JP2009245650A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2009245650A
JP2009245650A JP2008088242A JP2008088242A JP2009245650A JP 2009245650 A JP2009245650 A JP 2009245650A JP 2008088242 A JP2008088242 A JP 2008088242A JP 2008088242 A JP2008088242 A JP 2008088242A JP 2009245650 A JP2009245650 A JP 2009245650A
Authority
JP
Japan
Prior art keywords
battery
electrode plate
negative electrode
positive electrode
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008088242A
Other languages
Japanese (ja)
Other versions
JP5389368B2 (en
Inventor
Kazuo Tomimoto
和生 富本
Masanori Ogi
雅統 大木
Hiromitsu Suwa
弘光 諏訪
Yasunori Okazaki
泰憲 岡▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008088242A priority Critical patent/JP5389368B2/en
Publication of JP2009245650A publication Critical patent/JP2009245650A/en
Application granted granted Critical
Publication of JP5389368B2 publication Critical patent/JP5389368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed battery capable of securing its safety even if a cylindrical sealed battery in an erected state is crushed from above. <P>SOLUTION: The sealed battery 10 is housed in a conductive cylindrical battery package can 6 where an upper part of a spiral electrode body 5 wound by a positive electrode plate 2 and a negative electrode plate 3 via a separator 4 is opened. A negative electrode collection tab 3a arranged on the negative electrode plate 3 is electrically connected with the battery package can 6, and a positive electrode collection tab 2a arranged on the positive electrode plate 2 is electrically connected with a terminal plate 12 arranged on an opening sealing body 10, and the opening sealing body 10 is airtightly fixed on the battery package can 6 by caulking the vicinity of an opening 6c of the battery package can 6. The positive electrode collection tab 2a is connected with the terminal plate 12 by coating it with an electrically-insulated positive electrode tab protection tape having heat-resisting temperature of 270°C or above, tensile strength of 120 N or above, and piercing strength of 9.8 N or above. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、密閉型電池に関し、特に筒状の密閉型電池が立設された状態で上方から押し潰された場合でも安全性を確保できる密閉型電池に関する。   The present invention relates to a sealed battery, and more particularly to a sealed battery that can ensure safety even when a cylindrical sealed battery is crushed from above while standing.

携帯電話機に代表される携帯端末などの各種の電子機器は、その電源として様々なタイプの電池が使用されている。これらの電池の中でも、繰り返して充電が可能な二次電池が多く使用されている。この種の電池には、リチウムイオン電池、アルカリ蓄電池、ニッケル−カドミウム電池及びニッケル−水素電池などがある。これらの電池は、電極体が電解液とともに電池外装缶に密閉された状態で収容されていることから密閉型電池とも呼称されている。これらの電池の中でもリチウムイオン電池に代表される非水電解質二次電池は、優れた特性、例えば、作動電圧が高く(3V以上)、水溶液系電池に比べて理論エネルギー密度が高く、また自己放電が少なく、さらに作動温度範囲が広く、しかも耐漏液性も優れている、などの特性を有していることから、その用途が拡大されて来ている。   Various types of batteries are used as power sources for various electronic devices such as mobile terminals typified by mobile phones. Among these batteries, many secondary batteries that can be repeatedly charged are used. Such batteries include lithium ion batteries, alkaline storage batteries, nickel-cadmium batteries and nickel-hydrogen batteries. These batteries are also referred to as sealed batteries because the electrode bodies are housed together with the electrolyte in a battery outer can. Among these batteries, non-aqueous electrolyte secondary batteries represented by lithium ion batteries have excellent characteristics, such as high operating voltage (3 V or higher), high theoretical energy density compared to aqueous battery, and self-discharge. Therefore, its application has been expanded because it has characteristics such as a low operating temperature range, a wide operating temperature range, and excellent liquid leakage resistance.

ここで図4を参照して、一般的な非水電解質二次電池の概要を説明する。なお、図4は従来技術の一般的な非水電解質二次電池の断面図である。この非水電解質二次電池20は、正極板21と負極板22とがセパレーター23を介して巻回された渦巻状電極体24と、この渦巻状電極体24及び所定量の電解液を収容できる大きさを有し、上方が開口した有底筒状の電池外装缶25と、この電池外装缶25の上方開口を塞ぐ封口体28とを有している。この電池の組み立ては、次のようにして行われる。まず、電池外装缶25内に絶縁板26、渦巻状電極体24及び絶縁板27をこの順に収容した後に、例えば負極板22に設けられた負極集電タブを電池外装缶25の内側底部に溶接し、正極板21に設けられた正極集電タブ21aを端子板30に溶接する。次いで、電池外装缶25の開口部25aから所定量の非水電解液が注入された後に、電池外装缶25の開口25aに封口体28を挿入し、ガスケット32を介在させて電池外装缶25の開口部25a側端部をかしめて封止することにより組み立てられている。   Here, an outline of a general nonaqueous electrolyte secondary battery will be described with reference to FIG. FIG. 4 is a cross-sectional view of a conventional nonaqueous electrolyte secondary battery. The non-aqueous electrolyte secondary battery 20 can accommodate a spiral electrode body 24 in which a positive electrode plate 21 and a negative electrode plate 22 are wound via a separator 23, the spiral electrode body 24, and a predetermined amount of electrolyte. It has a bottomed cylindrical battery outer can 25 having a size and an upper opening, and a sealing body 28 for closing the upper opening of the battery outer can 25. The battery is assembled as follows. First, after the insulating plate 26, the spiral electrode body 24, and the insulating plate 27 are accommodated in this order in the battery outer can 25, for example, a negative electrode current collecting tab provided on the negative electrode plate 22 is welded to the inner bottom portion of the battery outer can 25. Then, the positive electrode current collecting tab 21 a provided on the positive electrode plate 21 is welded to the terminal plate 30. Next, after a predetermined amount of non-aqueous electrolyte is injected from the opening 25 a of the battery outer can 25, the sealing body 28 is inserted into the opening 25 a of the battery outer can 25, and the gasket 32 is interposed between the battery outer can 25 and the battery outer can 25. It is assembled by caulking and sealing the opening 25a side end.

ところが、このような構成の非水電解質二次電池20は、外部ないし内部から何らかのエネルギーが加えられると、電池外装缶内に収納されている正極板、負極板及び非水電解質との間で化学反応が起こり、内部の圧力が異常に上昇して電池が破裂或いは発火することがある。例えば、過充電状態になったり或いは何らかの原因で内部短絡が生じて大電流が流れたりすると、電解液が分解されてガスが発生することがある。そのため、電池の内圧が異常上昇して破裂或いは発火が起こり、この電池が収納された機器が損傷、焼失ないし周辺への延焼などとなって重大な事故を引起すことがある。また、電池が破裂すると、電解液や腐食性のガスが飛散して、同様に外部の機器などを腐食させることもある。   However, the non-aqueous electrolyte secondary battery 20 having such a configuration can be chemically coupled between the positive electrode plate, the negative electrode plate, and the non-aqueous electrolyte housed in the battery outer can when some energy is applied from outside or inside. A reaction may occur and the internal pressure may rise abnormally, causing the battery to rupture or ignite. For example, when an overcharged state occurs or an internal short circuit occurs for some reason and a large current flows, the electrolytic solution may be decomposed to generate gas. As a result, the internal pressure of the battery rises abnormally and ruptures or ignites, and the equipment in which the battery is stored may be damaged, burned out, or spread to the surroundings, causing a serious accident. In addition, when the battery ruptures, the electrolytic solution or corrosive gas may be scattered to corrode external equipment or the like.

そこで、この種の非水電解質二次電池は、破裂或いは発火を回避するための安全装置が設けられている(例えば、下記特許文献1〜3参照)。例えば、下記特許文献1に記載された電池は、正極リードが折れ曲がっているが、この正極リードの折れ曲がりが電池外装缶のビーディング部と接触すると内部短絡状態となるので、この正極リードの折れ曲がり部を絶縁テープで覆い、正極リードが折れ曲がっても短絡が発生しないようにしたものである。また、下記特許文献2に記載された電池は、積層型封口体に安全装置を組み込んだものであり、さらに下記特許文献3に記載された電池は、カシメ型封口体に安全装置を組み込んだものである。
特開平10−302751号公報(段落〔0033〕、図1) 特開平5−251076号公報(段落〔0015〕〜〔0022〕、図1) 特開平10−241644号公報(段落〔0017〕〜〔0019〕、図1)
Therefore, this type of non-aqueous electrolyte secondary battery is provided with a safety device for avoiding rupture or ignition (for example, see Patent Documents 1 to 3 below). For example, in the battery described in Patent Document 1 below, the positive electrode lead is bent, but when the positive electrode lead bend comes into contact with the beading portion of the battery outer can, an internal short-circuited state occurs. Is covered with an insulating tape so that a short circuit does not occur even if the positive electrode lead is bent. Moreover, the battery described in the following Patent Document 2 is one in which a safety device is incorporated in a laminated sealing body, and the battery described in the following Patent Document 3 is one in which a safety device is incorporated in a caulking type sealing body. It is.
Japanese Patent Laid-Open No. 10-302751 (paragraph [0033], FIG. 1) JP-A-5-251076 (paragraphs [0015] to [0022], FIG. 1) Japanese Patent Laid-Open No. 10-241644 (paragraphs [0017] to [0019], FIG. 1)

上記特許文献1〜3に開示されている電池は、外部ないし内部から加えられたエネルギーに対する安全装置が設けられているので、それらなりの安全性は確保されている。すなわち、これらの電池は、その設計或いは製造工程において、種々の試験がなされ、その安全性が検証されている。例えば、上記特許文献3に開示されている電池は、電池を逆さまにして、すなわち封口体を下方へ向けて床上1.5mの高さからコンクリート製の床面へ落下させるという落下試験を実施することにより、フランジ部の変形量が安全値の範囲内にあり、しかも漏液しないということの安全性が確認されている。また、他の特許文献に開示れている発明では、過充電試験及び釘刺し試験を実施することにより破裂或いは発火が起こらないことが検証されている。これらの電池の試験には、過充電などの電気的試験、落下試験などの機械的試験及び温度・湿度などの環境試験が含まれる。また、機械的試験には、衝突試験、衝撃試験、振動試験及び圧壊試験などがある。例えば、衝突試験は、所定の重さの錘を上方から落下させて行う試験であり、また、圧壊試験は2枚の平板に所定の圧壊力を掛けて圧壊する試験となっている。これらの試験は、通常、電池セルの2つの方向に対して実施されている。   Since the batteries disclosed in Patent Documents 1 to 3 are provided with a safety device against energy applied from the outside or the inside, their safety is ensured. That is, these batteries have been subjected to various tests in the design or manufacturing process, and their safety has been verified. For example, the battery disclosed in Patent Document 3 performs a drop test in which the battery is turned upside down, that is, the sealing body is dropped downward from a height of 1.5 m above the floor onto a concrete floor. Thus, it has been confirmed that the amount of deformation of the flange portion is within the range of the safety value and that no leakage occurs. Further, in the inventions disclosed in other patent documents, it is verified that no rupture or ignition occurs by performing an overcharge test and a nail penetration test. These battery tests include electrical tests such as overcharge, mechanical tests such as drop tests, and environmental tests such as temperature and humidity. Mechanical tests include a crash test, an impact test, a vibration test, and a crush test. For example, the collision test is a test that is performed by dropping a weight having a predetermined weight from above, and the crushing test is a test that is performed by applying a predetermined crushing force to two flat plates. These tests are usually performed in two directions of the battery cell.

非水電解質二次電池は、優れた特性を有していることから、近年、その用途がさらに拡大されてきており、この用途の拡大に伴いその使用形態も様々になっている。そのために、これまでの試験方法だけでは安全性の検証が充分なものとならず、より高い安全性を検証できる試験方法が要求されている。例えば、円筒状の電池を圧壊試験する場合は、通常、この円筒状電池を床面に横倒しにした状態で上方から所定の圧壊力を加えることによって行われている。しかしながら、この同じ圧壊試験であっても、非水電解質二次電池を床面に立設させた状態で行うと、この電池は高容量及び高出力特性を有していることから、試験中に爆発及び発火して危険な状態になることがあった。そのため、このような非水電解質二次電池を立設した状態で行う圧壊試験、いわゆる縦圧壊試験は危険性を伴うために実施が極めて困難であった。なお、上記各特許文献には、このような縦圧壊試験についは何も言及されていない。   Since nonaqueous electrolyte secondary batteries have excellent characteristics, their applications have been further expanded in recent years, and their usage forms have been varied with the expansion of these applications. For this reason, the safety test cannot be sufficiently performed only by the conventional test methods, and a test method capable of verifying higher safety is required. For example, when a crushing test is performed on a cylindrical battery, it is usually performed by applying a predetermined crushing force from above in a state where the cylindrical battery is laid on the floor surface. However, even if this same crushing test is performed with the nonaqueous electrolyte secondary battery standing on the floor, the battery has high capacity and high output characteristics. Explosions and fires could lead to dangerous conditions. Therefore, the crushing test performed in a state where such a nonaqueous electrolyte secondary battery is erected, that is, a so-called vertical crushing test is extremely difficult to carry out because it involves danger. In addition, in each said patent document, nothing is mentioned about such a longitudinal crush test.

そこで、本発明者等は、この縦圧壊試験における非水電解質二次電池の破裂及び発火の原因を調べた。その結果、立設した非水電解質二次電池を上方から圧壊する過程において、電気的短絡は、概ね、外装缶のカシメ下部が変形して正極と負極の間(図4のX)で起こる電池外装缶変形―電極間短絡(以下、「缶体変形―電極間短絡」という)及び正極端子の下部に位置する正極板(主に正極集電タブ)と負極板との間(図4のX1)で起こる電極間短絡(以下、「電極間短絡」という)の2箇所で発生していることが判った。さらに、これらの短絡箇所と破裂及び発火との関連性を探求したところ、圧壊過程において、X、Xの2箇所で起こる短絡のタイミング、すなわち「缶体変形―電極間短絡」及び「電極間短絡」の起こタイミングによって、破裂及び発火の程度が大きく異なることを突き止めた。すなわち、X、X箇所のうち、先にX箇所で短絡が発生し、その後すぐにX箇所で短絡が発生しなければ危険な状態にならない。しかしながら、逆に、先にX箇所で短絡が発生したり、X箇所で短絡が発生して短時間の間にXでも短絡が発生すると、激しい破裂及び発火を誘発することになる。その理由は、X箇所での短絡は主に正極活物質と負極活物質同士の短絡であり、あまり激しくない反応であるが、X箇所での短絡は、正極の金属部分と負極活物質が関与する反応が起こるため激しい反応が起こる。そのため、X箇所で短絡が発生する時点で電池が多くのエネルギーを貯蔵していると破裂や発火に至る。しかし、X箇所で短絡が発生しない、またはX箇所で発生した短絡で多くのエネルギーが消費された後にX箇所での短絡が発生したときは、もはや激しい反応を起こすだけのエネルギーが電池に貯蔵されていないので、破裂や発火に至らないものと考えられる。 Therefore, the present inventors investigated the cause of the rupture and ignition of the nonaqueous electrolyte secondary battery in this longitudinal crush test. As a result, in the process of crushing the standing nonaqueous electrolyte secondary battery from above, the electrical short circuit generally occurs between the positive electrode and the negative electrode (X 2 in FIG. 4) due to deformation of the caulking lower portion of the outer can. Battery outer can deformation-short circuit between electrodes (hereinafter referred to as "can body deformation-short circuit between electrodes") and between the positive electrode plate (mainly positive current collecting tab) and the negative electrode plate located below the positive terminal (see Fig. 4 X 1 ) was found to occur at two locations of the short-circuit between electrodes (hereinafter referred to as “short-circuit between electrodes”). Furthermore, when the relationship between these short-circuited locations and rupture and ignition was sought, the timing of short-circuit occurring at two locations X 1 and X 2 in the crushing process, that is, “can-deformed-electrode short-circuit” and “electrode It was found that the degree of rupture and ignition differed greatly depending on the timing of “short circuit”. That is, if a short circuit occurs first at X 2 out of X 1 and X 2 locations, and a short circuit does not occur immediately after X 1 locations, a dangerous state will not occur. However, on the contrary, or occurs a short circuit in the X 1 place earlier, a short circuit even X 1 in a short time a short-circuit on the X 2 points occurs is generated, it will induce severe rupture and fire. The reason for this is that the short circuit at X 2 is mainly a short circuit between the positive electrode active material and the negative electrode active material, and is a reaction that is not so severe, but the short circuit at X 1 is the metal part of the positive electrode and the negative electrode active material. Vigorous reaction occurs because of the reaction involving. Therefore, leading to an explosion or fire the battery when the short-circuit by X 1 point occurs are stored a lot of energy. However, when a short circuit occurs at X 1 location after a short circuit does not occur at X 1 location, or a short circuit occurs at X 2 location and a short circuit occurs at X 1 location, the energy is no longer enough to cause a violent reaction. It is considered that it does not lead to rupture or fire.

そこで、本発明者等は、縦圧壊試験に際して、X、Xの2箇所のうち最初にX箇所で短絡が起こり、X箇所での短絡が始まる時点で多くのエネルギーが消費されているようにすることで、破裂及び発火の危険性が無くなるとの知見を基に、最初にX箇所で短絡が生じるような構成が得られる条件について種々検討を重ねた。その結果、正極集電タブを所定の特性を有する電気絶縁性の保護テープで被覆すること、及び、組み立てた電池の縦方向の高さ、すなわち電池全高に対して、負極板の幅長及びこの負極板の端部と封口体の下部との距離を所定の割合にすれば、X箇所での短絡の発生をなくす、またはX箇所での短絡の発生を遅らせ得ることを見出し、本発明を完成させるに至ったものである。 Therefore, the present inventors, in the longitudinal crush test, first caused a short circuit at X 2 out of the two locations X 1 and X 2 , and much energy was consumed when the short circuit started at X 1. by the like being, on the basis of the finding that the risk of explosion and fire is eliminated and extensive studies of conditions that structure initially as a short circuit X 2 places results are obtained. As a result, the positive electrode current collecting tab is covered with an electrically insulating protective tape having predetermined characteristics, and the vertical length of the assembled battery, that is, the total length of the battery, the width of the negative electrode plate and this if the distance between the bottom of the negative electrode plate end portion and the sealing member in a predetermined ratio, eliminating the occurrence of a short circuit in the X 1 point, or found to be delayed occurrence of a short circuit in the X 1 point, the present invention It has come to be completed.

すなわち、本発明の目的は、筒状密閉型電池の安全性をさらに向上させ、この筒状密閉型電池を立設された状態において上方から押し潰すような厳しい条件下においても安全性が確保される密閉型電池を提供することにある。   That is, the object of the present invention is to further improve the safety of the cylindrical sealed battery, and the safety is ensured even under severe conditions such as crushing from above in a state where the cylindrical sealed battery is erected. An object of the present invention is to provide a sealed battery.

本発明の密閉型電池は、正極板及び負極板がセパレーターを介して互いに絶縁された状態で巻回された渦巻状電極体と、前記渦巻状電極体が収納された有底筒状の電池外装缶と、
前記電池外装缶の開口部に電気的に絶縁された状態で封止され、端子キャップ、安全弁機構及び端子板とを有する封口体と、
を備え、
前記正極板及び負極板の一方に形成された集電タブが前記端子板に電気的に接続された密閉型電池において、
前記集電タブは、耐熱温度が270℃以上、引張り強度が120N以上、突き刺し強度が9.8N以上の電気絶縁性の保護テープで被覆されていることを特徴とする。
The sealed battery of the present invention includes a spiral electrode body wound in a state where a positive electrode plate and a negative electrode plate are insulated from each other via a separator, and a bottomed cylindrical battery exterior housing the spiral electrode body Cans,
Sealed in an electrically insulated state at the opening of the battery outer can, and having a terminal cap, a safety valve mechanism and a terminal plate,
With
In a sealed battery in which a current collecting tab formed on one of the positive electrode plate and the negative electrode plate is electrically connected to the terminal plate,
The current collecting tab is covered with an electrically insulating protective tape having a heat resistant temperature of 270 ° C. or higher, a tensile strength of 120 N or higher, and a puncture strength of 9.8 N or higher.

端子板に接続されている側の集電タブが、耐熱性が270℃以上、引張り強度が120N以上、突き刺し強度が9.8N以上の電気絶縁性の保護テープで覆われていると、電池が上方から押し潰されたときにも、電池外装缶と電極との間で短絡が起こるまで、この保護テープにより絶縁性が確保される。従って、本発明の密閉型電池によれば、電池が上方から押し潰されたとき、X箇所での短絡の発生をなくす、またはX箇所での短絡の発生を遅らせることができるので、激しい反応を引き起こす正極の金属部分と負極活物質との短絡が抑制されるので、破裂及び発火の恐れがなくなり、より安全性が向上する。 If the current collecting tab connected to the terminal plate is covered with an electrically insulating protective tape having a heat resistance of 270 ° C. or higher, a tensile strength of 120 N or higher, and a piercing strength of 9.8 N or higher, Even when crushed from above, this protective tape ensures insulation until a short circuit occurs between the battery outer can and the electrode. Therefore, according to the sealed battery of the present invention, when the battery is crushed from above, eliminating the occurrence of a short circuit in the X 1 point, or it is possible to delay the occurrence of a short circuit in the X 1 point, severe Since a short circuit between the metal part of the positive electrode causing the reaction and the negative electrode active material is suppressed, there is no risk of rupture and ignition, and safety is further improved.

なお、本発明にいう「電池の上方」とは、筒状電池を立設したときの上方向を意味する。また、本発明における「耐熱温度が270℃以上、引張り強度が120N以上、突き刺し強度が9.8N以上の電気絶縁性の保護テープ」としてはポリイミドからなるものを使用し得る。   In the present invention, “above the battery” means the upward direction when the cylindrical battery is erected. In addition, as the “electrically insulating protective tape having a heat resistant temperature of 270 ° C. or higher, a tensile strength of 120 N or higher, and a puncture strength of 9.8 N or higher” in the present invention, a tape made of polyimide can be used.

本発明の密閉型電池においては、前記集電タブは前記保護テープによって前記電池外装缶内の前記集電タブの少なくとも前記負極板の幅に相当する部分が被覆されていることが好ましい。   In the sealed battery of the present invention, it is preferable that the current collecting tab is covered with the protective tape at least a portion corresponding to the width of the negative electrode plate of the current collecting tab in the battery outer can.

集電タブが保護テープによって電池外装缶内の前記集電タブの少なくとも前記負極板の幅に相当する部分が被覆されていれば、電池が電池の上方から押し潰されても、長時間、この保護テープにより絶縁性が確保されるため、電池外装缶と電極との間で短絡が起こるまで絶縁性を維持することができるようになる。そのため、本発明の密閉型電池によれば、より安全性が向上した密閉電池が得られるようになる。そして、集電タブは保護テープによって前記負極板の幅に相当する部分より長い部分が被覆されていることがより好ましく、前記セパレータの幅に相当する部分より長い部分が被覆されていることがさらに好ましい。しかし、保護テープを集電タブが外装缶や端子板に溶接される部分にまで被覆すると、溶接の妨げになるので好ましくない。   If the current collecting tab is covered with a protective tape at least a portion corresponding to the width of the negative electrode plate of the current collecting tab in the battery outer can, even if the battery is crushed from above the battery, Since the insulating property is secured by the protective tape, the insulating property can be maintained until a short circuit occurs between the battery outer can and the electrode. Therefore, according to the sealed battery of the present invention, a sealed battery with improved safety can be obtained. The current collecting tab is more preferably covered with a protective tape at a portion longer than the portion corresponding to the width of the negative electrode plate, and the portion longer than the portion corresponding to the width of the separator is further covered. preferable. However, it is not preferable to cover the protective tape up to the portion where the current collecting tab is welded to the outer can or the terminal plate, because this hinders welding.

また、本発明の密閉型電池においては、前記負極板の巻回方向と直交する方向の幅を前記密閉型電池の長さに対して89%以上とし、前記負極板の上部から前記封口体下部までの距離を前記密閉型電池の長さに対して3.7%以上に設定することが好ましい。   In the sealed battery of the present invention, the width in the direction perpendicular to the winding direction of the negative electrode plate is 89% or more with respect to the length of the sealed battery, and the upper part of the negative electrode plate to the lower part of the sealing body Is preferably set to 3.7% or more with respect to the length of the sealed battery.

負極板の巻回方向と直交する方向の幅を前記密閉型電池の長さに対して89%以上とし、前記負極板の上部から前記封口体下部までの距離を前記密閉型電池の長さに対して3.7%以上に設定すると、電池が上方から押し潰されたとき、物理的に集電タブが端子板に接続されている側の電極と他方の電極との間で短絡が生じる前に電池外装缶の変形により正・負極電極との間で短絡が発生しやすくなる。そのため、本発明の上記効果がバラツキなく生じるようになる。   The width in the direction perpendicular to the winding direction of the negative electrode plate is 89% or more of the length of the sealed battery, and the distance from the upper part of the negative electrode plate to the lower part of the sealing body is the length of the sealed battery. On the other hand, when the battery is set to 3.7% or more, when the battery is crushed from above, the current collector tab is physically short-circuited between the electrode connected to the terminal plate and the other electrode. In addition, the deformation of the battery outer can easily causes a short circuit between the positive and negative electrodes. For this reason, the above-described effects of the present invention are produced without variation.

また、本発明の密閉型電池においては、前記安全弁機構は、前記電池外装缶内の圧力の上昇により変形して前記端子板と前記端子キャップとの間の電気的接続を遮断する通電回路遮断機構を備え、前記端子キャップ及び前記端子板にはガス抜き経路となるか開口が形成されていることが好ましい。   Further, in the sealed battery according to the present invention, the safety valve mechanism is deformed by an increase in pressure in the battery outer can and interrupts an electrical connection between the terminal plate and the terminal cap. It is preferable that the terminal cap and the terminal plate have a gas vent path or have an opening.

本発明の密閉型電池によれば、封口体に内圧の異常上昇により通電回路を遮断する通電回路遮断機構及びガス抜き経路を設けたので、電池外装缶内の内圧の過剰な上昇を抑制でき、破裂或いは発火を未然に防止することができる。また、金属製の端子キャップを肉厚、例えば、カシメ型封口体の厚みの2倍以上にすることにより、立設した状態で押し潰されても、所定の機械的強度を維持できる。   According to the sealed battery of the present invention, since the energizing circuit shut-off mechanism and the gas vent path for shutting off the energizing circuit due to an abnormal increase in internal pressure are provided in the sealing body, it is possible to suppress an excessive increase in the internal pressure in the battery outer can, Rupture or ignition can be prevented in advance. Further, by making the metal terminal cap thicker than, for example, twice the thickness of the caulking type sealing body, a predetermined mechanical strength can be maintained even when the metal terminal cap is crushed in a standing state.

また、本発明の密閉型電池においては、前記封口体は、前記端子キャップ、安全弁機構及び端子板がそれぞれ積層配置され、ガスケットを介して外装缶の開放端部を用いてこれらの部品がカシメられる積層型封口体であることが好ましい。   In the sealed battery of the present invention, the sealing body includes the terminal cap, the safety valve mechanism, and the terminal plate stacked, and these parts are caulked using the open end portion of the outer can through the gasket. A laminated sealing body is preferred.

密閉型電池の封口体としては、端子キャップ、安全弁機構が端子板を用いてカシメ封止され、さらにカシメられた封口体を外装缶の開口端部でカシメたカシメ封止型のもの及び積層状態で組み立てられている積層型のものの両者が周知である。しかしながら、積層型の封口体は、電池外装缶内の圧力が上昇した状態でガスを放出する手段が電極体の溶融物等で詰まったときがあっても、更なる圧力上昇に対して各積層部品との間に熱や変形などに伴い生じる隙間にガス抜き経路が確保されるので、電池外装缶内の内圧の過剰な上昇を抑制できる。そのため、積層型の封口体を使用した本発明の密閉電池によれば、上記効果が顕著に奏されるようになる。   As a sealing body of a sealed battery, a terminal cap and a safety valve mechanism are caulked and sealed using a terminal plate, and the caulked sealing body is caulked at the opening end of an outer can and a laminated state Both of the stacked types assembled in are well known. However, even if the means for releasing the gas is clogged with the melt of the electrode body in the state in which the pressure in the battery outer can is increased, the laminated type sealing body is not subject to further increase in pressure. Since a gas venting path is secured in a gap generated due to heat, deformation, or the like between the parts, an excessive increase in internal pressure in the battery outer can can be suppressed. Therefore, according to the sealed battery of the present invention using the laminated sealing body, the above effect is remarkably exhibited.

以下、本願発明を実施するための最良の形態を実施形態及び比較例と共に図1〜3を参照して詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための密閉型電池として非水電解質二次電池を例示して説明するものであって、本発明をこの非水電解質二次電池に特定することを意図するものではなく特許請求の範囲に示した技術思想を逸脱することなくその他の密閉型電池にも等しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIGS. However, the embodiment shown below illustrates and explains a nonaqueous electrolyte secondary battery as a sealed battery for embodying the technical idea of the present invention, and the present invention is not limited to this nonaqueous electrolyte secondary battery. The invention is not intended to be specified as a battery, and can be equally applied to other sealed batteries without departing from the technical idea shown in the claims.

図1は本発明の実施形態に係る非水電解質二次電池の縦断面図である。図2は正極板の集電タブ取り付け部分を負極板及びセパレーターと共に示す平面図である。図3は図1の封口体の縦断面図である。図4は従来の円筒形非水電解質二次電池の断面図である。   FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. FIG. 2 is a plan view showing a current collecting tab attachment portion of the positive electrode plate together with the negative electrode plate and the separator. FIG. 3 is a longitudinal sectional view of the sealing body of FIG. FIG. 4 is a cross-sectional view of a conventional cylindrical nonaqueous electrolyte secondary battery.

まず、図1を参照して、本発明の実施形態に係る非水電解質二次電池を説明する。この非水電解質二次電池1は、正極板2と負極板3とが二枚のセパレーター4を介して巻回された渦巻状電極体5と、この渦巻状電極体5及び所定量の電解液を収容できる大きさを有し上方が開口した有底円筒形の電池外装缶6と、この電池外装缶6の上方開口6cを塞ぐ封口体10とを有している。これらの部品のうち、負極板3は、長手方向と直交する方向に所定の幅長を有する負極集電体に負極活物質層が形成された構成を有している。   First, a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described with reference to FIG. The non-aqueous electrolyte secondary battery 1 includes a spiral electrode body 5 in which a positive electrode plate 2 and a negative electrode plate 3 are wound via two separators 4, and the spiral electrode body 5 and a predetermined amount of electrolyte. The bottomed cylindrical battery outer can 6 is large enough to accommodate the battery and the upper opening 6c of the battery outer can 6 is closed. Among these components, the negative electrode plate 3 has a configuration in which a negative electrode active material layer is formed on a negative electrode current collector having a predetermined width in a direction orthogonal to the longitudinal direction.

さらに、正極板2には正極集電タブ2aが、負極板3には負極集電タブ3a(図1参照)が、それぞれ溶接されている。そのうち、正極集電タブ2aには、図2に示すように、所定の特性を有する保護テープ(以下、「正極タブ保護テープ」という)7で覆われている。この正極タブ保護テープ7は、組み立てられた電池組立体が立設された状態において、上方から押し潰されたときに、まず、電池外装缶6が変形して正・負極電極の短絡が起こる前に正極集電タブ2aと負極板3との間に短絡が発生しない状態とすることができる特性を有する絶縁材料で形成されている。この正極タブ保護テープ7としては、具体的には、耐熱性が270℃以上、引張り強度が120N以上、突き刺し強度が9.8N以上の電気絶縁性のテープであって、例えばポリイミドテープが使用される。   Further, the positive electrode current collecting tab 2a is welded to the positive electrode plate 2, and the negative electrode current collecting tab 3a (see FIG. 1) is welded to the negative electrode plate 3, respectively. Among them, the positive electrode current collecting tab 2a is covered with a protective tape (hereinafter referred to as “positive electrode tab protective tape”) 7 having predetermined characteristics, as shown in FIG. When the assembled battery assembly is erected, the positive electrode tab protective tape 7 is first deformed when the battery outer can 6 is deformed and before the positive and negative electrodes are short-circuited. Further, it is formed of an insulating material having a characteristic that can prevent a short circuit from occurring between the positive electrode current collecting tab 2a and the negative electrode plate 3. Specifically, the positive electrode tab protection tape 7 is an electrically insulating tape having a heat resistance of 270 ° C. or more, a tensile strength of 120 N or more, and a puncture strength of 9.8 N or more, and for example, a polyimide tape is used. The

この非水電解質二次電池1は、電池外装缶6に封口体10が装着されて組み立てられた状態での長手方向の長さ、すなわち、立設した状態では底部から頂部までの全体の高さ(以下、「電池全高」という)をHとした場合に、電池全高Hに対して負極板幅H及び封口体10の下部と負極板上部間の隙間Hが所定の割合になるように構成されている。すなわち、電池全高Hを100%として、負極板幅Hが89%以上及び隙間Hが3.7%以上に設定されている。 The non-aqueous electrolyte secondary battery 1 has a length in the longitudinal direction in a state where the sealing body 10 is attached to the battery outer can 6 and assembled, that is, the entire height from the bottom to the top in the standing state. (Hereinafter referred to as “battery total height”) is H 1 , the negative electrode plate width H 4 and the gap H 3 between the lower part of the sealing body 10 and the upper part of the negative electrode plate are a predetermined ratio with respect to the total battery height H 1 It is configured as follows. That is, the battery total height H 1 as 100%, the negative electrode plate width H 4 89% or more and the gap H 3 is set to more than 3.7%.

このような構成とすることにより、立設された状態で上方から押し潰されても、物理的に、最初に電池外装缶6が変形して正極板2と負極板3(図1のX箇所)との間で短絡が発生し、電池外装缶6の内部で発生したガスがこの箇所から外部へ放出されて内圧の異常上昇が回避される。これにより、破裂及び発火が防止される。その後、正極タブが接続された箇所(図1のX箇所)で正負電極間の短絡が起こっても、内部の圧力が異常上昇することがなくなるので、破裂及び発火の恐れがなくなり、より安全性が向上すことになる。 By adopting such a configuration, even when crushed from above in an upright state, the battery outer can 6 is first physically deformed to cause the positive electrode plate 2 and the negative electrode plate 3 (X 2 in FIG. 1). And a gas generated inside the battery outer can 6 is released to the outside from this location, and an abnormal increase in internal pressure is avoided. This prevents rupture and ignition. Then, even in the event a short circuit between the positive and negative electrodes at the point where the positive electrode tab is connected (X 1 point in FIG. 1), since there is no the internal pressure rises abnormally, there is no possibility of explosion and fire, safer Will be improved.

次に、図2を参照して、正極板2及びこの正極板2への正極タブ保護テープ7の貼付状態を説明する。正極板2は、長さ方向に所定の長さ及びこの方向と直交する方向に所定の幅長を有する帯状の正極集電体2cと、正極集電体2cの少なくとも一面に塗布された正極活物質層2bとを有し、また、正極集電体2cには部分的に正極活物質層が塗布されていない無地部2dが形成されている。この無地部2dには、正極集電タブ2aが溶接されている。この正極集電タブ2aは正極タブ保護テープ7で覆われている。この正極タブ保護テープ7は、耐熱性が270℃以上、引張り強度が120N以上及び突き刺し強度が9.8N以上の電気絶縁テープ、例えばポリイミドテープで形成される。   Next, with reference to FIG. 2, the sticking state of the positive electrode plate 2 and the positive electrode tab protection tape 7 to this positive electrode plate 2 is demonstrated. The positive electrode plate 2 includes a strip-like positive electrode current collector 2c having a predetermined length in the length direction and a predetermined width length in a direction orthogonal to this direction, and a positive electrode active material applied to at least one surface of the positive electrode current collector 2c. The positive electrode current collector 2c is formed with a plain portion 2d that is not partially coated with the positive electrode active material layer. A positive electrode current collecting tab 2a is welded to the plain portion 2d. The positive electrode current collecting tab 2 a is covered with a positive electrode tab protective tape 7. The positive electrode tab protection tape 7 is formed of an electrical insulating tape having a heat resistance of 270 ° C. or more, a tensile strength of 120 N or more, and a puncture strength of 9.8 N or more, for example, a polyimide tape.

負極板3は、正極板2と略同じ長さ及び幅長が若干長い帯状の負極集電体と、この集電体の少なくとも一面に塗布された負極活物質層とを有し、端部はこの活物質が塗布されない無地部となっている。この無地部には、負極集電タブ3aが溶接されている。この負極板の幅長Hは、その幅長が組み立てた電池の全高さH(100%)に対して、89%以上の長さのものが使用されている。 The negative electrode plate 3 has a strip-shaped negative electrode current collector that is slightly longer in length and width than the positive electrode plate 2, and a negative electrode active material layer applied to at least one surface of the current collector. It is a plain part where this active material is not applied. A negative electrode current collecting tab 3a is welded to the plain portion. The width H 4 of this negative electrode plate is 89% or more of the total height H 1 (100%) of the assembled battery.

これらの正極板2及び負極板3は、間にそれぞれセパレーター4を介在させて、渦巻状に巻回して渦巻状電極体5が形成される。   The positive electrode plate 2 and the negative electrode plate 3 are each wound in a spiral shape with a separator 4 interposed therebetween to form a spiral electrode body 5.

電池外装缶6は、この渦巻状電極体5及び所定量の電解液を収容できる大きさを有し、上方が開口した有底で円形筒状体からなり、例えばニッケルメッキしたスチール材で形成されている。この電池外装缶6は、円形の底部6bと、この底部の周囲から立設した側壁部6aと、上方の開口6cとを有している。底部の板厚dは、例えば0.4mmである。 The battery outer can 6 has a size capable of accommodating the spiral electrode body 5 and a predetermined amount of electrolyte, and is formed of a bottomed circular cylinder with an opening at the top, and is formed of, for example, a nickel-plated steel material. ing. The battery outer can 6 has a circular bottom 6b, a side wall 6a erected from the periphery of the bottom, and an upper opening 6c. Thickness d 1 of the bottom is, for example, 0.4 mm.

次に、図3を参照して、封口体10の構成を説明する。封口体10は、図3に示すように、逆皿状(キャップ状)に形成された鉄製の端子キャップ11と、皿状に形成されたアルミニウム製の端子板12とから構成されている。端子キャップ11は、電池外部に向けて膨出する凸部11aと、この凸部の底辺部を構成する平板状のフランジ部11bとからなり、凸部11aの角部には複数のガス抜き孔11cが設けられている。この端子キャップ11は、比較的肉厚の鉄板を打抜き加工し、表面にニッケルメッキを施し、カシメ型封口体の2倍の厚み有するものを使用し、高い機械的強度を有するものとなっている。また、側面のガス抜き孔11cの大きさは、カシメ型封口体のガス抜き孔に対して面積比で少なくとも3倍以上にすることが好ましい。   Next, the structure of the sealing body 10 is demonstrated with reference to FIG. As shown in FIG. 3, the sealing body 10 includes an iron terminal cap 11 formed in an inverted dish shape (cap shape) and an aluminum terminal plate 12 formed in a dish shape. The terminal cap 11 includes a convex portion 11a that bulges toward the outside of the battery, and a flat plate-like flange portion 11b that constitutes the bottom side of the convex portion, and a plurality of gas vent holes are formed at the corners of the convex portion 11a. 11c is provided. The terminal cap 11 has a high mechanical strength by punching a relatively thick iron plate, applying nickel plating to the surface, and having a thickness twice that of the caulking type sealing body. . Further, the size of the side vent hole 11c is preferably at least three times as large as the area ratio of the vent hole of the caulking type sealing body.

一方、端子板12は、電池内部に向けて膨出する凹部12aと、この凹部の底辺部を構成する平板状のフランジ部12bとからなる。凹部12aの角部にはガス抜き孔12cが設けられている。そして、これらの端子キャップ11と端子板12との内部には、電池内部のガス圧が上昇して所定の圧力以上になると変形する安全弁としての機能を奏する例えばアルミニウム製の弁体13が収容されている。   On the other hand, the terminal plate 12 includes a recess 12a that bulges toward the inside of the battery, and a flat flange portion 12b that constitutes the bottom side of the recess. Gas vent holes 12c are provided at the corners of the recess 12a. The terminal cap 11 and the terminal plate 12 accommodate, for example, an aluminum valve body 13 that functions as a safety valve that deforms when the gas pressure inside the battery rises and exceeds a predetermined pressure. ing.

端子板12の凹部12aの中央部は周囲よりも厚さが薄くされた支持部12a'(厚さ0.1〜0.5mm)が形成され、この支持部12a'には薄肉(0.02〜0.15mm)にされたノッチ12dが形成されている。このノッチ12dは、電池の内圧が上昇した際、弁体13の変形に伴って、弁体13に溶接された端子板12の凹部の支持部12a'がこのノッチ12d部分から優先的に破断され、端子キャップ11と端子板12の電気的接続が遮断されるように設けられる。これにより、異常反応が継続して電池内圧が過大となることが防止される。   A support portion 12a ′ (thickness of 0.1 to 0.5 mm) having a thickness thinner than that of the periphery is formed in the central portion of the concave portion 12a of the terminal plate 12, and the support portion 12a ′ is thin (0.02). A notch 12d having a thickness of about 0.15 mm is formed. When the internal pressure of the battery rises, the notch 12d is preferentially broken from the notch 12d portion by the support portion 12a ′ of the recessed portion of the terminal plate 12 welded to the valve body 13 as the valve body 13 is deformed. The terminal cap 11 and the terminal plate 12 are provided to be disconnected from each other. This prevents the abnormal reaction from continuing and the battery internal pressure from becoming excessive.

この弁体13は凹部13aとフランジ部13bとからなり、例えば、厚みが0.3mm〜0.5mmのアルミニウム金属から構成されている。弁体13のフランジ部13bと端子キャップ11のフランジ部11bとは、間に中間材(クラッド材)が介在されてアルミ材と鉄材とが溶接されている。弁体13の凹部13aの最低部は、端子板12の凹部12aの支持部12a'の表面に接触するように配設され、支持部12a'に溶接されている。   This valve body 13 consists of the recessed part 13a and the flange part 13b, for example, is comprised from the aluminum metal whose thickness is 0.3 mm-0.5 mm. An intermediate material (clad material) is interposed between the flange portion 13b of the valve body 13 and the flange portion 11b of the terminal cap 11, and the aluminum material and the iron material are welded. The lowest part of the recess 13a of the valve body 13 is disposed so as to contact the surface of the support 12a ′ of the recess 12a of the terminal plate 12, and is welded to the support 12a ′.

また、弁体13には、凹部13aを囲むように、部分的に薄肉となるようにノッチ13cが形成されている。このノッチ13cは、電池の内圧が大きく上昇した際、弁体13がこのノッチ13c部分から破断して、電池内圧が過大とならないようにするために設けられる。   The valve body 13 is formed with a notch 13c so as to be partially thin so as to surround the recess 13a. The notch 13c is provided to prevent the valve body 13 from being broken from the notch 13c when the internal pressure of the battery is greatly increased, so that the internal pressure of the battery does not become excessive.

更に、弁体13のフランジ部13bは、端子キャップ11のフランジ部11bと端子板12のフランジ部12bとの間に環状の絶縁体14を介して狭持されている。この絶縁体14は、例えば、両面に糊剤が塗布されて固定される。   Further, the flange portion 13 b of the valve body 13 is sandwiched between the flange portion 11 b of the terminal cap 11 and the flange portion 12 b of the terminal plate 12 via an annular insulator 14. The insulator 14 is fixed, for example, by applying a paste on both sides.

更に、端子キャップ11のフランジ部11b、弁体13のフランジ部13b及び端子板12のフランジ部12bは、例えばポリプロピレン製の絶縁ガスケット15(図1参照)を介して電池外装缶6の開放端部に挿入され、電池外装缶6の上端部付近を端子キャップ11側にカシメることにより、電池外装缶6の開口6cに液密に封口される。なお、カシメ部の厚みは従来のカシメ型封口体の二分の一になる。   Further, the flange portion 11b of the terminal cap 11, the flange portion 13b of the valve body 13 and the flange portion 12b of the terminal plate 12 are, for example, open end portions of the battery outer can 6 via an insulating gasket 15 (see FIG. 1) made of polypropylene. The battery outer can 6 is liquid-tightly sealed in the opening 6c of the battery outer can 6 by caulking the vicinity of the upper end portion of the battery outer can 6 to the terminal cap 11 side. In addition, the thickness of a crimping part becomes a half of the conventional crimping type sealing body.

この構造により、この非水電解質二次電池10は、電池内部のガス圧が上昇して所定の圧力以上になると弁体13の凹部13aが変形することにより端子板12の凹部12aがノッチ12dから破断されて、弁体13と端子板12との間の電気的接触が遮断されて電流が遮断される。これにより、この封口体は電流遮断(Current Interrupt Device)機能を有するものとなっている。   With this structure, the non-aqueous electrolyte secondary battery 10 is configured such that when the gas pressure inside the battery rises and exceeds a predetermined pressure, the recess 13a of the valve body 13 is deformed, so that the recess 12a of the terminal plate 12 is removed from the notch 12d. By being broken, the electrical contact between the valve body 13 and the terminal plate 12 is interrupted and the current is interrupted. Thereby, this sealing body has a current interruption device (Current Interrupt Device) function.

次に、図1〜図3を参照して非水電解質二次電池1の組み立てを説明する。この非水電解質二次電池を組み立てるには、この電池外装缶6内に、絶縁板8、渦巻状電極体5及び絶縁板9の順に挿入し、負極集電タブ3aを電池外装缶6の底部6bに溶接する。電池外装缶6は、負極集電タブ3aが電池外装缶6に溶接されているので、負極端子を兼ねることになる。そして開口部付近をビーディング加工により凹み6dを形成する。次いで、封口体10に設けた端子板12に正極集電タブ2aを溶接する。その後、電池外装缶6の開口6cから所定量の非水電解液を注入した後に、電池外装缶6の開口6cに封口体10を嵌め込み、封口体10と電池外装缶6との間に絶縁ガスケット15を介在させ、電池外装缶6の開口6cの近傍をカシメることにより、封口体10を電池外装缶6の開口6cに封止する。   Next, the assembly of the nonaqueous electrolyte secondary battery 1 will be described with reference to FIGS. In order to assemble this non-aqueous electrolyte secondary battery, the insulating plate 8, the spiral electrode body 5 and the insulating plate 9 are inserted in this battery outer can 6 in this order, and the negative electrode current collecting tab 3 a is connected to the bottom of the battery outer can 6. Weld to 6b. Since the battery outer can 6 has the negative electrode current collecting tab 3a welded to the battery outer can 6, the battery outer can 6 also serves as a negative electrode terminal. Then, a recess 6d is formed in the vicinity of the opening by beading. Next, the positive electrode current collecting tab 2 a is welded to the terminal plate 12 provided on the sealing body 10. Then, after injecting a predetermined amount of nonaqueous electrolyte from the opening 6 c of the battery outer can 6, the sealing body 10 is fitted into the opening 6 c of the battery outer can 6, and an insulating gasket is provided between the sealing body 10 and the battery outer can 6. 15 is interposed, and the sealing body 10 is sealed in the opening 6 c of the battery outer can 6 by crimping the vicinity of the opening 6 c of the battery outer can 6.

この組み立て工程において、負極板3の上部から封口体10下方の端子板12までの隙間Hは、組み立て体の電池全高H(100%)に対して3.7%以上に調節される。すなわち、組み立て体の電池全高H、負極板3の縦方向の高さH、隙間をHとして、電池全高Hに対するH及びHの比率は、Hを100%として、Hが89%以上及びHが3.7%以上になるように調節される。なお、電池外装缶6の底部の厚さをd1、底部の絶縁板8の厚さをd2とすると、H=H+H+H+d+dである。 In this assembly process, the gap H 3 from the upper part of the negative electrode plate 3 to the terminal plate 12 below the sealing body 10 is adjusted to 3.7% or more with respect to the total battery height H 1 (100%) of the assembly. That is, the battery of the assembly total height H 1, the vertical height H 4 of the negative electrode plate 3, a gap as H 3, the ratio of H 4 and H 3 to the battery total height H 1 is the H 1 as 100%, H 4 is adjusted to 89% or more and H 3 is adjusted to 3.7% or more. If the thickness of the bottom of the battery outer can 6 is d1, and the thickness of the insulating plate 8 at the bottom is d2, then H 1 = H 2 + H 3 + H 4 + d 1 + d 2 .

また、封口体10は、より安全性が高いものとなっている。すなわち、圧壊により図3の矢印A1箇所が塞がれても、内部圧力の上昇により、この圧力が矢印A2方向に作用して絶縁板14を移動させて、この部分にガス通路が形成されて矢印A3から外部へ放出される。以下に、本発明の実施例を説明する。   Moreover, the sealing body 10 has a higher safety. That is, even if the location of the arrow A1 in FIG. 3 is blocked by the crushing, this pressure acts in the direction of the arrow A2 due to the increase in internal pressure, and the insulating plate 14 is moved to form a gas passage in this portion. Released from the arrow A3. Examples of the present invention will be described below.

実施例の非水電解質二次電池は以下の部材を用いて作製した。封口体10としては、図3に示した構成の積層型封口体10を使用した。この封口体10は、端子キャップ11が鉄材で形成され、端子板12と弁体(ラプチャーディスク)13との間に絶縁体14を配設した構成を備えている。正極タブ保護テープ7は、厚み30μmのポリイミドテープを使用した。これらの部材を使用して、円筒形の直径18mm×長さ65mmの18650系の容量非水電解質二次電池(設計容量:1200mAh)を作成した。なお、この実施例1の各部の寸法を表1にまとめて示した。   The non-aqueous electrolyte secondary battery of the example was manufactured using the following members. As the sealing body 10, the laminated sealing body 10 having the configuration shown in FIG. 3 was used. The sealing body 10 has a configuration in which a terminal cap 11 is made of an iron material, and an insulator 14 is disposed between a terminal plate 12 and a valve body (rupture disk) 13. As the positive electrode tab protective tape 7, a polyimide tape having a thickness of 30 μm was used. Using these members, a 18650 series capacity nonaqueous electrolyte secondary battery (design capacity: 1200 mAh) having a cylindrical diameter of 18 mm and a length of 65 mm was produced. The dimensions of each part of Example 1 are summarized in Table 1.

そして、比較例1の非水電解質二次電池は、封口体として従来から汎用されているカシメ型封口体にし、正極タブ保護テープにポリプロピレンテープ(厚み30μm)を使用した以外は実施例のものと同様の構成の非水電解質二次電池とした。また、比較例2の非水電解質二次電池は、封口体として従来から汎用されているカシメ型封口体にし、正極タブ保護テープにポリプロピレンテープ(厚み30μm)を使用した以外は実施例のものと同様の構成の非水電解質二次電池とした。更に、比較例3の非水電解質二次電池は、正極タブ保護テープにポリプロピレンテープ(厚み30μm)を使用した以外は実施例のものと同様の構成の非水電解質二次電池とした。なお、実施例及び比較例2で使用したポリイミドテープ及び比較例1及び3で使用したポリプロピレンテープの物性を表1に纏めて示した。   The nonaqueous electrolyte secondary battery of Comparative Example 1 is the same as that of the example except that a caulking type sealing body that has been widely used as a sealing body and a polypropylene tape (thickness 30 μm) is used for the positive electrode tab protection tape. A non-aqueous electrolyte secondary battery having the same configuration was obtained. Further, the nonaqueous electrolyte secondary battery of Comparative Example 2 is the same as that of the example except that a caulking type sealing body that has been widely used as a sealing body and a polypropylene tape (thickness 30 μm) is used as the positive electrode tab protection tape. A non-aqueous electrolyte secondary battery having the same configuration was obtained. Furthermore, the nonaqueous electrolyte secondary battery of Comparative Example 3 was a nonaqueous electrolyte secondary battery having the same configuration as that of the example except that a polypropylene tape (thickness 30 μm) was used for the positive electrode tab protection tape. The physical properties of the polyimide tapes used in Examples and Comparative Example 2 and the polypropylene tapes used in Comparative Examples 1 and 3 are shown in Table 1.

[縦圧壊試験]
上述のようにして組み立てられた実施例、比較例1〜3の非水電解質二次電池をそれぞれ10個ずつ用意し、1It=1200mAの定電流で電池電圧が4.2Vなるまで充電し、電池電圧が4.2Vに達した後は4.2Vの定電圧で電流が1/50It=26mAになるまで充電し、満充電状態とした。このようにして満充電状態としたそれぞれの電池を、平らな鉄板上に封口体が上になるように立設し、封口体側から金属製の測定ヘッドを1mm/secの速度で長手方向に押しつけることにより縦圧壊試験を行い、それぞれの電池の破壊状態を調査した。結果を纏めて表2に示した。
[Vertical crush test]
Ten nonaqueous electrolyte secondary batteries of Examples and Comparative Examples 1 to 3 assembled as described above were prepared, charged at a constant current of 1 It = 1200 mA until the battery voltage reached 4.2 V, and the battery After the voltage reached 4.2 V, the battery was charged at a constant voltage of 4.2 V until the current reached 1/50 It = 26 mA, and the battery was fully charged. Each battery thus fully charged is erected on a flat iron plate with the sealing body facing up, and the metal measuring head is pressed in the longitudinal direction from the sealing body side at a speed of 1 mm / sec. A vertical crush test was conducted to investigate the state of destruction of each battery. The results are summarized in Table 2.

Figure 2009245650
Figure 2009245650

Figure 2009245650
Figure 2009245650

表2に示した結果から明らかなように、この実施例に係る非水電解質二次電池は、安全性が向上していることが実証された。なお、上記実施例、比較例1〜3では、正極板が封口体に接続され、負極板が電池外装缶に接続されている例を示したが、この配置を逆にしても同様の効果が奏される。   As is clear from the results shown in Table 2, it was demonstrated that the nonaqueous electrolyte secondary battery according to this example had improved safety. In the above Examples and Comparative Examples 1 to 3, the example in which the positive electrode plate is connected to the sealing body and the negative electrode plate is connected to the battery outer can has the same effect even if this arrangement is reversed. Played.

本発明の実施形態に係る非水電解質二次電池の縦断面図である。It is a longitudinal cross-sectional view of the nonaqueous electrolyte secondary battery which concerns on embodiment of this invention. 正極板の集電タブ取り付け部分を負極板及びセパレーターと共に示す平面図である。It is a top view which shows the current collection tab attachment part of a positive electrode plate with a negative electrode plate and a separator. 封口体の縦断面図である。It is a longitudinal cross-sectional view of a sealing body. 従来の円筒形非水電解質二次電池の断面図である。It is sectional drawing of the conventional cylindrical nonaqueous electrolyte secondary battery.

符号の説明Explanation of symbols

1:非水電解質二次電池(密閉型電池) 2:正極板 2a:正極集電タブ 2b:正極活物質 2c:正極集電体 2d:無地部 3:負極板 4:セパレーター 5:渦巻状電極体 6:外装缶 6a:開口 7:正極タブ保護テープ 8、9:絶縁板 10:封口体 11:正極端子 12:端子板 13:安全弁 14:絶縁体 15:ガスケット X、X:短絡発生箇所 1: nonaqueous electrolyte secondary battery (sealed battery) 2: positive electrode plate 2a: positive electrode current collector tab 2b: positive electrode active material 2c: positive electrode current collector 2d: plain part 3: negative electrode plate 4: separator 5: spiral electrode body 6: outer can 6a: opening 7: positive electrode tab protective tape 8,9: insulating plate 10: sealing member 11: positive terminal 12: terminal board 13: safety valve 14: insulator 15: gasket X 1, X 2: short circuit Point

Claims (5)

正極板及び負極板がセパレーターを介して互いに絶縁された状態で巻回された渦巻状電極体と、
前記渦巻状電極体が収納された有底筒状の電池外装缶と、
前記電池外装缶の開口部に電気的に絶縁された状態で封止され、端子キャップ、安全弁機構及び端子板とを有する封口体と、
を備え、
前記正極板及び負極板の一方に形成された集電タブが前記端子板に電気的に接続された密閉型電池において、
前記集電タブは、耐熱温度が270℃以上、引張り強度が120N以上、突き刺し強度が9.8N以上の電気絶縁性の保護テープで被覆されていることを特徴とする密閉型電池。
A spiral electrode body wound in a state where the positive electrode plate and the negative electrode plate are insulated from each other via a separator;
A bottomed cylindrical battery outer can containing the spiral electrode body;
Sealed in an electrically insulated state at the opening of the battery outer can, and having a terminal cap, a safety valve mechanism and a terminal plate,
With
In a sealed battery in which a current collecting tab formed on one of the positive electrode plate and the negative electrode plate is electrically connected to the terminal plate,
The sealed tab is covered with an electrically insulating protective tape having a heat resistant temperature of 270 ° C. or higher, a tensile strength of 120 N or higher, and a puncture strength of 9.8 N or higher.
前記集電タブは、前記保護テープによって前記電池外装缶内の前記集電タブの少なくとも前記負極板の幅に相当する部分が被覆されていることを特徴とする請求項1の記載の密閉型電池。   2. The sealed battery according to claim 1, wherein the current collecting tab covers at least a portion corresponding to the width of the negative electrode plate of the current collecting tab in the battery outer can with the protective tape. . 前記負極板の巻回方向と直交する方向の幅を前記密閉型電池の長さに対して89%以上とし、前記負極板の上部から前記封口体下部までの距離を前記密閉型電池の長さに対して3.7%以上に設定したことを特徴とする請求項1に記載の密閉型電池。   The width in the direction perpendicular to the winding direction of the negative electrode plate is 89% or more of the length of the sealed battery, and the distance from the upper part of the negative electrode plate to the lower part of the sealing body is the length of the sealed battery. The sealed battery according to claim 1, wherein the battery is set to 3.7% or more. 前記安全弁機構は、前記電池外装缶内の圧力の上昇により変形して前記端子板と前記端子キャップとの間の電気的接続を遮断する通電回路遮断機構を備え、前記端子キャップ及び前記端子板にはガス抜き経路となるか開口が形成されていることを特徴とする請求項1に記載の密閉型電池。   The safety valve mechanism includes an energization circuit shut-off mechanism that is deformed by an increase in pressure in the battery outer can and shuts off an electrical connection between the terminal plate and the terminal cap, and the terminal cap and the terminal plate The sealed battery according to claim 1, wherein the battery is a gas venting path or has an opening. 前記封口体は、前記端子キャップ、安全弁機構及び端子板がそれぞれ積層配置され、ガスケットを介して前記外装缶の開放端部を用いて前記端子キャップ、安全弁機構及び端子板がカシメられる積層型封口体であることを特徴とする請求項1〜4のいずれかに記載の密閉型電池。   The sealing body is a laminated sealing body in which the terminal cap, the safety valve mechanism, and the terminal plate are laminated and the terminal cap, the safety valve mechanism, and the terminal plate are caulked using the open end of the outer can via a gasket. The sealed battery according to claim 1, wherein the battery is a sealed battery.
JP2008088242A 2008-03-28 2008-03-28 Sealed battery Active JP5389368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088242A JP5389368B2 (en) 2008-03-28 2008-03-28 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088242A JP5389368B2 (en) 2008-03-28 2008-03-28 Sealed battery

Publications (2)

Publication Number Publication Date
JP2009245650A true JP2009245650A (en) 2009-10-22
JP5389368B2 JP5389368B2 (en) 2014-01-15

Family

ID=41307327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088242A Active JP5389368B2 (en) 2008-03-28 2008-03-28 Sealed battery

Country Status (1)

Country Link
JP (1) JP5389368B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046712A1 (en) * 2011-09-29 2013-04-04 パナソニック株式会社 Sealed secondary battery
WO2014064882A1 (en) * 2012-10-23 2014-05-01 三洋電機株式会社 Sealed-type secondary battery
WO2015146078A1 (en) * 2014-03-28 2015-10-01 三洋電機株式会社 Cylindrical sealed battery and battery pack
KR20160039803A (en) * 2014-10-02 2016-04-12 주식회사 엘지화학 Secondary Battery Top Cap Assembly
WO2017037981A1 (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP2017183539A (en) * 2016-03-30 2017-10-05 太陽誘電株式会社 Electrochemical device
CN107958789A (en) * 2016-10-18 2018-04-24 太阳诱电株式会社 Electrochemical device
JP2020053635A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP2020053634A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP2020053633A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
CN111448687A (en) * 2017-12-05 2020-07-24 松下知识产权经营株式会社 Secondary battery, insulating member, and positive electrode lead
CN113228377A (en) * 2018-12-28 2021-08-06 三洋电机株式会社 Cylindrical battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255532B1 (en) 2017-05-12 2021-05-25 주식회사 엘지에너지솔루션 Secondary battery and the method of manufacturing the same
KR102173754B1 (en) 2017-05-25 2020-11-04 주식회사 엘지화학 Secondary battery and the method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214665U (en) * 1988-07-07 1990-01-30
JPH10302751A (en) * 1997-04-30 1998-11-13 Fuji Film Selltec Kk Battery electrode and battery using the same
JP2000173657A (en) * 1998-10-01 2000-06-23 Sony Corp Solid electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214665U (en) * 1988-07-07 1990-01-30
JPH10302751A (en) * 1997-04-30 1998-11-13 Fuji Film Selltec Kk Battery electrode and battery using the same
JP2000173657A (en) * 1998-10-01 2000-06-23 Sony Corp Solid electrolyte battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9337459B2 (en) 2011-09-29 2016-05-10 Panasonic Intellectual Property Management Co., Ltd. Sealed secondary battery
WO2013046712A1 (en) * 2011-09-29 2013-04-04 パナソニック株式会社 Sealed secondary battery
WO2014064882A1 (en) * 2012-10-23 2014-05-01 三洋電機株式会社 Sealed-type secondary battery
JP2014086242A (en) * 2012-10-23 2014-05-12 Panasonic Corp Sealed secondary battery
CN104662704A (en) * 2012-10-23 2015-05-27 三洋电机株式会社 Sealed-type secondary battery
WO2015146078A1 (en) * 2014-03-28 2015-10-01 三洋電機株式会社 Cylindrical sealed battery and battery pack
US11824223B2 (en) 2014-03-28 2023-11-21 Panasonic Energy Co., Ltd. Cylindrical sealed battery and battery pack
US11233292B2 (en) 2014-03-28 2022-01-25 Sanyo Electric Co., Ltd. Cylindrical sealed battery and battery pack
KR101678735B1 (en) 2014-10-02 2016-11-23 주식회사 엘지화학 Secondary Battery Top Cap Assembly
KR20160039803A (en) * 2014-10-02 2016-04-12 주식회사 엘지화학 Secondary Battery Top Cap Assembly
US10153465B2 (en) 2014-10-02 2018-12-11 Lg Chem, Ltd. Top cap assembly for secondary battery
WO2017037981A1 (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
US11264635B2 (en) 2015-08-31 2022-03-01 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
JP2017183539A (en) * 2016-03-30 2017-10-05 太陽誘電株式会社 Electrochemical device
US10658124B2 (en) 2016-10-18 2020-05-19 Taiyo Yuden Co., Ltd. Electrochemical device
CN107958789B (en) * 2016-10-18 2020-06-16 太阳诱电株式会社 Electrochemical device
CN107958789A (en) * 2016-10-18 2018-04-24 太阳诱电株式会社 Electrochemical device
CN111448687B (en) * 2017-12-05 2023-05-30 松下知识产权经营株式会社 Secondary battery
CN111448687A (en) * 2017-12-05 2020-07-24 松下知识产权经营株式会社 Secondary battery, insulating member, and positive electrode lead
JP2020053635A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP7055982B2 (en) 2018-09-28 2022-04-19 太陽誘電株式会社 Electrochemical devices and methods for manufacturing electrochemical devices
JP7055981B2 (en) 2018-09-28 2022-04-19 太陽誘電株式会社 Electrochemical devices and methods for manufacturing electrochemical devices
JP7055983B2 (en) 2018-09-28 2022-04-19 太陽誘電株式会社 Electrochemical devices and methods for manufacturing electrochemical devices
JP2020053633A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
JP2020053634A (en) * 2018-09-28 2020-04-02 太陽誘電株式会社 Electrochemical device and manufacturing method thereof
CN113228377A (en) * 2018-12-28 2021-08-06 三洋电机株式会社 Cylindrical battery

Also Published As

Publication number Publication date
JP5389368B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5389368B2 (en) Sealed battery
US8980469B2 (en) Prismatic secondary battery
KR100934259B1 (en) Cap assembly and secondary battery having the same
JP5475590B2 (en) Secondary battery
CA2738303C (en) Cap assembly with improved stability and cylindrical secondary battery including the same
EP2144312B1 (en) Secondary battery
KR101279994B1 (en) Cap Assembly of Structure Having Safety Element on Electrode Lead and Cylindrical Battery Employed with the Same
US20130196187A1 (en) Prismatic secondary battery
EP2924763B1 (en) Secondary battery
EP2846380B1 (en) Rechargeable battery having short-circuit member
JP2005332820A (en) Secondary battery with electrode assembly
US20140045009A1 (en) Secondary battery
KR100914115B1 (en) Secondary battery
KR101975392B1 (en) Rechargeable battery
US8871386B2 (en) Secondary battery
KR20090032272A (en) Secondary battery
KR102522701B1 (en) The Secondary Battery
KR100646512B1 (en) Cylinder type secondary battery
US20120208075A1 (en) Secondary Battery
KR101764466B1 (en) Secondary battery
US20230207989A1 (en) Cap Assembly and Secondary Battery Including the Same
KR20120039323A (en) Cap assembly and secondary battery using the same
KR20160015778A (en) A sylnder type battery having enhanced vibration resistant property
KR100778978B1 (en) Can for lithium rechargeable battery and Lithium rechargeable battery using the same
KR102335696B1 (en) The Current Interrupt Device And The Cap Assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R151 Written notification of patent or utility model registration

Ref document number: 5389368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250