JP2004240038A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2004240038A
JP2004240038A JP2003027144A JP2003027144A JP2004240038A JP 2004240038 A JP2004240038 A JP 2004240038A JP 2003027144 A JP2003027144 A JP 2003027144A JP 2003027144 A JP2003027144 A JP 2003027144A JP 2004240038 A JP2004240038 A JP 2004240038A
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom
focal length
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003027144A
Other languages
Japanese (ja)
Other versions
JP2004240038A5 (en
JP4366091B2 (en
Inventor
Makoto Fujimoto
誠 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003027144A priority Critical patent/JP4366091B2/en
Publication of JP2004240038A publication Critical patent/JP2004240038A/en
Publication of JP2004240038A5 publication Critical patent/JP2004240038A5/ja
Application granted granted Critical
Publication of JP4366091B2 publication Critical patent/JP4366091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact zoom lens whose viewing angle at a wide angle end is ≥100°, and whose zoom ratio is ≥2.2. <P>SOLUTION: In the zoom lens having four lens groups 1 to 4 having negative, positive, negative and positive refractive power in order from an object side to an image side, the fourth lens group 4 has a biconvex positive lens and a doublet obtained by sticking a negative lens to a positive lens, and also has an aspherical surface on a concave surface toward the object side, and the focal distance of the second lens group 2, the focal distance of the third lens group 3, and the variable power ratio of a partial system constituted of the third lens group and the fourth lens group 4 are set to be within an appropriate range. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はズームレンズに関し、特に35mmライカ版の一眼レフカメラ、デジタルスチルカメラ、ビデオカメラ等に好適な広角高倍率ズームレンズに関するものである。
【0002】
【従来の技術】
一眼レフレックスカメラ用の超広角ズームレンズとして、特許文献1〜6に示すような例が知られている。
【0003】
特許文献1〜6は、物体側から像側へ順に、負、正、負、正の4つのレンズ群を有する構成で、各レンズ群を移動して効率よくズーミングを行い、広角端の焦点距離を短くする(広角化を図る)と共に、小型化を図ろうとしている。特許文献1及び2には、広角端の画角が95°程度、ズーム比1.75程度のズームレンズが開示されている。特許文献3及び4には、広角端の画角が110°程度、ズーム比1.75程度のズームレンズが開示されている。特許文献5には、広角端の画角が95°程度、ズーム比1.65程度のズームレンズが開示されている。 特許文献6には、広角端の画角が100°程度、ズーム比1.85程度のズームレンズが開示されている。
【0004】
これら従来の広角ズームレンズには、非球面を用いることが一般的になっている。特に、最も物体側のレンズを像側へ凹面を向けた負メニスカスレンズとし、このレンズの物体側の面(第1面)に非球面を設けることで、前玉径を大きくすることなく、効果的にディストーションを補正できる。特許文献5や6では、この最も物体側のレンズに非球面を設けているが、バックフォーカスの不足をこの最も物体側のレンズの屈折力を強めることで解決している。
【0005】
【特許文献1】
特開平2−201310号公報
【特許文献2】
特開平2−296208号公報
【特許文献3】
特開平4−235514号公報
【特許文献4】
特開平4−235515号公報
【特許文献5】
特開平5−173071号公報
【特許文献6】
特開平7−261084号公報
【0006】
【発明が解決しようとする課題】
このように従来の広角ズームレンズは、最も物体側のレンズの屈折力を強く設定しており、収差の発生を抑えるためにこのレンズに高屈折率の硝材を用いている。高屈折率の硝材は成型が困難なためガラスモールドで加工することができない。このため、高屈折率の硝材を最も物体側のレンズに用いた従来例では、このレンズを非球面レンズとするために研削で非球面を加工せねばならなかった。これはレンズのコストが高くなることを意味する。
【0007】
一方、低屈折率の硝材を最も物体側のレンズに採用すれば、ガラスモールドで非球面を加工することが可能になるが、単純に従来例の硝材を低屈折率材料に置き換えただけではズーム比が小さくなるという問題がある。
【0008】
本発明はこれらの従来例を鑑みなされたもので、広角端において所望の画角を確保したズームレンズにおいて、比較的大きなズーム比を実現することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明のズームレンズは、前方(物体側)から後方(像側)へ順に、負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群を有し、短焦点距離端(広角端)から長焦点距離端(望遠端)へのズーミングに際して、第1レンズ群と第2レンズ群の間隔が減少し、第2レンズ群と第3レンズ群の間隔が増大し、第3レンズ群と第4レンズ群の間隔が減少するように、少なくとも第1レンズ群と第2レンズ群と第4レンズ群とが移動するズームレンズにおいて、第4レンズ群が、両凸形状の正レンズ、負レンズと正レンズとを貼り合せた接合レンズを有すると共に、物体側に向けて凹形状の面に非球面を有し、第2レンズ群の焦点距離をf2、第3レンズ群の焦点距離をf3、短焦点距離端における全系の焦点距離をfw、第3レンズ群と第4レンズ群との短焦点距離端から長焦点距離端への変倍比をBとするとき、
1.3 < f2/fw < 1.8
−3.5 < f3/fw < −2.0
B > 0.9
なる条件を満足することを特徴としている。
【0010】
【発明の実施の形態】
以下に図面を用いて本発明のズームレンズの実施形態について説明する。
【0011】
図1は後述する数値実施例1に対応した実施形態1のズームレンズの広角端(短焦点距離端)におけるレンズ断面図、図2は実施形態1のズームレンズの広角端における収差図、図3は実施形態1のズームレンズの望遠端(長焦点距離端)における収差図である。図4は後述する数値実施例2に対応した実施形態2のズームレンズの広角端におけるレンズ断面図、図5は実施形態2のズームレンズの広角端における収差図、図6は実施形態2のズームレンズの望遠端における収差図である。本実施形態(以下、特に断らない限り実施形態1及び実施形態2を総称して「本実施形態」という)のズームレンズは、焦点距離f=17〜40mm、画角2ω=104°〜57°、FナンバーFno=4の広角ズームレンズである。
【0012】
図1及び図4に示すレンズ断面図おいて、1は負の屈折力(光学的パワー=焦点距離の逆数)の第1レンズ群、2は正の屈折力の第2レンズ群、3は負の屈折力の第3レンズ群、4は正の屈折力の第4レンズ群、1a、1bは、各々負の屈折力の第1aレンズ群と第1bレンズ群、SPは開口絞りである。なお、図1,4において、左側が物体側(前方)であり、右側が像側(後方)である。
【0013】
本実施形態では、広角端から望遠端へのズーミングに際し、第2レンズ群2と第4レンズ群4とは一体的に(同じ移動軌跡で)物体方向へ移動し、第3レンズ群3は独立に(第2レンズ群2及び第4レンズ群4とは異なる移動軌跡で)物体方向へ移動し、第1レンズ群1は広角端から所定の中間焦点距離位置までは像側に、その中間焦点距離位置から望遠端までは物体側へ移動している。また第2レンズ群2及び第4レンズ群4を直線的に移動させるとき(ズーム操作量に比例して移動させるとき)には、第3レンズ群3を非直線的に移動させることで、中間焦点距離位置における収差を良好に補正している。
【0014】
また、第1bレンズ群1bを光軸に沿って繰り出す(物体側に移動させる)ことにより、無限遠物体から至近物体へのフォーカシングを行っている。
【0015】
本実施形態のズームレンズの第1レンズ群1は、レンズ断面図に示すとおり、像側へ凹面を向けた負メニスカスレンズで構成される第1aレンズ群1aを有し、その負メニスカスレンズの物体側の面(像側に向けて凹形状の面)を、光軸から周辺に行くに従って正の屈折力が強くなる形状の非球面としている。
【0016】
一方、第4レンズ群4はアッベ数95の低分散ガラスで構成された両凸形状の正レンズ、そして負レンズと正レンズとを接合した貼り合せレンズを有している。そして、第4レンズ群4中の物体側に向けて凹形状の面(実施形態1では第21面、実施形態2では第22面)に非球面を設けている。
【0017】
本実施形態のズームレンズでは、後述するように最も前方のレンズ群である第1aレンズ群1aの屈折力を比較的小さくしている。上述した第4レンズ群4のレンズ構成は、このために発生する球面収差やコマ収差等を補正するためのものである。更に、第4レンズ群4中の物体側に凹形状の面に非球面が設けることで、望遠端における非点収差も良好に改善している。
【0018】
なお、本実施形態では、第4レンズ群4中の両凸形状の正レンズにアッベ数95の低分散ガラスを採用したが、アッベ数70以上の材料であれば、広角端における倍率色収差補正に効果的である。
【0019】
また、本実施形態のズームレンズは、第2レンズ群2の焦点距離をf2、第3レンズ群3の焦点距離をf3、広角端における全系の焦点距離をfw、第3レンズ群3及び第4レンズ群4の広角端から望遠端への変倍比をBとするとき、
1.3 < f2/fw < 1.8 …(1)
−3.5 < f3/fw < −2.0 …(2)
B > 0.9 …(3)
なる条件を満たしている。
【0020】
広角ズームレンズにおいて各レンズ群のパワー配置を従来のままとしてズーム比を増やそうとすると、レンズ全長や前玉径の増大を招く。条件式(1),(2)及び(3)は、広角端での画角が大きい(例えば100°以上)のズームレンズにおいて、大きなズーム比(2.2倍以上)を確保すると共に、系の大型化を抑制するための条件である。
【0021】
条件式(1)は、望遠端における球面収差の増大を最小限に抑えつつ、ズーム比を大きくするための条件である。条件式(1)の下限を越えて第2レンズ群2の焦点距離が短くなる(パワーが強くなる)と、望遠端における球面収差が増大する。条件式(1)の上限を越えて第2レンズ群2の焦点距離が長くなる(パワーが弱くなる)とレンズ全長や前玉径の増大を招くことになる。
【0022】
条件式(2)は、広角ズームレンズにおいて、所望のズーム比を確保しつつ、大型化を抑制し、必要なバックフォーカスを得るため条件である。条件式(2)の上限を越えて第3レンズ群3の焦点距離の絶対値が小さくなる(パワーが強くなる)と、バックフォーカスが短くなりすぎる。下限を超えて第3レンズ群3の焦点距離の絶対値が大きくなる(パワーが弱くなる)と、所定の変倍比を確保するための第3レンズ群3のズーム移動量が大きくなるので、レンズ全長の増大を招くことになる。あるいは、逆に系の小型化を優先する場合には、所望のズーム比が確保できなくなる。
【0023】
条件式(3)は、ズーミング時の球面収差の変動を抑えながらズーム比を上げるための条件である。条件式(3)の下限を越えて第3レンズ群3と第4レンズ群4とで構成される部分系の倍率変化が小さくなると、広角端から望遠端へのズーミングに際し第2レンズ群2が負担する変倍比が大きくなりすぎ、望遠端における球面収差が増大する。
【0024】
更に本実施形態のズームレンズは、第1レンズ群1の焦点距離をf1、第1aレンズ群1aを構成する負メニスカスレンズの焦点距離をf1aとするとき、
f1a/f1 > 1.6 …(4)
なる条件を満足している。
【0025】
条件式(4)は、第1aレンズ群1aを構成する負メニスカスレンズにガラスモールドを実施するための条件である。条件式(4)を満足するように負メニスカスレンズの焦点距離を比較的長く(パワーを比較的小さく)することによって、負メニスカスレンズを構成する硝材として屈折率が低い材料の選定も可能となり、屈折率にとらわれることなく成型性の良い硝材の選択ができる。条件式(4)の下限値を越えて負メニスカスレンズのパワーを大きくすると、屈折率の低い硝材を採用した場合には、負メニスカスレンズの物体側レンズ面(第1面)の近軸曲率半径がマイナスの値になったり、像側レンズ面(第2面)の近軸曲率半径が小さくなりすぎて、成型性が極端に悪化してしまう。
【0026】
なお、第1aレンズ群1aを構成する負メニスカスレンズの屈折率をnとするとき、
n < 1.6 …(5)
なる条件を満足することが好ましい。
【0027】
次に、実施形態1及び2にそれぞれ対応する数値実施例1及び2の数値データを示す。各数値実施例においてiが物体側からの光学面の順序を示すとして、riは第i番目の光学面(第i面)の曲率半径、diは第i面と第(i+1)面との間の間隔、niとνiはそれぞれd線に対する第i番目の光学部材の材質の屈折率、アッベ数である。ここで、曲率半径および面間隔の単位はmm(ミリメートル)である。fは焦点距離、FnoはFナンバー、ωは半画角である。
【0028】
また非球面形状は、A,B,C,Dを非球面係数、光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、
【外1】

Figure 2004240038
【0029】
で表される。但しRは近軸曲率半径である。
【0030】
更に、各条件式と数値実施例における諸数値との関係を表1に示す。
【0031】
【外2】
(数値実施例1)
Figure 2004240038
【0032】
第1面の非球面係数
A=1.358×10−5 B=−1.792×10−8 C=2.412×10−11 D=−2.01×10−14
第3面の非球面係数
A=−9.211×10−6 B=2.504×10−8 C=−1.838×10−11 D=−6.640×10−15
第21面の非球面係数
A=−2.200×10−5 B=−2.588×10−8 C=−1.363×10−11 D=2.925×10−13
【外3】
(数値実施例2)
Figure 2004240038
【0033】
第1面の非球面係数
A=1.278×10−5 B=−1.327×10−8 C=1.250×10−11 D=−4.216×10−15
第3面の非球面係数
A=−8.933×10−6 B=2.220×10−8 C=−2.151×10−11
第22面の非球面係数
A=9.298×10−6 B=2.546×10−8 C=−5.263×10−11 D=9.968×10−14
【0034】
【表1】
(表1)
Figure 2004240038
【0035】
本実施形態のごとくズームレンズを構成することによって、各レンズ群とも極力少ないレンズ構成枚数でコンパクト化を図りつつ、広角端で100°を越える広角化と、ズーム比が2.2倍以上という高倍率化が達成されたインナーフォーカスの超広角ズームレンズが実現できる。
【0036】
次に本実施形態のズームレンズを用い光学機器の実施形態について説明する。図7は上述した実施形態1,2のズームレンズをフィルム用カメラやデジタルカメラ等の一眼レフカメラに適用したときの要部概略図である。
【0037】
図7において20はカメラ本体、21は実施形態1又は2のズームレンズで構成される撮影レンズ、22は撮像手段であり、銀塩フィルムや、CCDセンサ,CMOSセンサ等の固体撮像素子(光電変換素子)から成っている。23はファインダー系であり、撮影レンズ21によって被写体像が形成される焦点板25、像反転手段としてのペンタプリズム26、そして焦点板25上の被写体像を観察する為の接眼レンズ27を有している。24はクイックリターンミラーである。クイックリターンミラー24は非撮影時には、図25に示すごとく撮影レンズ21の光路中に位置して、被写体からの光をファインダー系23に導く。撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー24は図中の矢印に示すごとく回転して、撮影レンズ21の光路から退避し、被写体からの光は撮像手段22に導かれる。
【0038】
このように本発明のズームレンズは一眼レフカメラ等の光学機器に好適に用いられる。
【0039】
以下に本発明の態様について列挙する。
(態様1)前方から後方へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、負の屈折力の第3レンズ群と、正の屈折力の第4レンズ群とを有し、短焦点距離端から長焦点距離端へのズーミングに際して、前記第1レンズ群と第2レンズ群の間隔が減少し、前記第2レンズ群と第3レンズ群の間隔が増大し、前記第3レンズ群と第4レンズ群の間隔が減少するように、少なくとも第1レンズ群と第2レンズ群と第4レンズ群とが移動するズームレンズにおいて、前記第4レンズ群は、両凸形状の正レンズ、負レンズと正レンズとを貼り合せた接合レンズを有すると共に、物体側に向けて凹形状の面に非球面を有し、前記第2レンズ群の焦点距離をf2、前記第3レンズ群の焦点距離をf3、短焦点距離端における全系の焦点距離をfw、前記第3レンズ群と第4レンズ群との短焦点距離端から長焦点距離端への変倍比をBとするとき、
1.3 < f2/fw < 1.8
−3.5 < f3/fw < −2.0
B > 0.9
なる条件を満足することを特徴とするズームレンズ。
(態様2)前記第1レンズ群は像側に凹面を向けた負メニスカスレンズを有し、前記負メニスカスレンズの物体側の面は、光軸から周辺に行くに従って正の屈折力が強くなる形状の非球面であることを特徴とする態様1のズームレンズ。
(態様3)前記第1レンズ群は像側に凹面を向けた負メニスカスレンズを有し、前記第1レンズ群の焦点距離をf1、前記負メニスカスレンズの焦点距離をf1aとするとき、
f1a/f1 > 1.6
なる条件を満足することを特徴とする態様1のズームレンズ。
(態様4)前記第1レンズ群の負メニスカスレンズを構成する材料の屈折率をnとするとき、
n < 1.6
なる条件を満足することを特徴とする態様3のズームレンズ。
(態様5)前記第1レンズ群は、像側に凹面を向けた負メニスカスレンズと、負レンズと、正レンズとを有することを特徴とする態様1〜4いずれかのズームレンズ。
(態様6)前記第4レンズ群中の両凸形状の正レンズを構成する材料のアッベ数が70以上であることを特徴とする態様1〜5いずれかのズームレンズ。
(態様7)前記第1レンズ群は、像側に凹面を向けた負メニスカスレンズを有する第1aレンズ群と、負レンズと正レンズとを有する第1bレンズ群とを備え、前記第1bレンズ群を移動させることによりフォーカシングを行うことを特徴とする態様1〜6いずれかのズームレンズ。
(態様8)光電変換素子上に像を形成することを特徴とする態様1〜7いずれかのズームレンズ。
(態様9)態様1〜7いずれかのズームレンズを備えたことを特徴とするカメラ。
(態様10)態様1〜7いずれかのズームレンズと、該ズームレンズによって形成する像を受光する光電変換素子とを有することを特徴とするカメラ。
【0040】
【発明の効果】
以上説明したように、本発明によれば、広角端での所望の画角を確保しつつ、比較的大きなズーム比を実現した小型のズームレンズが得られる。
【図面の簡単な説明】
【図1】実施形態1のズームレンズの広角端におけるレンズ断面図である。
【図2】実施形態1のズームレンズの広角端における縦収差図である。
【図3】実施形態1のズームレンズの望遠端における縦収差図である。
【図4】実施形態1のズームレンズの広角端におけるレンズ断面図である。
【図5】実施形態1のズームレンズの広角端における縦収差図である。
【図6】実施形態1のズームレンズの望遠端における縦収差図である。
【図7】一眼レフカメラの概略説明図である。
【符号の説明】
1 第1レンズ群
2 第2レンズ群
3 第3レンズ群
4 第4レンズ群
SP 開口絞り[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zoom lens, and more particularly to a wide-angle high-magnification zoom lens suitable for a 35 mm Leica SLR camera, digital still camera, video camera, and the like.
[0002]
[Prior art]
Examples of ultra-wide-angle zoom lenses for single-lens reflex cameras are disclosed in Patent Documents 1 to 6.
[0003]
Patent Literatures 1 to 6 have a configuration having four lens groups of negative, positive, negative, and positive in order from the object side to the image side, and perform zooming efficiently by moving each lens group, and the focal length at the wide-angle end. Are being shortened (to achieve a wider angle) and to be more compact. Patent Literatures 1 and 2 disclose zoom lenses having a wide-angle end angle of view of about 95 ° and a zoom ratio of about 1.75. Patent Literatures 3 and 4 disclose zoom lenses having a wide-angle end angle of view of about 110 ° and a zoom ratio of about 1.75. Patent Literature 5 discloses a zoom lens having a wide-angle end angle of view of about 95 ° and a zoom ratio of about 1.65. Patent Document 6 discloses a zoom lens having an angle of view at the wide angle end of about 100 ° and a zoom ratio of about 1.85.
[0004]
For these conventional wide-angle zoom lenses, it is common to use an aspheric surface. In particular, the most object-side lens is a negative meniscus lens having a concave surface facing the image side, and an aspherical surface is provided on the object-side surface (first surface) of this lens. Distortion can be corrected. In Patent Documents 5 and 6, the aspherical surface is provided on the lens closest to the object, but the shortage of the back focus is solved by increasing the refractive power of the lens closest to the object.
[0005]
[Patent Document 1]
JP-A-2-201310 [Patent Document 2]
JP-A-2-296208 [Patent Document 3]
JP-A-4-235514 [Patent Document 4]
JP-A-4-235515 [Patent Document 5]
JP-A-5-173071 [Patent Document 6]
JP-A-7-261084
[Problems to be solved by the invention]
As described above, in the conventional wide-angle zoom lens, the refractive power of the lens closest to the object is set strong, and a high-refractive-index glass material is used for this lens in order to suppress the occurrence of aberration. Glass materials having a high refractive index cannot be processed by a glass mold because molding is difficult. For this reason, in the conventional example in which a glass material having a high refractive index is used for the lens closest to the object, the aspherical surface has to be processed by grinding in order to make this lens an aspherical lens. This means that the cost of the lens increases.
[0007]
On the other hand, if a low-refractive-index glass material is used for the lens closest to the object, it is possible to process an aspheric surface with a glass mold, but simply replacing the conventional glass material with a low-refractive-index material will cause a zoom. There is a problem that the ratio becomes small.
[0008]
The present invention has been made in view of these conventional examples, and has as its object to realize a relatively large zoom ratio in a zoom lens having a desired angle of view at a wide-angle end.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, a zoom lens according to the present invention includes, in order from a front (object side) to a rear (image side), a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative lens group. The zoom lens includes a third lens unit having a refractive power and a fourth lens unit having a positive refractive power. The first lens unit and the second lens unit are used for zooming from a short focal length end (wide-angle end) to a long focal length end (telephoto end). At least the first lens group and the second lens group so that the distance between the lens groups decreases, the distance between the second lens group and the third lens group increases, and the distance between the third lens group and the fourth lens group decreases. And a fourth lens group, wherein the fourth lens group has a biconvex positive lens, a cemented lens obtained by bonding a negative lens and a positive lens, and has a concave shape facing the object side. The surface has an aspheric surface, the focal length of the second lens group is f2, and the focal length of the third lens group is f2. Distance f3, the focal length of the entire system at the short focal length end fw, when the zoom ratio from the short focal length end of the third lens group and the fourth lens group to the long focal length end to is B,
1.3 <f2 / fw <1.8
-3.5 <f3 / fw <-2.0
B> 0.9
It is characterized by satisfying certain conditions.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a zoom lens according to the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a lens cross-sectional view at the wide-angle end (short focal length end) of the zoom lens according to the first embodiment corresponding to Numerical Example 1 described below. FIG. 2 is an aberration diagram at the wide-angle end of the zoom lens according to the first embodiment. FIG. 4 is an aberration diagram at a telephoto end (long focal length end) of the zoom lens according to the first embodiment. FIG. 4 is a lens cross-sectional view at the wide-angle end of a zoom lens according to a second embodiment corresponding to Numerical Example 2 described later. FIG. 5 is an aberration diagram at the wide-angle end of the zoom lens according to the second embodiment. FIG. 5 is an aberration diagram at a telephoto end of a lens. The zoom lens according to the present embodiment (hereinafter, the first and second embodiments are collectively referred to as “the present embodiment” unless otherwise specified) has a focal length f = 17 to 40 mm and an angle of view 2ω = 104 ° to 57 °. , F-number = Fno = 4.
[0012]
In the lens cross-sectional views shown in FIGS. 1 and 4, 1 is a first lens group having a negative refractive power (optical power = reciprocal of the focal length), 2 is a second lens group having a positive refractive power, and 3 is a negative lens. The third lens group 4 has a positive refractive power, the fourth lens group 4 has a positive refractive power, 1a and 1b denote the 1a and 1b lens groups having a negative refractive power, and SP denotes an aperture stop. 1 and 4, the left side is the object side (front) and the right side is the image side (rear).
[0013]
In the present embodiment, during zooming from the wide-angle end to the telephoto end, the second lens group 2 and the fourth lens group 4 move integrally (with the same movement locus) in the object direction, and the third lens group 3 becomes independent. (In a movement locus different from that of the second lens group 2 and the fourth lens group 4) toward the object, and the first lens group 1 is on the image side from the wide-angle end to a predetermined intermediate focal length position. It moves to the object side from the distance position to the telephoto end. When the second lens group 2 and the fourth lens group 4 are moved linearly (when they are moved in proportion to the zoom operation amount), the third lens group 3 is moved nonlinearly, so that the intermediate The aberration at the focal length position is corrected well.
[0014]
In addition, focusing from an infinitely distant object to a close object is performed by extending (moving to the object side) the first lens unit 1b along the optical axis.
[0015]
The first lens group 1 of the zoom lens according to the present embodiment has a first lens group 1a composed of a negative meniscus lens having a concave surface facing the image side as shown in the lens cross-sectional view. The surface on the side (the surface having a concave shape toward the image side) is an aspherical surface having a shape such that the positive refractive power increases from the optical axis toward the periphery.
[0016]
On the other hand, the fourth lens group 4 includes a biconvex positive lens made of low dispersion glass having an Abbe number of 95, and a cemented lens in which a negative lens and a positive lens are joined. An aspherical surface is provided on the surface of the fourth lens group 4 which is concave toward the object side (the 21st surface in the first embodiment and the 22nd surface in the second embodiment).
[0017]
In the zoom lens according to the present embodiment, as described later, the refractive power of the first lens unit 1a, which is the foremost lens unit, is relatively small. The above-described lens configuration of the fourth lens group 4 is for correcting spherical aberration, coma, and the like that occur due to this. Further, by providing an aspheric surface on the concave surface on the object side in the fourth lens group 4, astigmatism at the telephoto end is also improved satisfactorily.
[0018]
In the present embodiment, low-dispersion glass having an Abbe number of 95 is used for the biconvex positive lens in the fourth lens group 4. However, if the material has an Abbe number of 70 or more, the chromatic aberration of magnification at the wide-angle end can be corrected. It is effective.
[0019]
In the zoom lens according to the present embodiment, the focal length of the second lens unit 2 is f2, the focal length of the third lens unit 3 is f3, the focal length of the entire system at the wide-angle end is fw, the third lens unit 3 and the third lens unit. When the zoom ratio from the wide-angle end to the telephoto end of the four lens unit 4 is B,
1.3 <f2 / fw <1.8 (1)
-3.5 <f3 / fw <-2.0 (2)
B> 0.9 ... (3)
Conditions are met.
[0020]
If an attempt is made to increase the zoom ratio of a wide-angle zoom lens while keeping the power arrangement of each lens group unchanged, the overall length of the lens and the diameter of the front lens will increase. Conditional expressions (1), (2) and (3) are to satisfy a large zoom ratio (2.2 times or more) in a zoom lens having a large angle of view (for example, 100 ° or more) at the wide-angle end. This is a condition for suppressing an increase in size.
[0021]
Conditional expression (1) is a condition for increasing the zoom ratio while minimizing the increase in spherical aberration at the telephoto end. If the focal length of the second lens unit 2 is reduced (power is increased) below the lower limit of conditional expression (1), spherical aberration at the telephoto end increases. If the focal length of the second lens group 2 is increased (power is reduced) beyond the upper limit of the conditional expression (1), the total lens length and the diameter of the front lens will increase.
[0022]
Conditional expression (2) is a condition for ensuring a desired zoom ratio, suppressing an increase in size, and obtaining a necessary back focus in a wide-angle zoom lens. If the absolute value of the focal length of the third lens group 3 becomes smaller (power becomes stronger) beyond the upper limit of the conditional expression (2), the back focus becomes too short. When the absolute value of the focal length of the third lens group 3 exceeds the lower limit and the absolute value of the focal length of the third lens group 3 increases (power decreases), the zoom movement amount of the third lens group 3 for securing a predetermined zoom ratio increases. This leads to an increase in the overall length of the lens. Alternatively, if priority is given to miniaturization of the system, a desired zoom ratio cannot be secured.
[0023]
Conditional expression (3) is a condition for increasing the zoom ratio while suppressing the fluctuation of the spherical aberration during zooming. If the change in magnification of the sub-system composed of the third lens unit 3 and the fourth lens unit 4 becomes smaller than the lower limit of the conditional expression (3), the second lens unit 2 becomes zoomed from the wide-angle end to the telephoto end. The burdened zoom ratio becomes too large, and spherical aberration at the telephoto end increases.
[0024]
Further, in the zoom lens according to the present embodiment, when the focal length of the first lens unit 1 is f1 and the focal length of the negative meniscus lens forming the first lens unit 1a is f1a,
f1a / f1> 1.6 (4)
Satisfies the following conditions.
[0025]
Conditional expression (4) is a condition for performing the glass molding on the negative meniscus lens constituting the first-a lens unit 1a. By making the focal length of the negative meniscus lens relatively long (the power is relatively small) so as to satisfy the conditional expression (4), it becomes possible to select a material having a low refractive index as a glass material constituting the negative meniscus lens. A glass material having good moldability can be selected regardless of the refractive index. If the power of the negative meniscus lens is increased beyond the lower limit of conditional expression (4), the paraxial radius of curvature of the object-side lens surface (first surface) of the negative meniscus lens when a glass material having a low refractive index is employed. Is a negative value, or the paraxial radius of curvature of the image-side lens surface (second surface) is too small, and the moldability is extremely deteriorated.
[0026]
Note that when the refractive index of the negative meniscus lens constituting the first-a lens unit 1a is n,
n <1.6 (5)
It is preferable to satisfy the following conditions.
[0027]
Next, numerical data of Numerical Examples 1 and 2 corresponding to Embodiments 1 and 2, respectively, are shown. In each numerical example, i represents the order of the optical surface from the object side, and ri is the radius of curvature of the i-th optical surface (i-th surface), and di is the distance between the i-th surface and the (i + 1) -th surface. And ni and νi are the refractive index and Abbe number of the material of the i-th optical member with respect to the d-line, respectively. Here, the unit of the radius of curvature and the surface interval is mm (millimeter). f is the focal length, Fno is the F number, and ω is the half angle of view.
[0028]
The aspherical shape is defined as follows: A, B, C, and D are aspherical coefficients, and the displacement in the optical axis direction at a height h from the optical axis is x with respect to the surface vertex.
[Outside 1]
Figure 2004240038
[0029]
Is represented by Here, R is a paraxial radius of curvature.
[0030]
Table 1 shows the relationship between each conditional expression and various numerical values in the numerical examples.
[0031]
[Outside 2]
(Numerical Example 1)
Figure 2004240038
[0032]
Aspheric coefficient of the first surface A = 1.358 × 10 −5 B = −1.792 × 10 −8 C = 2.412 × 10 −11 D = −2.01 × 10 −14
Aspherical surface coefficient of the third surface A = −9.211 × 10 −6 B = 2.504 × 10 −8 C = −1.838 × 10 −11 D = −6.640 × 10 −15
Aspheric coefficient of the 21st surface A = -2.200 × 10 −5 B = −2.588 × 10 −8 C = −1.363 × 10 −11 D = 2.925 × 10 −13
[Outside 3]
(Numerical example 2)
Figure 2004240038
[0033]
Aspherical surface coefficient of the first surface A = 1.278 × 10 −5 B = −1.327 × 10 −8 C = 1.250 × 10 −11 D = −4.216 × 10 −15
Aspheric coefficient of the third surface A = −8.933 × 10 −6 B = 2.220 × 10 −8 C = −2.151 × 10 −11
Aspherical surface coefficient of the 22nd surface A = 9.298 × 10 −6 B = 2.546 × 10 −8 C = −5.263 × 10 −11 D = 9.968 × 10 −14
[0034]
[Table 1]
(Table 1)
Figure 2004240038
[0035]
By configuring the zoom lens as in the present embodiment, each lens group can be made compact with as few lens components as possible, while having a wide angle exceeding 100 ° at the wide angle end, and a high zoom ratio of 2.2 times or more. An ultra-wide-angle zoom lens with an inner focus that achieves a higher magnification can be realized.
[0036]
Next, an embodiment of an optical apparatus using the zoom lens of the present embodiment will be described. FIG. 7 is a schematic view of a main part when the zoom lenses according to the first and second embodiments are applied to a single-lens reflex camera such as a film camera or a digital camera.
[0037]
In FIG. 7, reference numeral 20 denotes a camera body, 21 denotes a photographing lens constituted by the zoom lens according to the first or second embodiment, and 22 denotes an image pickup means, which is a solid-state image pickup device (photoelectric conversion) such as a silver halide film, a CCD sensor, and a CMOS sensor. Element). Reference numeral 23 denotes a finder system, which includes a focusing plate 25 on which a subject image is formed by the photographing lens 21, a pentaprism 26 as image reversing means, and an eyepiece lens 27 for observing the subject image on the focusing plate 25. I have. 24 is a quick return mirror. When not taking a picture, the quick return mirror 24 is located in the optical path of the taking lens 21 as shown in FIG. 25, and guides light from the subject to the finder system 23. When a release button (not shown) is pressed by the photographer, the quick return mirror 24 rotates as shown by the arrow in the drawing, retreats from the optical path of the photographing lens 21, and light from the subject is guided to the imaging means 22.
[0038]
As described above, the zoom lens of the present invention is suitably used for optical equipment such as a single-lens reflex camera.
[0039]
Hereinafter, embodiments of the present invention will be described.
(Aspect 1) In order from the front to the rear, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power. A lens group, and when zooming from the short focal length end to the long focal length end, the distance between the first lens group and the second lens group decreases, and the distance between the second lens group and the third lens group decreases. In a zoom lens in which at least the first lens group, the second lens group, and the fourth lens group move so that the distance between the third lens group and the fourth lens group decreases, the fourth lens group A positive lens having a biconvex shape, a cemented lens obtained by laminating a negative lens and a positive lens, an aspheric surface on a concave surface facing the object side, and a focal length of the second lens group being f2. The focal length of the third lens group is f3, and the focal length of the entire system at the short focal length extremity When the the release fw, the zoom ratio from the short focal length end of said third lens group and the fourth lens group to the long focal length end B,
1.3 <f2 / fw <1.8
-3.5 <f3 / fw <-2.0
B> 0.9
A zoom lens that satisfies certain conditions.
(Aspect 2) The first lens group has a negative meniscus lens having a concave surface facing the image side, and the object-side surface of the negative meniscus lens has a shape in which positive refractive power becomes stronger from the optical axis toward the periphery. The zoom lens according to aspect 1, wherein the zoom lens is an aspheric surface.
(Aspect 3) The first lens group includes a negative meniscus lens having a concave surface facing the image side. When the focal length of the first lens group is f1 and the focal length of the negative meniscus lens is f1a,
f1a / f1> 1.6
The zoom lens according to aspect 1, wherein the following condition is satisfied.
(Aspect 4) When the refractive index of the material forming the negative meniscus lens of the first lens group is n,
n <1.6
A zoom lens according to aspect 3, wherein the following condition is satisfied.
(Aspect 5) The zoom lens according to any one of aspects 1 to 4, wherein the first lens group includes a negative meniscus lens having a concave surface facing the image side, a negative lens, and a positive lens.
(Aspect 6) The zoom lens according to any one of Aspects 1 to 5, wherein a material constituting the biconvex positive lens in the fourth lens group has an Abbe number of 70 or more.
(Aspect 7) The first lens group includes a 1a lens group having a negative meniscus lens having a concave surface facing the image side, and a 1b lens group having a negative lens and a positive lens. The zoom lens according to any one of aspects 1 to 6, wherein focusing is performed by moving the zoom lens.
(Aspect 8) The zoom lens according to any one of aspects 1 to 7, wherein an image is formed on the photoelectric conversion element.
(Aspect 9) A camera comprising the zoom lens according to any one of aspects 1 to 7.
(Aspect 10) A camera, comprising: the zoom lens according to any one of Aspects 1 to 7; and a photoelectric conversion element that receives an image formed by the zoom lens.
[0040]
【The invention's effect】
As described above, according to the present invention, a small zoom lens that achieves a relatively large zoom ratio while securing a desired angle of view at the wide-angle end can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view of a zoom lens according to a first embodiment at a wide-angle end.
FIG. 2 is a longitudinal aberration diagram at the wide-angle end of the zoom lens according to the first embodiment.
FIG. 3 is a longitudinal aberration diagram at the telephoto end of the zoom lens according to the first embodiment.
FIG. 4 is a lens cross-sectional view at the wide-angle end of the zoom lens according to the first embodiment.
FIG. 5 is a longitudinal aberration diagram at the wide-angle end of the zoom lens according to the first embodiment.
FIG. 6 is a longitudinal aberration diagram at the telephoto end of the zoom lens according to the first embodiment.
FIG. 7 is a schematic explanatory view of a single-lens reflex camera.
[Explanation of symbols]
Reference Signs List 1 1st lens group 2 2nd lens group 3 3rd lens group 4 4th lens group SP Aperture stop

Claims (1)

前方から後方へ順に、負の屈折力の第1レンズ群と、正の屈折力の第2レンズ群と、負の屈折力の第3レンズ群と、正の屈折力の第4レンズ群とを有し、短焦点距離端から長焦点距離端へのズーミングに際して、前記第1レンズ群と第2レンズ群の間隔が減少し、前記第2レンズ群と第3レンズ群の間隔が増大し、前記第3レンズ群と第4レンズ群の間隔が減少するように、少なくとも第1レンズ群と第2レンズ群と第4レンズ群とが移動するズームレンズにおいて、前記第4レンズ群は、両凸形状の正レンズ、負レンズと正レンズとを貼り合せた接合レンズを有すると共に、物体側に凹形状の面に非球面を有し、前記第2レンズ群の焦点距離をf2、前記第3レンズ群の焦点距離をf3、短焦点距離端における全系の焦点距離をfw、前記第3レンズ群と第4レンズ群との短焦点距離端から長焦点距離端への変倍比をBとするとき、
1.3 < f2/fw < 1.8
−3.5 < f3/fw < −2.0
B > 0.9
なる条件を満足することを特徴とするズームレンズ。
In order from the front to the rear, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power During zooming from the short focal length end to the long focal length end, the distance between the first lens group and the second lens group decreases, the distance between the second lens group and the third lens group increases, In a zoom lens in which at least the first lens group, the second lens group, and the fourth lens group move so that the distance between the third lens group and the fourth lens group decreases, the fourth lens group has a biconvex shape. A positive lens, a cemented lens obtained by laminating a negative lens and a positive lens, an aspheric surface on a concave surface on the object side, the focal length of the second lens group being f2, and the third lens group being Is the focal length of f3, the focal length of the entire system at the short focal length end is fw, From third lens group and the short focal length end of the fourth lens group when the zoom ratio of the long focal length end is B,
1.3 <f2 / fw <1.8
-3.5 <f3 / fw <-2.0
B> 0.9
A zoom lens that satisfies certain conditions.
JP2003027144A 2003-02-04 2003-02-04 Zoom lens Expired - Fee Related JP4366091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027144A JP4366091B2 (en) 2003-02-04 2003-02-04 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027144A JP4366091B2 (en) 2003-02-04 2003-02-04 Zoom lens

Publications (3)

Publication Number Publication Date
JP2004240038A true JP2004240038A (en) 2004-08-26
JP2004240038A5 JP2004240038A5 (en) 2006-03-23
JP4366091B2 JP4366091B2 (en) 2009-11-18

Family

ID=32954970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027144A Expired - Fee Related JP4366091B2 (en) 2003-02-04 2003-02-04 Zoom lens

Country Status (1)

Country Link
JP (1) JP4366091B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071698A (en) * 2004-08-31 2006-03-16 Olympus Corp Wide-angle zoom lens
US7230772B2 (en) 2005-06-29 2007-06-12 Pentax Corporation Wide-angle zoom lens system
US7248416B2 (en) 2005-06-29 2007-07-24 Pentax Corporation Wide-angle zoom lens system
JP2007286601A (en) * 2006-03-24 2007-11-01 Nikon Corp Zoom lens, imaging apparatus and method for varying focal length
JP2008026880A (en) * 2006-06-22 2008-02-07 Nikon Corp Zoom lens, imaging apparatus and method for varying power of the zoom lens
JP2008176271A (en) * 2006-12-19 2008-07-31 Nikon Corp Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system
US7443603B2 (en) 2005-06-29 2008-10-28 Hoya Corporation Wide-angle zoom lens system
US7508594B2 (en) 2005-06-29 2009-03-24 Hoya Corporation Wide-angle zoom lens system
JP2010249958A (en) * 2009-04-13 2010-11-04 Tamron Co Ltd Wide-angle zoom lens
JP2011085960A (en) * 2011-01-21 2011-04-28 Nikon Corp Zoom lens
US8503102B2 (en) 2011-04-19 2013-08-06 Panavision International, L.P. Wide angle zoom lens
JP2014048371A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
US9217851B2 (en) 2013-04-15 2015-12-22 Canon Kabushiki Kaisha Zoom lens and image pickup device including the same
JP2016126281A (en) * 2015-01-08 2016-07-11 株式会社タムロン Wide-angle zoom lens and imaging apparatus
US9720212B2 (en) 2012-07-27 2017-08-01 Sony Corporation Variable focal length lens system and image pickup unit
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071698A (en) * 2004-08-31 2006-03-16 Olympus Corp Wide-angle zoom lens
JP4624744B2 (en) * 2004-08-31 2011-02-02 オリンパス株式会社 Wide angle zoom lens
US7230772B2 (en) 2005-06-29 2007-06-12 Pentax Corporation Wide-angle zoom lens system
US7248416B2 (en) 2005-06-29 2007-07-24 Pentax Corporation Wide-angle zoom lens system
US7443603B2 (en) 2005-06-29 2008-10-28 Hoya Corporation Wide-angle zoom lens system
US7508594B2 (en) 2005-06-29 2009-03-24 Hoya Corporation Wide-angle zoom lens system
JP2007286601A (en) * 2006-03-24 2007-11-01 Nikon Corp Zoom lens, imaging apparatus and method for varying focal length
JP2008026880A (en) * 2006-06-22 2008-02-07 Nikon Corp Zoom lens, imaging apparatus and method for varying power of the zoom lens
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
JP2008176271A (en) * 2006-12-19 2008-07-31 Nikon Corp Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system
JP2010249958A (en) * 2009-04-13 2010-11-04 Tamron Co Ltd Wide-angle zoom lens
JP2011085960A (en) * 2011-01-21 2011-04-28 Nikon Corp Zoom lens
US8503102B2 (en) 2011-04-19 2013-08-06 Panavision International, L.P. Wide angle zoom lens
US9720212B2 (en) 2012-07-27 2017-08-01 Sony Corporation Variable focal length lens system and image pickup unit
JP2014048371A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
US9217851B2 (en) 2013-04-15 2015-12-22 Canon Kabushiki Kaisha Zoom lens and image pickup device including the same
JP2016126281A (en) * 2015-01-08 2016-07-11 株式会社タムロン Wide-angle zoom lens and imaging apparatus

Also Published As

Publication number Publication date
JP4366091B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US8867143B2 (en) Zoom lens and image pickup apparatus including the same
US9684155B2 (en) Optical system and image pickup apparatus including the same
JP2004198529A (en) Zoom lens and optical equipment having the same
JP2013130675A (en) Zoom lens and imaging apparatus including the same
JP2009237542A (en) Rear-focus optical system, imaging apparatus and method for focusing the same
JP6391315B2 (en) Zoom lens and imaging apparatus having the same
CN109143557B (en) Zoom lens and image pickup apparatus
JP5921315B2 (en) Zoom lens and imaging apparatus having the same
JP2013228450A (en) Zoom lens and imaging apparatus including the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP4366091B2 (en) Zoom lens
JP4921044B2 (en) Zoom lens and imaging apparatus having the same
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JP5959872B2 (en) Zoom lens and imaging apparatus having the same
JP5522988B2 (en) Zoom lens and imaging apparatus using the same
JP2005338598A (en) Zoom lens and imaging apparatus having the same
JP4321850B2 (en) Zoom lens, camera, and portable information terminal device
JP4411010B2 (en) Zoom lens and imaging device using the same
WO2016194774A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP6207374B2 (en) Optical system and imaging apparatus having the same
JP2018025579A (en) Zoom lens and optical apparatus having the same
JP6066277B2 (en) Zoom lens, imaging device, and information device
JP6657008B2 (en) Variable power optical system and imaging device
JP6646251B2 (en) Zoom lens and imaging device having the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4366091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees