JP2019133072A - Zoom lens and image capturing device - Google Patents

Zoom lens and image capturing device Download PDF

Info

Publication number
JP2019133072A
JP2019133072A JP2018016835A JP2018016835A JP2019133072A JP 2019133072 A JP2019133072 A JP 2019133072A JP 2018016835 A JP2018016835 A JP 2018016835A JP 2018016835 A JP2018016835 A JP 2018016835A JP 2019133072 A JP2019133072 A JP 2019133072A
Authority
JP
Japan
Prior art keywords
lens group
lens
zoom lens
conditional expression
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018016835A
Other languages
Japanese (ja)
Other versions
JP7055652B2 (en
Inventor
俊秀 林
Toshihide Hayashi
俊秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2018016835A priority Critical patent/JP7055652B2/en
Publication of JP2019133072A publication Critical patent/JP2019133072A/en
Application granted granted Critical
Publication of JP7055652B2 publication Critical patent/JP7055652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

To provide a zoom lens which is compact and light-weight, has high resolving power, and can be suitably used for video shooting as well.SOLUTION: A zoom lens comprises a first lens group Ghaving negative refractive power, a second lens group Ghaving positive refractive power, a third lens group Ghaving negative refractive power, and a fourth lens group Ghaving positive refractive power arranged in order from the object side. Zooming from the wide-angle end to the telephoto end is done by moving the first lens group G, second lens group G, third lens group G, and fourth lens group Galong an optical axis to change distances among all the lens groups along the optical axis. Focusing is done by moving the third lens group Galong the optical axis. The zoom lens satisfies predetermined conditions. Such an arrangement realizes a compact, light-weight zoom lens with high resolving power.SELECTED DRAWING: Figure 1

Description

本発明は、ズームレンズおよび撮像装置に関し、特にCCDやCMOS等の固体撮像素子が搭載された撮像装置に好適なズームレンズ、およびこのズームレンズを備えた撮像装置に関する。   The present invention relates to a zoom lens and an imaging apparatus, and more particularly to a zoom lens suitable for an imaging apparatus equipped with a solid-state imaging device such as a CCD or CMOS, and an imaging apparatus including the zoom lens.

一眼レフカメラ、デジタルスチルカメラ、ビデオカメラ、監視カメラ等、CCDやCOMS等の固体撮像素子が搭載された撮像装置が急速に普及している。これに伴い、CCDやCMOS等の固体撮像素子が搭載された撮像装置に用いることが可能なズームレンズが提案されている(たとえば、特許文献1,2を参照。)。   Imaging devices equipped with solid-state imaging devices such as CCD and COMS, such as single-lens reflex cameras, digital still cameras, video cameras, surveillance cameras, etc., are rapidly spreading. Along with this, zoom lenses that can be used in an imaging device equipped with a solid-state imaging device such as a CCD or CMOS have been proposed (see, for example, Patent Documents 1 and 2).

特許文献1には、物体側から像側へ順に、負の屈折力の第1レンズ群、開口絞りを含む正の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群を有し、ズーミングに際して隣り合うレンズ群の間隔が変化し、フォーカシングに際して第3レンズ群が移動するズームレンズが開示されている。   In Patent Document 1, in order from the object side to the image side, a first lens group having a negative refractive power, a second lens group having a positive refractive power including an aperture stop, a third lens group having a positive refractive power, a negative lens group, There is disclosed a zoom lens having a fourth lens unit having a refractive power, in which the distance between adjacent lens units changes during zooming, and the third lens unit moves during focusing.

また、特許文献2には、負屈折力の前群と正屈折力の後群とからなり、前群は、負屈折力の第1のレンズと、負屈折力の第2のレンズと、正屈折力の第3のレンズとを含み、第1のレンズと第2のレンズは、物体側に凸面を向けたメニスカスレンズであり、後群は、2つのレンズユニットを有し、変倍に際して、前群と後群との間隔は狭くなり、2つのレンズユニットとの間隔は変化し、第1のレンズユニットは、2つのサブレンズユニットと開口絞りとで構成され、像側のサブレンズユニットはフォーカスレンズ群を有し、変倍に際して、2つのサブレンズユニットの間隔は変化するか、又は一定であるズームレンズが開示されている。   Patent Document 2 includes a front group having negative refractive power and a rear group having positive refractive power. The front group includes a first lens having negative refractive power, a second lens having negative refractive power, and a positive lens. The first lens and the second lens are meniscus lenses having a convex surface facing the object side, and the rear group includes two lens units, and in zooming, The distance between the front group and the rear group is narrow, the distance between the two lens units is changed, the first lens unit is composed of two sub lens units and an aperture stop, and the sub lens unit on the image side is There is disclosed a zoom lens having a focus lens group, and the distance between two sub-lens units changes or is constant upon zooming.

特開2016−75742号公報JP, 2006-75742, A 特開2017−122744号公報JP 2017-122744 A

デジタルカメラでは、動画撮影も可能なことから、動画撮影に対応した高速なオートフォーカス処理が望まれる。オートフォーカスは、まず、一部のレンズ群(フォーカス群)を光軸方向へ高速で振動させて(ウォブリング)、非合焦状態→合焦状態→非合焦状態を作り出す。そして、撮像素子の出力信号から一部画像領域の特定の周波数帯の信号成分を検出して、合焦状態となるフォーカス群の最適位置を求め、その最適位置にフォーカス群を移動させる。特に、動画撮影では、それら一連の動作を高速で連続して繰り返すことが要求される。そして、ウォブリングを実行するためには、フォーカス群を高速に駆動することを可能にすべく、フォーカス群は極力口径を小さく、そして軽くすることが求められる。   Since digital cameras can also shoot moving images, high-speed autofocus processing that supports moving image shooting is desired. In autofocus, first, a part of lens groups (focus group) are vibrated at high speed in the optical axis direction (wobbling) to create a non-focus state → a focus state → a non-focus state. Then, a signal component in a specific frequency band in a partial image region is detected from the output signal of the image sensor, the optimum position of the focus group that is in focus is obtained, and the focus group is moved to the optimum position. In particular, in moving image shooting, it is required to repeat such a series of operations continuously at high speed. In order to execute wobbling, the focus group is required to be as small and light as possible so that the focus group can be driven at high speed.

また、ウォブリングを導入する場合、ウォブリング時に被写体に対応する画像の大きさが変化する。これは、主に、フォーカス群の光軸方向への移動により光学系全系の焦点距離が変化することに起因するものである。また、ウォブリング時は常にフォーカス群を動かしているため、画角変動による像倍率の変化が大きい場合には、画像が常に揺らいでいるように見えてしまい違和感を生じることになる。この違和感を軽減させるためには、絞りに対して後方のレンズ群でフォーカシングを行えばよいことが知られている。   When wobbling is introduced, the size of the image corresponding to the subject changes during wobbling. This is mainly because the focal length of the entire optical system changes due to the movement of the focus group in the optical axis direction. In addition, since the focus group is always moved during wobbling, when the change in the image magnification due to the change in the angle of view is large, the image always appears to fluctuate, which causes a sense of incongruity. In order to reduce this uncomfortable feeling, it is known that focusing may be performed with a lens group behind the diaphragm.

一方、広角ズームレンズを設計する場合、正群先行タイプを選択すると、前玉が大きくなり、小型・軽量なズームレンズを設計するのが難しくなる。一般に、ズームレンズの第1レンズ群は、他のレンズ群に比べて大きくなるため、第1レンズ群を構成するレンズに高屈折率の比重の大きい硝材を使用した場合、レンズ重量が増し軽量な光学系の設計が困難になる。加えて、軸外光線が光軸から遠い位置で通過する第1レンズ群に高分散の硝材を用いたレンズを配置した場合、倍率色収差の補正が難しくなり、高解像力を有する光学系を実現することが困難になる。   On the other hand, when designing a wide-angle zoom lens, if the positive group first type is selected, the front lens becomes large, and it becomes difficult to design a compact and lightweight zoom lens. In general, since the first lens group of a zoom lens is larger than the other lens groups, when a glass material having a high refractive index and a large specific gravity is used for the lenses constituting the first lens group, the lens weight increases and the weight is reduced. Optical system design becomes difficult. In addition, when a lens using a high-dispersion glass material is disposed in the first lens group through which off-axis rays pass at a position far from the optical axis, it becomes difficult to correct lateral chromatic aberration, and an optical system having high resolution is realized. It becomes difficult.

上記特許文献1,2に開示されたズームレンズは、負群先行タイプで、かつ絞りより後方の第3レンズ群をフォーカス群としているため、動画撮影時のウォブリングに適した小型のものである。しかしながら、第1レンズ群中に配置される負レンズに高屈折率・高分散の硝子を使用しているため、高い解像力は期待できない光学系となっている。   The zoom lenses disclosed in Patent Documents 1 and 2 are a negative lens group leading type and a small lens suitable for wobbling during moving image shooting because the third lens group behind the stop is a focus group. However, since a high refractive index and high dispersion glass is used for the negative lens disposed in the first lens group, the optical system cannot be expected to have high resolving power.

本発明は、上述した従来技術による問題点を解消するため、動画撮影にも好適に適用できると共に、小型・軽量で高い解像力を有するズームレンズを提供することを目的とする。加えて、小型・軽量で高い解像力を有するズームレンズを備えた撮像装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens that can be suitably applied to moving image shooting and has a small size, light weight, and high resolving power in order to eliminate the above-described problems caused by the prior art. In addition, an object of the present invention is to provide an imaging apparatus including a zoom lens that is small and light and has high resolving power.

上述した課題を解決し、目的を達成するため、本発明にかかるズームレンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、からなり、前記各レンズ群の光軸上の間隔を変化させることにより広角端から望遠端への変倍を行い、前記第3レンズ群を光軸に沿って移動させてフォーカシングを行い、以下に示す条件式を満足することを特徴とする。
(1) νd1n ave≧67.5
ただし、νd1n aveは前記第1レンズ群に含まれる全ての負レンズのアッベ数の平均値を示す。
In order to solve the above-described problems and achieve the object, a zoom lens according to the present invention includes a first lens group having a negative refractive power and a second lens having a positive refractive power, which are sequentially arranged from the object side. Group, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power, and by changing the interval on the optical axis of each lens group, from the wide-angle end to the telephoto end The third lens group is moved along the optical axis to perform focusing, and the following conditional expression is satisfied.
(1) νd1n ave ≧ 67.5
Here, νd1n ave represents the average value of the Abbe numbers of all the negative lenses included in the first lens group.

上記発明によれば、動画撮影にも好適な、小型・軽量で高い解像力を有するズームレンズを提供することができる。   According to the above invention, it is possible to provide a zoom lens that is suitable for moving image shooting and is small and light and has high resolving power.

また、本発明にかかる撮像装置は、前記ズームレンズと、該ズームレンズによって形成された光学像を電気的信号に変換する撮像素子と、を備えたことを特徴とする。   An imaging apparatus according to the present invention includes the zoom lens and an imaging element that converts an optical image formed by the zoom lens into an electrical signal.

上記発明によれば、小型・軽量で高い解像力を有するズームレンズを備えた撮像装置を提供することができる。   According to the above invention, it is possible to provide an imaging apparatus including a zoom lens that is small and light and has high resolving power.

本発明によれば、動画撮影にも好適な、小型・軽量で高い解像力を有するズームレンズを提供することができるという効果を奏する。さらに、小型・軽量で高い解像力を有するズームレンズを備えた撮像装置を提供することができるという効果を奏する。   According to the present invention, there is an effect that it is possible to provide a zoom lens that is suitable for moving image shooting and is small and light and has high resolving power. Furthermore, there is an effect that it is possible to provide an imaging apparatus including a zoom lens that is small and light and has high resolving power.

実施例1にかかるズームレンズの構成を示す光軸に沿う断面図である。FIG. 3 is a cross-sectional view along the optical axis showing the configuration of the zoom lens according to Example 1; 実施例1にかかるズームレンズの諸収差図である。FIG. 3 is a diagram illustrating all aberrations of the zoom lens according to Example 1; 実施例2にかかるズームレンズの構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a zoom lens according to Example 2; 実施例2にかかるズームレンズの諸収差図である。FIG. 10 is a diagram illustrating all aberrations of the zoom lens according to Example 2; 実施例3にかかるズームレンズの構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a zoom lens according to Example 3; 実施例3にかかるズームレンズの諸収差図である。FIG. 10 is a diagram illustrating all aberrations of the zoom lens according to Example 3; 実施例4にかかるズームレンズの構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a zoom lens according to Example 4; 実施例4にかかるズームレンズの諸収差図である。FIG. 10 is a diagram illustrating all aberrations of the zoom lens according to Example 4; 実施例5にかかるズームレンズの構成を示す光軸に沿う断面図である。FIG. 10 is a cross-sectional view along the optical axis showing the configuration of a zoom lens according to Example 5; 実施例5にかかるズームレンズの諸収差図である。FIG. 10 is a diagram illustrating all aberrations of the zoom lens according to Example 5; 本発明にかかるズームレンズを備えた撮像装置の一適用例を示す図である。It is a figure which shows one application example of the imaging device provided with the zoom lens concerning this invention.

以下、本発明にかかるズームレンズおよび撮像装置の好適な実施の形態を詳細に説明する。   Hereinafter, preferred embodiments of a zoom lens and an imaging apparatus according to the present invention will be described in detail.

本発明にかかるズームレンズは、物体側から順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、からなっている。そして、第1〜第4レンズ群を光軸に沿って移動させて、前記各レンズ群の光軸上の間隔を変えることにより広角端から望遠端への変倍を行う。さらに、第3レンズ群を光軸に沿って移動させてフォーカシングを行う。   The zoom lens according to the present invention includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power, which are arranged in order from the object side. And a fourth lens group having a positive refractive power. Then, by moving the first to fourth lens groups along the optical axis and changing the distance between the lens groups on the optical axis, zooming from the wide-angle end to the telephoto end is performed. Further, focusing is performed by moving the third lens group along the optical axis.

本発明にかかるズームレンズは、物体側から順に、負正負正の屈折力を有する4つのレンズ群を配置する構成を採用した。ズームレンズにおいて、第1レンズ群の口径は他のレンズ群より大きくなる傾向にある。そこで、本発明では、第1レンズ群を負群とすることにより、第1レンズ群の口径を小さく抑えて、光学系の小型・軽量化を実現する。また、第1レンズ群を負群とすることにより、広角側の画角を確保しやすくなる。   The zoom lens according to the present invention employs a configuration in which four lens groups having negative, positive and negative refractive powers are arranged in order from the object side. In a zoom lens, the aperture of the first lens group tends to be larger than the other lens groups. Therefore, in the present invention, by making the first lens group a negative group, the aperture of the first lens group is kept small, and the optical system is reduced in size and weight. In addition, by setting the first lens group as a negative group, it is easy to secure a wide angle of view.

また、第2レンズ群を正群とすることで、第3レンズ群へ入射する光束径を小さくすることができる。そして、第3レンズ群をフォーカス群とすることで、小径で軽量なレンズ群にて画角変化が小さいウォブリングが可能になるため、動画撮影にも好適に適用できるズームレンズを実現することができる。   In addition, by making the second lens group a positive group, the diameter of the light beam incident on the third lens group can be reduced. Since the third lens group is a focus group, wobbling with a small change in the angle of view is possible with a small-diameter and light-weight lens group, so that it is possible to realize a zoom lens that can be suitably applied to movie shooting. .

加えて、本発明にかかるズームレンズでは、第1レンズ群に含まれる全ての負レンズのアッベ数の平均値をνd1n aveとするとき、次の条件式を満足することが好ましい。
(1) νd1n ave≧67.5
In addition, in the zoom lens according to the present invention, it is preferable that the following conditional expression is satisfied when the average value of Abbe numbers of all the negative lenses included in the first lens group is νd1n ave.
(1) νd1n ave ≧ 67.5

条件式(1)は、第1レンズ群に含まれる負レンズのアッベ数の平均値の範囲を規定する式である。軸外光線が光軸から遠い位置で通過する第1レンズ群に高分散の硝材を用いたレンズを配置した場合、色収差の補正が難しくなり、高解像力を有する光学系を実現することが困難になる。そこで、本発明では、第1レンズ群中に条件式(1)を満足するような分散が小さい負レンズを採用することにより、倍率色収差や軸上色収差を良好に補正することが可能になって、高解像力を有する光学系を実現することができる。   Conditional expression (1) defines the range of the average value of the Abbe numbers of the negative lenses included in the first lens group. When a lens using a high-dispersion glass material is disposed in the first lens group through which off-axis rays pass at a position far from the optical axis, it becomes difficult to correct chromatic aberration and to realize an optical system having high resolution. Become. Therefore, in the present invention, it is possible to satisfactorily correct lateral chromatic aberration and axial chromatic aberration by adopting a negative lens having a small dispersion that satisfies the conditional expression (1) in the first lens group. An optical system having a high resolving power can be realized.

なお、条件式(1)の下限値は、好ましくは67.7以上、より好ましくは68.0以上になるように設定するとよい。また、条件式(1)の上限値は、好ましくは95.0以下、より好ましくは85.0以下になるように設定するとよい。   The lower limit value of conditional expression (1) is preferably set to 67.7 or more, more preferably 68.0 or more. Moreover, the upper limit value of conditional expression (1) is preferably set to 95.0 or less, more preferably 85.0 or less.

さらに、本発明にかかるズームレンズでは、第1レンズ群に含まれる負レンズの屈折率の最大値をnd1n maxとするとき、次の条件式を満足することが好ましい。
(2) nd1n max≦1.80
Furthermore, in the zoom lens according to the present invention, it is preferable that the following conditional expression is satisfied when the maximum value of the refractive index of the negative lens included in the first lens group is nd1n max.
(2) nd1n max ≦ 1.80

条件式(2)は、第1レンズ群に含まれる負レンズの屈折率の最大値の範囲を規定する式である。一般的にズームレンズの第1レンズ群は、他のレンズ群に比べて大きくなるため、第1レンズ群を構成するレンズに高屈折率の比重の大きい硝材を使用した場合、レンズ重量が増し軽量な光学系の実現が困難になる。そこで、本発明では、第1レンズ群中に条件式(2)を満足するような屈折率が小さい負レンズを採用することにより、光学系中で最も大きい第1レンズ群に比重の小さい硝材を使用することになるため、軽量な光学系が設計しやすくなる。   Conditional expression (2) is an expression that defines the range of the maximum value of the refractive index of the negative lens included in the first lens group. In general, the first lens group of a zoom lens is larger than the other lens groups. Therefore, when a glass material having a high refractive index and a large specific gravity is used for the lenses constituting the first lens group, the lens weight increases and the weight is reduced. Realization of a simple optical system becomes difficult. Therefore, in the present invention, by adopting a negative lens having a small refractive index that satisfies the conditional expression (2) in the first lens group, a glass material having a small specific gravity is used for the largest first lens group in the optical system. Since it will be used, it becomes easy to design a lightweight optical system.

なお、条件式(2)の下限値は、好ましくは1.44以上、より好ましくは1.49以上になるように設定するとよい。また、条件式(2)の上限値は、好ましくは1.75以下、より好ましくは1.72以下になるように設定するとよい。   The lower limit value of conditional expression (2) is preferably set to be 1.44 or more, more preferably 1.49 or more. In addition, the upper limit value of conditional expression (2) is preferably set to 1.75 or less, more preferably 1.72 or less.

さらに、本発明にかかるズームレンズでは、第1レンズ群の焦点距離をf1、第2レンズ群の焦点距離をf2とするとき、次の条件式を満足することが好ましい。
(3) 0.75≦f2/|f1|≦1.70
Furthermore, in the zoom lens according to the present invention, it is preferable that the following conditional expression is satisfied when the focal length of the first lens group is f1 and the focal length of the second lens group is f2.
(3) 0.75 ≦ f2 / | f1 | ≦ 1.70

条件式(3)は、第1レンズ群の焦点距離の絶対値に対する第2レンズ群の焦点距離の比の範囲を規定するための式である。条件式(3)を満足することで、第1レンズ群に対する第2レンズ群の屈折力を適切にして、良好な解像性能を維持しながら、光学系全長を短縮することができ、小型で、高解像力を有するズームレンズを実現することが可能になる。   Conditional expression (3) is an expression for defining the range of the ratio of the focal length of the second lens group to the absolute value of the focal length of the first lens group. By satisfying conditional expression (3), it is possible to shorten the overall length of the optical system while maintaining a good resolving performance by appropriately adjusting the refractive power of the second lens group with respect to the first lens group. Therefore, it is possible to realize a zoom lens having high resolution.

条件式(3)においてその下限を下回ると、第1レンズ群に対する第2レンズ群の屈折力が強くなりすぎて、球面収差の補正が過剰になり、高解像力を有するズームレンズを実現することが困難になる。一方、条件式(3)においてその上限を超えると、第1レンズ群に対する第2レンズ群の屈折力が弱くなりすぎて、光学系全長が延び、小型のズームレンズを実現することが困難になる。   If the lower limit of conditional expression (3) is not reached, the refractive power of the second lens group with respect to the first lens group becomes too strong, the correction of spherical aberration becomes excessive, and a zoom lens having high resolution can be realized. It becomes difficult. On the other hand, if the upper limit in conditional expression (3) is exceeded, the refractive power of the second lens group with respect to the first lens group becomes too weak, the overall length of the optical system is extended, and it becomes difficult to realize a compact zoom lens. .

なお、条件式(3)の下限値は、好ましくは0.80以上、より好ましくは0.90以上になるように設定するとよい。また、条件式(3)の上限値は、好ましくは1.60以下、より好ましくは1.50以下になるように設定するとよい。   The lower limit value of conditional expression (3) is preferably set to 0.80 or more, more preferably 0.90 or more. The upper limit value of conditional expression (3) is preferably set to 1.60 or less, more preferably 1.50 or less.

さらに、本発明にかかるズームレンズでは、第1レンズ群の焦点距離をf1、第3レンズ群の焦点距離をf3とするとき、次の条件式を満足することが好ましい。
(4) 1.50≦f3/f1≦2.70
Furthermore, in the zoom lens according to the present invention, it is preferable that the following conditional expression is satisfied when the focal length of the first lens unit is f1 and the focal length of the third lens unit is f3.
(4) 1.50 ≦ f3 / f1 ≦ 2.70

条件式(4)は、第1レンズ群の焦点距離に対する第3レンズ群の焦点距離の比の範囲を規定するための式である。条件式(4)を満足することで、第1レンズ群に対する第3レンズ群の屈折力を適切にして、良好な解像性能を維持しながら、光学系全長を短縮することができ、小型で、高解像力を有するズームレンズを実現することが可能になる。   Conditional expression (4) is an expression for defining the range of the ratio of the focal length of the third lens group to the focal length of the first lens group. By satisfying conditional expression (4), it is possible to shorten the overall length of the optical system while maintaining a good resolving performance by appropriately adjusting the refractive power of the third lens group with respect to the first lens group. Therefore, it is possible to realize a zoom lens having high resolution.

条件式(4)においてその下限を下回ると、第1レンズ群に対する第3レンズ群の屈折力が強くなりすぎて、球面収差の補正が過剰になり、高解像力を有するズームレンズを実現することが困難になる。一方、条件式(4)においてその上限を超えると、第1レンズ群に対する第3レンズ群の屈折力が弱くなりすぎて、フォーカシング時の第3レンズ群の移動量が増加することにより光学系全長が延び、小型のズームレンズを実現することが困難になる。   If the lower limit of conditional expression (4) is not reached, the refractive power of the third lens group with respect to the first lens group becomes too strong, the correction of spherical aberration becomes excessive, and a zoom lens having high resolution can be realized. It becomes difficult. On the other hand, if the upper limit in conditional expression (4) is exceeded, the refractive power of the third lens group with respect to the first lens group becomes too weak, and the amount of movement of the third lens group during focusing increases, thereby increasing the total length of the optical system. It becomes difficult to realize a small zoom lens.

なお、条件式(4)の下限値は、好ましくは1.60以上、より好ましくは1.65以上になるように設定するとよい。また、条件式(4)の上限値は、好ましくは2.60以下、より好ましくは2.45以下になるように設定するとよい。   The lower limit value of conditional expression (4) is preferably set to 1.60 or more, more preferably 1.65 or more. Further, the upper limit value of conditional expression (4) is preferably set to 2.60 or less, more preferably 2.45 or less.

さらに、本発明にかかるズームレンズでは、第1レンズ群の焦点距離をf1、第4レンズ群の焦点距離をf4とするとき、次の条件式を満足することが好ましい。
(5) 1.90≦f4/|f1|≦4.20
Furthermore, in the zoom lens according to the present invention, it is preferable that the following conditional expression is satisfied when the focal length of the first lens group is f1 and the focal length of the fourth lens group is f4.
(5) 1.90 ≦ f4 / | f1 | ≦ 4.20

条件式(5)は、第1レンズ群の焦点距離の絶対値に対する第4レンズ群の焦点距離の比の範囲を規定するための式である。条件式(5)を満足することで、第1レンズ群に対する第4レンズ群の屈折力を適切にして、良好な解像性能を維持しながら、光学系全長を短縮することができ、小型で、高解像力を有するズームレンズを実現することが可能になる。   Conditional expression (5) is an expression for defining the range of the ratio of the focal length of the fourth lens group to the absolute value of the focal length of the first lens group. By satisfying conditional expression (5), it is possible to shorten the overall length of the optical system while maintaining a good resolving performance by appropriately adjusting the refractive power of the fourth lens group with respect to the first lens group. Therefore, it is possible to realize a zoom lens having high resolution.

条件式(5)においてその下限を下回ると、第1レンズ群に対する第4レンズ群の屈折力が強くなりすぎて、像面湾曲の補正が過剰になり、高解像力を有するズームレンズを実現することが困難になる。一方、条件式(5)においてその上限を超えると、第1レンズ群に対する第4レンズ群の屈折力が弱くなりすぎて、光学系全長が延び、小型のズームレンズを実現することが困難になる。   If the lower limit of conditional expression (5) is not reached, the refractive power of the fourth lens unit with respect to the first lens unit becomes too strong, the field curvature correction becomes excessive, and a zoom lens having high resolution is realized. Becomes difficult. On the other hand, if the upper limit in conditional expression (5) is exceeded, the refractive power of the fourth lens group with respect to the first lens group becomes too weak, the overall length of the optical system increases, and it becomes difficult to realize a compact zoom lens. .

なお、条件式(5)の下限値は、好ましくは2.00以上、より好ましくは2.10以上になるように設定するとよい。また、条件式(5)の上限値は、好ましくは4.00以下、より好ましくは3.90以下になるように設定するとよい。   Note that the lower limit value of conditional expression (5) is preferably set to be 2.00 or more, more preferably 2.10 or more. Further, the upper limit value of conditional expression (5) is preferably set to 4.00 or less, more preferably 3.90 or less.

また、本発明にかかるズームレンズでは、変倍の際に、第1レンズ群を像側に凸の軌跡を描くように移動させるとよい。このようにすることで、望遠端での像倍率を稼ぎやすくなり、高変倍比のズームレンズの実現が容易になる。   In the zoom lens according to the present invention, it is preferable to move the first lens group so as to draw a convex locus on the image side during zooming. By doing so, it becomes easy to increase the image magnification at the telephoto end, and it becomes easy to realize a zoom lens with a high zoom ratio.

以上説明したように、本発明にかかるズームレンズは、上記構成を備えることにより、高変倍比を確保しつつ、小型化、軽量化、高解像化を達成することができ、動画撮影にも好適に適用することができる。特に、条件式(1)を満足することで、色収差を良好に補正することができる。条件式(2)を満足することで、光学系のより軽量化を実現することができる。条件式(3)を満足することで、良好な解像性能を維持しながら(特に、球面収差の良好な補正が可能になる)、光学系全長をより短縮することができる。条件式(4)を満足することで、良好な解像性能を維持しながら(特に、球面収差の良好な補正が可能になる)、フォーカシング時における第3レンズ群の移動量を抑制して、光学系全長をより短縮することができる。条件式(5)を満足することで、良好な解像性能を維持しながら(特に、像面湾曲の良好な補正が可能になる)、光学系全長をより短縮することができる。   As described above, the zoom lens according to the present invention can achieve downsizing, weight reduction, and high resolution while securing a high zoom ratio by providing the above-described configuration. Can also be suitably applied. In particular, chromatic aberration can be favorably corrected by satisfying conditional expression (1). By satisfying conditional expression (2), the optical system can be made lighter. By satisfying conditional expression (3), it is possible to further shorten the overall length of the optical system while maintaining good resolution performance (particularly, good correction of spherical aberration becomes possible). By satisfying conditional expression (4), the amount of movement of the third lens unit during focusing is suppressed while maintaining good resolution performance (especially, good correction of spherical aberration becomes possible) The total length of the optical system can be further shortened. By satisfying conditional expression (5), it is possible to further shorten the overall length of the optical system while maintaining good resolution performance (particularly, good correction of field curvature is possible).

さらに、本発明では、上記構成を備えたズームレンズと、このズームレンズによって形成された光学像を電気的信号に変換する撮像素子と、を備えることによって、小型・軽量で、高解像力を有するズームレンズを備えた撮像装置を実現することができる。   Furthermore, in the present invention, a zoom lens having the above-described configuration and an image pickup device that converts an optical image formed by the zoom lens into an electrical signal are small, lightweight, and have high resolution. An imaging device including a lens can be realized.

以下、本発明にかかるズームレンズの実施例を図面に基づき詳細に説明する。なお、以下の実施例により本発明が限定されるものではない。   Embodiments of the zoom lens according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by the following examples.

図1は、実施例1にかかるズームレンズの構成を示す光軸に沿う断面図である。このズームレンズは、図示しない物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、が配置されて構成される。第4レンズ群G4と像面IMGとの間には、カバーガラスCGが配置されている。カバーガラスCGは、必要に応じて配置される。 FIG. 1 is a cross-sectional view along the optical axis showing the configuration of the zoom lens according to the first embodiment. The zoom lens includes a first lens group G 1 having negative refractive power, a second lens group G 2 having positive refractive power, and a third lens group having negative refractive power in order from the object side (not shown). G 3 and a fourth lens group G 4 having a positive refractive power are arranged. A cover glass CG is disposed between the fourth lens group G 4 and the image plane IMG. Cover glass CG is arrange | positioned as needed.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹負レンズL13と、両凸正レンズL14と、が配置されて構成される。負メニスカスレンズL12の両面には、非球面が形成されている。両凹負レンズL13と両凸正レンズL14とは、接合されている。 The first lens group G 1 includes, in order from the object side, a negative meniscus lens L 11 having a convex surface facing the object side, a negative meniscus lens L 12 having a convex surface facing the object side, a biconcave negative lens L 13 , convex positive lens L 14, is formed are disposed. The both surfaces of the negative meniscus lens L 12, aspheric surface is formed. A biconcave negative lens L 13 of a biconvex positive lens L 14 are cemented.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、所定の口径を規定する開口絞りSTPと、両凸正レンズL23と、両凹負レンズL24と、両凸正レンズL25と、が配置されて構成される。負メニスカスレンズL21と正メニスカスレンズL22とは、接合されている。両凸正レンズL23と両凹負レンズL24とは、接合されている。両凸正レンズL25の両面には、非球面が形成されている。 The second lens group G 2 includes, in order from the object side, a negative meniscus lens L 21 having a convex surface facing the object side, a positive meniscus lens L 22 having a convex surface facing the object side, and an aperture stop STP that defines a predetermined aperture. When, a biconvex positive lens L 23, a biconcave negative lens L 24, a biconvex positive lens L 25, is formed are disposed. The negative meniscus lens L 21 and the positive meniscus lens L 22 are cemented. A biconvex positive lens L 23 and a biconcave negative lens L 24 are cemented. Aspherical surfaces are formed on both surfaces of the biconvex positive lens L 25 .

第3レンズ群G3は、物体側から順に、両凹負レンズL31と、物体側に凸面を向けた正メニスカスレンズL32と、が配置されて構成される。 The third lens group G 3 includes, in order from the object side, a biconcave negative lens L 31 and a positive meniscus lens L 32 with a convex surface facing the object side.

第4レンズ群G4は、物体側から順に、両凸正レンズL41と、両凹負レンズL42と、が配置されて構成される。両凹負レンズL42の両面には、非球面が形成されている。 The fourth lens group G 4 includes a biconvex positive lens L 41 and a biconcave negative lens L 42 arranged in order from the object side. The surfaces of the biconcave negative lens L 42, aspheric surface is formed.

このズームレンズでは、広角端から望遠端への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が徐々に狭まるように、第2レンズ群G2と第3レンズ群G3との間隔が徐々に広がるように、第3レンズ群G3と第4レンズ群G4との間隔が徐々に広がるように、第4レンズ群G4とカバーガラスCGとの間隔が徐々に広がるように、各レンズ群が移動する。 In this zoom lens, the second lens group G 2 and the third lens group are arranged so that the distance between the first lens group G 1 and the second lens group G 2 is gradually reduced upon zooming from the wide-angle end to the telephoto end. and the distance between G 3 widens gradually, as the third lens group G 3 gradually widened the distance between the fourth lens group G 4, the distance between the fourth lens group G 4 and the cover glass CG is gradually Each lens group moves so as to spread.

具体的には、広角端から望遠端への変倍に際して、各レンズ群は次のように移動する。第1レンズ群G1は、光軸に沿って像面IMG側に凸の軌跡を描くように移動する。すなわち、一旦像面IMG側に移動した後、物体側に移動する。第2レンズ群G2は、光軸に沿って像面IMG側から物体側へ単調に移動する。第3レンズ群G3は、光軸に沿って像面IMG側から物体側へ単調に移動する。第4レンズ群G4は、光軸に沿って像面IMG側から物体側へ単調に移動する。 Specifically, when zooming from the wide-angle end to the telephoto end, each lens group moves as follows. The first lens group G 1 moves so as to draw a convex locus on the image plane IMG side along the optical axis. That is, after moving to the image plane IMG side, it moves to the object side. The second lens group G 2 monotonously moves from the image plane IMG side to the object side along the optical axis. The third lens group G 3 monotonously moves from the image plane IMG side to the object side along the optical axis. The fourth lens group G 4 monotonously moves from the image plane IMG side to the object side along the optical axis.

また、このズームレンズでは、第3レンズ群G3を光軸に沿って物体側から像面IMG側へ移動させることにより、フォーカシングを行う。 Further, in this zoom lens, by moving toward the image plane IMG side from the object side along the third lens group G 3 to the optical axis to perform focusing.

以下、実施例1にかかるズームレンズに関する各種数値データを示す。   Various numerical data related to the zoom lens according to Example 1 will be described below.

(面データ)
1=36.1445
1=1.2000 nd1=1.59561 νd1=67.00
2=11.9369
2=4.1786
3=20.0000(非球面)
3=1.5000 nd2=1.69979 νd2=55.46
4=9.7567(非球面)
4=6.4499
5=-29.9941
5=0.6500 nd3=1.49845 νd3=81.61
6=15.5345
6=3.7013 nd4=1.80831 νd4=46.50
7=-295.9645
7=D(7)(可変)
8=18.8800
8=0.6000 nd5=1.83945 νd5=42.72
9=8.8369
9=2.8000 nd6=1.61669 νd6=44.27
10=47.3804
10=1.5000
11=∞(開口絞り)
11=3.4702
12=14.7421
12=2.7578 nd7=1.49845 νd7=81.61
13=-48.4383
13=0.6000 nd8=1.80633 νd8=29.84
14=28.0242
14=0.9637
15=40.3028(非球面)
15=2.7732 nd9=1.49856 νd9=81.56
16=-16.1149(非球面)
16=D(16)(可変)
17=-62.3217
17=0.6500 nd10=1.91695 νd10=35.25
18=21.7156
18=0.7068
19=25.2705
19=2.0216 nd11=1.93323 νd11=20.88
20=111.3000
20=D(20)(可変)
21=27.0257
21=4.7390 nd12=1.49845 νd12=81.61
22=-23.2392
22=0.1500
23=-42.3506(非球面)
23=1.2000 nd13=1.85639 νd13=40.10
24=600.0000(非球面)
24=D(24)(可変)
25=∞
25=3.5600 nd14=1.51872 νd14=64.20
26=∞
26=3.6260
27=∞(像面)
(Surface data)
r 1 = 36.1445
d 1 = 1.2000 nd 1 = 1.59561 νd 1 = 67.00
r 2 = 11.9369
d 2 = 4.1786
r 3 = 20.0000 (aspherical surface)
d 3 = 1.5000 nd 2 = 1.69979 νd 2 = 55.46
r 4 = 9.7567 (aspherical surface)
d 4 = 6.4499
r 5 = -29.9941
d 5 = 0.6500 nd 3 = 1.49845 νd 3 = 81.61
r 6 = 15.5345
d 6 = 3.7013 nd 4 = 1.80831 νd 4 = 46.50
r 7 = -295.9645
d 7 = D (7) (variable)
r 8 = 18.8800
d 8 = 0.6000 nd 5 = 1.83945 νd 5 = 42.72
r 9 = 8.8369
d 9 = 2.8000 nd 6 = 1.61669 νd 6 = 44.27
r 10 = 47.3804
d 10 = 1.5000
r 11 = ∞ (aperture stop)
d 11 = 3.4702
r 12 = 14.7421
d 12 = 2.7578 nd 7 = 1.49845 νd 7 = 81.61
r 13 = -48.4383
d 13 = 0.6000 nd 8 = 1.80633 νd 8 = 29.84
r 14 = 28.0242
d 14 = 0.9637
r 15 = 40.3028 (aspherical surface)
d 15 = 2.7732 nd 9 = 1.49856 νd 9 = 81.56
r 16 = -16.1149 (aspherical surface)
d 16 = D (16) (variable)
r 17 = -62.3217
d 17 = 0.6500 nd 10 = 1.91695 νd 10 = 35.25
r 18 = 21.7156
d 18 = 0.7068
r 19 = 25.2705
d 19 = 2.0216 nd 11 = 1.93323 νd 11 = 20.88
r 20 = 111.3000
d 20 = D (20) (variable)
r 21 = 27.0257
d 21 = 4.7390 nd 12 = 1.49845 νd 12 = 81.61
r 22 = -23.2392
d 22 = 0.1500
r 23 = -42.3506 (aspherical surface)
d 23 = 1.2000 nd 13 = 1.85639 νd 13 = 40.10
r 24 = 600.0000 (aspherical surface)
d 24 = D (24) (variable)
r 25 = ∞
d 25 = 3.5600 nd 14 = 1.51872 νd 14 = 64.20
r 26 = ∞
d 26 = 3.6260
r 27 = ∞ (image plane)

(円錐係数(κ)および非球面係数(A4,A6,A8,A10))
(第3面)
κ=1.00000,
4=4.38991×10-5,A6=-3.54159×10-7
8=9.26420×10-10,A10=-3.29341×10-12
(第4面)
κ=-7.69271×10-1
4=1.07041×10-4,A6=-1.22138×10-7
8=6.63998×10-11,A10=-1.61017×10-11
(第15面)
κ=0,
4=-1.55206×10-4,A6=1.89245×10-7
8=-2.43418×10-8,A10=8.84116×10-10
(第16面)
κ=0,
4=-1.36697×10-5,A6=1.67240×10-7
8=-1.65197×10-8,A10=6.83693×10-10
(第23面)
κ=0,
4=1.64689×10-4,A6=-1.22862×10-6
8=6.91495×10-9,A10=-2.32317×10-11
(第24面)
κ=0,
4=1.96588×10-4,A6=-1.01713×10-6
8=5.95149×10-9,A10=-1.72677×10-11
(Cone coefficient (κ) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 ))
(Third side)
κ = 1.0000,
A 4 = 4.38991 × 10 −5 , A 6 = −3.54159 × 10 −7 ,
A 8 = 9.26420 × 10 -10 , A 10 = -3.29341 × 10 -12
(Fourth surface)
κ = -7.69271 × 10 -1 ,
A 4 = 1.07041 × 10 -4 , A 6 = -1.22138 × 10 -7 ,
A 8 = 6.63998 × 10 -11 , A 10 = -1.61017 × 10 -11
(15th page)
κ = 0,
A 4 = -1.55206 × 10 −4 , A 6 = 1.89245 × 10 −7 ,
A 8 = -2.43418 × 10 -8 , A 10 = 8.84116 × 10 -10
(16th page)
κ = 0,
A 4 = -1.36697 × 10 −5 , A 6 = 1.67240 × 10 −7 ,
A 8 = -1.65197 × 10 −8 , A 10 = 6.83693 × 10 −10
(23rd page)
κ = 0,
A 4 = 1.64689 × 10 -4 , A 6 = -1.22862 × 10 -6 ,
A 8 = 6.91495 × 10 −9 , A 10 = −2.332317 × 10 −11
(24th page)
κ = 0,
A 4 = 1.99658 × 10 -4 , A 6 = -1.01713 × 10 -6 ,
A 8 = 5.95149 × 10 -9 , A 10 = -1.72677 × 10 -11

(各種データ)
広角端 中間焦点位置 望遠端
焦点距離 12.1603 16.6984 22.9174
Fナンバー 3.2996 3.7671 4.3804
半画角(ω) 52.3781 40.9985 31.0120
D(7) 15.3971 7.2134 0.9000
D(16) 1.6387 4.0656 7.9199
D(20) 3.9091 5.3491 5.5896
D(24) 13.7332 15.5738 18.0227
(Various data)
Wide-angle end Intermediate focal position Telephoto end focal length 12.1603 16.6984 22.9174
F number 3.2996 3.7671 4.3804
Half angle of view (ω) 52.3781 40.9985 31.0120
D (7) 15.3971 7.2134 0.9000
D (16) 1.6387 4.0656 7.9199
D (20) 3.9091 5.3491 5.5896
D (24) 13.7332 15.5738 18.0227

(ズームレンズ群データ)
群 始面 焦点距離
1 1 -15.96(f1)
2 8 18.75(f2)
3 17 -36.40(f3)
4 21 54.35(f4)
(Zoom lens group data)
Group Start surface Focal length 1 1 -15.96 (f1)
2 8 18.75 (f2)
3 17 -36.40 (f3)
4 21 54.35 (f4)

(条件式(1)に関する数値)
νd1n ave=68.0
(νd1n ave:第1レンズ群G1に含まれる全ての負レンズのアッベ数の平均値)
(Numerical values related to conditional expression (1))
νd1n ave = 68.0
(Νd1n ave: average value of Abbe numbers of all negative lenses included in the first lens group G 1 )

(条件式(2)に関する数値)
nd1n max=1.70
(nd1n max:第1レンズ群G1に含まれる負レンズの屈折率の最大値)
(Numerical value related to conditional expression (2))
nd1n max = 1.70
(Nd1n max: maximum value of the refractive index of the negative lens included in the first lens group G 1 )

(条件式(3)に関する数値)
f2/|f1|=1.18
(Numerical values related to conditional expression (3))
f2 / | f1 | = 1.18

(条件式(4)に関する数値)
f3/f1=2.28
(Numerical values related to conditional expression (4))
f3 / f1 = 2.28

(条件式(5)に関する数値)
f4/|f1|=3.41
(Numerical values related to conditional expression (5))
f4 / | f1 | = 3.41

図2は、実施例1にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、長破線はF線(486.13nm)、短破線はC線(656.28nm)に相当する波長の特性を示している。非点収差図において、縦軸は像高(図中、Yで示す)を表し、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は像高(図中、Yで示す)を表している。   FIG. 2 is a diagram illustrating various aberrations of the zoom lens according to the first example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the long broken line is the F line (486.13 nm), and the short broken line is the C line (656. The wavelength characteristic corresponding to 28 nm) is shown. In the astigmatism diagram, the vertical axis represents the image height (indicated by Y in the figure), the solid line represents the sagittal plane (indicated by S in the figure), and the broken line represents the characteristic of the meridional plane (indicated by M in the figure). Show. In the distortion diagram, the vertical axis represents the image height (indicated by Y in the figure).

図3は、実施例2にかかるズームレンズの構成を示す光軸に沿う断面図である。本実施例にかかるズームレンズの光学構成や変倍時における各レンズ群の移動等は、実施例1に示したズームレンズと同様である。よって、本実施例では、実施例1と同様な部材には同一の符号を付すとともに、それらについての詳細な説明は省略する。   FIG. 3 is a cross-sectional view along the optical axis showing the configuration of the zoom lens according to the second embodiment. The optical configuration of the zoom lens according to the present embodiment, the movement of each lens group at the time of zooming, and the like are the same as those of the zoom lens shown in Embodiment 1. Therefore, in the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and detailed descriptions thereof are omitted.

以下、実施例2にかかるズームレンズに関する各種数値データを示す。   Various numerical data related to the zoom lens according to Example 2 will be described below.

(面データ)
1=30.9464
1=1.2000 nd1=1.59561 νd1=67.00
2=11.6715
2=5.3972
3=22.7838(非球面)
3=1.5000 nd2=1.59412 νd2=67.02
4=9.6000(非球面)
4=6.2598
5=-31.1490
5=0.6500 nd3=1.49845 νd3=81.61
6=15.6938
6=3.4248 nd4=1.80831 νd4=46.50
7=-2108.2925
7=D(7)(可変)
8=12.9644
8=0.6000 nd5=1.88622 νd5=40.14
9=8.5916
9=2.8000 nd6=1.62408 νd6=36.30
10=34.8241
10=1.5000
11=∞(開口絞り)
11=1.4911
12=14.5432
12=2.7666 nd7=1.49845 νd7=81.61
13=-26.1893
13=0.6000 nd8=1.80633 νd8=29.84
14=29.3688
14=1.7308
15=34.5599(非球面)
15=2.6320 nd9=1.49856 νd9=81.56
16=-14.9473(非球面)
16=D(16)(可変)
17=-44.6362
17=0.6500 nd10=1.91695 νd10=35.25
18=22.7837
18=0.3427
19=24.5498
19=2.0669 nd11=1.93323 νd11=20.88
20=96.2460
20=D(20)(可変)
21=36.4942
21=4.1829 nd12=1.49845 νd12=81.61
22=-22.3562
22=1.4093
23=-320.2790(非球面)
23=1.2000 nd13=1.85639 νd13=40.10
24=89.5878(非球面)
24=D(24)(可変)
25=∞
25=3.5600 nd14=1.51872 νd14=64.20
26=∞
26=3.6260
27=∞(像面)
(Surface data)
r 1 = 30.9464
d 1 = 1.2000 nd 1 = 1.59561 νd 1 = 67.00
r 2 = 11.6715
d 2 = 5.3972
r 3 = 22.7838 (aspherical surface)
d 3 = 1.5000 nd 2 = 1.59412 νd 2 = 67.02
r 4 = 9.6000 (aspherical surface)
d 4 = 6.2598
r 5 = -31.1490
d 5 = 0.6500 nd 3 = 1.49845 νd 3 = 81.61
r 6 = 15.6938
d 6 = 3.4248 nd 4 = 1.80831 νd 4 = 46.50
r 7 = -2108.2925
d 7 = D (7) (variable)
r 8 = 12.9644
d 8 = 0.6000 nd 5 = 1.88622 νd 5 = 40.14
r 9 = 8.5916
d 9 = 2.8000 nd 6 = 1.62408 νd 6 = 36.30
r 10 = 34.8241
d 10 = 1.5000
r 11 = ∞ (aperture stop)
d 11 = 1.4911
r 12 = 14.5432
d 12 = 2.7666 nd 7 = 1.49845 νd 7 = 81.61
r 13 = -26.1893
d 13 = 0.6000 nd 8 = 1.80633 νd 8 = 29.84
r 14 = 29.3688
d 14 = 1.7308
r 15 = 34.5599 (aspherical surface)
d 15 = 2.6320 nd 9 = 1.49856 νd 9 = 81.56
r 16 = -14.9473 (aspherical surface)
d 16 = D (16) (variable)
r 17 = -44.6362
d 17 = 0.6500 nd 10 = 1.91695 νd 10 = 35.25
r 18 = 22.7837
d 18 = 0.3427
r 19 = 24.5498
d 19 = 2.0669 nd 11 = 1.93323 νd 11 = 20.88
r 20 = 96.2460
d 20 = D (20) (variable)
r 21 = 36.4942
d 21 = 4.1829 nd 12 = 1.49845 νd 12 = 81.61
r 22 = -22.3562
d 22 = 1.4093
r 23 = -320.2790 (aspherical surface)
d 23 = 1.2000 nd 13 = 1.85639 νd 13 = 40.10
r 24 = 89.5878 (aspherical surface)
d 24 = D (24) (variable)
r 25 = ∞
d 25 = 3.5600 nd 14 = 1.51872 νd 14 = 64.20
r 26 = ∞
d 26 = 3.6260
r 27 = ∞ (image plane)

(円錐係数(κ)および非球面係数(A4,A6,A8,A10))
(第3面)
κ=1.00000,
4=2.89212×10-5,A6=5.65789×10-8
8=-1.53115×10-9,A10=8.68297×10-12
(第4面)
κ=-8.58887×10-1
4=8.66238×10-5,A6=2.95590×10-7
8=-1.34983×10-9,A10=-1.85030×10-11
(第15面)
κ=0,
4=-1.68755×10-4,A6=1.20015×10-7
8=-4.15652×10-8,A10=9.29682×10-10
(第16面)
κ=0,
4=-1.94710×10-5,A6=8.10568×10-8
8=-3.31981×10-8,A10=7.12003×10-10
(第23面)
κ=0,
4=-1.00793×10-4,A6=1.73333×10-6
8=-9.72346×10-9,A10=2.16596×10-11
(第24面)
κ=0,
4=-7.04945×10-5,A6=1.76173×10-6
8=-9.46483×10-9,A10=2.41106×10-11
(Cone coefficient (κ) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 ))
(Third side)
κ = 1.0000,
A 4 = 2.89212 × 10 −5 , A 6 = 5.65789 × 10 −8 ,
A 8 = -1.53115 × 10 −9 , A 10 = 8.68297 × 10 −12
(Fourth surface)
κ = -8.58887 × 10 −1 ,
A 4 = 8.66238 × 10 −5 , A 6 = 2.95590 × 10 −7 ,
A 8 = -1.34983 × 10 -9 , A 10 = -1.85030 × 10 -11
(15th page)
κ = 0,
A 4 = -1.68755 × 10 −4 , A 6 = 1.20015 × 10 −7 ,
A 8 = -4.15652 × 10 -8 , A 10 = 9.29682 × 10 -10
(16th page)
κ = 0,
A 4 = -1.94710 × 10 −5 , A 6 = 8.10568 × 10 −8 ,
A 8 = -3.31981 × 10 -8 , A 10 = 7.12003 × 10 -10
(23rd page)
κ = 0,
A 4 = -1.00793 × 10 -4 , A 6 = 1.733333 × 10 -6 ,
A 8 = -9.72346 × 10 -9 , A 10 = 2.16596 × 10 -11
(24th page)
κ = 0,
A 4 = -7.04945 × 10 -5 , A 6 = 1.76173 × 10 -6 ,
A 8 = -9.46483 × 10 -9 , A 10 = 2.41106 × 10 -11

(各種データ)
広角端 中間焦点位置 望遠端
焦点距離 12.1595 16.6985 22.9197
Fナンバー 3.2677 3.7396 4.3658
半画角(ω) 52.3678 41.1105 31.0052
D(7) 14.4779 6.7237 0.9000
D(16) 2.8706 6.1328 10.6621
D(20) 2.6987 3.7214 4.0198
D(24) 13.6268 14.8321 16.8281
(Various data)
Wide angle end Intermediate focal position Telephoto end focal length 12.1595 16.6985 22.9197
F number 3.2677 3.7396 4.3658
Half angle of view (ω) 52.3678 41.1105 31.0052
D (7) 14.4779 6.7237 0.9000
D (16) 2.8706 6.1328 10.6621
D (20) 2.6987 3.7214 4.0198
D (24) 13.6268 14.8321 16.8281

(ズームレンズ群データ)
群 始面 焦点距離
1 1 -15.42(f1)
2 8 18.66(f2)
3 17 -31.07(f3)
4 21 41.42(f4)
(Zoom lens group data)
Group Start surface Focal length 1 1 -15.42 (f1)
2 8 18.66 (f2)
3 17 -31.07 (f3)
4 21 41.42 (f4)

(条件式(1)に関する数値)
νd1n ave=71.9
(νd1n ave:第1レンズ群G1に含まれる全ての負レンズのアッベ数の平均値)
(Numerical values related to conditional expression (1))
νd1n ave = 71.9
(Νd1n ave: average value of Abbe numbers of all negative lenses included in the first lens group G 1 )

(条件式(2)に関する数値)
nd1n max=1.60
(nd1n max:第1レンズ群G1に含まれる負レンズの屈折率の最大値)
(Numerical value related to conditional expression (2))
nd1n max = 1.60
(Nd1n max: maximum value of the refractive index of the negative lens included in the first lens group G 1 )

(条件式(3)に関する数値)
f2/|f1|=1.21
(Numerical values related to conditional expression (3))
f2 / | f1 | = 1.21

(条件式(4)に関する数値)
f3/f1=2.01
(Numerical values related to conditional expression (4))
f3 / f1 = 2.01

(条件式(5)に関する数値)
f4/|f1|=2.69
(Numerical values related to conditional expression (5))
f4 / | f1 | = 2.69

図4は、実施例2にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、長破線はF線(486.13nm)、短破線はC線(656.28nm)に相当する波長の特性を示している。非点収差図において、縦軸は像高(図中、Yで示す)を表し、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は像高(図中、Yで示す)を表している。   FIG. 4 is a diagram illustrating various aberrations of the zoom lens according to the second example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the long broken line is the F line (486.13 nm), and the short broken line is the C line (656. The wavelength characteristic corresponding to 28 nm) is shown. In the astigmatism diagram, the vertical axis represents the image height (indicated by Y in the figure), the solid line represents the sagittal plane (indicated by S in the figure), and the broken line represents the characteristic of the meridional plane (indicated by M in the figure). Show. In the distortion diagram, the vertical axis represents the image height (indicated by Y in the figure).

図5は、実施例3にかかるズームレンズの構成を示す光軸に沿う断面図である。本実施例にかかるズームレンズでは、実施例1における第1レンズ群G1の両凸正レンズL14に代えて物体側に凸面を向けた正メニスカスレンズL314が配置されていること以外の光学構成や変倍時における各レンズ群の移動等は、実施例1に示したズームレンズと同様である。よって、本実施例では、実施例1と同様な部材には同一の符号を付すとともに、それらについての詳細な説明は省略する。 FIG. 5 is a cross-sectional view along the optical axis showing the configuration of the zoom lens according to the third embodiment. In the zoom lens according to the present embodiment, optical other than the positive meniscus lens L 314 with a convex surface on the object side in place of the first biconvex positive lens L 14 of the lens group G 1 is arranged in the first embodiment The configuration and movement of each lens group during zooming are the same as those of the zoom lens shown in the first embodiment. Therefore, in the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and detailed descriptions thereof are omitted.

以下、実施例3にかかるズームレンズに関する各種数値データを示す。   Various numerical data relating to the zoom lens according to Example 3 will be described below.

(面データ)
1=33.9498
1=1.2000 nd1=1.59561 νd1=67.00
2=12.5148
2=5.4644
3=20.5583(非球面)
3=1.5000 nd2=1.59412 νd2=67.02
4=9.6000(非球面)
4=7.5127
5=-33.0572
5=0.6500 nd3=1.43810 νd3=95.10
6=17.4533
6=3.1978 nd4=1.80831 νd4=46.50
7=198.7410
7=D(7)(可変)
8=12.1269
8=0.6000 nd5=1.88622 νd5=40.14
9=8.7861
9=2.8000 nd6=1.61669 νd6=44.27
10=29.1110
10=2.2471
11=∞(開口絞り)
11=2.7420
12=10.5006
12=2.7823 nd7=1.49845 νd7=81.61
13=-128.4436
13=0.6000 nd8=1.80633 νd8=29.84
14=19.4029
14=0.3867
15=30.7206(非球面)
15=2.1368 nd9=1.49856 νd9=81.56
16=-24.3421(非球面)
16=D(16)(可変)
17=-77.3626
17=0.6500 nd10=1.91695 νd10=35.25
18=19.7771
18=0.2119
19=20.4747
19=1.8487 nd11=1.93323 νd11=20.88
20=42.3042
20=D(20)(可変)
21=30.9906
21=5.5489 nd12=1.49845 νd12=81.61
22=-23.6498
22=0.1500
23=-320.2790(非球面)
23=1.2000 nd13=1.58547 νd13=59.46
24=74.7284(非球面)
24=D(24)(可変)
25=∞
25=3.5600 nd14=1.51872 νd14=64.20
26=∞
26=3.6260
27=∞(像面)
(Surface data)
r 1 = 33.9498
d 1 = 1.2000 nd 1 = 1.59561 νd 1 = 67.00
r 2 = 12.5148
d 2 = 5.4644
r 3 = 20.5583 (aspherical surface)
d 3 = 1.5000 nd 2 = 1.59412 νd 2 = 67.02
r 4 = 9.6000 (aspherical surface)
d 4 = 7.5127
r 5 = -33.0572
d 5 = 0.6500 nd 3 = 1.43810 νd 3 = 95.10
r 6 = 17.4533
d 6 = 3.1978 nd 4 = 1.80831 νd 4 = 46.50
r 7 = 198.7410
d 7 = D (7) (variable)
r 8 = 12.1269
d 8 = 0.6000 nd 5 = 1.88622 νd 5 = 40.14
r 9 = 8.7861
d 9 = 2.8000 nd 6 = 1.61669 νd 6 = 44.27
r 10 = 29.1110
d 10 = 2.2471
r 11 = ∞ (aperture stop)
d 11 = 2.7420
r 12 = 10.5006
d 12 = 2.7823 nd 7 = 1.49845 νd 7 = 81.61
r 13 = -128.4436
d 13 = 0.6000 nd 8 = 1.80633 νd 8 = 29.84
r 14 = 19.4029
d 14 = 0.3867
r 15 = 30.7206 (aspherical surface)
d 15 = 2.1368 nd 9 = 1.49856 νd 9 = 81.56
r 16 = -24.3421 (aspherical surface)
d 16 = D (16) (variable)
r 17 = -77.3626
d 17 = 0.6500 nd 10 = 1.91695 νd 10 = 35.25
r 18 = 19.7771
d 18 = 0.2119
r 19 = 20.4747
d 19 = 1.8487 nd 11 = 1.93323 νd 11 = 20.88
r 20 = 42.3042
d 20 = D (20) (variable)
r 21 = 30.9906
d 21 = 5.5489 nd 12 = 1.49845 νd 12 = 81.61
r 22 = -23.6498
d 22 = 0.1500
r 23 = -320.2790 (aspherical surface)
d 23 = 1.2000 nd 13 = 1.58547 νd 13 = 59.46
r 24 = 74.7284 (Aspherical surface)
d 24 = D (24) (variable)
r 25 = ∞
d 25 = 3.5600 nd 14 = 1.51872 νd 14 = 64.20
r 26 = ∞
d 26 = 3.6260
r 27 = ∞ (image plane)

(円錐係数(κ)および非球面係数(A4,A6,A8,A10))
(第3面)
κ=1.00000,
4=-7.18752×10-6,A6=1.73362×10-8
8=-4.11962×10-10,A10=-2.58725×10-13
(第4面)
κ=-8.77947×10-1
4=5.04440×10-5,A6=3.32103×10-8
8=1.91678×10-9,A10=-2.69349×10-11
(第15面)
κ=0,
4=-7.70822×10-5,A6=2.89943×10-6
8=1.39540×10-7,A10=7.49915×10-10
(第16面)
κ=0,
4=1.51955×10-4,A6=4.74831×10-6
8=7.25441×10-8,A10=3.27423×10-9
(第23面)
κ=0,
4=-1.29885×10-4,A6=1.98555×10-6
8=-1.11022×10-8,A10=2.25963×10-11
(第24面)
κ=0,
4=-9.59295×10-5,A6=1.97820×10-6
8=-1.02422×10-8,A10=2.19156×10-11
(Cone coefficient (κ) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 ))
(Third side)
κ = 1.0000,
A 4 = -7.18752 × 10 -6 , A 6 = 1.73362 × 10 -8 ,
A 8 = -4.11962 × 10 -10 , A 10 = -2.58725 × 10 -13
(Fourth surface)
κ = -8.77947 × 10 −1 ,
A 4 = 5.04440 × 10 −5 , A 6 = 3.32103 × 10 −8 ,
A 8 = 1.91678 × 10 −9 , A 10 = −2.669349 × 10 −11
(15th page)
κ = 0,
A 4 = -7.70822 × 10 −5 , A 6 = 2.89943 × 10 −6 ,
A 8 = 1.39540 × 10 −7 , A 10 = 7.49915 × 10 −10
(16th surface)
κ = 0,
A 4 = 1.51955 × 10 -4 , A 6 = 4.774831 × 10 -6 ,
A 8 = 7.25441 × 10 −8 , A 10 = 3.27423 × 10 −9
(23rd page)
κ = 0,
A 4 = -1.29885 × 10 −4 , A 6 = 1.98555 × 10 −6 ,
A 8 = -1.11022 × 10 -8 , A 10 = 2.25963 × 10 -11
(24th page)
κ = 0,
A 4 = -9.59295 × 10 -5 , A 6 = 1.997820 × 10 -6 ,
A 8 = -1.02422 × 10 -8 , A 10 = 2.19156 × 10 -11

(各種データ)
広角端 中間焦点位置 望遠端
焦点距離 12.1600 16.6991 22.9204
Fナンバー 3.1883 3.6745 4.3338
半画角(ω) 52.3872 41.0321 31.0136
D(7) 15.1586 7.0723 0.9000
D(16) 1.6003 4.3537 7.9411
D(20) 4.4626 6.1158 7.1560
D(24) 11.6194 12.8430 15.3877
(Various data)
Wide-angle end Intermediate focal position Telephoto end focal length 12.1600 16.6991 22.9204
F number 3.1883 3.6745 4.3338
Half angle of view (ω) 52.3872 41.0321 31.0136
D (7) 15.1586 7.0723 0.9000
D (16) 1.6003 4.3537 7.9411
D (20) 4.4626 6.1158 7.1560
D (24) 11.6194 12.8430 15.3877

(ズームレンズ群データ)
群 始面 焦点距離
1 1 -16.57(f1)
2 8 18.29(f2)
3 17 -28.77(f3)
4 21 36.94(f4)
(Zoom lens group data)
Group Start surface Focal length 1 1 -16.57 (f1)
2 8 18.29 (f2)
3 17 -28.77 (f3)
4 21 36.94 (f4)

(条件式(1)に関する数値)
νd1n ave=76.4
(νd1n ave:第1レンズ群G1に含まれる全ての負レンズのアッベ数の平均値)
(Numerical values related to conditional expression (1))
νd1n ave = 76.4
(Νd1n ave: average value of Abbe numbers of all negative lenses included in the first lens group G 1 )

(条件式(2)に関する数値)
nd1n max=1.60
(nd1n max:第1レンズ群G1に含まれる負レンズの屈折率の最大値)
(Numerical value related to conditional expression (2))
nd1n max = 1.60
(Nd1n max: maximum value of the refractive index of the negative lens included in the first lens group G 1 )

(条件式(3)に関する数値)
f2/|f1|=1.10
(Numerical values related to conditional expression (3))
f2 / | f1 | = 1.10

(条件式(4)に関する数値)
f3/f1=1.74
(Numerical values related to conditional expression (4))
f3 / f1 = 1.74

(条件式(5)に関する数値)
f4/|f1|=2.23
(Numerical values related to conditional expression (5))
f4 / | f1 | = 2.23

図6は、実施例3にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、長破線はF線(486.13nm)、短破線はC線(656.28nm)に相当する波長の特性を示している。非点収差図において、縦軸は像高(図中、Yで示す)を表し、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は像高(図中、Yで示す)を表している。   FIG. 6 is a diagram illustrating all aberrations of the zoom lens according to the third example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the long broken line is the F line (486.13 nm), and the short broken line is the C line (656. The wavelength characteristic corresponding to 28 nm) is shown. In the astigmatism diagram, the vertical axis represents the image height (indicated by Y in the figure), the solid line represents the sagittal plane (indicated by S in the figure), and the broken line represents the characteristic of the meridional plane (indicated by M in the figure). Show. In the distortion diagram, the vertical axis represents the image height (indicated by Y in the figure).

図7は、実施例4にかかるズームレンズの構成を示す光軸に沿う断面図である。本実施例にかかるズームレンズでは、実施例3における第2レンズ群G2の物体側に凸面を向けた正メニスカスレンズL22に代えて両凸正レンズL422が配置されていること以外の光学構成や変倍時における各レンズ群の移動等は、実施例3に示したズームレンズと同様である。よって、本実施例では、実施例3と同様な部材には同一の符号を付すとともに、それらについての詳細な説明は省略する。 FIG. 7 is a cross-sectional view along the optical axis showing the configuration of the zoom lens according to the fourth example. In the zoom lens according to the present embodiment, optical elements other than the biconvex positive lens L 422 disposed in place of the positive meniscus lens L 22 having a convex surface facing the object side of the second lens group G 2 in the third embodiment. The configuration and movement of each lens group during zooming are the same as those of the zoom lens shown in the third embodiment. Therefore, in the present embodiment, the same members as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

以下、実施例4にかかるズームレンズに関する各種数値データを示す。   Various numerical data relating to the zoom lens according to Example 4 will be described below.

(面データ)
1=30.2479
1=1.2000 nd1=1.59561 νd1=67.00
2=11.2071
2=4.8485
3=20.1731(非球面)
3=1.5000 nd2=1.69979 νd2=55.46
4=9.6000(非球面)
4=5.8933
5=-34.8702
5=0.6500 nd3=1.49845 νd3=81.61
6=14.1654
6=3.3705 nd4=1.80831 νd4=46.50
7=186.7264
7=D(7)(可変)
8=15.5490
8=0.6000 nd5=1.83945 νd5=42.72
9=10.7089
9=2.8000 nd6=1.61669 νd6=44.27
10=-341.2266
10=1.5000
11=∞(開口絞り)
11=3.0722
12=24.0280
12=2.3343 nd7=1.49845 νd7=81.61
13=-20.8607
13=0.6000 nd8=1.80633 νd8=29.84
14=57.4121
14=4.2744
15=26.4365(非球面)
15=2.9566 nd9=1.49856 νd9=81.56
16=-21.3386(非球面)
16=D(16)(可変)
17=-49.9700
17=0.6500 nd10=1.91695 νd10=35.25
18=21.7156
18=0.2640
19=23.7819
19=2.2712 nd11=1.93323 νd11=20.88
20=111.3000
20=D(20)(可変)
21=23.5605
21=5.3175 nd12=1.49845 νd12=81.61
22=-22.8051
22=0.1500
23=-36.6347(非球面)
23=1.2000 nd13=1.85639 νd13=40.10
24=600.0000(非球面)
24=D(24)(可変)
25=∞
25=3.5600 nd14=1.51872 νd14=64.20
26=∞
26=3.6260
27=∞(像面)
(Surface data)
r 1 = 30.2479
d 1 = 1.2000 nd 1 = 1.59561 νd 1 = 67.00
r 2 = 11.2071
d 2 = 4.8485
r 3 = 20.1731 (aspherical surface)
d 3 = 1.5000 nd 2 = 1.69979 νd 2 = 55.46
r 4 = 9.6000 (aspherical surface)
d 4 = 5.8933
r 5 = -34.8702
d 5 = 0.6500 nd 3 = 1.49845 νd 3 = 81.61
r 6 = 14.1654
d 6 = 3.3705 nd 4 = 1.80831 νd 4 = 46.50
r 7 = 186.7264
d 7 = D (7) (variable)
r 8 = 15.5490
d 8 = 0.6000 nd 5 = 1.83945 νd 5 = 42.72
r 9 = 10.7089
d 9 = 2.8000 nd 6 = 1.61669 νd 6 = 44.27
r 10 = -341.2266
d 10 = 1.5000
r 11 = ∞ (aperture stop)
d 11 = 3.0722
r 12 = 24.0280
d 12 = 2.3343 nd 7 = 1.49845 νd 7 = 81.61
r 13 = -20.8607
d 13 = 0.6000 nd 8 = 1.80633 νd 8 = 29.84
r 14 = 57.4121
d 14 = 4.2744
r 15 = 26.4365 (aspherical surface)
d 15 = 2.9956 nd 9 = 1.49856 νd 9 = 81.56
r 16 = -21.3386 (aspherical surface)
d 16 = D (16) (variable)
r 17 = -49.9700
d 17 = 0.6500 nd 10 = 1.91695 νd 10 = 35.25
r 18 = 21.7156
d 18 = 0.2640
r 19 = 23.7819
d 19 = 2.2712 nd 11 = 1.93323 νd 11 = 20.88
r 20 = 111.3000
d 20 = D (20) (variable)
r 21 = 23.5605
d 21 = 5.3175 nd 12 = 1.49845 νd 12 = 81.61
r 22 = -22.8051
d 22 = 0.1500
r 23 = -36.6347 (aspherical surface)
d 23 = 1.2000 nd 13 = 1.85639 νd 13 = 40.10
r 24 = 600.0000 (aspherical surface)
d 24 = D (24) (variable)
r 25 = ∞
d 25 = 3.5600 nd 14 = 1.51872 νd 14 = 64.20
r 26 = ∞
d 26 = 3.6260
r 27 = ∞ (image plane)

(円錐係数(κ)および非球面係数(A4,A6,A8,A10))
(第3面)
κ=1.00000,
4=8.45594×10-5,A6=-6.91666×10-7
8=1.64015×10-9,A10=1.14453×10-12
(第4面)
κ=-7.95393×10-1
4=1.69360×10-4,A6=-3.14226×10-7
8=-4.10529×10-9,A10=6.34240×10-12
(第15面)
κ=0,
4=-4.70292×10-5,A6=-8.70626×10-7
8=1.70316×10-8,A10=-4.54818×10-10
(第16面)
κ=0,
4=3.88403×10-5,A6=-9.41698×10-7
8=2.19223×10-8,A10=-4.78310×10-10
(第23面)
κ=0,
4=9.25515×10-5,A6=-3.58687×10-7
8=-6.60108×10-10,A10=9.65178×10-12
(第24面)
κ=0,
4=1.27317×10-4,A6=-1.46689×10-7
8=-1.87811×10-9,A10=1.71430×10-11
(Cone coefficient (κ) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 ))
(Third side)
κ = 1.0000,
A 4 = 8.45594 × 10 −5 , A 6 = −6.91666 × 10 −7 ,
A 8 = 1.64015 × 10 -9 , A 10 = 1.14453 × 10 -12
(Fourth surface)
κ = -7.95393 × 10 -1 ,
A 4 = 1.69360 × 10 −4 , A 6 = −3.114226 × 10 −7 ,
A 8 = -4.10529 × 10 -9 , A 10 = 6.34240 × 10 -12
(15th page)
κ = 0,
A 4 = -4.70292 × 10 -5 , A 6 = -8.70626 × 10 -7 ,
A 8 = 1.70316 × 10 −8 , A 10 = −4.554818 × 10 −10
(16th surface)
κ = 0,
A 4 = 3.88403 × 10 −5 , A 6 = −9.41698 × 10 −7 ,
A 8 = 2.19223 × 10 −8 , A 10 = −4.78310 × 10 −10
(23rd page)
κ = 0,
A 4 = 9.25515 × 10 −5 , A 6 = −3.558687 × 10 −7 ,
A 8 = -6.60108 × 10 -10 , A 10 = 9.65178 × 10 -12
(24th page)
κ = 0,
A 4 = 1.27317 × 10 -4 , A 6 = -1.46689 × 10 -7 ,
A 8 = -1.87811 × 10 −9 , A 10 = 1.71430 × 10 −11

(各種データ)
広角端 中間焦点位置 望遠端
焦点距離 12.1605 16.7002 22.9175
Fナンバー 3.3102 3.7520 4.3804
半画角(ω) 52.3732 41.0349 31.0022
D(7) 14.2367 6.5795 0.9000
D(16) 1.5982 5.3054 10.4972
D(20) 2.2118 2.6212 2.6047
D(24) 12.7392 13.8556 15.5580
(Various data)
Wide-angle end Intermediate focal position Telephoto end focal length 12.1605 16.7002 22.9175
F number 3.3102 3.7520 4.3804
Half angle of view (ω) 52.3732 41.0349 31.0022
D (7) 14.2367 6.5795 0.9000
D (16) 1.5982 5.3054 10.4972
D (20) 2.2118 2.6212 2.6047
D (24) 12.7392 13.8556 15.5580

(ズームレンズ群データ)
群 始面 焦点距離
1 1 -14.18(f1)
2 8 19.15(f2)
3 17 -33.90(f3)
4 21 53.76(f4)
(Zoom lens group data)
Group Start surface Focal length 1 1 -14.18 (f1)
2 8 19.15 (f2)
3 17 -33.90 (f3)
4 21 53.76 (f4)

(条件式(1)に関する数値)
νd1n ave=68.0
(νd1n ave:第1レンズ群G1に含まれる全ての負レンズのアッベ数の平均値)
(Numerical values related to conditional expression (1))
νd1n ave = 68.0
(Νd1n ave: average value of Abbe numbers of all negative lenses included in the first lens group G 1 )

(条件式(2)に関する数値)
nd1n max=1.70
(nd1n max:第1レンズ群G1に含まれる負レンズの屈折率の最大値)
(Numerical value related to conditional expression (2))
nd1n max = 1.70
(Nd1n max: maximum value of the refractive index of the negative lens included in the first lens group G 1 )

(条件式(3)に関する数値)
f2/|f1|=1.35
(Numerical values related to conditional expression (3))
f2 / | f1 | = 1.35

(条件式(4)に関する数値)
f3/f1=2.39
(Numerical values related to conditional expression (4))
f3 / f1 = 2.39

(条件式(5)に関する数値)
f4/|f1|=3.79
(Numerical values related to conditional expression (5))
f4 / | f1 | = 3.79

図8は、実施例4にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、長破線はF線(486.13nm)、短破線はC線(656.28nm)に相当する波長の特性を示している。非点収差図において、縦軸は像高(図中、Yで示す)を表し、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は像高(図中、Yで示す)を表している。   FIG. 8 is a diagram illustrating various aberrations of the zoom lens according to the fourth example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the long broken line is the F line (486.13 nm), and the short broken line is the C line (656. The wavelength characteristic corresponding to 28 nm) is shown. In the astigmatism diagram, the vertical axis represents the image height (indicated by Y in the figure), the solid line represents the sagittal plane (indicated by S in the figure), and the broken line represents the characteristic of the meridional plane (indicated by M in the figure). Show. In the distortion diagram, the vertical axis represents the image height (indicated by Y in the figure).

図9は、実施例5にかかるズームレンズの構成を示す光軸に沿う断面図である。本実施例にかかるズームレンズでは、実施例3における第4レンズ群G4の両凹負レンズL42に代えて物体側に凸面を向けた負メニスカスレンズL542が配置されていること以外の光学構成や変倍時における各レンズ群の移動等は、実施例3に示したズームレンズと同様である。なお、負メニスカスレンズL542の両面には、非球面が形成されている。本実施例では、実施例3と同様な部材には同一の符号を付すとともに、それらについての詳細な説明は省略する。 FIG. 9 is a cross-sectional view along the optical axis showing the configuration of the zoom lens according to the fifth example. In the zoom lens according to the present embodiment, optics except that the negative meniscus lens L 542 with a convex surface on the object side in place of the biconcave negative lens L 42 in the fourth lens group G 4 of Example 3 is placed The configuration and movement of each lens group during zooming are the same as those of the zoom lens shown in the third embodiment. Note that an aspheric surface is formed on both surfaces of the negative meniscus lens L542 . In the present embodiment, the same members as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

以下、実施例5にかかるズームレンズに関する各種数値データを示す。   Various numerical data relating to the zoom lens according to Example 5 will be described below.

(面データ)
1=34.3699
1=1.2000 nd1=1.62032 νd1=63.39
2=12.8489
2=5.4326
3=20.1046(非球面)
3=1.5000 nd2=1.59412 νd2=67.02
4=9.7698(非球面)
4=7.1083
5=-37.0135
5=0.6500 nd3=1.49845 νd3=81.61
6=16.4695
6=3.9966 nd4=1.80831 νd4=46.50
7=20023.1523
7=D(7)(可変)
8=12.6227
8=0.6000 nd5=1.80633 νd5=29.84
9=9.7010
9=2.4915 nd6=1.62408 νd6=36.30
10=30.0925
10=2.5572
11=∞(開口絞り)
11=2.7742
12=10.5901
12=2.8267 nd7=1.49845 νd7=81.61
13=-52.0180
13=0.6000 nd8=1.80633 νd8=29.84
14=20.5123
14=0.2592
15=25.0330(非球面)
15=2.0670 nd9=1.49856 νd9=81.56
16=-29.3332(非球面)
16=D(16)(可変)
17=-45.0377
17=0.6500 nd10=1.91695 νd10=35.25
18=28.2018
18=2.9179
19=40.1365
19=2.0151 nd11=1.93323 νd11=20.88
20=383.0135
20=D(20)(可変)
21=77.2896
21=4.6070 nd12=1.49845 νd12=81.61
22=-21.4598
22=0.1500
23=34.0442(非球面)
23=1.2000 nd13=1.85639 νd13=40.10
24=24.7568(非球面)
24=D(24)(可変)
25=∞
25=3.5600 nd14=1.51872 νd14=64.20
26=∞
26=3.6260
27=∞(像面)
(Surface data)
r 1 = 34.3699
d 1 = 1.2000 nd 1 = 1.62032 νd 1 = 63.39
r 2 = 12.8489
d 2 = 5.4326
r 3 = 20.1046 (aspherical surface)
d 3 = 1.5000 nd 2 = 1.59412 νd 2 = 67.02
r 4 = 9.7698 (aspherical surface)
d 4 = 7.1083
r 5 = -37.0135
d 5 = 0.6500 nd 3 = 1.49845 νd 3 = 81.61
r 6 = 16.4695
d 6 = 3.9966 nd 4 = 1.80831 νd 4 = 46.50
r 7 = 20023.1523
d 7 = D (7) (variable)
r 8 = 12.6227
d 8 = 0.6000 nd 5 = 1.80633 νd 5 = 29.84
r 9 = 9.7010
d 9 = 2.4915 nd 6 = 1.62408 νd 6 = 36.30
r 10 = 30.0925
d 10 = 2.5572
r 11 = ∞ (aperture stop)
d 11 = 2.7742
r 12 = 10.5901
d 12 = 2.8267 nd 7 = 1.49845 νd 7 = 81.61
r 13 = -52.0180
d 13 = 0.6000 nd 8 = 1.80633 νd 8 = 29.84
r 14 = 20.5123
d 14 = 0.2592
r 15 = 25.0330 (aspherical surface)
d 15 = 2.0670 nd 9 = 1.49856 νd 9 = 81.56
r 16 = -29.3332 (aspherical surface)
d 16 = D (16) (variable)
r 17 = -45.0377
d 17 = 0.6500 nd 10 = 1.91695 νd 10 = 35.25
r 18 = 28.2018
d 18 = 2.9179
r 19 = 40.1365
d 19 = 2.0151 nd 11 = 1.93323 νd 11 = 20.88
r 20 = 383.0135
d 20 = D (20) (variable)
r 21 = 77.2896
d 21 = 4.6070 nd 12 = 1.49845 νd 12 = 81.61
r 22 = -21.4598
d 22 = 0.1500
r 23 = 34.0442 (aspherical surface)
d 23 = 1.2000 nd 13 = 1.85639 νd 13 = 40.10
r 24 = 24.7568 (Aspherical surface)
d 24 = D (24) (variable)
r 25 = ∞
d 25 = 3.5600 nd 14 = 1.51872 νd 14 = 64.20
r 26 = ∞
d 26 = 3.6260
r 27 = ∞ (image plane)

(円錐係数(κ)および非球面係数(A4,A6,A8,A10))
(第3面)
κ=1.00000,
4=-2.61092×10-5,A6=3.18825×10-8
8=2.12005×10-10,A10=-4.15154×10-12
(第4面)
κ=-9.32256×10-1
4=3.57757×10-5,A6=-2.02911×10-8
8=3.92053×10-9,A10=-3.08281×10-11
(第15面)
κ=0,
4=-2.58945×10-5,A6=4.46462×10-6
8=1.00161×10-7,A10=1.00288×10-9
(第16面)
κ=0,
4=2.21120×10-4,A6=6.14546×10-6
8=6.05775×10-8,A10=3.18262×10-9
(第23面)
κ=0,
4=-1.73227×10-4,A6=7.98530×10-7
8=9.71295×10-11,A10=-9.24158×10-12
(第24面)
κ=0,
4=-1.67122×10-4,A6=9.58443×10-7
8=-7.73126×10-10,A10=-5.90203×10-12
(Cone coefficient (κ) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 ))
(Third side)
κ = 1.0000,
A 4 = −2.61092 × 10 −5 , A 6 = 3.18825 × 10 −8 ,
A 8 = 2.12005 × 10 −10 , A 10 = −4.115154 × 10 −12
(Fourth surface)
κ = -9.32256 × 10 −1 ,
A 4 = 3.57757 × 10 −5 , A 6 = −2.02911 × 10 −8 ,
A 8 = 3.92053 × 10 −9 , A 10 = −3.08281 × 10 −11
(15th page)
κ = 0,
A 4 = -2.58945 × 10 −5 , A 6 = 4.46462 × 10 −6 ,
A 8 = 1.00161 × 10 −7 , A 10 = 1.00288 × 10 −9
(16th surface)
κ = 0,
A 4 = 2.21120 × 10 −4 , A 6 = 6.14546 × 10 −6 ,
A 8 = 6.05775 × 10 -8 , A 10 = 3.18262 × 10 -9
(23rd page)
κ = 0,
A 4 = -1.73227 × 10 −4 , A 6 = 7.98530 × 10 −7 ,
A 8 = 9.71295 × 10 -11 , A 10 = -9.24158 × 10 -12
(24th page)
κ = 0,
A 4 = -1.67122 × 10 −4 , A 6 = 9.58443 × 10 −7 ,
A 8 = -7.73126 × 10 -10 , A 10 = -5.90203 × 10 -12

(各種データ)
広角端 中間焦点位置 望遠端
焦点距離 12.1593 16.6983 22.9197
Fナンバー 3.1215 3.5937 4.2742
半画角(ω) 52.3842 41.1375 31.0037
D(7) 16.0593 7.4453 0.9000
D(16) 1.6042 3.2763 5.7054
D(20) 1.9278 4.2823 6.6782
D(24) 11.4118 13.2069 15.9272
(Various data)
Wide-angle end Intermediate focal position Telephoto end focal length 12.1593 16.6983 22.9197
F number 3.1215 3.5937 4.2742
Half angle of view (ω) 52.3842 41.1375 31.0037
D (7) 16.0593 7.4453 0.9000
D (16) 1.6042 3.2763 5.7054
D (20) 1.9278 4.2823 6.6782
D (24) 11.4118 13.2069 15.9272

(ズームレンズ群データ)
群 始面 焦点距離
1 1 -17.87(f1)
2 8 17.87(f2)
3 17 -34.51(f3)
4 21 47.15(f4)
(Zoom lens group data)
Group Start surface Focal length 1 1 -17.87 (f1)
2 8 17.87 (f2)
3 17 -34.51 (f3)
4 21 47.15 (f4)

(条件式(1)に関する数値)
νd1n ave=70.7
(νd1n ave:第1レンズ群G1に含まれる全ての負レンズのアッベ数の平均値)
(Numerical values related to conditional expression (1))
νd1n ave = 70.7
(Νd1n ave: average value of Abbe numbers of all negative lenses included in the first lens group G 1 )

(条件式(2)に関する数値)
nd1n max=1.62
(nd1n max:第1レンズ群G1に含まれる負レンズの屈折率の最大値)
(Numerical value related to conditional expression (2))
nd1n max = 1.62
(Nd1n max: maximum value of the refractive index of the negative lens included in the first lens group G 1 )

(条件式(3)に関する数値)
f2/|f1|=1.00
(Numerical values related to conditional expression (3))
f2 / | f1 | = 1.00

(条件式(4)に関する数値)
f3/f1=1.93
(Numerical values related to conditional expression (4))
f3 / f1 = 1.93

(条件式(5)に関する数値)
f4/|f1|=2.64
(Numerical values related to conditional expression (5))
f4 / | f1 | = 2.64

図10は、実施例5にかかるズームレンズの諸収差図である。球面収差図において、縦軸はFナンバー(図中、FNOで示す)を表し、実線はd線(587.56nm)、長破線はF線(486.13nm)、短破線はC線(656.28nm)に相当する波長の特性を示している。非点収差図において、縦軸は像高(図中、Yで示す)を表し、実線はサジタル平面(図中、Sで示す)、破線はメリディオナル平面(図中、Mで示す)の特性を示している。歪曲収差図において、縦軸は像高(図中、Yで示す)を表している。   FIG. 10 is a diagram illustrating various aberrations of the zoom lens according to the fifth example. In the spherical aberration diagram, the vertical axis represents the F number (indicated by FNO in the figure), the solid line is the d line (587.56 nm), the long broken line is the F line (486.13 nm), and the short broken line is the C line (656. The wavelength characteristic corresponding to 28 nm) is shown. In the astigmatism diagram, the vertical axis represents the image height (indicated by Y in the figure), the solid line represents the sagittal plane (indicated by S in the figure), and the broken line represents the characteristic of the meridional plane (indicated by M in the figure). Show. In the distortion diagram, the vertical axis represents the image height (indicated by Y in the figure).

以下に上記各実施例における条件式の対応表を示す。   The correspondence table of the conditional expressions in the above embodiments is shown below.

Figure 2019133072
Figure 2019133072

なお、上記各実施例中の数値データにおいて、r1,r2,・・・・はレンズ、開口絞り面などの曲率半径、d1,d2,・・・・はレンズ、開口絞りなどの肉厚またはそれらの面間隔、nd1,nd2,・・・・はレンズなどのd線(587.56nm)に対する屈折率、νd1,νd2,・・・・はレンズなどのd線に対するアッベ数を示している。そして、長さの単位はすべて「mm」、角度の単位はすべて「°」である。 In the numerical data in each of the above embodiments, r 1 , r 2 ,... Are the radii of curvature of the lens and aperture stop surface, and d 1 , d 2 ,. Thickness or spacing between them, nd 1 , nd 2 ,... Is a refractive index with respect to d-line (587.56 nm) such as a lens, and νd 1 , νd 2 ,. Indicates the Abbe number. The unit of length is all “mm”, and the unit of angle is “°”.

また、上記各非球面形状は、光軸に垂直な方向の高さをh、レンズ面頂を原点としたときの高さhにおける光軸方向の変位量をZ、近軸曲率半径をr、円錐係数をκ、n次の非球面係数をAnとし、像面方向を正とするとき、以下に示す式により表される。 Each of the aspherical shapes has a height in the direction perpendicular to the optical axis as h, a displacement amount in the optical axis direction at a height h when the top of the lens surface is the origin, Z, a paraxial curvature radius as r, When the conic coefficient is κ, the nth-order aspheric coefficient is An , and the image plane direction is positive, it is expressed by the following equation.

Figure 2019133072
Figure 2019133072

以上説明したように、上記各実施例のズームレンズは、上記各条件式を満足することにより、高変倍比を確保しつつ、小型化、軽量化、高解像化を達成することができ、動画撮影にも好適なものとなる。特に、条件式(1)を満足することで、色収差を良好に補正することができる。条件式(2)を満足することで、光学系のより軽量化を実現することができる。条件式(3)を満足することで、良好な解像性能を維持しながら(特に、球面収差の良好な補正が可能になる)、光学系全長をより短縮することができる。条件式(4)を満足することで、良好な解像性能を維持しながら(特に、球面収差の良好な補正が可能になる)、フォーカシング時の第3レンズ群G3の移動量を抑制して、光学系全長をより短縮することができる。条件式(5)を満足することで、良好な解像性能を維持しながら(特に、像面湾曲の良好な補正が可能になる)、光学系全長をより短縮することができる。 As described above, the zoom lens according to each of the embodiments can achieve miniaturization, weight reduction, and high resolution while ensuring a high zoom ratio by satisfying each conditional expression. It is also suitable for moving image shooting. In particular, chromatic aberration can be favorably corrected by satisfying conditional expression (1). By satisfying conditional expression (2), the optical system can be made lighter. By satisfying conditional expression (3), it is possible to further shorten the overall length of the optical system while maintaining good resolution performance (particularly, good correction of spherical aberration becomes possible). Satisfying conditional expression (4) suppresses the amount of movement of the third lens group G 3 during focusing while maintaining good resolution performance (especially enabling good correction of spherical aberration). Thus, the overall length of the optical system can be further reduced. By satisfying conditional expression (5), it is possible to further shorten the overall length of the optical system while maintaining good resolution performance (particularly, good correction of field curvature is possible).

また、上記各実施例のズームレンズは、適宜非球面が形成されたレンズや接合レンズを配置したことにより、収差補正能力をより向上させることができる。   In addition, the zoom lens of each of the above embodiments can further improve the aberration correction capability by arranging a lens having a suitable aspherical surface and a cemented lens.

<適用例>
以下、本発明の実施例1〜5に示したズームレンズを撮像装置に適用した例を示す。図11は、本発明にかかるズームレンズを備えた撮像装置の一適用例を示す図である。図11には、ズームレンズ100を収容したレンズ鏡筒110が撮像装置200に取付けられている状態を示している。
<Application example>
Hereinafter, an example in which the zoom lens described in Embodiments 1 to 5 of the present invention is applied to an imaging apparatus will be described. FIG. 11 is a diagram illustrating an application example of an imaging apparatus including the zoom lens according to the present invention. FIG. 11 shows a state in which the lens barrel 110 that houses the zoom lens 100 is attached to the imaging apparatus 200.

ズームレンズ100は、実施例1〜5に示したものである。レンズ鏡筒110はマウント部111を介して撮像装置200に対して着脱可能になっている。マウント部111としては、スクリュータイプやバヨネットタイプ等のマウントが用いられる。この例では、バヨネットタイプのマウントを使用している。   The zoom lens 100 is shown in Examples 1-5. The lens barrel 110 can be attached to and detached from the imaging apparatus 200 via the mount unit 111. As the mount portion 111, a screw type or bayonet type mount is used. In this example, a bayonet type mount is used.

ズームレンズ100により撮像された像は撮像装置200に搭載された撮像素子201(CCDやCMOS等)の撮像面上に結像し、その像に関する撮像素子201からの出力信号が図示しない信号処理回路によって演算処理され、表示部202に像が表示される。   An image picked up by the zoom lens 100 is formed on an image pickup surface of an image pickup element 201 (CCD, CMOS, etc.) mounted on the image pickup apparatus 200, and an output signal from the image pickup element 201 relating to the image is a signal processing circuit (not shown). And the image is displayed on the display unit 202.

図11では、本発明にかかるズームレンズをミラーレス一眼カメラに用いた例を示した。しかし、本発明にかかるズームレンズは、ミラーレス一眼カメラのみならず、その他のレンズ交換式カメラやデジタルスチルカメラ、監視用カメラ、ビデオカメラ等に用いることも可能である。   FIG. 11 shows an example in which the zoom lens according to the present invention is used in a mirrorless single-lens camera. However, the zoom lens according to the present invention can be used not only in a mirrorless single-lens camera, but also in other interchangeable lens cameras, digital still cameras, surveillance cameras, video cameras, and the like.

以上のように、本発明にかかるズームレンズは、高い変倍比と高い解像性能が要求される小型撮像装置に有用であり、ミラーレス一眼カメラや一眼レフレックスカメラ等のレンズ交換方式カメラ、監視用カメラ、ビデオカメラ、デジタルスチルカメラ等に好適である。   As described above, the zoom lens according to the present invention is useful for a small-sized imaging device that requires a high zoom ratio and high resolution performance, and a lens interchangeable camera such as a mirrorless single-lens camera or a single-lens reflex camera, Suitable for surveillance cameras, video cameras, digital still cameras and the like.

1 第1レンズ群
2 第2レンズ群
3 第3レンズ群
4 第4レンズ群
11,L12,L21,L32,L542 負メニスカスレンズ
13,L24,L31,L42 両凹負レンズ
14,23,L25,L41,L422 両凸正レンズ
22,L32,L314 正メニスカスレンズ
STP 開口絞り
CG カバーガラス
IMG 像面
100 ズームレンズ
110 レンズ鏡筒
111 マウント部
200 撮像装置
201 撮像素子
202 表示部
G 1 first lens group G 2 the second lens group G 3 third lens group G 4 fourth lens group L 11, L 12, L 21 , L 32, L 542 negative meniscus lens L 13, L 24, L 31 , L 42 biconcave negative lens L 14, L 23 , L 25 , L 41 , L 422 biconvex positive lens L 22 , L 32 , L 314 positive meniscus lens STP Aperture stop CG Cover glass IMG Image surface 100 Zoom lens 110 Lens mirror Tube 111 Mount unit 200 Imaging device 201 Imaging element 202 Display unit

Claims (7)

物体側から順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、からなり、
前記各レンズ群の光軸上の間隔を変化させることにより広角端から望遠端への変倍を行い、
前記第3レンズ群を光軸に沿って移動させてフォーカシングを行い、
以下に示す条件式を満足することを特徴とするズームレンズ。
(1) νd1n ave≧67.5
ただし、νd1n aveは前記第1レンズ群に含まれる全ての負レンズのアッベ数の平均値を示す。
A first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive refractive power, which are arranged in order from the object side. A fourth lens group,
By changing the distance on the optical axis of each lens group, zooming from the wide-angle end to the telephoto end is performed.
Focusing is performed by moving the third lens group along the optical axis,
A zoom lens that satisfies the following conditional expression:
(1) νd1n ave ≧ 67.5
Here, νd1n ave represents the average value of the Abbe numbers of all the negative lenses included in the first lens group.
以下に示す条件式を満足することを特徴とする請求項1に記載のズームレンズ。
(2) nd1n max≦1.80
ただし、nd1n maxは前記第1レンズ群に含まれる負レンズの屈折率の最大値を示す。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
(2) nd1n max ≦ 1.80
Here, nd1n max represents the maximum value of the refractive index of the negative lens included in the first lens group.
以下に示す条件式を満足することを特徴とする請求項1または2に記載のズームレンズ。
(3) 0.75≦f2/|f1|≦1.70
ただし、f1は前記第1レンズ群の焦点距離、f2は前記第2レンズ群の焦点距離を示す。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
(3) 0.75 ≦ f2 / | f1 | ≦ 1.70
Here, f1 represents the focal length of the first lens group, and f2 represents the focal length of the second lens group.
以下に示す条件式を満足することを特徴とする請求項1〜3のいずれか一つに記載のズームレンズ。
(4) 1.50≦f3/f1≦2.70
ただし、f1は前記第1レンズ群の焦点距離、f3は前記第3レンズ群の焦点距離を示す。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
(4) 1.50 ≦ f3 / f1 ≦ 2.70
Here, f1 represents the focal length of the first lens group, and f3 represents the focal length of the third lens group.
以下に示す条件式を満足することを特徴とする請求項1〜4のいずれか一つに記載のズームレンズ。
(5) 1.90≦f4/|f1|≦4.20
ただし、f1は前記第1レンズ群の焦点距離、f4は前記第4レンズ群の焦点距離を示す。
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
(5) 1.90 ≦ f4 / | f1 | ≦ 4.20
Here, f1 represents the focal length of the first lens group, and f4 represents the focal length of the fourth lens group.
変倍の際に、前記第1レンズ群を像側に凸の軌跡を描くように移動させることを特徴とする請求項1〜5のいずれか一つに記載のズームレンズ。   The zoom lens according to any one of claims 1 to 5, wherein the zoom lens moves the first lens group so as to draw a convex locus on the image side. 請求項1〜6のいずれか一つに記載のズームレンズと、該ズームレンズによって形成された光学像を電気的信号に変換する撮像素子と、を備えたことを特徴とする撮像装置。   An image pickup apparatus comprising: the zoom lens according to claim 1; and an image pickup element that converts an optical image formed by the zoom lens into an electrical signal.
JP2018016835A 2018-02-01 2018-02-01 Zoom lens and image pickup device Active JP7055652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018016835A JP7055652B2 (en) 2018-02-01 2018-02-01 Zoom lens and image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018016835A JP7055652B2 (en) 2018-02-01 2018-02-01 Zoom lens and image pickup device

Publications (2)

Publication Number Publication Date
JP2019133072A true JP2019133072A (en) 2019-08-08
JP7055652B2 JP7055652B2 (en) 2022-04-18

Family

ID=67546112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018016835A Active JP7055652B2 (en) 2018-02-01 2018-02-01 Zoom lens and image pickup device

Country Status (1)

Country Link
JP (1) JP7055652B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047384A (en) * 2019-09-20 2021-03-25 キヤノン株式会社 Optical system and image capturing device having the same
JP2021157086A (en) * 2020-03-27 2021-10-07 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd Lens system, image capturing device, and mobile body
JP7377768B2 (en) 2020-06-03 2023-11-10 コニカミノルタ株式会社 Zoom lenses, imaging optical devices and digital equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211323A (en) * 1996-02-07 1997-08-15 Konica Corp Zoom lens for finite distance
JP2004061910A (en) * 2002-07-30 2004-02-26 Canon Inc Zoom lens provided with vibration-proofing function
JP2009025380A (en) * 2007-07-17 2009-02-05 Konica Minolta Opto Inc Variable power optical system, imaging apparatus, and digital device
JP2011059494A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Zoom lens and imaging device
JP2011059497A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Zoom lens and imaging device
WO2011145288A1 (en) * 2010-05-19 2011-11-24 コニカミノルタオプト株式会社 Zoom lens and imaging device
JP2014235190A (en) * 2013-05-30 2014-12-15 オリンパスイメージング株式会社 Zoom lens and imaging device having the same
JP2015206979A (en) * 2014-04-23 2015-11-19 Hoya株式会社 Image capturing optical system
JP2017037163A (en) * 2015-08-10 2017-02-16 キヤノン株式会社 Zoom lens and imaging device having the same
WO2018078887A1 (en) * 2016-10-31 2018-05-03 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Zoom lens, imaging device, mobile body, and system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211323A (en) * 1996-02-07 1997-08-15 Konica Corp Zoom lens for finite distance
JP2004061910A (en) * 2002-07-30 2004-02-26 Canon Inc Zoom lens provided with vibration-proofing function
JP2009025380A (en) * 2007-07-17 2009-02-05 Konica Minolta Opto Inc Variable power optical system, imaging apparatus, and digital device
JP2011059494A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Zoom lens and imaging device
JP2011059497A (en) * 2009-09-11 2011-03-24 Fujifilm Corp Zoom lens and imaging device
WO2011145288A1 (en) * 2010-05-19 2011-11-24 コニカミノルタオプト株式会社 Zoom lens and imaging device
JP2014235190A (en) * 2013-05-30 2014-12-15 オリンパスイメージング株式会社 Zoom lens and imaging device having the same
JP2015206979A (en) * 2014-04-23 2015-11-19 Hoya株式会社 Image capturing optical system
JP2017037163A (en) * 2015-08-10 2017-02-16 キヤノン株式会社 Zoom lens and imaging device having the same
WO2018078887A1 (en) * 2016-10-31 2018-05-03 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Zoom lens, imaging device, mobile body, and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047384A (en) * 2019-09-20 2021-03-25 キヤノン株式会社 Optical system and image capturing device having the same
JP7337626B2 (en) 2019-09-20 2023-09-04 キヤノン株式会社 Optical system and imaging device having the same
JP2021157086A (en) * 2020-03-27 2021-10-07 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd Lens system, image capturing device, and mobile body
JP7377768B2 (en) 2020-06-03 2023-11-10 コニカミノルタ株式会社 Zoom lenses, imaging optical devices and digital equipment

Also Published As

Publication number Publication date
JP7055652B2 (en) 2022-04-18

Similar Documents

Publication Publication Date Title
JP3862520B2 (en) Zoom lens and optical apparatus using the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP2011141364A (en) Optical system and image pickup apparatus having the same
JP2015197593A (en) Zoom lens and image capturing device having the same
JP5774055B2 (en) Zoom lens and imaging apparatus having the same
JP5448574B2 (en) Zoom lens and imaging apparatus having the same
JP2011033770A (en) Zoom lens and optical apparatus including the same
JP2008070519A (en) Zoom lens and imaging apparatus having the same
JP2012022080A (en) Zoom lens and imaging apparatus
JP2001033703A (en) Rear focus type zoom lens
JP2009251433A (en) Zoom lens and imaging device having the same
JPH08190051A (en) Rear focus type zoom lens
JP2009244699A (en) Optical system, method for focusing the optical system, and imaging apparatus equipped therewith
JP5433958B2 (en) Zoom lens and optical apparatus provided with the same
JP7055652B2 (en) Zoom lens and image pickup device
JP6173975B2 (en) Zoom lens and imaging device
JP2000231050A (en) Rear focus type zoom lens
JP2004240038A (en) Zoom lens
JP2008070411A (en) Zoom lens
JP2017037164A (en) Zoom lens and imaging device having the same
JP2012252253A (en) Zoom lens and imaging device with the same
JP4411010B2 (en) Zoom lens and imaging device using the same
JP2018025579A (en) Zoom lens and optical apparatus having the same
JP2004037700A (en) Zoom lens and optical device having same
JP6071473B2 (en) Zoom lens and imaging apparatus using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200827

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7055652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150