な補強部の厚みは、金属板の組成、補強部の幅等によっても多少異なるが、概ね2mm〜10mmであることが判明した。基部の厚みは、例えば1mm〜5mmであって、補強部の厚みの1/2未満とすることができる。   By the way, in the case of nonaqueous electrolyte secondary batteries, such as a lithium ion battery, the gas generated at the time of thermal runaway is generally 700 ° C. or higher. In addition, an appropriate gas discharge time (discharge speed) from the viewpoint of preventing ignition is generally 1 to 30 seconds. That is, the periphery of the gas discharge valve is required not to break even when exposed to a gas of 700 ° C. or higher for 1 to 30 seconds. As a result of studies by the present inventors, it has been found that the preferable thickness of the reinforcing portion is approximately 2 mm to 10 mm, although it varies somewhat depending on the composition of the metal plate, the width of the reinforcing portion, and the like. The thickness of the base is, for example, 1 mm to 5 mm, and can be less than ½ of the thickness of the reinforcing portion.

以下、図面を参照しながら、実施形態の一例について詳細に説明する。実施形態の説明で参照する図面は模式的に記載されたものであり、各構成要素の具体的な寸法等は以下の説明を参酌して判断されるべきである。また、本明細書において「略〜」とは、略一定を例に説明すると、完全に一定はもとより、実質的に一定と認められるものを含む意図である。   Hereinafter, an example of an embodiment will be described in detail with reference to the drawings. The drawings referred to in the description of the embodiments are schematically described, and specific dimensions and the like of each component should be determined in consideration of the following description. In addition, in the present specification, “substantially to” is intended to include those that are recognized as being substantially constant as well as being completely constant when described as being substantially constant.

以下では、蓄電装置として外装缶12と封口体13とで構成される角形の金属製ケース(電池ケース11)を備えた非水電解質二次電池10を例示するが、蓄電装置は電池に限定されず、キャパシターであってもよい。また、電池ケースは角形以外の形状であってもよい。実施形態の説明では、封口体に設けられた外部端子が並ぶ方向を「横方向」とし、封口体の厚み方向に沿った方向を「上下方向」、横方向及び上下方向に直交する方向を「縦方向」とする。   Below, the nonaqueous electrolyte secondary battery 10 provided with the rectangular metal case (battery case 11) comprised by the exterior can 12 and the sealing body 13 is illustrated as an electrical storage apparatus, but an electrical storage apparatus is limited to a battery. Alternatively, a capacitor may be used. The battery case may have a shape other than a square. In the description of the embodiment, the direction in which the external terminals provided on the sealing body are arranged is `` lateral direction '', the direction along the thickness direction of the sealing body is `` vertical direction '', and the direction orthogonal to the lateral direction and the vertical direction is `` "Vertical direction".

図1は、実施形態の一例である非水電解質二次電池10の外観を示す斜視図である。図1に例示するように、非水電解質二次電池10は、外装缶12と、外装缶12の開口を塞ぐ封口体13とで構成された電池ケース11を備える。非水電解質二次電池10は、角形の金属製ケースである電池ケース11を備えた角形電池であって、好ましくはリチウムイオン電池である。非水電解質二次電池10の種類は、特に限定されないが、以下ではリチウムイオン電池として説明する。   FIG. 1 is a perspective view showing an appearance of a nonaqueous electrolyte secondary battery 10 which is an example of an embodiment. As illustrated in FIG. 1, the nonaqueous electrolyte secondary battery 10 includes a battery case 11 including an outer can 12 and a sealing body 13 that closes an opening of the outer can 12. The nonaqueous electrolyte secondary battery 10 is a prismatic battery including a battery case 11 that is a rectangular metal case, and is preferably a lithium ion battery. The type of the nonaqueous electrolyte secondary battery 10 is not particularly limited, but will be described below as a lithium ion battery.

外装缶12には、電極体と非水電解質が収容されている。電極体は、正極と、負極と、セパレータとで構成され、正極及び負極からリードが引き出された構造を有する。電極体は、積層型、巻回型のいずれであってもよい。非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩とで構成される。非水溶媒には、環状炭酸エステル、鎖状炭酸エステル、カルボン酸エステル類、及びこれらの水素原子をフッ素原子などのハロゲン原子で置換したハロゲン置換体などが用いられる。   The outer can 12 contains an electrode body and a non-aqueous electrolyte. The electrode body includes a positive electrode, a negative electrode, and a separator, and has a structure in which leads are drawn from the positive electrode and the negative electrode. The electrode body may be either a laminated type or a wound type. The non-aqueous electrolyte is composed of a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent. Examples of the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic esters, and halogen-substituted products obtained by substituting these hydrogen atoms with halogen atoms such as fluorine atoms.

正極の活物質には、リチウム含有複合酸化物が用いられる。好適な複合酸化物の一例としては、Ni−Co−Mn系、Ni−Co−Al系のリチウム含有複合酸化物が挙げられる。負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、Si、Sn等のリチウムと合金化する金属、合金、複合酸化物などを用いることができる。   A lithium-containing composite oxide is used as the positive electrode active material. As an example of a suitable composite oxide, a Ni-Co-Mn-based or Ni-Co-Al-based lithium-containing composite oxide can be given. The negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions. For example, carbon materials such as natural graphite and artificial graphite, metals such as Si and Sn, alloys that form an alloy with lithium, alloys, A composite oxide or the like can be used.

非水電解質二次電池10のエネルギー密度は、例えば160Wh/kg〜270Wh/kgである。後述の補強部22(図2等参照)を備えた封口体13は、エネルギー密度が200Wh/kg以上の蓄電装置に適用されることが特に好適である。   The energy density of the nonaqueous electrolyte secondary battery 10 is, for example, 160 Wh / kg to 270 Wh / kg. It is particularly preferable that the sealing body 13 provided with a reinforcing portion 22 (see FIG. 2 and the like) described later is applied to a power storage device having an energy density of 200 Wh / kg or more.

外装缶12は、上端が開口した有底角形筒状の金属製容器である。外装缶12は、縦方向よりも横方向、上下方向に長い扁平な形状を有するが、外装缶の形状は特に限定されない。外装缶12を構成する金属材料は、例えばアルミニウムを主成分とする金属材料である。   The outer can 12 is a bottomed rectangular cylindrical metal container having an open upper end. The outer can 12 has a flat shape that is longer in the horizontal and vertical directions than in the vertical direction, but the shape of the outer can is not particularly limited. The metal material constituting the outer can 12 is, for example, a metal material mainly composed of aluminum.

封口体13は、外装缶12の開口を塞いで電池ケース11の内部空間を密閉するための部材であって、金属板14から構成されている。封口体13を構成する金属板14は、外装缶12の開口に対応する形状を有し、図1に示す例では縦方向よりも横方向に長い略長方形状を有する。封口体13は、例えば金属板14の周縁部を外装缶12に溶接することで、外装缶12に取り付けられる。   The sealing body 13 is a member for closing the opening of the outer can 12 and sealing the internal space of the battery case 11, and includes a metal plate 14. The metal plate 14 constituting the sealing body 13 has a shape corresponding to the opening of the outer can 12, and has a substantially rectangular shape that is longer in the horizontal direction than in the vertical direction in the example shown in FIG. 1. The sealing body 13 is attached to the outer can 12 by, for example, welding the peripheral portion of the metal plate 14 to the outer can 12.

金属板14は、軽量化等の観点から、アルミニウムを主成分とする金属材料から構成されることが好ましい。当該金属材料は、例えばアルミニウム又はアルミニウム合金であって、アルミニウムの含有量は90重量%以上である。以下では、金属板14がアルミニウムを主成分とする金属材料から構成されているものとして説明する。   It is preferable that the metal plate 14 is comprised from the metal material which has aluminum as a main component from viewpoints, such as weight reduction. The metal material is, for example, aluminum or an aluminum alloy, and the aluminum content is 90% by weight or more. Below, the metal plate 14 is demonstrated as what is comprised from the metal material which has aluminum as a main component.

封口体13には、正極外部端子15、負極外部端子16、注液部17、及びガス排出弁20が設けられる。図1に示す例では、封口体13の横方向一端部に正極外部端子15が、横方向他端部に負極外部端子16がそれぞれ設けられている。例えば、金属板14の横方向両端部には貫通孔がそれぞれ形成され、正極外部端子15と負極外部端子16が絶縁性のガスケットを介して金属板14と電気的に絶縁された状態で当該各貫通孔に取り付けられる。各外部端子には、電極体から引き出されたリードが直接又は他の集電部材を介して接続される。なお、封口体13に外部端子として負極外部端子のみを設け、外装缶12を正極外部端子とする形態としてもよい。   The sealing body 13 is provided with a positive external terminal 15, a negative external terminal 16, a liquid injection part 17, and a gas discharge valve 20. In the example shown in FIG. 1, a positive electrode external terminal 15 is provided at one end portion in the horizontal direction of the sealing body 13, and a negative electrode external terminal 16 is provided at the other end portion in the horizontal direction. For example, through holes are respectively formed at both lateral ends of the metal plate 14, and the positive electrode external terminal 15 and the negative electrode external terminal 16 are electrically insulated from the metal plate 14 through an insulating gasket. It is attached to the through hole. Each external terminal is connected to a lead drawn out from the electrode body directly or via another current collecting member. In addition, it is good also as a form which provides only the negative electrode external terminal as an external terminal in the sealing body 13, and uses the armored can 12 as a positive electrode external terminal.

ガス排出弁20は、スムーズなガス排出を可能とすべく、封口体13の横方向中央部に形成されることが好ましい。ガス排出弁20は、例えば正極外部端子15及び負極外部端子16から略等距離の位置に形成される。注液部17は、負極外部端子16とガス排出弁20の間に形成されている。注液部17は、一般的に、電解液を注液するための注液孔と、注液孔を塞ぐ封止栓とで構成される。   The gas discharge valve 20 is preferably formed at the lateral center of the sealing body 13 so as to enable smooth gas discharge. The gas discharge valve 20 is formed, for example, at a substantially equidistant position from the positive external terminal 15 and the negative external terminal 16. The liquid injection part 17 is formed between the negative electrode external terminal 16 and the gas discharge valve 20. The liquid injection part 17 is generally composed of a liquid injection hole for injecting an electrolytic solution and a sealing plug for closing the liquid injection hole.

以下、図2及び図3を参照しながら、ガス排出弁20及び補強部22について詳説する。図2は封口体13のガス排出弁20及びその近傍を示す平面図、図3は図2中のAA線断面図である。   Hereinafter, the gas discharge valve 20 and the reinforcing portion 22 will be described in detail with reference to FIGS. 2 and 3. 2 is a plan view showing the gas discharge valve 20 of the sealing body 13 and the vicinity thereof, and FIG. 3 is a sectional view taken along line AA in FIG.

図2及び図3に例示するように、封口体13は、ガス排出弁20と、ガス排出弁20の周囲に設けられた補強部22とを備える。ガス排出弁20は、コイニング加工などの加工手段により金属板14に一体的に形成され、非水電解質二次電池10の内圧が所定圧力まで上昇したときに開口する。封口体13を構成する金属板14を加工してガス排出弁20を一体成形することにより、例えば溶接等による弁の取り付けが不要となり、また封口体13の密閉性、信頼性が向上する。   As illustrated in FIGS. 2 and 3, the sealing body 13 includes a gas exhaust valve 20 and a reinforcing portion 22 provided around the gas exhaust valve 20. The gas discharge valve 20 is formed integrally with the metal plate 14 by a processing means such as coining, and opens when the internal pressure of the nonaqueous electrolyte secondary battery 10 rises to a predetermined pressure. By processing the metal plate 14 constituting the sealing body 13 and integrally forming the gas discharge valve 20, it is not necessary to attach a valve, for example, by welding, and the sealing performance and reliability of the sealing body 13 are improved.

本実施形態では、金属板14に環状の凹部21が形成されており、当該凹部21に囲まれた部分がガス排出弁20となる。ガス排出弁20の横方向中央部には、内圧上昇時における弁の開口を容易にすべく、縦方向に延びて両端が環状の凹部21に繋がった直線状の凹部21が形成されている。凹部21は、封口体13の外面(電池ケース11の外側に向いた面)に形成された刻印であって、凹部21が形成された部分は他の部分よりも厚みが薄い薄肉部となり、内圧上昇時に当該薄肉部で金属板14が破断し、ガス排出弁20が開口する。なお、凹部21を形成する代わりに、又は凹部21を形成すると共に、ガス排出弁20の全体で金属板14の厚みを薄くしてもよい。   In the present embodiment, an annular recess 21 is formed in the metal plate 14, and a portion surrounded by the recess 21 becomes the gas discharge valve 20. In the central portion in the horizontal direction of the gas discharge valve 20, a linear recess 21 is formed that extends in the vertical direction and has both ends connected to an annular recess 21 in order to facilitate opening of the valve when the internal pressure increases. The concave portion 21 is an inscription formed on the outer surface of the sealing body 13 (the surface facing the outside of the battery case 11), and the portion where the concave portion 21 is formed is a thin-walled portion having a smaller thickness than the other portions. When rising, the metal plate 14 is broken at the thin portion, and the gas discharge valve 20 is opened. Instead of forming the recess 21 or forming the recess 21, the thickness of the metal plate 14 may be reduced throughout the gas discharge valve 20.

ガス排出弁20は、横方向に長い角丸長方形状を有する。ガス排出弁20の縁に角ばった部分が存在すると、その部分からガス排出弁20の周囲に位置する部分が破断し易くなるため、ガス排出弁20の縁には角ばった部分を形成しないことが好ましい。ガス排出弁20は、例えば内部短絡等の異常発生時におけるガスの排出量に基づいて大きさが決定され、発火が起こらない適切な速度でガスを排出可能な大きさとされる。エネルギー密度が200Wh/kgであるリチウムイオン電池の場合、例えばガス排出弁20の強度確保の観点から、封口体13の幅をLw、ガス排出弁20の縦方向長さ(短手方向長さ)をL2としたとき、L2/Lw=1/2〜1/4が好ましい。また、ガス排気効率の観点から、ガス排出弁20の横方向長さ(長手方向長さ)をL1としたとき、L2/L1=1/2〜1/4が好ましい。 The gas discharge valve 20 has a rounded rectangular shape that is long in the lateral direction. If there is an angled portion at the edge of the gas exhaust valve 20, a portion located around the gas exhaust valve 20 from the portion is easily broken, and therefore, an angular portion may not be formed at the edge of the gas exhaust valve 20. preferable. The size of the gas discharge valve 20 is determined based on the amount of gas discharged when an abnormality such as an internal short circuit occurs, for example, and is set to a size that allows the gas to be discharged at an appropriate speed at which ignition does not occur. In the case of a lithium ion battery having an energy density of 200 Wh / kg, for example, from the viewpoint of securing the strength of the gas discharge valve 20, the width of the sealing body 13 is Lw, and the length of the gas discharge valve 20 in the vertical direction (length in the short direction). the when the L 2, L 2 / Lw = 1 / 2~1 / 4 is preferred. From the viewpoint of the gas exhaust efficiency, when the lateral length of the gas discharge valve 20 (longitudinal length) was L 1, L 2 / L 1 = 1 / 2~1 / 4 is preferred.

補強部22は、ガス排出弁20を囲んで弁の全周囲に設けられ、封口体13のガス排出弁20の周囲に位置する部分を補強する。補強部22は、ガス排出弁20を除く金属板14の他の部分である基部Pよりも単位面積当たり2倍以上の熱容量を有する部分であって、例えば基部Pの厚みの2倍を超える厚みを有する。例えば、補強部22の厚みT22>基部Pの厚みT14×2として、同じ面積で比較したときの熱容量を補強部22の熱容量≧基部Pの熱容量×2することで、封口体13の大幅な重量増、コスト増を招くことなく、ガス排出弁20以外の部分の破断を効率良く防止できる。 The reinforcing portion 22 surrounds the gas exhaust valve 20 and is provided around the entire valve, and reinforces a portion of the sealing body 13 located around the gas exhaust valve 20. The reinforcing portion 22 is a portion having a heat capacity twice or more per unit area than the base portion P which is the other portion of the metal plate 14 excluding the gas discharge valve 20, and has a thickness exceeding twice the thickness of the base portion P, for example. Have For example, the thickness T 14 × 2 in the thickness T 22> base P of the reinforcing portion 22, the heat capacity when compared by the heat capacity × 2 heat capacity ≧ base P of the reinforcing portion 22 in the same area, width of the sealing member 13 It is possible to efficiently prevent breakage of portions other than the gas discharge valve 20 without causing a significant increase in weight and cost.

封口体13のガス排出弁20及び補強部22以外の部分である基部Pの厚みT14は、例えば1mm〜5mmであり、好ましくは1.5mm〜3mmである。封口体13を構成する金属板14は、軽量化等の観点から薄肉化することが好ましいため、基部Pの厚みT14は、上述のように、ガス排出弁20の周囲をその厚みとした場合には内圧上昇時に金属板14が破断する程度にまで薄くされる。そして、基部Pの厚みT14がこのような厚みである場合に、補強部22の厚みT22≦基部Pの厚みT14×2とすると、ガス排出弁20の周囲で破断が生じる確率が大きく上昇する。補強部22の厚みT22は、例えば2mm〜10mmであり、好ましくは3mm〜6mmである。 The thickness T 14 of the base portion P is a gas exhaust valve 20 and the portion other than the reinforcing portion 22 of the sealing member 13 is, for example, 1 mm to 5 mm, preferably 1.5 mm to 3 mm. Metal plate 14 constituting the sealing member 13, since it is preferable to thin from the viewpoint of weight reduction, the thickness T 14 of the base portion P, as described above, when the surrounding gas discharge valve 20 and its thickness The thickness is reduced to such an extent that the metal plate 14 is broken when the internal pressure increases. When the thickness T 14 of the base portion P is such a thickness, if the thickness T 22 of the reinforcing portion 22 ≦ the thickness T 14 × 2 of the base portion P, the probability of breakage around the gas discharge valve 20 is large. To rise. The thickness T 22 of the reinforcing portion 22 is, for example, 2 mm to 10 mm, preferably 3 mm to 6 mm.

補強部22は、ガス排出弁20の周囲で金属板14の厚みを局部的に厚くして形成された厚肉部である。即ち、ガス排出弁20、補強部22、及び基部Pは、1つの金属板14を加工して一体成形されている。本実施形態では、ガス排出弁20の周囲において、金属板14が電池ケース11の外側に膨出している。つまり、封口体13の外面(電池ケース11の外側に向いた面)がガス排出弁20の周囲で盛り上がり、ガス排出弁20の縁に沿って堤状に厚肉部が形成されている。   The reinforcing portion 22 is a thick portion formed by locally increasing the thickness of the metal plate 14 around the gas discharge valve 20. That is, the gas discharge valve 20, the reinforcement portion 22, and the base portion P are integrally formed by processing one metal plate 14. In the present embodiment, the metal plate 14 bulges outside the battery case 11 around the gas discharge valve 20. That is, the outer surface of the sealing body 13 (the surface facing the outside of the battery case 11) rises around the gas discharge valve 20, and a thick wall portion is formed along the edge of the gas discharge valve 20.

補強部22の厚みT22は、基部Pの厚みT14の2倍超過5倍未満とすることが好ましい。補強部22が電池ケース11の外側に膨出する場合、厚みT22を大きくし過ぎると、電池の外形が大きくなるため、好ましくない。他方、補強部22が電池ケース11の内側に膨出する場合、厚みT22を大きくし過ぎると、補強部22が電極体又はリード等の集電部材と干渉するおそれがあるため、好ましくない。補強部22の厚みT22は、基部Pの厚みT14の2倍超過4.5倍以下がより好ましく、2.5倍以上4倍以下が特に好ましい。厚みT22を当該範囲に設定すれば、上述のような不具合を招くことなく、ガス排出弁20の周囲を効率良く補強することができる。 The thickness T 22 of the reinforcing portion 22 is preferably set to be more than twice and less than 5 times the thickness T 14 of the base portion P. If the reinforcing portion 22 is bulged to the outside of the battery case 11, an excessively large thickness T 22, since the outer shape of the battery is increased, undesirably. On the other hand, if the reinforcing portion 22 is bulged to the inside of the battery case 11, an excessively large thickness T 22, since the reinforcing portion 22 may interfere with the current collector member such as the electrode body or a lead, which is not preferable. The thickness T 22 of the reinforcing portion 22 is more preferably more than twice as large as the thickness T 14 of the base portion P and 4.5 times or less, and particularly preferably 2.5 times or more and 4 times or less. If the thickness T 22 is set within this range, the surroundings of the gas discharge valve 20 can be efficiently reinforced without causing the above-described problems.

補強部22は、ガス排出弁20の周囲に局部的に設けられる。電池ケース11の外側に補強部22が設けられるときは、外装缶12の周縁から補強部22がはみ出ないように形成することが好ましい。また、電池ケース11の内側に補強部22が設けられるときは、外装缶12と干渉する部分には設けられない。補強部22は、外装缶12と封口体13の溶接に支障がないように、金属板14の端から所定長さ離間した部分に設けられる。   The reinforcing portion 22 is locally provided around the gas discharge valve 20. When the reinforcing portion 22 is provided outside the battery case 11, it is preferable to form the reinforcing portion 22 so that it does not protrude from the peripheral edge of the outer can 12. Further, when the reinforcing portion 22 is provided inside the battery case 11, it is not provided in a portion that interferes with the outer can 12. The reinforcing portion 22 is provided in a portion spaced a predetermined length from the end of the metal plate 14 so as not to hinder the welding of the outer can 12 and the sealing body 13.

補強部22の幅Wは、外装缶12の周縁からはみ出ない範囲、或いは外装缶12と干渉しない範囲であれば特に限定されないが、ガス排出弁20の周囲を均一に補強すべく、ガス排出弁20の全周囲にわたって略一定であることが好ましい。また、補強部22の厚みT22もガス排出弁20の全周囲わたって略一定であることが好ましい。つまり、補強部22は、ガス排出弁20の全周囲にわたって略一定の厚み且つ略一定の幅で形成されることが好適である。 The width W of the reinforcing portion 22 is not particularly limited as long as it does not protrude from the peripheral edge of the outer can 12 or does not interfere with the outer can 12, but in order to reinforce the periphery of the gas exhaust valve 20, the gas exhaust valve It is preferably substantially constant over the entire circumference of 20. Further, it is preferable that the thickness T 22 of the reinforcing portion 22 is substantially constant over the entire periphery of the gas discharge valve 20. That is, the reinforcing portion 22 is preferably formed with a substantially constant thickness and a substantially constant width over the entire circumference of the gas discharge valve 20.

以上のように、封口体13を備えた非水電解質二次電池10によれば、内部短絡等により高温のガスが発生して内圧が上昇したときに、ガス排出弁20のみから適切な速度でガスを排出することができる。封口体13のガス排出弁20以外の部分の破断はガス排出弁20の縁から生じ易いが、弁の周りを囲む堤状の補強部22を設けることで、封口体13の軽量化及び材料コストの削減等を図りながら、弁以外の部分の破断を効率良く防止できる。そして、封口体13を用いることにより、高エネルギー密度で安全性の高い非水電解質二次電池10を提供することができる。   As described above, according to the nonaqueous electrolyte secondary battery 10 provided with the sealing body 13, when high-temperature gas is generated due to an internal short circuit or the like and the internal pressure is increased, the gas discharge valve 20 alone is used at an appropriate speed. Gas can be discharged. The breakage of the portion other than the gas discharge valve 20 of the sealing body 13 is likely to occur from the edge of the gas discharge valve 20, but by providing a bank-shaped reinforcing portion 22 surrounding the valve, the weight of the sealing body 13 and the material cost are reduced. It is possible to efficiently prevent breakage of parts other than the valve while achieving reduction of the above. And by using the sealing body 13, the nonaqueous electrolyte secondary battery 10 with high energy density and high safety | security can be provided.

なお、上述の実施形態は、本開示の目的を損なわない範囲で適宜設計変更できる。例えば、ガス排出弁の形状は、横方向に長い角丸長方形状に限定されず、楕円形状、真円形状等であってもよい。そして、補強部はガス排出弁の形状に合わせて形成される。   It should be noted that the design of the above-described embodiment can be changed as appropriate without departing from the object of the present disclosure. For example, the shape of the gas discharge valve is not limited to a rounded rectangular shape that is long in the lateral direction, and may be an elliptical shape, a perfect circular shape, or the like. And the reinforcement part is formed according to the shape of a gas exhaust valve.

図4〜図6は、実施形態の他の一例である封口体13A,13B,13Cを示す図である。封口体13A,13B,13Cの各補強部は、補強部22と同様に、基部Pの厚みT14の2倍超過5倍未満の厚みを有することが好ましい。また、各補強部は、ガス排出弁20の全周囲にわたって略一定の厚み且つ略一定の幅で形成されることが好ましい。 4-6 is a figure which shows sealing body 13A, 13B, 13C which is another example of embodiment. Each reinforcing portion of the sealing member 13A, 13B, @ 13 C, similar to the reinforcing portion 22 preferably has a 2-fold excess 5-fold less than the thickness of the thickness T 14 of the base portion P. Further, each reinforcing portion is preferably formed with a substantially constant thickness and a substantially constant width over the entire circumference of the gas discharge valve 20.

図4に例示する封口体13Aの補強部23は、電池ケース11の外側だけでなく、内側にも膨出している点で、封口体13と異なる。つまり、封口体13A(金属板14A)の内面及び外面がガス排出弁20の周囲で盛り上がり、封口体13Aの両面にガス排出弁20の縁に沿った堤状の厚肉部が形成されている。この場合、電池ケース11の内側、外側それぞれに対する膨出の程度を抑えながら、補強部23のトータルの厚みT23を大きくすることができる。 The reinforcing portion 23 of the sealing body 13A illustrated in FIG. 4 is different from the sealing body 13 in that it bulges not only outside the battery case 11 but also inside. That is, the inner surface and the outer surface of the sealing body 13A (metal plate 14A) swell around the gas discharge valve 20, and a bank-shaped thick portion along the edge of the gas discharge valve 20 is formed on both surfaces of the sealing body 13A. . In this case, it is possible to increase the total thickness T 23 of the reinforcing portion 23 while suppressing the degree of swelling with respect to the inside and the outside of the battery case 11.

図5に例示する封口体13Bの補強部25は、ガス排出弁20の周囲に補強板24を固定して形成されている点で、封口体13,13Aと異なる。図5に示す例では、金属板14Bの外面に補強板24が固定されているが、補強板24は金属板14Bの内面に固定されてもよく、金属板14Bの両面に固定されてもよい。補強板24は、平面視略矩形形状を有し、封口体13Bを構成する金属板14Bに重ねられてガス排出弁20の周囲で封口体13Bの厚みを大きくする、即ち補強部25を形成する。封口体13Bでは、補強板24の厚みを変更することで、補強部25の厚みを調整できる。   The reinforcing portion 25 of the sealing body 13B illustrated in FIG. 5 is different from the sealing bodies 13 and 13A in that the reinforcing plate 24 is formed around the gas discharge valve 20. In the example shown in FIG. 5, the reinforcing plate 24 is fixed to the outer surface of the metal plate 14B. However, the reinforcing plate 24 may be fixed to the inner surface of the metal plate 14B, or may be fixed to both surfaces of the metal plate 14B. . The reinforcing plate 24 has a substantially rectangular shape in plan view, and is superimposed on the metal plate 14B constituting the sealing body 13B to increase the thickness of the sealing body 13B around the gas discharge valve 20, that is, to form the reinforcing portion 25. . In the sealing body 13 </ b> B, the thickness of the reinforcing portion 25 can be adjusted by changing the thickness of the reinforcing plate 24.

補強板24には、厚み方向に貫通する開口部26がガス排出弁20と略同一形状、略同一寸法で形成されている。そして、開口部26がガス排出弁20と上下方向に重なるように金属板14Bに補強板24が配置される。補強板24は、例えば溶接、ろう接により、又は接着剤を用いて、金属板14Bに固定される。補強板24は、金属板14Bと同じ金属材料から構成されてもよいが、好ましくは金属板14Bよりも高融点の金属材料又はセラミックスから構成される(後述の補強板27についても同様)。好適な一例としては、銅、ステンレス鋼(SUS)、アルミナが挙げられる。金属板14Bよりも熱容量が大きい材料を用いることで、補強板24の厚さを薄くすることが可能となる。   An opening 26 that penetrates in the thickness direction is formed in the reinforcing plate 24 with substantially the same shape and dimensions as the gas discharge valve 20. And the reinforcement board 24 is arrange | positioned at the metal plate 14B so that the opening part 26 may overlap with the gas exhaust valve 20 in an up-down direction. The reinforcing plate 24 is fixed to the metal plate 14B, for example, by welding, brazing, or using an adhesive. The reinforcing plate 24 may be made of the same metal material as the metal plate 14B, but is preferably made of a metal material or ceramic having a melting point higher than that of the metal plate 14B (the same applies to the reinforcing plate 27 described later). Suitable examples include copper, stainless steel (SUS), and alumina. By using a material having a larger heat capacity than the metal plate 14B, the thickness of the reinforcing plate 24 can be reduced.

図6に例示する封口体13Cの補強部28は、ガス排出弁20の周囲に補強板27を固定して形成されている点で、封口体13Bと共通する。一方、補強板27は、複数の貫通孔29を有する点で、封口体13Bと異なる。貫通孔29は、補強板27の四隅近傍にそれぞれ1つずつ合計4つ形成されている。また、金属板14Cは、外側に突出したピン30を有する。ピン30は、ガス排出弁20の周囲に4つ形成されている。封口体13Cでは、ピン30が貫通孔29に圧入されることで、金属板14Cに補強板27が固定される。なお、金属板14Cに対して補強板27を安定に固定できれば、貫通孔29及びピン30の形状、数、配置等は特に限定されない。   The reinforcing part 28 of the sealing body 13C illustrated in FIG. 6 is common to the sealing body 13B in that the reinforcing plate 27 is fixed around the gas exhaust valve 20. On the other hand, the reinforcing plate 27 differs from the sealing body 13B in that it has a plurality of through holes 29. A total of four through holes 29 are formed near each of the four corners of the reinforcing plate 27. Further, the metal plate 14C has a pin 30 protruding outward. Four pins 30 are formed around the gas discharge valve 20. In the sealing body 13C, the pin 30 is press-fitted into the through hole 29, whereby the reinforcing plate 27 is fixed to the metal plate 14C. Note that the shape, number, arrangement, and the like of the through holes 29 and the pins 30 are not particularly limited as long as the reinforcing plate 27 can be stably fixed to the metal plate 14C.

10 非水電解質二次電池、11 電池ケース、12 外装缶、13 封口体、14 金属板、15 正極外部端子、16 負極外部端子、17 注液部、20 ガス排出弁、21 凹部、22,23,25,28 補強部、24,27 補強板、26 開口部、29 貫通孔、30 ピン、P 基部   DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery, 11 Battery case, 12 Exterior can, 13 Sealing body, 14 Metal plate, 15 Positive electrode external terminal, 16 Negative electrode external terminal, 17 Injection part, 20 Gas discharge valve, 21 Recessed part, 22, 23 , 25, 28 Reinforcement part, 24, 27 Reinforcement plate, 26 Opening part, 29 Through hole, 30 pin, P base

Claims (8)

金属板から構成され、外装缶の開口を塞ぐ蓄電装置用の封口体であって、
前記金属板と一体的に形成され、装置の内圧が所定圧力まで上昇したときに開口するガス排出弁と、
前記ガス排出弁の周囲に設けられ、前記ガス排出弁を除く前記金属板の他の部分である基部よりも単位面積当たり2倍以上の熱容量を有する補強部と、
を備えた、封口体。
It is composed of a metal plate, and is a sealing body for a power storage device that closes an opening of an outer can,
A gas discharge valve that is formed integrally with the metal plate and opens when the internal pressure of the device rises to a predetermined pressure;
A reinforcing portion provided around the gas discharge valve and having a heat capacity of twice or more per unit area than a base portion which is another portion of the metal plate excluding the gas discharge valve;
Sealing body with
前記補強部は、前記ガス排出弁の周囲で前記金属板の厚みを大きくして形成される、請求項1に記載の封口体。   The sealing member according to claim 1, wherein the reinforcing portion is formed by increasing the thickness of the metal plate around the gas discharge valve. 前記補強部は、前記ガス排出弁の周囲に補強板を固定して形成される、請求項1に記載の封口体。   The sealing body according to claim 1, wherein the reinforcing portion is formed by fixing a reinforcing plate around the gas discharge valve. 前記補強部の厚みは、前記基部の厚みの2倍超過5倍未満である、請求項1〜3のいずれか1項に記載の封口体。   The thickness of the said reinforcement part is a sealing body of any one of Claims 1-3 which is 2 times more than the thickness of the said base, and less than 5 times. 前記基部の厚みは1mm〜5mmであり、前記補強部の厚みは2mm〜10mmである、請求項4に記載の封口体。   The sealing body according to claim 4, wherein the thickness of the base portion is 1 mm to 5 mm, and the thickness of the reinforcing portion is 2 mm to 10 mm. 前記金属板は、アルミニウムを主成分とする金属材料から構成されている、請求項1〜5のいずれか1項に記載の封口体。   The said metal plate is a sealing body of any one of Claims 1-5 comprised from the metal material which has aluminum as a main component. 前記補強部は、前記ガス排出弁の全周囲にわたって略一定の厚み且つ略一定の幅で形成される、請求項1〜6のいずれか1項に記載の封口体。   The said reinforcement part is a sealing body of any one of Claims 1-6 formed in the substantially constant thickness and the substantially constant width | variety over the perimeter of the said gas exhaust valve. 前記外装缶と、
前記外装缶の前記開口を塞ぐ請求項1〜7のいずれか1項に記載の封口体と、
前記外装缶に収容された電極体及び非水電解質と、
を備えた、非水電解質二次電池。
The outer can,
The sealing body according to any one of claims 1 to 7, which closes the opening of the outer can.
An electrode body and a non-aqueous electrolyte housed in the outer can,
A non-aqueous electrolyte secondary battery.
JP2016109371A 2016-05-31 2016-05-31 Sealing body and non-aqueous electrolyte secondary battery using the same Pending JP2019133742A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016109371A JP2019133742A (en) 2016-05-31 2016-05-31 Sealing body and non-aqueous electrolyte secondary battery using the same
PCT/JP2017/014496 WO2017208620A1 (en) 2016-05-31 2017-04-07 Sealing body and non-aqueous electrolyte secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109371A JP2019133742A (en) 2016-05-31 2016-05-31 Sealing body and non-aqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2019133742A true JP2019133742A (en) 2019-08-08

Family

ID=60478192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109371A Pending JP2019133742A (en) 2016-05-31 2016-05-31 Sealing body and non-aqueous electrolyte secondary battery using the same

Country Status (2)

Country Link
JP (1) JP2019133742A (en)
WO (1) WO2017208620A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196267A1 (en) * 2019-03-27 2020-10-01 三洋電機株式会社 Battery pack
CN217427007U (en) * 2022-06-15 2022-09-13 宁德时代新能源科技股份有限公司 Pressure release structure, battery monomer, battery and power consumption device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015414B2 (en) * 2001-12-14 2007-11-28 三菱重工業株式会社 Secondary battery and secondary battery container
KR20090099241A (en) * 2008-03-17 2009-09-22 삼성에스디아이 주식회사 Cap assembly and secondary battery using the same
JP5596647B2 (en) * 2010-10-13 2014-09-24 株式会社ソーデナガノ Battery case lid manufacturing method
JP5250138B2 (en) * 2011-08-09 2013-07-31 日新製鋼株式会社 Battery case lid
WO2014069575A1 (en) * 2012-11-02 2014-05-08 株式会社 豊田自動織機 Electricity storage device and method for manufacturing electricity storage device
JP6299384B2 (en) * 2014-04-24 2018-03-28 株式会社豊田自動織機 Power storage device

Also Published As

Publication number Publication date
WO2017208620A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP5383759B2 (en) Secondary battery
KR101274806B1 (en) Rechargeable battery
EP2482358B1 (en) Cap assembly and secondary battery using same
KR101165514B1 (en) Rechargeable battery
US20150236334A1 (en) Cap assembly and secondary battery including the same
JP2011154992A (en) Secondary battery
JP6529806B2 (en) Secondary battery and assembled battery
EP3518305B1 (en) Secondary battery
EP3018734B1 (en) Rechargeable battery
US9853281B2 (en) Secondary battery
JP2009245650A (en) Sealed battery
KR20180005455A (en) Cap assembly and secondary battery using the same
JP2013235814A (en) Nonaqueous electrolyte secondary battery
JP2008171678A (en) Nonaqueous electrolyte secondary battery
WO2017208620A1 (en) Sealing body and non-aqueous electrolyte secondary battery using same
US9337468B2 (en) Secondary battery
KR20130091533A (en) Secondary battery
KR20180126934A (en) Secondary Battery
KR20080037869A (en) Secondary battery
JP6964260B2 (en) Seal and non-aqueous electrolyte secondary battery
EP2330660B1 (en) Rechargeable battery
US9806324B2 (en) Secondary battery
US9899657B2 (en) Current interruption device and electrical energy storage device using the same
KR20190006643A (en) Enhanced safetyg and assembling electrode lead for secondary battery and secondary battery including the same
US11527800B2 (en) Secondary battery