JP2019131422A - crucible - Google Patents

crucible Download PDF

Info

Publication number
JP2019131422A
JP2019131422A JP2018013537A JP2018013537A JP2019131422A JP 2019131422 A JP2019131422 A JP 2019131422A JP 2018013537 A JP2018013537 A JP 2018013537A JP 2018013537 A JP2018013537 A JP 2018013537A JP 2019131422 A JP2019131422 A JP 2019131422A
Authority
JP
Japan
Prior art keywords
single crystal
heat dissipation
crucible
region
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018013537A
Other languages
Japanese (ja)
Inventor
宏樹 高岡
Hiroki Takaoka
宏樹 高岡
俊策 上田
Shunsaku Ueta
俊策 上田
直樹 梶
Naoki Kaji
直樹 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018013537A priority Critical patent/JP2019131422A/en
Publication of JP2019131422A publication Critical patent/JP2019131422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a crucible capable of producing a high quality crystal by reducing thermal stress imposed on a crystal.SOLUTION: A crucible 11 is used to grow a silicon carbide single crystal by a sublimation method. The crucible 11 includes a cylindrical peripheral wall part 12, a bottom wall part 13 that is connected to the peripheral wall part 12 and closes an opening of the peripheral wall part 12, a pedestal part 23 as a holding part for holding a seed crystal T in the space 15 enclosed by the peripheral wall part 12, and a heat radiation suppressing member 31 that is arranged at a distance from the seed crystal T at a side opposite to the side where the bottom wall part 13 is positioned in the growth direction of the single crystal and suppresses heat radiation from the seed crystal T side held by the pedestal part 23 as the holding part.SELECTED DRAWING: Figure 1

Description

本発明は、坩堝に関するものである。   The present invention relates to a crucible.

坩堝内において原料粉末を昇華させて種結晶上に再結晶させる方法(昇華法)により炭化珪素単結晶を製造することができる。例えば、特許文献1には、昇華法による炭化珪素単結晶の製造の技術が開示されている。   A silicon carbide single crystal can be produced by a method (sublimation method) in which a raw material powder is sublimated in a crucible and recrystallized on a seed crystal. For example, Patent Document 1 discloses a technique for manufacturing a silicon carbide single crystal by a sublimation method.

特開2011−207691号公報JP 2011-207691 A

昇華法による炭化珪素単結晶の製造においては、結晶面内の温度差を小さくすることで、結晶に加わる熱応力を小さくすることが求められる。   In the production of a silicon carbide single crystal by the sublimation method, it is required to reduce the thermal stress applied to the crystal by reducing the temperature difference in the crystal plane.

そこで、この発明は、結晶に加わる熱応力を小さくして高品質な結晶を製造することができる坩堝を提供することを目的の1つとする。   Accordingly, an object of the present invention is to provide a crucible that can produce a high-quality crystal by reducing the thermal stress applied to the crystal.

本発明に従った坩堝は、昇華法による炭化珪素単結晶の成長に用いられる。坩堝は、筒状の周壁部と、周壁部に接続され、周壁部の一方の開口を閉塞する底壁部と、周壁部によって囲われる空間内で種結晶を保持する保持部と、単結晶の成長方向において底壁部が位置する側と反対側に種結晶と間隔をあけて配置され、保持部によって保持される種結晶側からの放熱を抑制する放熱抑制部材と、を備える。   The crucible according to the present invention is used for growing a silicon carbide single crystal by a sublimation method. The crucible includes a cylindrical peripheral wall portion, a bottom wall portion that is connected to the peripheral wall portion and closes one opening of the peripheral wall portion, a holding portion that holds a seed crystal in a space surrounded by the peripheral wall portion, and a single crystal A heat dissipation suppressing member that is disposed on the opposite side to the side where the bottom wall portion is located in the growth direction and is spaced from the seed crystal, and that suppresses heat dissipation from the seed crystal side held by the holding portion.

上記坩堝によれば、結晶に加わる熱応力を小さくして高品質な結晶を製造することができる。   According to the crucible, a high-quality crystal can be produced by reducing the thermal stress applied to the crystal.

本願の一実施形態に係る坩堝の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the crucible which concerns on one Embodiment of this application. 本願の一実施形態に係る坩堝と同様の構成の坩堝を用いた場合の空間の一部の温度分布を示すシミュレーション図である。It is a simulation figure which shows the temperature distribution of a part of space at the time of using the crucible of the structure similar to the crucible which concerns on one Embodiment of this application. 放熱抑制部材を備えない坩堝を用いた場合の空間の一部の温度分布を示すシミュレーション図である。It is a simulation figure which shows the temperature distribution of a part of space at the time of using the crucible which is not provided with the heat dissipation suppression member. 放熱抑制部材を備えない坩堝の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the crucible which is not provided with the heat dissipation suppression member. 本願の他の実施形態に係る坩堝の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the crucible which concerns on other embodiment of this application. 本願の他の実施形態に係る坩堝と同様の構成の坩堝を用いた場合の空間の一部の温度分布を示すシミュレーション図である。It is a simulation figure which shows the temperature distribution of a part of space at the time of using the crucible of the structure similar to the crucible which concerns on other embodiment of this application. 本願のさらに他の実施形態に係る坩堝の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the crucible which concerns on other embodiment of this application. 本願のさらに他の実施形態に係る坩堝と同様の構成の坩堝を用いた場合の空間の一部の温度分布を示すシミュレーション図である。It is a simulation figure which shows the temperature distribution of a part of space at the time of using the crucible of the structure similar to the crucible which concerns on other embodiment of this application. 本願のさらに他の実施形態に係る坩堝の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the crucible which concerns on other embodiment of this application. 本願のさらに他の実施形態に係る坩堝の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the crucible which concerns on other embodiment of this application. 本願のさらに他の実施形態に係る坩堝の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the crucible which concerns on other embodiment of this application.

[本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。本願の坩堝は、昇華法による炭化珪素の単結晶の成長に用いられる。坩堝は、筒状の周壁部と、周壁部に接続され、周壁部の一方の開口を閉塞する底壁部と、周壁部によって囲われる空間内で種結晶を保持する保持部と、単結晶の成長方向において底壁部が位置する側と反対側に種結晶と間隔をあけて配置され、保持部によって保持される種結晶側からの放熱を抑制する放熱抑制部材と、を備える。
[Description of Embodiment of Present Invention]
First, embodiments of the present invention will be listed and described. The crucible of the present application is used for growing a silicon carbide single crystal by a sublimation method. The crucible includes a cylindrical peripheral wall portion, a bottom wall portion that is connected to the peripheral wall portion and closes one opening of the peripheral wall portion, a holding portion that holds a seed crystal in a space surrounded by the peripheral wall portion, and a single crystal A heat dissipation suppressing member that is disposed on the opposite side to the side where the bottom wall portion is located in the growth direction and is spaced from the seed crystal, and that suppresses heat dissipation from the seed crystal side held by the holding portion.

周壁部によって囲われる空間内で保持される種結晶は、周壁部側から加熱される。単結晶の成長空間において種結晶の原料粉末が配置される面側から単結晶が成長する。高品質な単結晶の成長を促進するためには、単結晶の成長方向に垂直な断面に沿う方向(径方向)において、単結晶の成長空間の均熱性が高いことが望ましい。ここで、単結晶の成長時において種結晶は成長空間と反対側に向かう放熱量が大きい。この場合、周壁部から遠い径方向の中心位置に近いほど温度が低くなる。そうすると、単結晶の成長がいわゆる凸型成長となって、単結晶の成長時に歪が発生し、歪に起因したクラックや転位が発生してしまうことになる。しかし、本願の坩堝は、単結晶の成長方向において底壁部が位置する側と反対側に種結晶と間隔をあけて配置され、保持部よって保持される種結晶側からの放熱を抑制する放熱抑制部材を備える構成である。そうすると、底壁部が位置する側と反対側における放熱を放熱抑制部材により抑制して、単結晶の成長空間における径方向の温度差を小さくすることができる。したがって、単結晶の成長空間の径方向の均熱性を高め、単結晶の成長時に結晶に加わる熱応力を小さくして、高品質な単結晶を製造することができる。   The seed crystal held in the space surrounded by the peripheral wall portion is heated from the peripheral wall portion side. The single crystal grows from the surface side where the seed crystal raw material powder is disposed in the growth space of the single crystal. In order to promote the growth of a high-quality single crystal, it is desirable that the temperature uniformity of the growth space of the single crystal is high in the direction (radial direction) along the cross section perpendicular to the growth direction of the single crystal. Here, when the single crystal is grown, the seed crystal has a large amount of heat radiation toward the opposite side to the growth space. In this case, the temperature becomes lower as the position becomes closer to the center in the radial direction far from the peripheral wall. Then, the growth of the single crystal becomes a so-called convex growth, and strain is generated during the growth of the single crystal, and cracks and dislocations due to the strain are generated. However, the crucible of the present application is arranged with a distance from the seed crystal on the side opposite to the side where the bottom wall portion is located in the growth direction of the single crystal, and the heat dissipation suppresses heat dissipation from the seed crystal side held by the holding portion. It is the structure provided with the suppression member. If it does so, the thermal radiation in the opposite side to the side in which a bottom wall part is located will be suppressed by the thermal radiation suppression member, and the temperature difference of the radial direction in the growth space of a single crystal can be made small. Therefore, it is possible to manufacture a high-quality single crystal by increasing the temperature uniformity in the radial direction of the growth space of the single crystal and reducing the thermal stress applied to the crystal during the growth of the single crystal.

上記坩堝において、周壁部に接続され、周壁部の他方の開口を閉塞する蓋部をさらに備え、蓋部には、単結晶の成長方向から平面的に見て保持部に保持された種結晶と重なる位置に空隙が設けられており、空隙内に放熱抑制部材が配置されてもよい。このように構成することにより、放熱抑制の効果を得る際の適切な箇所に放熱抑制部材を配置して、より効率的に高品質な単結晶を製造することができる。   The crucible further includes a lid portion connected to the peripheral wall portion and closing the other opening of the peripheral wall portion, and the lid portion includes a seed crystal held in the holding portion when seen in a plan view from the growth direction of the single crystal. The space | gap is provided in the overlapping position and the heat dissipation suppression member may be arrange | positioned in the space | gap. By comprising in this way, a heat dissipation suppression member can be arrange | positioned in the appropriate location at the time of obtaining the effect of heat dissipation suppression, and a high quality single crystal can be manufactured more efficiently.

上記坩堝において、保持部は、種結晶が取り付けられる台座第一面、および単結晶の成長方向において台座第一面と反対側に位置する台座第二面を有し、台座第一面が底壁部と対向する位置に配置される台座部を含み、単結晶の成長方向において台座部と間隔をあけて、放熱抑制部材が配置されていてもよい。このように構成することにより、種結晶が取り付けられる台座部の放熱も効率的に抑制することができる。したがって、単結晶の成長空間における径方向の均熱性をより高く維持することができる。   In the crucible, the holding portion has a pedestal first surface to which the seed crystal is attached and a pedestal second surface located on the opposite side of the pedestal first surface in the growth direction of the single crystal, and the pedestal first surface is a bottom wall. A heat dissipation suppressing member may be disposed including a pedestal portion disposed at a position facing the portion, and spaced from the pedestal portion in the growth direction of the single crystal. By comprising in this way, the thermal radiation of the base part to which a seed crystal is attached can also be suppressed efficiently. Therefore, it is possible to maintain a higher temperature uniformity in the radial direction in the growth space of the single crystal.

上記坩堝において、保持部は、底壁部に向かって周壁部によって囲われる空間内に筒状に延び、内方側に壁面を有する延出部を含み、延出部は、壁面で種結晶を保持するようにしてもよい。このように構成することにより、延出部によって保持される種結晶側からの放熱を抑制するに際し、より適切な位置に放熱抑制部材を配置することができる。したがって、単結晶の成長空間における径方向の均熱性をより高く維持することができる。   In the above crucible, the holding part includes an extension part extending in a cylindrical shape into a space surrounded by the peripheral wall part toward the bottom wall part, and includes an extension part having a wall surface on the inward side. You may make it hold | maintain. By comprising in this way, when suppressing the thermal radiation from the seed crystal side hold | maintained by the extension part, a thermal radiation suppression member can be arrange | positioned in a more suitable position. Therefore, it is possible to maintain a higher temperature uniformity in the radial direction in the growth space of the single crystal.

上記坩堝において、放熱抑制部材は、単結晶の成長方向から平面的に見て中央に位置する第一領域と、第一領域よりも外方側に位置する第二領域とを含み、単結晶の成長方向における第一領域と種結晶との距離は、第二領域と種結晶との距離よりも短いよう構成してもよい。種結晶については、単結晶の成長方向から平面的に見て中央の方が放熱されやすい。したがって、このような構成とすることにより、第一領域における放熱を第二領域における放熱よりもさらに抑制して、単結晶の成長空間における径方向の均熱性をより高く維持することができる。   In the crucible, the heat dissipation suppressing member includes a first region located in the center when viewed in plan from the growth direction of the single crystal, and a second region located on the outer side of the first region. The distance between the first region and the seed crystal in the growth direction may be shorter than the distance between the second region and the seed crystal. As for the seed crystal, the center is more likely to dissipate heat when seen in a plan view from the growth direction of the single crystal. Therefore, by adopting such a configuration, the heat dissipation in the first region can be further suppressed than the heat dissipation in the second region, and the radial heat uniformity in the growth space of the single crystal can be maintained higher.

上記坩堝において、放熱抑制部材は、単結晶の成長方向から平面的に見て外方側に近づくにしたがって単結晶の成長方向における種結晶との距離が長くなる第一放熱調整領域を含むよう構成してもよい。このように構成することにより、単結晶の成長空間における径方向の温度差を適切に小さくして、単結晶の成長空間における径方向の均熱性をさらに高く維持することができる。   In the above crucible, the heat dissipation suppressing member includes a first heat dissipation adjustment region in which the distance from the seed crystal in the growth direction of the single crystal becomes longer as the distance from the seed crystal in the growth direction of the single crystal becomes closer to the outer side when viewed in plan. May be. With such a configuration, the temperature difference in the radial direction in the growth space of the single crystal can be appropriately reduced, and the thermal uniformity in the radial direction in the growth space of the single crystal can be maintained at a higher level.

また、本願の坩堝は、昇華法による炭化珪素単結晶の成長に用いられる。坩堝は、筒状の周壁部と、周壁部に接続され、周壁部の一方の開口を閉塞する底壁部と、底壁部に向かって周壁部によって囲われる空間内に延びる棒状部と、棒状部の底壁部側の端部に接続され、周壁部によって囲われる空間内で種結晶を保持する保持部と、単結晶の成長方向において底壁部が位置する側と反対側に種結晶と間隔をあけて配置され、保持部によって保持される種結晶側からの放熱を抑制する放熱抑制部材と、を備える。このような構成とすることによっても、単結晶の成長空間の径方向の均熱性を高め、単結晶の成長時に結晶に加わる熱応力を小さくして、高品質な単結晶を製造することができる。   The crucible of the present application is used for growing a silicon carbide single crystal by a sublimation method. The crucible has a cylindrical peripheral wall portion, a bottom wall portion that is connected to the peripheral wall portion and closes one opening of the peripheral wall portion, a rod-shaped portion that extends into the space surrounded by the peripheral wall portion toward the bottom wall portion, A holding portion that is connected to an end portion of the bottom wall portion side and holds the seed crystal in a space surrounded by the peripheral wall portion, and a seed crystal on a side opposite to the side where the bottom wall portion is located in the growth direction of the single crystal. A heat dissipation suppressing member that is disposed at an interval and suppresses heat dissipation from the seed crystal side held by the holding portion. Even with such a configuration, it is possible to increase the temperature uniformity in the radial direction of the growth space of the single crystal, and to reduce the thermal stress applied to the crystal during the growth of the single crystal, thereby producing a high-quality single crystal. .

上記坩堝において放熱抑制部材は、棒状部に接続されており、棒状部に近づくにしたがって単結晶の成長方向における保持部との距離が長くなる第二放熱調整領域を含んでもよい。棒状部を備える坩堝においては、棒状部に近い位置では放熱されにくい。したがって、このような構成とすることにより、棒状部から遠い位置における放熱をより抑制して、単結晶の成長空間における径方向の均熱性をより高く維持することができる。   In the crucible, the heat radiation suppressing member may be connected to the rod-shaped portion, and may include a second heat radiation adjusting region in which the distance from the holding portion in the growth direction of the single crystal becomes longer as the rod-shaped portion is approached. In a crucible provided with a rod-shaped part, it is difficult to radiate heat at a position close to the rod-shaped part. Therefore, by adopting such a configuration, it is possible to further suppress heat dissipation at a position far from the rod-shaped portion, and to maintain higher thermal uniformity in the radial direction in the growth space of the single crystal.

上記坩堝において、放熱抑制部材は、単結晶の成長方向に対して傾斜して延びる領域を含むよう構成してもよい。このように構成することにより、単結晶の成長空間における径方向の温度を適切に調整することができ、単結晶の成長空間における径方向の均熱性をさらに高く維持することができる。   In the above crucible, the heat dissipation suppressing member may be configured to include a region extending obliquely with respect to the growth direction of the single crystal. By configuring in this way, the temperature in the radial direction in the growth space of the single crystal can be appropriately adjusted, and the thermal uniformity in the radial direction in the growth space of the single crystal can be maintained higher.

上記坩堝において、放熱抑制部材は、単結晶の成長方向にそれぞれ間隔をあけて複数設けられていてもよい。このように構成することにより、複数の放熱抑制部材によって、単結晶の成長空間における径方向の均熱性を効率的に高めることができる。   In the crucible, a plurality of heat dissipation suppressing members may be provided at intervals in the growth direction of the single crystal. By comprising in this way, the thermal uniformity of the radial direction in the growth space of a single crystal can be efficiently improved by the some heat dissipation suppression member.

上記坩堝において、放熱抑制部材は、グラファイトからなるよう構成してもよい。グラファイトは、高温時においてもより確実に種結晶側からの放熱を抑制して、単結晶の成長空間における径方向の均熱性を高めることができる。   In the crucible, the heat dissipation suppressing member may be made of graphite. Graphite can more reliably suppress heat dissipation from the seed crystal side even at high temperatures, and can improve the thermal uniformity in the radial direction in the growth space of the single crystal.

[本願発明の実施形態の詳細]
次に、本願の一実施形態に係る坩堝を、以下に図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照符号を付しその説明は繰り返さない。
[Details of the embodiment of the present invention]
Next, a crucible according to an embodiment of the present application will be described below with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本願の一実施形態に係る坩堝の構造を示す概略断面図である。図1を参照して、本願の一実施形態に係る坩堝11は、昇華法による炭化珪素の単結晶の成長に用いられる。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing the structure of a crucible according to an embodiment of the present application. Referring to FIG. 1, a crucible 11 according to an embodiment of the present application is used for growing a silicon carbide single crystal by a sublimation method.

坩堝11は、筒状の周壁部12と、底壁部13と、蓋部14とを備える。周壁部12、底壁部13、および蓋部14は、例えば、カーボン(グラファイト)からなる。なお、坩堝11の周壁部12の外径側には、例えば、単結晶を成長させる際に坩堝11を加熱する加熱部が配置される。加熱部としては、例えば、誘導加熱コイルが用いられる。   The crucible 11 includes a cylindrical peripheral wall portion 12, a bottom wall portion 13, and a lid portion 14. The peripheral wall part 12, the bottom wall part 13, and the cover part 14 are made of carbon (graphite), for example. Note that, on the outer diameter side of the peripheral wall portion 12 of the crucible 11, for example, a heating unit that heats the crucible 11 when a single crystal is grown is disposed. For example, an induction heating coil is used as the heating unit.

周壁部12は、円筒状の形状を有している。一点鎖線で示す周壁部12の中心軸αは、単結晶の成長方向に沿って延在する。   The peripheral wall portion 12 has a cylindrical shape. A central axis α of the peripheral wall portion 12 indicated by a one-dot chain line extends along the growth direction of the single crystal.

底壁部13は、周壁部12に接続され、周壁部12の一方の開口を閉塞する。底壁部13は、円盤状の形状を有している。周壁部12と底壁部13とは、一体で構成されている。周壁部12と底壁部13によって囲われる空間15内に、炭化珪素の原料粉末Mが配置される。底壁部13は、空間15側に位置する底壁面16を有する。原料粉末Mは、底壁面16上に配置される。なお、単結晶は、種結晶Tのうちの底壁面16に対向する面から図1中の矢印Dで示す向きに成長する。   The bottom wall portion 13 is connected to the peripheral wall portion 12 and closes one opening of the peripheral wall portion 12. The bottom wall portion 13 has a disk shape. The peripheral wall portion 12 and the bottom wall portion 13 are integrally formed. In a space 15 surrounded by the peripheral wall portion 12 and the bottom wall portion 13, silicon carbide raw material powder M is disposed. The bottom wall portion 13 has a bottom wall surface 16 located on the space 15 side. The raw material powder M is disposed on the bottom wall surface 16. The single crystal grows in the direction indicated by the arrow D in FIG. 1 from the surface of the seed crystal T facing the bottom wall surface 16.

蓋部14は、周壁部12に接続され、周壁部12の他方の開口を閉塞する。蓋部14は、周壁部12に対して着脱可能に構成されている。蓋部14は、円盤状の形状を有している。この蓋部14を取り外して、後述する台座部23に種結晶Tを取り付け、蓋部14を周壁部12に装着することにより、坩堝11内に種結晶Tを配置させる。   The lid portion 14 is connected to the peripheral wall portion 12 and closes the other opening of the peripheral wall portion 12. The lid portion 14 is configured to be detachable from the peripheral wall portion 12. The lid portion 14 has a disk shape. The lid 14 is removed, a seed crystal T is attached to a pedestal 23 which will be described later, and the lid 14 is attached to the peripheral wall 12 to place the seed crystal T in the crucible 11.

蓋部14には、空隙29が設けられている。この空隙29を利用して、例えば、坩堝11の外部に配置される放射温度計により坩堝内11の温度を検知する。空隙29は、外部に開放される開口部21の径が小さく、開口部21から底壁部13側に配置される領域の径が大きくなるよう構成されている。空隙29は、径方向に位置する壁面22によって囲われている。   A gap 29 is provided in the lid portion 14. Using the gap 29, for example, the temperature inside the crucible 11 is detected by a radiation thermometer arranged outside the crucible 11. The gap 29 is configured such that the diameter of the opening 21 opened to the outside is small, and the diameter of the region disposed from the opening 21 toward the bottom wall 13 is increased. The air gap 29 is surrounded by the wall surface 22 located in the radial direction.

坩堝11は、周壁部12によって囲われる空間15内で種結晶Tを保持する保持部を備える。保持部は、台座部23を含む。台座部23は、種結晶Tが取り付けられる台座第一面26、および単結晶の成長方向において台座第一面26と反対側に位置する台座第二面27を有する。台座部23は、台座第一面26が底壁面16と対向する位置に配置される。台座部23は、底壁面16に対向する蓋部14の壁面24に取り付けられるように設けられている。図1において、台座部23と蓋部14との境界を破線で示している。種結晶Tは、単結晶の成長方向において台座部23側に位置する種結晶第一面28を台座第一面26に貼付するようにして台座部23に保持される。台座部23は、単結晶の成長方向から平面的に見て、空隙29が設けられる位置と重なる位置で種結晶Tを保持する。本実施形態においては、台座部23が、種結晶Tを保持する保持部である。   The crucible 11 includes a holding part that holds the seed crystal T in a space 15 surrounded by the peripheral wall part 12. The holding part includes a pedestal part 23. The pedestal portion 23 has a pedestal first surface 26 to which the seed crystal T is attached, and a pedestal second surface 27 located on the opposite side of the pedestal first surface 26 in the growth direction of the single crystal. The pedestal portion 23 is disposed at a position where the pedestal first surface 26 faces the bottom wall surface 16. The pedestal portion 23 is provided so as to be attached to the wall surface 24 of the lid portion 14 facing the bottom wall surface 16. In FIG. 1, the boundary between the base portion 23 and the lid portion 14 is indicated by a broken line. The seed crystal T is held on the pedestal portion 23 such that the seed crystal first surface 28 located on the pedestal portion 23 side in the growth direction of the single crystal is attached to the pedestal first surface 26. The pedestal portion 23 holds the seed crystal T at a position overlapping the position where the void 29 is provided when viewed in plan from the growth direction of the single crystal. In the present embodiment, the pedestal portion 23 is a holding portion that holds the seed crystal T.

坩堝11は、放熱抑制部材31を備える。放熱抑制部材31は、板状である。放熱抑制部材31は、空隙29内に配置される。放熱抑制部材31は、壁面22から連なって設けられている。放熱抑制部材31は、単結晶の成長方向において底壁部13が位置する側と反対側に種結晶Tと間隔をあけて配置される。この場合、放熱抑制部材31は、単結晶の成長方向において台座部23と間隔をあけて配置される。放熱抑制部材31は、台座部23によって保持される種結晶T側からの放熱を抑制する。この場合、放熱抑制部材31は、台座部23の放熱も抑制する。   The crucible 11 includes a heat dissipation suppressing member 31. The heat dissipation suppressing member 31 is plate-shaped. The heat dissipation suppressing member 31 is disposed in the gap 29. The heat dissipation suppressing member 31 is provided continuously from the wall surface 22. The heat dissipation suppressing member 31 is arranged at a distance from the seed crystal T on the side opposite to the side where the bottom wall portion 13 is located in the growth direction of the single crystal. In this case, the heat dissipation suppressing member 31 is disposed at a distance from the pedestal 23 in the growth direction of the single crystal. The heat dissipation suppressing member 31 suppresses heat dissipation from the seed crystal T side held by the pedestal portion 23. In this case, the heat dissipation suppressing member 31 also suppresses heat dissipation of the pedestal portion 23.

放熱抑制部材31は、単結晶の成長方向から平面的に見て、中心軸αを含む中央側に位置する第一領域32と第一領域32よりも外方側に位置する第二領域33とを有する。第一領域32は、中心軸αに垂直な断面に沿って延びるように設けられている。なお、第一領域32の幅は、図1中の幅Wで示される。この場合、第一領域32の幅Wは、直径を意味する。単結晶の成長方向における第一領域32と種結晶T、具体的には種結晶第一面28との距離Lは、単結晶の成長方向における第二領域33と種結晶T、具体的には種結晶第一面28との距離Lよりも短く構成されている。第二領域33は、中心軸αに対して傾斜して延びるように設けられている。この場合、第二領域33は、第一領域32よりも単結晶の成長方向から平面的に見て壁面22側に位置することとなる。第二領域33は、外方側に近づくにしたがって単結晶の成長方向における種結晶Tとの距離が長くなる。すなわち、放熱抑制部材31は、外方側に近づくにしたがって単結晶の成長方向における種結晶Tとの距離が長くなる第一放熱調整領域としての第二領域33を含むこととなる。 The heat dissipation suppressing member 31 includes a first region 32 located on the center side including the central axis α and a second region 33 located on the outer side from the first region 32 when viewed in plan from the growth direction of the single crystal. Have The first region 32 is provided so as to extend along a cross section perpendicular to the central axis α. The width of the first region 32 is indicated by the width W 1 in FIG. In this case, the width W 1 of the first region 32, means the diameter. The distance L 1 between the first region 32 and the seed crystal T, specifically the seed crystal first surface 28 in the growth direction of the single crystal is the second region 33 and the seed crystal T in the growth direction of the single crystal. Is configured to be shorter than the distance L 2 from the seed crystal first surface 28. The second region 33 is provided so as to extend inclined with respect to the central axis α. In this case, the second region 33 is located closer to the wall surface 22 than the first region 32 when viewed in plan from the growth direction of the single crystal. The distance between the second region 33 and the seed crystal T in the growth direction of the single crystal increases as it approaches the outer side. That is, the heat dissipation suppressing member 31 includes the second region 33 as the first heat dissipation adjustment region in which the distance from the seed crystal T in the growth direction of the single crystal increases as it approaches the outer side.

周壁部12によって囲われる空間15内で保持される種結晶Tは、周壁部12側から加熱される。単結晶の成長空間15において種結晶Tの原料粉末Mが配置される面側から単結晶が成長する。高品質な単結晶の成長を促進するためには、単結晶の成長方向に垂直な断面に沿う方向(径方向)において、単結晶の成長空間15の均熱性が高いことが望ましい。ここで、単結晶の成長時において種結晶Tは成長空間15と反対側に向かう放熱量が大きい。具体的には、図1において矢印Dで示す向きと逆の向きの放熱量が大きい。この場合、周壁部12から遠い径方向の中心位置、すなわち、中心軸αに近いほど温度が低くなる。そうすると、単結晶の成長がいわゆる凸型成長となって、単結晶の成長時に歪が発生し、歪に起因したクラックや転位が発生してしまうことになる。しかし、上記した坩堝11は、単結晶の成長方向において底壁部13が位置する側と反対側に種結晶Tと間隔をあけて配置され、台座部23によって保持される種結晶T側からの放熱を抑制する放熱抑制部材31を備える構成である。そうすると、底壁部13が位置する側と反対側における放熱を放熱抑制部材31により抑制して、単結晶の成長空間15における径方向の温度差を小さくすることができる。したがって、単結晶の成長空間15の径方向の均熱性を高め、単結晶の成長時に結晶に加わる熱応力を小さくして、高品質な単結晶を製造することができる。   The seed crystal T held in the space 15 surrounded by the peripheral wall portion 12 is heated from the peripheral wall portion 12 side. A single crystal grows from the surface side where the raw material powder M of the seed crystal T is arranged in the single crystal growth space 15. In order to promote the growth of a high-quality single crystal, it is desirable that the temperature uniformity of the growth space 15 of the single crystal is high in a direction (radial direction) along a cross section perpendicular to the growth direction of the single crystal. Here, during the growth of the single crystal, the seed crystal T has a large amount of heat radiation toward the opposite side of the growth space 15. Specifically, the heat radiation amount in the direction opposite to the direction indicated by the arrow D in FIG. 1 is large. In this case, the temperature becomes lower as the position becomes closer to the radial center position away from the peripheral wall portion 12, that is, the central axis α. Then, the growth of the single crystal becomes a so-called convex growth, and strain is generated during the growth of the single crystal, and cracks and dislocations due to the strain are generated. However, the crucible 11 described above is arranged at a distance from the seed crystal T on the side opposite to the side on which the bottom wall portion 13 is located in the growth direction of the single crystal, and from the seed crystal T side held by the pedestal portion 23. It is the structure provided with the heat dissipation suppression member 31 which suppresses heat dissipation. If it does so, the thermal radiation in the opposite side to the side in which the bottom wall part 13 is located will be suppressed by the thermal radiation suppression member 31, and the temperature difference of the radial direction in the growth space 15 of a single crystal can be made small. Therefore, it is possible to manufacture a high-quality single crystal by increasing the thermal uniformity in the radial direction of the growth space 15 of the single crystal and reducing the thermal stress applied to the crystal during the growth of the single crystal.

この実施形態においては、保持部は、種結晶が取り付けられる台座第一面26、および単結晶の成長方向において台座第一面26と反対側に位置する台座第二面27を有し、台座第一面26が底壁部13と対向する位置に配置される台座部23を含み、単結晶の成長方向において台座部23と間隔をあけて、放熱抑制部材31が配置されている。そうすると、種結晶Tが取り付けられる台座部23の放熱を効率的に抑制することができる。したがって、単結晶の成長空間15における径方向の均熱性をより高く維持することができる。   In this embodiment, the holding portion has a pedestal first surface 26 to which a seed crystal is attached and a pedestal second surface 27 located on the opposite side of the pedestal first surface 26 in the growth direction of the single crystal. A heat dissipation suppressing member 31 is disposed including a pedestal portion 23 disposed at a position where one surface 26 faces the bottom wall portion 13 and spaced from the pedestal portion 23 in the growth direction of the single crystal. If it does so, the thermal radiation of the base part 23 to which the seed crystal T is attached can be suppressed efficiently. Therefore, it is possible to maintain a higher temperature uniformity in the radial direction in the growth space 15 of the single crystal.

この実施形態においては、蓋部14には、単結晶の成長方向から平面的に見て台座部23に保持された種結晶Tと重なる位置に空隙29が設けられており、空隙29内に放熱抑制部材31が配置されている。このように構成することにより、放熱抑制の効果を得る際の適切な箇所に放熱抑制部材31を配置して、より効率的に高品質な単結晶を製造することができる。   In this embodiment, the lid portion 14 is provided with a gap 29 at a position overlapping the seed crystal T held by the pedestal portion 23 as viewed in plan from the growth direction of the single crystal. A suppression member 31 is disposed. By comprising in this way, the heat dissipation suppression member 31 can be arrange | positioned in the appropriate location at the time of obtaining the effect of heat dissipation suppression, and a high quality single crystal can be manufactured more efficiently.

この実施形態においては、放熱抑制部材31は、単結晶の成長方向から平面的に見て中央に位置する第一領域32と、第一領域32よりも外方側に位置する第二領域33とを含み、単結晶の成長方向における第一領域32と種結晶Tとの距離は、第二領域33と種結晶Tとの距離よりも短く構成されている。種結晶Tについては、単結晶の成長方向から平面的に見て中央の方が放熱されやすい。したがって、第一領域32における放熱を第二領域33における放熱よりもさらに抑制して、単結晶の成長空間15における径方向の均熱性をより高く維持することができる。   In this embodiment, the heat dissipation suppressing member 31 includes a first region 32 that is located in the center when viewed in plan from the growth direction of the single crystal, and a second region 33 that is located on the outer side of the first region 32. The distance between the first region 32 and the seed crystal T in the growth direction of the single crystal is configured to be shorter than the distance between the second region 33 and the seed crystal T. As for the seed crystal T, the center of the seed crystal T is more likely to dissipate heat as viewed in plan from the growth direction of the single crystal. Therefore, the heat dissipation in the first region 32 can be further suppressed than the heat dissipation in the second region 33, and the radial heat uniformity in the single crystal growth space 15 can be maintained higher.

この実施形態においては、放熱抑制部材31は、単結晶の成長方向から平面的に見て外方側に近づくにしたがって単結晶の成長方向における種結晶Tとの距離が長くなる第一放熱調整領域としての第二領域33を含む構成である。したがって、単結晶の成長空間15における径方向の温度差を適切に小さくして、単結晶の成長空間15における径方向の均熱性をさらに高く維持することができる。   In this embodiment, the heat radiation suppression member 31 is a first heat radiation adjustment region in which the distance from the seed crystal T in the growth direction of the single crystal becomes longer as it approaches the outer side as viewed in plan from the growth direction of the single crystal. The second area 33 is included. Therefore, the temperature difference in the radial direction in the single crystal growth space 15 can be appropriately reduced, and the thermal uniformity in the radial direction in the single crystal growth space 15 can be maintained higher.

この実施形態においては、放熱抑制部材31は、単結晶の成長方向に対して傾斜して延びる第二領域33を含む。したがって、単結晶の成長空間15における径方向の温度を適切に調整することができ、単結晶の成長空間15における径方向の均熱性をさらに高く維持することができる。   In this embodiment, the heat dissipation suppressing member 31 includes a second region 33 extending obliquely with respect to the growth direction of the single crystal. Therefore, the radial temperature in the single crystal growth space 15 can be adjusted appropriately, and the radial heat uniformity in the single crystal growth space 15 can be maintained higher.

ここで、放熱抑制部材31を備えた本願の一実施形態に係る坩堝11の均熱性と、放熱抑制部材31を備えない坩堝101の均熱性との差について説明する。図2は、本願の一実施形態に係る坩堝11と同様の構成の坩堝を用いた場合の空間15の一部の温度分布を示すシミュレーション図である。図3は、放熱抑制部材31を備えない坩堝101を用いた場合の空間15の一部の温度分布を示すシミュレーション図である。なお、放熱抑制部材31を備えない坩堝101と同様の坩堝の構造については、図4に示している。坩堝11と坩堝101とは、放熱抑制部材31を備えるか否かの相違で、その他の構成については同じである。なお、図2、および図3に示すシミュレーション図は、温度分布の差が生じやすい種結晶Tの直下の領域のうちの中心軸αから外径側に向かう領域を示している。   Here, the difference between the thermal uniformity of the crucible 11 according to the embodiment of the present application including the heat dissipation suppressing member 31 and the thermal uniformity of the crucible 101 not including the heat dissipation suppressing member 31 will be described. FIG. 2 is a simulation diagram showing a temperature distribution of a part of the space 15 when a crucible having the same configuration as the crucible 11 according to the embodiment of the present application is used. FIG. 3 is a simulation diagram showing a temperature distribution of a part of the space 15 when the crucible 101 without the heat radiation suppressing member 31 is used. In addition, the structure of the crucible similar to the crucible 101 without the heat radiation suppressing member 31 is shown in FIG. The crucible 11 and the crucible 101 differ in whether or not the heat dissipation suppressing member 31 is provided, and the other configurations are the same. 2 and 3 show a region from the central axis α toward the outer diameter side in a region immediately below the seed crystal T where a difference in temperature distribution is likely to occur.

まず、図3、および図4を参照して、放熱抑制部材31を備えない坩堝101の場合、中心軸αに沿って矢印Dで示す向きに領域37a、領域37b、領域37c、領域37d、領域37e、領域37f、領域37g、および領域37hといった8つの領域37a〜37hの温度幅に跨っている。そして、種結晶Tの外縁部30が位置する部分においては、矢印Dで示す向きに領域37f、領域37g、領域37h、領域37i、領域37j、領域37k、領域37l、領域37m、領域37n、および領域37oといった10の領域37f〜37oの温度幅に跨っている。すなわち、放熱抑制部材31を備えない坩堝101の場合、温度分布が矢印Dで示す向きに中心軸αを先端とした大きい凸形状となっており、単結晶の成長空間15における径方向の均熱性が低い。   First, referring to FIG. 3 and FIG. 4, in the case of the crucible 101 that does not include the heat dissipation suppressing member 31, the region 37 a, the region 37 b, the region 37 c, the region 37 d, and the region in the direction indicated by the arrow D along the central axis α The temperature range of eight regions 37a to 37h such as 37e, region 37f, region 37g, and region 37h is straddled. In the portion where the outer edge portion 30 of the seed crystal T is located, the region 37f, the region 37g, the region 37h, the region 37i, the region 37j, the region 37k, the region 37l, the region 37m, the region 37n in the direction indicated by the arrow D, and The temperature range of ten regions 37f to 37o such as the region 37o is straddled. That is, in the case of the crucible 101 that does not include the heat dissipation suppressing member 31, the temperature distribution has a large convex shape with the central axis α as the tip in the direction indicated by the arrow D, and the temperature uniformity in the radial direction in the single crystal growth space 15. Is low.

これに対し、図2を参照して、放熱抑制部材31を備える坩堝11の場合、中心軸αに沿って矢印Dで示す向きに領域36a、領域36b、領域36c、領域36d、領域36e、および領域36fといった6つの領域36a〜36fの温度幅に跨っている。また、種結晶Tの外縁部30が位置する部分においては、矢印Dで示す向きに領域36a、領域36b、領域36c、領域36d、領域36e、領域36f、領域36g、および領域36hといった8つの領域36a〜36hの温度幅に跨っている。すなわち、放熱抑制部材31を備える坩堝11の場合、中心軸α側と外縁部30とでほとんど同じ温度の領域となっており、単結晶の成長空間15における径方向の均熱性が高い。なお、図1に示す坩堝11と同様の構成の坩堝を用いた場合、種結晶Tの底壁部13と対向する面から50mm単結晶を成長させた位置において、中心軸αが位置する部分と外縁部30が位置する部分との温度差は、3℃以内となる。   On the other hand, referring to FIG. 2, in the case of the crucible 11 including the heat dissipation suppressing member 31, the region 36 a, the region 36 b, the region 36 c, the region 36 d, the region 36 e, and the direction in the direction indicated by the arrow D along the central axis α The temperature ranges of the six regions 36a to 36f such as the region 36f are straddled. Further, in the portion where the outer edge 30 of the seed crystal T is located, eight regions such as a region 36a, a region 36b, a region 36c, a region 36d, a region 36e, a region 36f, a region 36g, and a region 36h are arranged in the direction indicated by the arrow D. It extends over the temperature range of 36a to 36h. That is, in the case of the crucible 11 provided with the heat dissipation suppressing member 31, the temperature is almost the same in the central axis α side and the outer edge portion 30, and the thermal uniformity in the radial direction in the single crystal growth space 15 is high. In the case where a crucible having the same structure as the crucible 11 shown in FIG. 1 is used, a portion where the central axis α is located at a position where a 50 mm single crystal is grown from the surface facing the bottom wall portion 13 of the seed crystal T. The temperature difference from the portion where the outer edge portion 30 is located is within 3 ° C.

(実施の形態2)
次に、本願の他の実施形態である実施の形態2について説明する。実施の形態2における坩堝11は、実施の形態1の場合と基本的には同様の構造を有し、同様の効果を奏する。しかし、実施の形態2における坩堝11は、放熱抑制部材31の構造において実施の形態1の場合と異なっている。
(Embodiment 2)
Next, a second embodiment which is another embodiment of the present application will be described. The crucible 11 in the second embodiment has basically the same structure as that in the first embodiment, and has the same effect. However, the crucible 11 in the second embodiment is different from that in the first embodiment in the structure of the heat dissipation suppressing member 31.

図5は、本願の他の実施形態に係る坩堝11の構造を示す概略断面図である。図5を参照して、放熱抑制部材31の第一領域32の幅Wが、図1に示す第一領域32の幅Wと比較して狭くなっている。この場合、距離Lについては、図1に示す場合と同じ距離としている。また、第二領域33の中心軸αに対する傾斜の角度についても、図1に示す第二領域33の場合と異なっている。 FIG. 5 is a schematic cross-sectional view showing the structure of a crucible 11 according to another embodiment of the present application. Referring to FIG. 5, the width W 2 of the first region 32 of the heat radiation suppressing member 31 is narrower compared to the width W 1 of the first region 32 shown in FIG. In this case, the distance L 1, are the same distance as the case shown in FIG. Further, the inclination angle of the second region 33 with respect to the central axis α is also different from that of the second region 33 shown in FIG.

図6は、図5に示す坩堝11と同様の構成の坩堝を用いた場合の空間15の一部の温度分布を示すシミュレーション図である。図6は、図2と同じ領域の温度分布を示している。図6を参照して、中心軸αに沿って矢印Dで示す向きに領域39a、領域39b、領域39c、領域39d、領域39e、および領域39fといった6つの領域39a〜39fの温度幅に跨っている。また、種結晶Tの外縁部30が位置する部分においては、矢印Dで示す向きに領域39a、領域39b、領域39c、領域39d、領域39e、領域39f、および領域39gといった7つの領域39a〜39gの温度幅に跨っている。この場合、径方向の中央、すなわち、中心軸αと外縁部30との間の径方向の中央位置と、中心軸αの位置、および外縁部30が設けられた位置と若干温度差はあるものの、図2に示す場合と同じ傾向であり、単結晶の成長空間15における径方向の均熱性が高い。   FIG. 6 is a simulation diagram showing a temperature distribution of a part of the space 15 when a crucible having the same configuration as the crucible 11 shown in FIG. 5 is used. FIG. 6 shows the temperature distribution in the same region as FIG. Referring to FIG. 6, the temperature range of six regions 39a to 39f such as region 39a, region 39b, region 39c, region 39d, region 39e, and region 39f is straddled in the direction indicated by arrow D along central axis α. Yes. In the portion where the outer edge portion 30 of the seed crystal T is located, seven regions 39a to 39g such as a region 39a, a region 39b, a region 39c, a region 39d, a region 39e, a region 39f, and a region 39g are arranged in the direction indicated by the arrow D. Across the temperature range. In this case, although there is a slight temperature difference between the radial center, that is, the radial central position between the central axis α and the outer edge 30, the position of the central axis α, and the position where the outer edge 30 is provided. 2 has the same tendency as in the case shown in FIG. 2, and the thermal uniformity in the radial direction in the growth space 15 of the single crystal is high.

(実施の形態3)
次に、本願のさらに他の実施形態である実施の形態3について説明する。実施の形態3における坩堝11は、実施の形態1の場合と基本的には同様の構造を有し、同様の効果を奏する。しかし、実施の形態2における坩堝11は、放熱抑制部材31の構造において実施の形態1の場合と異なっている。
(Embodiment 3)
Next, Embodiment 3 which is still another embodiment of the present application will be described. The crucible 11 in the third embodiment has basically the same structure as that in the first embodiment and has the same effects. However, the crucible 11 in the second embodiment is different from that in the first embodiment in the structure of the heat dissipation suppressing member 31.

図7は、本願のさらに他の実施形態に係る坩堝11の構造を示す概略断面図である。図7を参照して、放熱抑制部材31は、平板状である。すなわち、図1および図5に示す坩堝11の場合と比較して、図7に示す坩堝11は、第二領域33を含まない構成である。この場合、距離Lについては、距離Lよりも長くしている。 FIG. 7 is a schematic cross-sectional view showing the structure of a crucible 11 according to still another embodiment of the present application. With reference to FIG. 7, the heat dissipation suppressing member 31 has a flat plate shape. That is, compared with the case of the crucible 11 shown in FIGS. 1 and 5, the crucible 11 shown in FIG. 7 is configured not to include the second region 33. In this case, the distance L 3, is longer than the distance L 1.

図8は、図7に示す坩堝11と同様の構成の坩堝を用いた場合の空間15の一部の温度分布を示すシミュレーション図である。図8は、図2と同じ領域の温度分布を示している。図8を参照して、中心軸αに沿って矢印Dで示す向きに領域38a、領域38b、領域38c、領域38d、領域38e、および領域38fといった6つの領域38a〜38fの温度幅に跨っている。また、種結晶Tの外縁部30が位置する部分においては、矢印Dで示す向きに領域38c、領域38d、領域38e、領域38f、領域38g、領域38h、領域38i、および領域38jといった8つの領域38c〜38jの温度幅に跨っている。すなわち、この場合も図2に示す場合と同じ傾向であり、若干の温度差はあるものの中心軸α側と外縁部30側とでほとんど同じ温度の領域となっており、単結晶の成長空間15における径方向の均熱性が高い。   FIG. 8 is a simulation diagram showing a temperature distribution of a part of the space 15 when a crucible having the same configuration as the crucible 11 shown in FIG. 7 is used. FIG. 8 shows the temperature distribution in the same region as FIG. Referring to FIG. 8, the temperature ranges of six regions 38 a to 38 f such as region 38 a, region 38 b, region 38 c, region 38 d, region 38 e, and region 38 f are straddled in the direction indicated by arrow D along central axis α. Yes. In the portion where the outer edge portion 30 of the seed crystal T is located, eight regions such as a region 38c, a region 38d, a region 38e, a region 38f, a region 38g, a region 38h, a region 38i, and a region 38j are arranged in the direction indicated by the arrow D. It extends over the temperature range of 38c to 38j. That is, in this case as well, the same tendency as in the case shown in FIG. 2 is obtained. Although there is a slight temperature difference, the region is almost the same temperature on the central axis α side and the outer edge 30 side. The soaking in the radial direction is high.

(実施の形態4)
次に、さらに他の実施形態である実施の形態4について説明する。実施の形態4における坩堝11は、実施の形態1の場合と基本的には同様の構造を有し、同様の効果を奏する。しかし、実施の形態4における坩堝11は、放熱抑制部材31の構造において実施の形態1の場合と異なっている。
(Embodiment 4)
Next, a fourth embodiment which is still another embodiment will be described. The crucible 11 in the fourth embodiment has basically the same structure as that in the first embodiment and has the same effect. However, the crucible 11 in the fourth embodiment is different from that in the first embodiment in the structure of the heat dissipation suppressing member 31.

図9は、本願のさらに他の実施形態に係る坩堝11の構造を示す概略断面図である。図9を参照して、放熱抑制部材31は、複数設けられている。具体的には、放熱抑制部材31は、最も台座部23に近い位置に設けられる第一放熱抑制部材41と、単結晶の成長方向において第一放熱抑制部材41と間隔をあけて台座部23が位置する側と反対側に設けられる第二放熱抑制部材42と、単結晶の成長方向において第二放熱抑制部材42と間隔をあけて台座部23が位置する側と反対側に設けられる第三放熱抑制部材43とを含む構成である。   FIG. 9 is a schematic cross-sectional view showing the structure of a crucible 11 according to still another embodiment of the present application. Referring to FIG. 9, a plurality of heat dissipation suppressing members 31 are provided. Specifically, the heat dissipation suppressing member 31 includes a first heat dissipation suppressing member 41 provided at a position closest to the pedestal portion 23, and the pedestal portion 23 spaced apart from the first heat dissipation suppressing member 41 in the growth direction of the single crystal. A second heat radiation suppressing member 42 provided on the side opposite to the side where the base part 23 is located, and a third heat radiation provided on the side opposite to the side where the pedestal portion 23 is located with a space from the second heat radiation suppressing member 42 in the growth direction of the single crystal. This is a configuration including the suppression member 43.

このように構成することにより、第一放熱抑制部材41、第二放熱抑制部材42、および第三放熱抑制部材43の三つによって、台座部23側からの放熱を効果的に抑制し、単結晶の成長空間15における径方向の均熱性をさらに高めることができる。なお、本実施形態においては、放熱抑制部材を三つ設けることとしたが、これに限らず、放熱抑制部材を二つ、または四つ以上設けることとしてもよい。   By comprising in this way, the heat radiation from the base part 23 side is effectively suppressed by three of the 1st heat radiation suppression member 41, the 2nd heat radiation suppression member 42, and the 3rd heat radiation suppression member 43, and a single crystal The soaking property in the radial direction in the growth space 15 can be further enhanced. In the present embodiment, three heat radiation suppressing members are provided. However, the present invention is not limited to this, and two or four or more heat radiation suppressing members may be provided.

(実施の形態5)
次に、さらに他の実施形態である実施の形態5について説明する。実施の形態5における坩堝11は、実施の形態1の場合と基本的には同様の構造を有し、同様の効果を奏する。しかし、実施の形態5における坩堝11は、保持部の構造において実施の形態1の場合と異なっている。
(Embodiment 5)
Next, a fifth embodiment which is still another embodiment will be described. The crucible 11 in the fifth embodiment has basically the same structure as that in the first embodiment and has the same effects. However, the crucible 11 in the fifth embodiment is different from that in the first embodiment in the structure of the holding portion.

図10は、本願のさらに他の実施形態に係る坩堝11の構造を示す概略断面図である。図10を参照して、保持部は、底壁部13に向かって周壁部12によって囲われる空間15内に筒状に延びる延出部25を含む。延出部25は、壁面24から円筒状に延びるように設けられている。なお、図10において、延出部25と蓋部14との境界を破線で示している。延出部25は、内方側に壁面47を有する。そして、延出部25は、壁面47で種結晶Tを保持する。具体的には、延出部25の底壁部13側の端部46の内径側に位置する壁面47に種結晶Tの外縁部30を嵌め込むようにして、種結晶Tが延出部25に保持される。本実施形態においては、延出部25が、種結晶Tを保持する保持部である。すなわち、上記した実施の形態とは、台座部23を備えず、延出部25によって種結晶Tを保持する点で相違する。この場合、種結晶Tと放熱抑制部材31との間には何も介在しない構成である。なお、この実施形態においては、空隙29を構成する壁面22と延出部25の内方側の壁面47とが単結晶の成長方向において真っ直ぐに連なる構成である。放熱抑制部材31は、種結晶T側からの放熱を抑制する。このような構成の坩堝11であっても、種結晶T側からの放熱を抑制するに際し、より適切な位置に放熱抑制部材31を配置することができ、単結晶の成長空間15における径方向の均熱性をより高く維持することができる。   FIG. 10 is a schematic cross-sectional view showing the structure of a crucible 11 according to still another embodiment of the present application. Referring to FIG. 10, the holding portion includes an extending portion 25 extending in a cylindrical shape in a space 15 surrounded by the peripheral wall portion 12 toward the bottom wall portion 13. The extending portion 25 is provided so as to extend from the wall surface 24 in a cylindrical shape. In addition, in FIG. 10, the boundary of the extension part 25 and the cover part 14 is shown with the broken line. The extension part 25 has a wall surface 47 on the inner side. The extending portion 25 holds the seed crystal T with the wall surface 47. Specifically, the seed crystal T is held by the extension portion 25 so that the outer edge portion 30 of the seed crystal T is fitted into the wall surface 47 located on the inner diameter side of the end portion 46 on the bottom wall portion 13 side of the extension portion 25. Is done. In the present embodiment, the extending portion 25 is a holding portion that holds the seed crystal T. That is, it differs from the above-described embodiment in that the pedestal portion 23 is not provided and the seed crystal T is held by the extending portion 25. In this case, nothing is interposed between the seed crystal T and the heat dissipation suppressing member 31. In this embodiment, the wall surface 22 constituting the air gap 29 and the inner wall surface 47 of the extending portion 25 are connected in a straight line in the growth direction of the single crystal. The heat dissipation suppressing member 31 suppresses heat dissipation from the seed crystal T side. Even in the crucible 11 having such a configuration, when suppressing heat dissipation from the seed crystal T side, the heat dissipation suppressing member 31 can be disposed at a more appropriate position, and the radial direction in the growth space 15 of the single crystal can be arranged. The soaking property can be maintained higher.

(実施の形態6)
次に、さらに他の実施形態である実施の形態6について説明する。実施の形態6における坩堝11は、実施の形態1の場合と基本的には同様の構造を有し、同様の効果を奏する。しかし、実施の形態6における坩堝11は、蓋部14等の構造において実施の形態1の場合と異なっている。
(Embodiment 6)
Next, the sixth embodiment which is still another embodiment will be described. The crucible 11 in the sixth embodiment has basically the same structure as that in the first embodiment and has the same effects. However, the crucible 11 in the sixth embodiment is different from that in the first embodiment in the structure of the lid portion 14 and the like.

図11は、本願のさらに他の実施形態に係る坩堝11の一部を示す概略断面図である。図11を参照して、坩堝11は、筒状の周壁部12と、周壁部12に接続され、周壁部12の一方の開口を閉塞する底壁部13と、周壁部12と接続されて周壁部12の他方の開口を閉塞する蓋部14とを備える。蓋部14に空隙29は設けられていない。また、坩堝11は、台座部23を備えない。これらの点において、上記した実施の形態1等における坩堝11の構成と相違する。坩堝11は、底壁部13に向かって周壁部12によって囲われる空間15内に延びる棒状部51と、棒状部51の底壁部13側の端部に接続され、周壁部12によって囲われる空間15内で種結晶Tを保持する保持部52とを備える。この場合、棒状部51は、蓋部14から延びるように設けられている。棒状部51は、中心軸αに沿って延びている。保持部52は、円盤状である。   FIG. 11 is a schematic cross-sectional view showing a part of a crucible 11 according to still another embodiment of the present application. Referring to FIG. 11, a crucible 11 is connected to a cylindrical peripheral wall portion 12, a peripheral wall portion 12, a bottom wall portion 13 that closes one opening of the peripheral wall portion 12, and a peripheral wall portion 12. And a lid portion 14 that closes the other opening of the portion 12. There is no gap 29 in the lid portion 14. Further, the crucible 11 does not include the pedestal portion 23. In these points, it differs from the structure of the crucible 11 in Embodiment 1 etc. mentioned above. The crucible 11 is connected to the rod-shaped portion 51 extending into the space 15 surrounded by the peripheral wall portion 12 toward the bottom wall portion 13 and the end of the rod-shaped portion 51 on the bottom wall portion 13 side, and is surrounded by the peripheral wall portion 12. 15 and a holding part 52 that holds the seed crystal T. In this case, the rod-like portion 51 is provided so as to extend from the lid portion 14. The rod-shaped part 51 extends along the central axis α. The holding | maintenance part 52 is disk shape.

また、坩堝11は、単結晶の成長方向において底壁部13が位置する側と反対側に種結晶Tと間隔をあけて配置され、保持部52によって保持される種結晶T側からの放熱を抑制する放熱抑制部材53を備える。   Further, the crucible 11 is arranged at a distance from the seed crystal T on the side opposite to the side where the bottom wall portion 13 is located in the growth direction of the single crystal, and dissipates heat from the seed crystal T side held by the holding portion 52. A heat radiation suppressing member 53 is provided.

放熱抑制部材53は、棒状部51に接続されている。放熱抑制部材53は、棒状部51に近づくにしたがって単結晶の成長方向における保持部52との距離が長くなる第二放熱調整領域54を含む。すなわち、単結晶の成長方向において、棒状部51が接続された近辺の位置における放熱抑制部材53と保持部52との距離Lは、棒状部51から離れた位置における放熱抑制部材53と保持部52との距離Lよりも長く構成されている。この場合、第二放熱調整領域54は、放熱抑制部材53の全体である。放熱抑制部材53は、単結晶の成長方向に対して傾斜して延びている。 The heat dissipation suppressing member 53 is connected to the rod-shaped part 51. The heat dissipation suppression member 53 includes a second heat dissipation adjustment region 54 in which the distance from the holding portion 52 in the growth direction of the single crystal increases as the rod-shaped portion 51 is approached. That is, in the growth direction of the single crystal, the distance L 4 between the heat dissipation suppressing member 53 and the holding portion 52 in the vicinity of the position where the rod-shaped portion 51 is connected is the heat dissipation suppressing member 53 and the holding portion at a position away from the rod-shaped portion 51. 52 is configured to be longer than the distance L 5 with respect to 52. In this case, the second heat dissipation adjustment region 54 is the entire heat dissipation suppressing member 53. The heat dissipation suppressing member 53 extends while being inclined with respect to the growth direction of the single crystal.

このような構成とすることによっても、単結晶の成長空間15における径方向の均熱性をより高く維持することができる。   Even with such a configuration, it is possible to maintain a higher temperature uniformity in the radial direction in the growth space 15 of the single crystal.

この実施形態においては、放熱抑制部材53は、棒状部51に接続されており、棒状部51に近づくにしたがって単結晶の成長方向における保持部52との距離が長くなる第二放熱調整領域を含む。棒状部51に近い位置では放熱されにくい。したがって、このような構成とすることにより、棒状部51から遠い位置における放熱をより抑制して、単結晶の成長空間15における径方向の均熱性をより高く維持することができる。   In this embodiment, the heat radiation suppressing member 53 is connected to the rod-shaped portion 51 and includes a second heat radiation adjustment region in which the distance from the holding portion 52 in the growth direction of the single crystal increases as the rod-shaped portion 51 is approached. . It is difficult to radiate heat at a position close to the rod-shaped portion 51. Therefore, by adopting such a configuration, it is possible to further suppress heat dissipation at a position far from the rod-shaped portion 51 and to maintain higher radial heat uniformity in the single crystal growth space 15.

(変形例)
なお、上記の実施の形態においては、放熱抑制部材31、53はグラファイトからなることとしたが、これに限らず、他の高融点材料で構成されることとしてもよい。
(Modification)
In the above embodiment, the heat dissipation suppressing members 31 and 53 are made of graphite. However, the present invention is not limited to this, and may be made of other high melting point materials.

また、上記の実施の形態においては、放熱抑制部材31、53は板状であることとしたが、これに限らず、放熱抑制部材31は、ブロック状や塊状等、他の形状であってもよい。また、放熱抑制部材31、53は、図1等に示す断面において、曲線によって示される面を含むこととしてもよい。   Further, in the above embodiment, the heat dissipation suppressing members 31 and 53 are plate-shaped. However, the present invention is not limited to this, and the heat dissipation suppressing member 31 may have other shapes such as a block shape or a lump shape. Good. Moreover, the heat dissipation suppressing members 31 and 53 may include a surface indicated by a curve in the cross section shown in FIG.

なお、上記の実施の形態においては、坩堝11は、蓋部14を備える構成としたが、これに限らず、蓋部14を備えない構成としてもよい。この場合、例えば、台座部23等により、周壁部12の他方の開口を覆うよう構成してもよい。また、保持部は、周壁部12の内径面から内径側に延びて種結晶Tを保持するよう構成してもよい。   In the above-described embodiment, the crucible 11 is configured to include the lid portion 14, but is not limited thereto, and may be configured not to include the lid portion 14. In this case, you may comprise so that the other opening of the surrounding wall part 12 may be covered by the base part 23 grade | etc., For example. The holding portion may be configured to extend from the inner diameter surface of the peripheral wall portion 12 to the inner diameter side to hold the seed crystal T.

今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって規定され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments disclosed herein are illustrative in all respects and are not restrictive in any aspect. The scope of the present invention is defined by the scope of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the scope of the claims.

本願の坩堝は、高品質な炭化珪素単結晶の製造が求められる場合に、特に有利に適用され得る。   The crucible of the present application can be applied particularly advantageously when production of a high-quality silicon carbide single crystal is required.

11 坩堝
12 周壁部
13 底壁部
14 上壁部
15,29 空間
16 底壁面
21 開口部
22,24 壁面
23 台座部
25 延出部
26 台座第一面
27 台座第二面
28 種結晶第一面
30 外縁部
31,41,42,43,53 放熱抑制部材
32 第一領域
33 第二領域
36a,36b,36c,36d,36e,36f,36g,36h,37a,37b,37c,37d,37e,37f,37g,37h,37i,37j,37k,37l,37m,37n,37o,38a,38b,38c,38d,38e,38f,38g,38h,38i,38j,39a,39b,39c,39d,39e,39f,39g,54 領域
46 端部
47 内径面
51 棒状部
52 保持部
11 crucible 12 peripheral wall part 13 bottom wall part 14 upper wall part 15 and 29 space 16 bottom wall surface 21 opening part 22 and 24 wall surface 23 pedestal part 25 extension part 26 pedestal first surface 27 pedestal second surface 28 seed crystal first surface 30 Outer edge portion 31, 41, 42, 43, 53 Heat radiation suppressing member 32 First region 33 Second region 36a, 36b, 36c, 36d, 36e, 36f, 36g, 36h, 37a, 37b, 37c, 37d, 37e, 37f 37g, 37h, 37i, 37j, 37k, 37l, 37m, 37n, 37o, 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38h, 38i, 38j, 39a, 39b, 39c, 39d, 39e, 39f , 39 g, 54 Region 46 End 47 Inner diameter surface 51 Bar-shaped portion 52 Holding portion

Claims (11)

昇華法による炭化珪素単結晶の成長に用いられる坩堝であって、
筒状の周壁部と、
前記周壁部に接続され、前記周壁部の一方の開口を閉塞する底壁部と、
前記周壁部によって囲われる空間内で種結晶を保持する保持部と、
単結晶の成長方向において前記底壁部が位置する側と反対側に前記種結晶と間隔をあけて配置され、前記保持部によって保持される前記種結晶側からの放熱を抑制する放熱抑制部材と、を備える、坩堝。
A crucible used for growing a silicon carbide single crystal by a sublimation method,
A cylindrical peripheral wall,
A bottom wall connected to the peripheral wall and closing one opening of the peripheral wall;
A holding part for holding a seed crystal in a space surrounded by the peripheral wall part;
A heat dissipation suppressing member that is disposed at a distance from the seed crystal on the side opposite to the side on which the bottom wall portion is located in the growth direction of the single crystal, and suppresses heat dissipation from the seed crystal side held by the holding portion; A crucible.
前記周壁部に接続され、前記周壁部の他方の開口を閉塞する蓋部をさらに備え、
前記蓋部には、単結晶の成長方向から平面的に見て前記保持部に保持された前記種結晶と重なる位置に空隙が設けられており、
前記空隙内に前記放熱抑制部材が配置される、請求項1に記載の坩堝。
A lid that is connected to the peripheral wall and closes the other opening of the peripheral wall;
The lid portion is provided with a gap at a position overlapping the seed crystal held in the holding portion when viewed in plan from the growth direction of the single crystal,
The crucible according to claim 1, wherein the heat dissipation suppressing member is disposed in the gap.
前記保持部は、前記種結晶が取り付けられる台座第一面、および単結晶の成長方向において前記台座第一面と反対側に位置する台座第二面を有し、前記台座第一面が前記底壁部と対向する位置に配置される台座部を含み、
単結晶の成長方向において前記台座部と間隔をあけて、前記放熱抑制部材が配置される、請求項1または請求項2に記載の坩堝。
The holding portion has a pedestal first surface to which the seed crystal is attached, and a pedestal second surface located on the opposite side of the pedestal first surface in the growth direction of the single crystal, and the pedestal first surface is the bottom Including a pedestal disposed at a position facing the wall,
The crucible according to claim 1 or 2, wherein the heat dissipation suppressing member is disposed at a distance from the pedestal portion in the growth direction of the single crystal.
前記保持部は、前記底壁部に向かって前記周壁部によって囲われる空間内に筒状に延び、内方側に壁面を有する延出部を含み、
前記延出部は、前記壁面で前記種結晶を保持する、請求項1または請求項2に記載の坩堝。
The holding part includes an extension part extending in a cylindrical shape in a space surrounded by the peripheral wall part toward the bottom wall part, and having a wall surface on the inner side,
The crucible according to claim 1 or 2, wherein the extension portion holds the seed crystal on the wall surface.
前記放熱抑制部材は、単結晶の成長方向から平面的に見て中央に位置する第一領域と、前記第一領域よりも外方側に位置する第二領域とを含み、
単結晶の成長方向における前記第一領域と前記種結晶との距離は、前記第二領域と前記種結晶との距離よりも短い、請求項1〜請求項4のいずれか1項に記載の坩堝。
The heat dissipation suppressing member includes a first region located in the center when viewed in plan from the growth direction of the single crystal, and a second region located on the outer side from the first region,
The crucible according to any one of claims 1 to 4, wherein a distance between the first region and the seed crystal in a growth direction of the single crystal is shorter than a distance between the second region and the seed crystal. .
前記放熱抑制部材は、単結晶の成長方向から平面的に見て外方側に近づくにしたがって単結晶の成長方向における前記種結晶との距離が長くなる第一放熱調整領域を含む、請求項1〜請求項5のいずれか1項に記載の坩堝。 The heat dissipation suppressing member includes a first heat dissipation adjustment region in which a distance from the seed crystal in the growth direction of the single crystal becomes longer as the distance from the seed crystal in the growth direction of the single crystal becomes closer to the outer side as viewed in plan from the growth direction of the single crystal. The crucible according to any one of claims 5 to 6. 昇華法による炭化珪素単結晶の成長に用いられる坩堝であって、
筒状の周壁部と、
前記周壁部に接続され、前記周壁部の一方の開口を閉塞する底壁部と、
前記底壁部に向かって前記周壁部によって囲われる空間内に延びる棒状部と、
前記棒状部の前記底壁部側の端部に接続され、前記周壁部によって囲われる空間内で種結晶を保持する保持部と、
単結晶の成長方向において前記底壁部が位置する側と反対側に前記種結晶と間隔をあけて配置され、前記保持部によって保持される前記種結晶側からの放熱を抑制する放熱抑制部材と、を備える、坩堝。
A crucible used for growing a silicon carbide single crystal by a sublimation method,
A cylindrical peripheral wall,
A bottom wall connected to the peripheral wall and closing one opening of the peripheral wall;
A rod-shaped portion extending into the space surrounded by the peripheral wall portion toward the bottom wall portion;
A holding part that is connected to an end of the rod-like part on the bottom wall part side and holds a seed crystal in a space surrounded by the peripheral wall part;
A heat dissipation suppressing member that is disposed at a distance from the seed crystal on the side opposite to the side on which the bottom wall portion is located in the growth direction of the single crystal, and suppresses heat dissipation from the seed crystal side held by the holding portion; A crucible.
前記放熱抑制部材は、前記棒状部に接続されており、前記棒状部に近づくにしたがって単結晶の成長方向における前記保持部との距離が長くなる第二放熱調整領域を含む、請求項7に記載の坩堝。 The heat dissipation suppressing member is connected to the rod-shaped portion, and includes a second heat dissipation adjustment region in which a distance from the holding portion in the growth direction of the single crystal increases as the rod-shaped portion is approached. Crucible. 前記放熱抑制部材は、単結晶の成長方向に対して傾斜して延びる領域を含む、請求項1〜請求項8のいずれか1項に記載の坩堝。 The crucible according to any one of claims 1 to 8, wherein the heat dissipation suppressing member includes a region extending obliquely with respect to a growth direction of the single crystal. 前記放熱抑制部材は、単結晶の成長方向にそれぞれ間隔をあけて複数設けられる、請求項1〜請求項9のいずれか1項に記載の坩堝。 The crucible according to any one of claims 1 to 9, wherein a plurality of the heat dissipation suppressing members are provided at intervals in the growth direction of the single crystal. 前記放熱抑制部材は、グラファイトからなる、請求項1〜請求項10のいずれか1項に記載の坩堝。
The crucible according to any one of claims 1 to 10, wherein the heat dissipation suppressing member is made of graphite.
JP2018013537A 2018-01-30 2018-01-30 crucible Pending JP2019131422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018013537A JP2019131422A (en) 2018-01-30 2018-01-30 crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018013537A JP2019131422A (en) 2018-01-30 2018-01-30 crucible

Publications (1)

Publication Number Publication Date
JP2019131422A true JP2019131422A (en) 2019-08-08

Family

ID=67544705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018013537A Pending JP2019131422A (en) 2018-01-30 2018-01-30 crucible

Country Status (1)

Country Link
JP (1) JP2019131422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305573A (en) * 2022-10-11 2022-11-08 浙江晶越半导体有限公司 Crucible for growth of silicon carbide crystal by physical vapor phase method for optimizing thermal field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305573A (en) * 2022-10-11 2022-11-08 浙江晶越半导体有限公司 Crucible for growth of silicon carbide crystal by physical vapor phase method for optimizing thermal field

Similar Documents

Publication Publication Date Title
JP5403671B2 (en) Silicon carbide single crystal manufacturing equipment
JP5271601B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP5432573B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
JP5402798B2 (en) Method for producing silicon carbide single crystal ingot
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
US9890470B2 (en) Seed crystal holder for growing a crystal by a solution method
JP2002060297A (en) Apparatus and method for growing single crystal
JP7018816B2 (en) Crucible and SiC single crystal growth device
JP6338439B2 (en) Method for producing silicon carbide single crystal ingot
JP6861555B2 (en) Silicon Carbide Single Crystal Ingot Manufacturing Equipment and Manufacturing Method
US20160002820A1 (en) Crucible and method for producing single crystal
JP2019131422A (en) crucible
JP2016037441A (en) Method for producing single crystal
JP4459211B2 (en) Single crystal growth apparatus and growth method
JP5892209B2 (en) Single crystal manufacturing method
JP6628640B2 (en) Apparatus and method for producing silicon carbide single crystal ingot
JP5603990B2 (en) Silicon carbide single crystal manufacturing equipment
JP2017065969A (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
KR20130083653A (en) Growing apparatus for single crystal
JP7452276B2 (en) Single crystal manufacturing device and SiC single crystal manufacturing method
KR101532266B1 (en) An apparatus for growing a single crystal
JP2013139347A (en) Apparatus for producing single crystal, single crystal, method for producing the single crystal, wafer, and semiconductor device
JP7490775B2 (en) Method for producing SiC crystal
KR101629445B1 (en) growing apparatus for large diameter single crystal