JP2019129256A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2019129256A
JP2019129256A JP2018010626A JP2018010626A JP2019129256A JP 2019129256 A JP2019129256 A JP 2019129256A JP 2018010626 A JP2018010626 A JP 2018010626A JP 2018010626 A JP2018010626 A JP 2018010626A JP 2019129256 A JP2019129256 A JP 2019129256A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
wall portion
side wall
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018010626A
Other languages
Japanese (ja)
Other versions
JP6793139B2 (en
Inventor
一義 櫻木
Kazuyoshi Sakuragi
一義 櫻木
啓慈 一ノ倉
Keiji Ichinokura
啓慈 一ノ倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2018010626A priority Critical patent/JP6793139B2/en
Publication of JP2019129256A publication Critical patent/JP2019129256A/en
Application granted granted Critical
Publication of JP6793139B2 publication Critical patent/JP6793139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a semiconductor light emitting device improved in light output.SOLUTION: The device comprises: a package substrate 2 integrally having an annular side wall part 21 and a bottom wall part 22 closing one opening of the side wall part 21: and a semiconductor light emitting element 4 housed in the hollow part of the side wall part 21 and mounted on the bottom wall part 21. An inner peripheral surface 22a of the side wall part 21 is formed into an inclined surface expanding outward as it is separated from the bottom wall part 22. When h represents the height of the semiconductor light emitting element 4 along the axial direction of the side wall part 21 and d represents a distance between the bottom wall part 22 side end of the semiconductor light emitting element 4 and the inclined surface with respect to a direction perpendicular to the axial direction, an inclination angle θof the inclined surface with respect to a plane perpendicular to the axial direction satisfies conditions of θ≤{(180-θ)/2}×1.32 and θ={arctan(h/d)}×180/π.SELECTED DRAWING: Figure 2

Description

本発明は、半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device.

従来、パッケージ基板の凹部に半導体発光素子を収容した半導体発光装置が知られている。このような半導体発光装置として、パッケージ基板の内周面を、開口側ほど外方に拡がる傾斜面とすることで、光出力の向上を図ったものがある(例えば、特許文献1参照)。   Conventionally, a semiconductor light emitting device in which a semiconductor light emitting element is accommodated in a recess of a package substrate is known. As such a semiconductor light emitting device, there is one in which the optical output is improved by making the inner peripheral surface of the package substrate into an inclined surface that spreads outward as it opens (see, for example, Patent Document 1).

特開2016−103636号公報JP, 2006-103636, A

しかしながら、従来技術では、半導体発光素子の大きさや、半導体発光素子とパッケージ基板との距離を考慮していなかったため、例えば傾斜面で反射した光が半導体発光素子に再突入する等して、光出力を十分に向上することができない場合があった。特に、紫外光を照射する紫外光発光ダイオードでは、素子内に紫外光を吸収する層を含む場合があり、そのような場合には、半導体発光素子に再突入した紫外光が吸収されてしまい、光出力の低下をまねくおそれがあった。   However, in the prior art, since the size of the semiconductor light emitting element and the distance between the semiconductor light emitting element and the package substrate are not considered, for example, the light reflected by the inclined surface reenters the semiconductor light emitting element, etc. There were times when it could not be improved enough. In particular, in the case of an ultraviolet light emitting diode that emits ultraviolet light, the element may include a layer that absorbs ultraviolet light, and in such a case, the ultraviolet light reentering the semiconductor light emitting element is absorbed, It may lead to a decrease in light output.

そこで、本発明は、光出力の向上を図った半導体発光装置を提供することを目的とする。   SUMMARY An advantage of some aspects of the invention is that it provides a semiconductor light emitting device with improved light output.

本発明は、上記課題を解決することを目的として、環状の側壁部と、該側壁部の一方の開口を塞ぐ底壁部と、を一体に有するパッケージ基板と、前記側壁部の中空部に収容され前記底壁部上に実装された半導体発光素子と、を備え、前記側壁部の内周面が、前記底壁部と離れるほど外方へと拡がる傾斜面に形成されており、前記側壁部の軸方向に沿った前記半導体発光素子の高さをhとし、前記半導体発光素子の前記底壁部側の端部と前記傾斜面との前記軸方向に対して垂直な方向に沿った距離をdとしたとき、前記軸方向に対して垂直な面に対する前記傾斜面の傾斜角度θが、下式
θ≦{(180−θ)/2}×1.32
θ={arctan(h/d)}×180/π
の条件を満たしている、半導体発光装置を提供する。
The present invention, for the purpose of solving the above-mentioned problems, includes a package substrate integrally having an annular side wall portion and a bottom wall portion closing one opening of the side wall portion, and housed in the hollow portion of the side wall portion. A semiconductor light emitting element mounted on the bottom wall portion, the inner circumferential surface of the side wall portion being formed in an inclined surface which expands outward as the distance from the bottom wall portion increases, and the side wall portion The height of the semiconductor light emitting device along the axial direction of the semiconductor light emitting device is h, and the distance along the direction perpendicular to the axial direction between the end portion on the bottom wall side of the semiconductor When d, the inclination angle θ 2 of the inclined surface with respect to a plane perpendicular to the axial direction is expressed by the following equation θ 2 ≦ {(180−θ 1 ) / 2} × 1.32.
θ 1 = {arctan (h / d)} × 180 / π
A semiconductor light emitting device that satisfies the above conditions is provided.

本発明によれば、光出力の向上を図った半導体発光装置を提供できる。   According to the present invention, it is possible to provide a semiconductor light emitting device in which the light output is improved.

本発明の一実施の形態に係る半導体発光装置の分解斜視図である。FIG. 1 is an exploded perspective view of a semiconductor light emitting device according to an embodiment of the present invention. 半導体発光装置の要部を拡大した断面図である。It is sectional drawing to which the principal part of the semiconductor light-emitting device was expanded. 半導体発光素子の積層構造を説明する図である。It is a figure explaining the laminated structure of a semiconductor light-emitting device. 本発明による実施例及び従来例の光出力を演算したシミュレーション結果を示すグラフ図である。It is a graph which shows the simulation result which calculated the optical output of the Example by this invention, and a prior art example. 反射率を変化させ、傾斜角度と光出力との関係をシミュレーションした結果を示すグラフ図である。It is a graph which shows the result of having simulated the relationship between an inclination angle and light output, changing a reflectance. (a)は、透明基板の窒化物半導体層側の面の中心位置を発光点とした場合において、発光点からの光の経路(軌跡)を示す図であり、(b)は、透明基板から外に出る光と、全反射により透明基板から外に出ない光のそれぞれの領域を説明する図である。(A) is a figure which shows the path (locus) of the light from a light emission point, when the center position of the surface at the side of the nitride semiconductor layer of a transparent substrate is made into a light emission point, (b) is from a transparent substrate It is a figure explaining each area | region of the light which goes out, and the light which does not go out from a transparent substrate by total reflection. 透明基板の厚さを変化させた際における光出力の変化のシミュレーション結果を示すグラフ図である。It is a graph which shows the simulation result of the change of the optical output when changing the thickness of a transparent substrate.

[実施の形態]
以下、本発明の実施の形態を添付図面にしたがって説明する。
Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.

(半導体発光装置の全体構成)
図1は、本発明の一実施の形態に係る半導体発光装置の分解斜視図であり、図2は、その要部を拡大した断面図である。
(Overall configuration of semiconductor light emitting device)
FIG. 1 is an exploded perspective view of a semiconductor light emitting device according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part thereof.

半導体発光装置1は、パッケージ基板2と、蓋体3と、半導体発光素子4と、ツェナーダイオード5と、を備えている。   The semiconductor light emitting device 1 includes a package substrate 2, a lid 3, a semiconductor light emitting element 4, and a zener diode 5.

パッケージ基板2は、環状(短筒状、枠状)の側壁部21と、側壁部21の一方の開口を塞ぐ底壁部22と、を一体に有する。側壁部21は、平面視で略矩形状(略矩形の枠状)に形成されており、この側壁部21の中空部内に、半導体発光素子4とツェナーダイオード5とが収容されている。パッケージ基板2は、例えば高温焼成セラミック多層基板(HTCC、High Temperature Co-fired Ceramic)からなる。底壁部22には、半導体発光素子4やツェナーダイオード5が実装される基板側電極24が設けられている。なお、図1では、基板側電極24の図示を省略している。   The package substrate 2 integrally includes an annular (short cylinder shape, frame shape) side wall portion 21 and a bottom wall portion 22 that closes one opening of the side wall portion 21. The side wall portion 21 is formed in a substantially rectangular shape (a substantially rectangular frame shape) in a plan view, and the semiconductor light emitting element 4 and the zener diode 5 are accommodated in the hollow portion of the side wall portion 21. The package substrate 2 is made of, for example, a high temperature fired ceramic multilayer substrate (HTCC, High Temperature Co-fired Ceramic). A substrate-side electrode 24 on which the semiconductor light emitting element 4 and the Zener diode 5 are mounted is provided on the bottom wall portion 22. In addition, illustration of the board | substrate side electrode 24 is abbreviate | omitted in FIG.

蓋体3は、半導体発光素子が発光する光を透過する石英ガラス等の透明部材からなる。蓋体3は、パッケージ基板2の開口、すなわち側壁部21の他方の開口(底壁部22と反対側の開口)を塞ぐようにパッケージ基板2に取り付けられる。蓋体3は、側壁部21の上面(底壁部22と反対側の面)に、ろう材等を用いて水密に固定される。   The lid 3 is made of a transparent member such as quartz glass that transmits light emitted from the semiconductor light emitting element. The lid 3 is attached to the package substrate 2 so as to close the opening of the package substrate 2, that is, the other opening of the side wall portion 21 (opening opposite to the bottom wall portion 22). The lid 3 is fixed to the upper surface of the side wall portion 21 (the surface opposite to the bottom wall portion 22) in a watertight manner using a brazing material or the like.

半導体発光素子4は、側壁部21の中空部に収容されており、底壁部22の基板側電極24上にフリップチップ実装されている。本実施の形態では、半導体発光素子4は、発光波長(中心波長、ピーク波長)が360nm以下である紫外光(深紫外光)を発光する発光ダイオード(以下、紫外光LEDという)からなる。半導体発光素子4の詳細については後述する。   The semiconductor light emitting element 4 is accommodated in the hollow portion of the side wall portion 21 and is flip-chip mounted on the substrate side electrode 24 of the bottom wall portion 22. In the present embodiment, the semiconductor light emitting element 4 is composed of a light emitting diode (hereinafter referred to as an ultraviolet light LED) that emits ultraviolet light (deep ultraviolet light) having an emission wavelength (central wavelength, peak wavelength) of 360 nm or less. Details of the semiconductor light emitting element 4 will be described later.

ツェナーダイオード5は、半導体発光素子4と共に側壁部21の中空部に収容されており、底壁部22の基板側電極24上に実装されている。ツェナーダイオード5は、半導体発光素子4に印加される電圧を一定とし過電流を抑制することにより、半導体発光素子4を保護する役割を果たす。   The Zener diode 5 is housed in the hollow portion of the side wall portion 21 together with the semiconductor light emitting element 4, and is mounted on the substrate side electrode 24 of the bottom wall portion 22. The Zener diode 5 serves to protect the semiconductor light emitting element 4 by keeping the voltage applied to the semiconductor light emitting element 4 constant and suppressing overcurrent.

(側壁部21の内周面21aの傾斜角度θの説明)
本実施の形態に係る半導体発光装置1は、側壁部21の内周面21aが、底壁部22と離れるほど外方(側壁部21の中心軸から離れる方向)へと拡がる傾斜面に形成されている。以下、側壁部21の軸方向(図2の上下方向)に対して垂直な面に対する傾斜面の傾斜角度を、傾斜角度θという。また、側壁部21の軸方向を、単に軸方向という場合がある。
(The inclination angle theta 2 of the description of the inner circumferential surface 21a of the side wall portion 21)
In the semiconductor light emitting device 1 according to the present embodiment, the inner circumferential surface 21a of the side wall 21 is formed in an inclined surface which spreads outward (in a direction away from the central axis of the side wall 21) as being apart from the bottom wall 22. ing. Hereinafter, the inclination angle of the inclined surface with respect to the plane perpendicular to the axial direction of the side wall portion 21 (the vertical direction in FIG. 2) is referred to as the inclination angle θ 2 . Moreover, the axial direction of the side wall part 21 may only be called axial direction.

半導体発光素子4では、その上面(底壁部22と反対側の面)のみならず、その側面からも光を出射する。傾斜角度θが大きすぎると、半導体発光素子4の側面から出射された光が、側壁部21の内周面21aで反射して半導体発光素子4に再突入してしまい、光出力の低下をまねく場合がある。詳細は後述するが、本実施の形態で用いている半導体発光素子4(紫外光LED)は、発光層よりも底壁部22側に紫外光を吸収する層を含んでおり、半導体発光素子4に再突入した光の大部分は当該層で吸収されてしまうことになる。よって、光出力を向上させるためには、半導体発光素子4の側面から出射され側壁部21の内周面21aで反射した光が、半導体発光素子4に再突入しないように、傾斜角度θを設定する必要がある。 In the semiconductor light emitting device 4, light is emitted not only from the upper surface (the surface opposite to the bottom wall portion 22) but also from the side surface. If the inclination angle θ 2 is too large, light emitted from the side surface of the semiconductor light emitting element 4 is reflected by the inner peripheral surface 21 a of the side wall portion 21 and reenters the semiconductor light emitting element 4, thereby lowering the light output. May be mixed. Although the details will be described later, the semiconductor light emitting device 4 (ultraviolet light LED) used in the present embodiment includes a layer absorbing ultraviolet light on the bottom wall 22 side of the light emitting layer. Most of the light that re-enters is absorbed by the layer. Therefore, in order to improve the light output, the inclination angle θ 2 is set so that the light emitted from the side surface of the semiconductor light emitting element 4 and reflected by the inner circumferential surface 21 a of the side wall 21 does not reenter the semiconductor light emitting element 4. Must be set.

そこで、本実施の形態に係る半導体発光装置1では、側壁部21の軸方向に沿った半導体発光素子4の高さをhとし、半導体発光素子4の底壁部22側の端部と傾斜面(側壁部21の内周面21a)との軸方向に対して垂直な方向に沿った距離をdとしたとき、傾斜角度θが、下式(1)
θ≦{(180−θ)/2}×1.32 ・・・(1)
θ={arctan(h/d)}×180/π
の条件を満たすようにした。式(1)におけるθは、つまり、軸方向に対して垂直な方向に出射され内周面21aで反射された光が半導体発光素子4に再突入しない条件となる、入射角と出射角の合計値の下限値である。
Therefore, in the semiconductor light emitting device 1 according to the present embodiment, the height of the semiconductor light emitting element 4 along the axial direction of the side wall portion 21 is h, and the end portion on the bottom wall portion 22 side of the semiconductor light emitting element 4 and the inclined surface When the distance along the direction perpendicular to the axial direction with respect to (the inner peripheral surface 21a of the side wall portion 21) is d, the inclination angle θ 2 is expressed by the following equation (1)
θ 2 ≦ {(180−θ 1 ) / 2} × 1.32 (1)
θ 1 = {arctan (h / d)} × 180 / π
To meet the requirements of That is, θ 1 in the equation (1) is an angle of incidence and an angle of emergence under which the light emitted in the direction perpendicular to the axial direction and reflected by the inner circumferential surface 21 a does not reenter the semiconductor light emitting element 4. This is the lower limit of the total value.

傾斜角度θが小さすぎると、側壁部21の高さを確保するためには側壁部21を厚くする必要が生じ、半導体発光装置1の大型化をまねくおそれがある。そのため、傾斜角度θは45度以上、より好ましくは60度以上であることが望ましい。 If the inclination angle theta 2 is too small, in order to ensure the height of the side wall portion 21 it is necessary to increase the thickness of the side wall portion 21, may lead to enlargement of the semiconductor light-emitting device 1. Therefore, the inclination angle theta 2 is 45 degrees or more, and more preferably 60 degrees or more.

本実施の形態では、側壁部21が平面視で矩形状に形成されているが、この側壁部21の内周面21aである4つの面のうち、少なくとも、最も半導体発光素子4に近い面が、式(1)の条件を満たしているとよい。   In the present embodiment, the side wall portion 21 is formed in a rectangular shape in a plan view, but among the four surfaces which are the inner peripheral surface 21 a of the side wall portion 21, at least the surface closest to the semiconductor light emitting element 4 It is preferable that the condition of Formula (1) is satisfied.

また、本実施の形態では、ツェナーダイオード5を備えているため、半導体発光素子4の側面から出射される光の一部が、ツェナーダイオード5に当たってしまう。つまり、半導体発光素子4の側面からツェナーダイオード5側に出射される光は、その一部のみしか側壁部21の内周面21aに到達しない。そのため、側壁部21の内周面21aである4つの面のうち半導体発光素子4のツェナーダイオード5側の面は、光出力への影響が比較的小さいといえる。よって、側壁部21の内周面21aである4つの面のうち半導体発光素子4のツェナーダイオード5側の面を除く3つの面が、式(1)の条件を満たしていればよく、半導体発光素子4のツェナーダイオード5側の面が式(1)の条件を満たしていなくてもよい。   In the present embodiment, since the Zener diode 5 is provided, a part of the light emitted from the side surface of the semiconductor light emitting element 4 strikes the Zener diode 5. That is, only a part of the light emitted from the side surface of the semiconductor light emitting element 4 to the Zener diode 5 side reaches the inner peripheral surface 21 a of the side wall portion 21. Therefore, it can be said that the surface on the Zener diode 5 side of the semiconductor light emitting element 4 among the four surfaces which are the inner peripheral surface 21a of the side wall portion 21 has a relatively small influence on the light output. Therefore, among the four surfaces which are the inner peripheral surface 21 a of the side wall portion 21, the three surfaces excluding the surface on the side of the zener diode 5 of the semiconductor light emitting element 4 may satisfy the condition of equation (1). The surface of the element 4 on the Zener diode 5 side may not satisfy the condition of the formula (1).

また、図示していないが、側壁部21の内周面21aには、反射膜が形成されていてもよい。反射膜としては、例えばアルミニウム等の紫外光の反射率が高い金属からなるものを用いるとよい。反射膜は、例えば、アルミニウム等の金属を、蒸着あるいはスパッタリング等により成膜することにより形成できる。   Further, although not shown, a reflective film may be formed on the inner circumferential surface 21 a of the side wall 21. As the reflective film, for example, a film made of a metal having a high reflectivity of ultraviolet light such as aluminum may be used. The reflective film can be formed, for example, by depositing a metal such as aluminum by vapor deposition or sputtering.

(半導体発光素子4の積層構造)
図3は、紫外光LEDである半導体発光素子4の積層構造を説明する図である。半導体発光素子4は、透明基板41及び透明基板41上に設けられたAlGaN系の窒化物半導体層42を有し、窒化物半導体層42を底壁部22側にして実装されている。
(Laminated structure of semiconductor light emitting device 4)
FIG. 3 is a diagram for explaining a laminated structure of the semiconductor light emitting element 4 which is an ultraviolet LED. The semiconductor light emitting element 4 has a transparent substrate 41 and an AlGaN based nitride semiconductor layer 42 provided on the transparent substrate 41, and is mounted with the nitride semiconductor layer 42 on the bottom wall 22 side.

本実施の形態では、透明基板41は、サファイア基板からなる。また、本実施の形態では、窒化物半導体層42は、透明基板41上に、AlNからなるバッファ層42a、n型AlGaNからなるnクラッド層42b、AlGaNを含む発光層42c、p型AlGaNからなるpクラッド層42d、p型GaNからなるコンタクト層42eを順次形成して構成されている。この半導体発光素子4では、発光層42c、pクラッド層42d、及びコンタクト層42eの一部がエッチング等により除去され、n型クラッド層42bの一部が露出されており、その露出された部分のn型クラッド層42b上にn電極43が形成されている。また、コンタクト層42e上にはp電極44が形成されている。n電極43とp電極44は、バンプ46,47を介して、基板側電極24にそれぞれ電気的に接続されている。窒化物半導体層42のうち、p型GaNからなるコンタクト層42eは、紫外光を吸収する層(紫外光の吸収が非常に大きい層)である。   In the present embodiment, the transparent substrate 41 is made of a sapphire substrate. In the present embodiment, the nitride semiconductor layer 42 is made of a buffer layer 42a made of AlN, an n-clad layer 42b made of n-type AlGaN, a light-emitting layer 42c containing AlGaN, and p-type AlGaN on the transparent substrate 41. A p-clad layer 42d and a contact layer 42e made of p-type GaN are sequentially formed. In the semiconductor light emitting device 4, a part of the light emitting layer 42c, the p cladding layer 42d, and the contact layer 42e is removed by etching or the like, and a part of the n type cladding layer 42b is exposed. An n electrode 43 is formed on the n-type cladding layer 42 b. In addition, a p electrode 44 is formed on the contact layer 42e. The n electrode 43 and the p electrode 44 are electrically connected to the substrate side electrode 24 through the bumps 46 and 47, respectively. Of the nitride semiconductor layer 42, the contact layer 42e made of p-type GaN is a layer that absorbs ultraviolet light (a layer that absorbs very much ultraviolet light).

上述の式(1)における半導体発光素子4の高さhとは、厳密には、透明基板41の上面からp電極44の下面(底壁部22側の面)までの軸方向に沿った距離である。また、距離dは、厳密には、p電極44の下面の軸方向位置における、対象となる側壁部21に最も近い窒化物半導体層42の側面を底壁部22側に仮想的に延出した仮想面(p電極44の側面と一致する場合もある)と、内周面21aとの、軸方向に垂直な方向に沿った距離である。   Strictly speaking, the height h of the semiconductor light emitting element 4 in the above formula (1) is the distance along the axial direction from the upper surface of the transparent substrate 41 to the lower surface of the p electrode 44 (surface on the bottom wall portion 22 side). It is. Strictly speaking, the distance d virtually extends the side surface of the nitride semiconductor layer 42 closest to the target sidewall 21 at the axial position of the lower surface of the p electrode 44 toward the bottom wall 22. It is the distance along the direction perpendicular to the axial direction between the virtual surface (which may coincide with the side surface of the p electrode 44) and the inner peripheral surface 21a.

(シミュレーション結果)
上面視で一辺1mmの正方形状に形成され高さhが0.5mmの半導体発光素子4を用いると共に、上面視で一辺3.5mmの正方形状に形成され高さ1mm、側壁部21の高さ0.6mmのパッケージ基板2を用い、距離dを0.25mmとした場合について、シミュレーションを行った。側壁部21の内周面21aの反射率は15%とした。また、半導体発光素子4の発光波長は280nmとした。この場合、h=0.5mm、d=0.25mmであるから、上述の式(1)のうち、(180−θ)/2に対応する角度はおよそ58.3度となる。
(simulation result)
While using the semiconductor light emitting element 4 which is formed in a square shape having a side of 1 mm in top view and has a height h of 0.5 mm, the height of a side wall 21 is formed in a square shape having a side of 3.5 mm in top view A simulation was performed for a case where the 0.6 mm package substrate 2 was used and the distance d was 0.25 mm. The reflectance of the inner circumferential surface 21 a of the side wall portion 21 is 15%. The emission wavelength of the semiconductor light emitting element 4 was 280 nm. In this case, since h = 0.5 mm and d = 0.25 mm, the angle corresponding to (180−θ 1 ) / 2 in the above-mentioned equation (1) is approximately 58.3 degrees.

シミュレーションでは、側壁部21の内周面21aの傾斜角度θを90度とした従来例、傾斜角度θを58.3度とした実施例1、及び、傾斜角度θを58.3度とし、かつ内周面21aに紫外光の反射率50%の反射膜を形成した実施例2について、光出力(放射束)を演算した。なお、従来例及び実施例1における内周面21aの反射率(紫外光の反射率)は15%とした。結果を図4に示す。図4に示すように、実施例1では、従来例と比較して、約1.2倍の光出力が得られた。また、反射膜を形成した実施例2では、従来例と比較して、約1.3倍の光出力が得られた。 In the simulation, the prior art was the inclination angle theta 2 of the inner circumferential surface 21a of the side wall portions 21 and 90 degrees, the inclination angle theta 2 of Example 1 was 58.3 degrees, and the inclination angle theta 2 58.3 ° The light output (radiant flux) was calculated for Example 2 in which a reflective film having an ultraviolet light reflectance of 50% was formed on the inner peripheral surface 21a. In addition, the reflectance (reflectance of ultraviolet light) of the inner peripheral surface 21a in the conventional example and Example 1 was 15%. The results are shown in FIG. As shown in FIG. 4, in Example 1, a light output about 1.2 times that of the conventional example was obtained. In Example 2 in which the reflective film was formed, a light output about 1.3 times that of the conventional example was obtained.

さらに、内周面21aの反射率を70%,50%,30%,及び15%とした場合について、傾斜角度θを変化させた際の光出力(放射束)をシミュレーションにより求めた。結果を図5に示す。図5に示すように、反射率を15%とした場合、傾斜角度θを77度以上とすることで、10%以上の出力向上の効果が得られることが分かる。つまり、傾斜角度θを、(180−θ)/2に、係数(77/58.3)=1.32 を掛け合わせた値以下とする上述の式(1)の条件を満たすことで、10%以上の出力向上の効果が得られる。なお、内周面21aの反射率が低い場合でも確実に効果を得るために、傾斜角度θは下式
θ≦{(180−θ)/2}
の関係を満たしていることが、より好ましい。
Furthermore, the reflectance of the inner circumferential surface 21a 70% was determined by 50%, the case of 30%, and 15%, simulating an optical output when changing the inclination angle theta 2 (radiant flux). The results are shown in FIG. As shown in FIG. 5, when the reflectance was 15%, that the inclination angle theta 2 to 77 degrees or more, it can be seen that the effect of more than 10% improvement in output is obtained. That is, the inclination angle theta 2, the (180-theta 1) / 2, the coefficient (77 / 58.3) = above equation to 1.32 or less calculated by multiplying the (1) is satisfying the condition of An output improvement effect of 10% or more can be obtained. In order to obtain an effect even when the reflectance of the inner peripheral surface 21a is low, the inclination angle θ 2 is expressed by the following equation θ 2 ≦ {(180−θ 1 ) / 2}.
It is more preferable that the relationship is satisfied.

(透明基板41の厚さの説明)
上述のように、紫外光LEDである半導体発光素子4は、紫外光を吸収する層(p型GaNからなるコンタクト層42e)を含んでいるため、発光層42cで発光した光のうち底壁部22側に向かう光の大部分は吸収されてしまう。そのため、透明基板41側に向かう光を可能な限り利用することが求められる。
(Description of thickness of transparent substrate 41)
As described above, since the semiconductor light emitting element 4 that is an ultraviolet light LED includes a layer that absorbs ultraviolet light (a contact layer 42e made of p-type GaN), the bottom wall portion of the light emitted by the light emitting layer 42c Most of the light traveling toward the 22 side is absorbed. Therefore, it is required to use as much light as possible toward the transparent substrate 41 side.

図5(a)は、透明基板41の窒化物半導体層42側の面の中心位置(平面視における中心位置)を発光点とした場合において、発光点からの光の経路(軌跡)を示す図である。図5(a)に示すように、透明基板41中の光は立体角2πで広がり、透明基板41の界面に向けて進む。透明基板41の界面への入射角度が、透明基板41の屈折率n2と空気の屈折率n1とで決定される臨界角θよりも大きいと、透明基板41の界面にて全反射が発生してしまう。   FIG. 5A is a diagram showing a light path (trajectory) from the light emitting point when the light emitting point is the center position (center position in plan view) of the surface of the transparent substrate 41 on the nitride semiconductor layer 42 side. It is. As shown in FIG. 5A, light in the transparent substrate 41 spreads at a solid angle 2π and travels toward the interface of the transparent substrate 41. If the incident angle to the interface of the transparent substrate 41 is larger than the critical angle θ determined by the refractive index n2 of the transparent substrate 41 and the refractive index n1 of air, total reflection occurs at the interface of the transparent substrate 41. I will.

図5(b)に示すように、発光点からの光のうち、軸方向からの角度が臨界角θより小さい光、すなわち図示の領域Aへと出射される光は、透明基板41の上面(窒化物半導体層42側と反対側の面)41aへの入射角が臨界角より小さくなるため、上面41aから透明基板41の外部へと出射可能となる。一般に、透明基板41の幅Lは、透明基板41の厚さDよりも十分に大きいため、領域Aへと出射される光は、最小限のロスで出射する。   As shown in FIG. 5B, of the light from the light emitting point, the light whose angle from the axial direction is smaller than the critical angle θ, that is, the light emitted to the area A shown in FIG. Since the incident angle to the surface 41a opposite to the nitride semiconductor layer 42 side is smaller than the critical angle, the light can be emitted from the upper surface 41a to the outside of the transparent substrate 41. In general, since the width L of the transparent substrate 41 is sufficiently larger than the thickness D of the transparent substrate 41, the light emitted to the region A is emitted with a minimum loss.

また、発光点からの光のうち、軸方向に垂直な方向からの角度が臨界角θより小さい光、すなわち図示の領域Bへと出射される光は、透明基板41の側面41bへの入射角が臨界角より小さくなるため、側面41bから透明基板41の外部へと出射可能となる。発光点からの光のうち、領域A,B以外の領域Cへと出射される光は、上面41aや側面41bで全反射され、透明基板41から出射できない光、あるいはパッケージ基板2の底壁部22側へと出射される光となり、光出力(発光強度)の向上にほとんど寄与しない。   Further, among the light from the light emitting point, the light having an angle from the direction perpendicular to the axial direction smaller than the critical angle θ, that is, the light emitted to the region B shown in the drawing is the incident angle to the side surface 41 b of the transparent substrate 41 Is smaller than the critical angle, so that the light can be emitted from the side surface 41 b to the outside of the transparent substrate 41. Of the light from the light emitting point, the light emitted to the area C other than the areas A and B is totally reflected by the upper surface 41a and the side surface 41b and can not be emitted from the transparent substrate 41 or the bottom wall portion of the package substrate 2 The light is emitted toward the side 22 and hardly contributes to the improvement of the light output (light emission intensity).

ここで、透明基板41の厚さDを薄くしすぎると、領域Bへと出射される光の一部が上面41aにて全反射され、光出力の低下の原因となってしまう。よって、領域Bへと出射される光を全て側面41bから出射させるために、透明基板41の厚さDは、領域Bの側面41b上での厚さ(高さ)Dmin以上とすることが望ましい。この厚さDminは、透明基板41の幅をL、臨界角をθとすると、下式(2)
Dmin=(L/2)tanθ ・・・(2)
で表すことができる。
Here, if the thickness D of the transparent substrate 41 is made too thin, a part of the light emitted to the region B is totally reflected by the upper surface 41 a, which causes a decrease in light output. Therefore, it is desirable that the thickness D of the transparent substrate 41 be equal to or greater than the thickness (height) Dmin on the side surface 41 b of the region B in order to cause all light emitted to the region B to be emitted from the side surface 41 b. . This thickness Dmin is expressed by the following equation (2), where L is the width of the transparent substrate 41 and θ is the critical angle.
Dmin = (L / 2) tan θ (2)
Can be expressed as

そこで、本実施の形態では、透明基板41の厚さDを、下式(3)
D≧(L/2)tanθ ・・・(3)
θ=sin−1(n/n
但し、n:空気の屈折率
:透明基板41の屈折率
を満たすように設定している。これにより、領域Bへと出射される光を全て側面41bから出射できるようになり、透明基板41からの光の取り出し効率を向上し、光出力を向上することが可能になる。
Therefore, in the present embodiment, the thickness D of the transparent substrate 41 is set to the following formula (3)
D ≧ (L / 2) tan θ (3)
θ = sin −1 (n 1 / n 2 )
Where n 1 is the refractive index of air
n 2 : The refractive index of the transparent substrate 41 is set to satisfy. As a result, all the light emitted to the region B can be emitted from the side surface 41b, the light extraction efficiency from the transparent substrate 41 can be improved, and the light output can be improved.

ここでは、簡単化のために発光点を透明基板41の中心位置に設定したが、実際には透明基板41の窒化物半導体層42側の面の略全体が発光する。よって、透明基板41の一方の側面41bの近傍で発光した光が反対側の側面41bから出射できるように透明基板41の厚さDを設定することで、透明基板41からの光の取り出し効率をより向上可能となる。具体的には、透明基板41の厚さDは、下式(4)
D≧L×tanθ ・・・(4)
を満たすように設定されることが、より望ましい。
Here, although the light emission point is set at the center position of the transparent substrate 41 for the sake of simplicity, substantially the entire surface of the transparent substrate 41 on the nitride semiconductor layer 42 side emits light. Therefore, by setting the thickness D of the transparent substrate 41 so that the light emitted in the vicinity of one side surface 41 b of the transparent substrate 41 can be emitted from the opposite side surface 41 b, the light extraction efficiency from the transparent substrate 41 can be improved. It becomes possible to improve more. Specifically, the thickness D of the transparent substrate 41 is expressed by the following equation (4)
D ≧ L × tan θ (4)
It is more desirable to set so as to satisfy.

なお、ここでいう透明基板41の幅Lとは、透明基板41の平面視における幅の最小値である。本実施の形態では、平面視で正方形状の半導体発光素子4を用いており、透明基板41も平面視で正方形状に形成されているため、その一辺の長さが幅Lとなる。例えば、平面視で長方形状の半導体発光素子4を用いる場合、その短辺方向の幅が幅Lとなる。   The width L of the transparent substrate 41 here is the minimum value of the width of the transparent substrate 41 in plan view. In the present embodiment, the semiconductor light emitting element 4 in a square shape in plan view is used, and the transparent substrate 41 is also formed in a square shape in plan view, so the length of one side thereof is the width L. For example, when the rectangular semiconductor light emitting device 4 is used in plan view, the width in the short side direction is the width L.

(シミュレーション結果)
透明基板41の幅Lを1mm、透明基板41の屈折率を1.81とした場合について、厚さDを変化させた際の光出力(放射束)を演算した。結果を図6に示す。なお、この場合、上述の式(3)より、厚さDは0.33mm以上(D/Lを0.33以上)とすればよいことになる。
(simulation result)
In the case where the width L of the transparent substrate 41 is 1 mm and the refractive index of the transparent substrate 41 is 1.81, the light output (radiant flux) at the time of changing the thickness D was calculated. The results are shown in FIG. In this case, the thickness D may be 0.33 mm or more (D / L is 0.33 or more) from the above-described formula (3).

図6に示すように、放射束はD/Lが0.33未満の領域で急激に低下しており、D/Lを0.33以上とすることで、光出力を向上できることが確認できた。   As shown in FIG. 6, the radiant flux is drastically decreased in the region where D / L is less than 0.33, and it was confirmed that the light output can be improved by setting D / L to 0.33 or more. .

(実施の形態の作用及び効果)
以上説明したように、本実施の形態に係る半導体発光装置1では、側壁部21の内周面21aが、底壁部22と離れるほど外方へと拡がる傾斜面に形成されており、その傾斜面の傾斜角度θが、上述の式(1)の条件を満たしている、
(Operation and effect of the embodiment)
As described above, in the semiconductor light emitting device 1 according to the present embodiment, the inner peripheral surface 21a of the side wall 21 is formed into an inclined surface which expands outward as it separates from the bottom wall 22, and the inclination thereof the inclination angle theta 2 of the surfaces, which satisfies the condition of the above formula (1),

これにより、半導体発光素子4から側方に出射された光が、半導体発光素子4に再突入することなく外部へと出射されることになり、光出力を向上させることが可能になる。   As a result, light emitted laterally from the semiconductor light emitting element 4 is emitted to the outside without re-entering the semiconductor light emitting element 4, and the light output can be improved.

(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of the embodiment)
Next, technical ideas to be understood from the embodiments described above will be described by using the reference numerals and the like in the embodiments. However, each reference numeral or the like in the following description does not limit the constituent elements in the claims to the members or the like specifically shown in the embodiments.

[1]環状の側壁部(21)と、該側壁部(21)の一方の開口を塞ぐ底壁部(22)と、を一体に有するパッケージ基板(2)と、前記側壁部(21)の中空部に収容され前記底壁部(22)上に実装された半導体発光素子(4)と、を備え、前記側壁部(21)の内周面(21a)が、前記底壁部(22)と離れるほど外方へと拡がる傾斜面に形成されており、前記側壁部(21)の軸方向に沿った前記半導体発光素子(4)の高さをhとし、前記半導体発光素子(4)の前記底壁部(22)側の端部と前記傾斜面との前記軸方向に対して垂直な方向に沿った距離をdとしたとき、前記軸方向に対して垂直な面に対する前記傾斜面の傾斜角度θが、下式
θ≦{(180−θ)/2}×1.32
θ={arctan(h/d)}×180/π
の条件を満たしている、半導体発光装置(1)。
[1] A package substrate (2) integrally including an annular side wall portion (21) and a bottom wall portion (22) closing one opening of the side wall portion (21), and the side wall portion (21) And a semiconductor light emitting element (4) housed in the hollow portion and mounted on the bottom wall portion (22), wherein the inner circumferential surface (21a) of the side wall portion (21) is the bottom wall portion (22) And the height of the semiconductor light emitting element (4) along the axial direction of the side wall portion (21) is h, and the semiconductor light emitting element (4) of the semiconductor light emitting element (4) is Assuming that the distance between the end on the bottom wall (22) side and the inclined surface along the direction perpendicular to the axial direction is d, the inclination of the inclined surface with respect to the plane perpendicular to the axial direction The inclination angle θ 2 is expressed by the following formula θ 2 ≦ {(180−θ 1 ) / 2} × 1.32.
θ 1 = {arctan (h / d)} × 180 / π
A semiconductor light emitting device (1) that satisfies the following conditions.

[2]前記傾斜面の傾斜角度θが、45度以上である、[1]に記載の半導体発光装置(1)。 [2] the inclined surface inclination angle theta 2 is, at 45 degrees or more, the semiconductor light-emitting device according to [1] (1).

[3]前記側壁部(21)が、平面視で矩形状に形成されており、前記側壁部(21)の内周面である4つの面のうち、少なくとも、最も前記半導体発光素子(4)に近い面が、前記条件を満たしている、[1]または[2]に記載の半導体発光装置(1)。 [3] The side wall portion (21) is formed in a rectangular shape in plan view, and at least the semiconductor light emitting element (4) is at least the most of the four surfaces which are the inner peripheral surface of the side wall portion (21). The semiconductor light emitting device (1) according to [1] or [2], wherein a surface close to 1 satisfies the above condition.

[4]前記側壁部(21)の中空部に収容され前記底壁部(22)上に実装されており、前記半導体発光素子(4)を保護するツェナーダイオード(5)を備え、前記側壁部(21)の内周面(21a)である4つの面のうち、前記半導体発光素子(4)の前記ツェナーダイオード(5)側の面を除く3つの面が、前記条件を満たしている、[3]に記載の半導体発光装置(1)。 [4] A Zener diode (5) housed in the hollow portion of the side wall portion (21) and mounted on the bottom wall portion (22), which protects the semiconductor light emitting element (4), the side wall portion Among the four surfaces that are the inner peripheral surface (21a) of (21), the three surfaces of the semiconductor light emitting element (4) excluding the surface on the side of the zener diode (5) satisfy the above conditions [ 3] The semiconductor light-emitting device (1) according to [3].

[5]前記半導体発光素子(4)は、紫外光を発光する発光ダイオードであり、紫外光を吸収する層を含んでいる、[1]乃至[4]の何れか1項に記載の半導体発光装置(1)。 [5] The semiconductor light-emitting device (4) is a light-emitting diode that emits ultraviolet light, and includes a layer that absorbs ultraviolet light. The semiconductor light-emitting device according to any one of [1] to [4] Device (1).

[6]前記半導体発光素子(4)は、透明基板(41)及び前記透明基板(41)上に設けられた窒化物半導体層(42)を有し、前記窒化物半導体層(42)を前記底壁部(22)側にして実装されており、前記透明基板(41)の幅をLとしたとき、前記透明基板(41)の厚さDが、下式
D≧(L/2)×tanθ
θ=sin−1(n/n
但し、n:空気の屈折率
:透明基板の屈折率
を満たしている、[1]乃至[5]の何れか1項に記載の半導体発光装置(1)。
[6] The semiconductor light emitting device (4) includes a transparent substrate (41) and a nitride semiconductor layer (42) provided on the transparent substrate (41), and the nitride semiconductor layer (42) It is mounted on the bottom wall (22) side, and when the width of the transparent substrate (41) is L, the thickness D of the transparent substrate (41) is such that the following formula D ((L / 2) × tanθ
θ = sin −1 (n 1 / n 2 )
Where n 1 is the refractive index of air
n 2 : The semiconductor light emitting device (1) according to any one of [1] to [5], which satisfies a refractive index of the transparent substrate.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。例えば、上記実施の形態では、側壁部21の内周面21aが、一定の傾斜角度θを有する平面上に形成されている場合を説明したが、これに限らず、側壁部21の内周面21aは、段階的に傾斜角度θが変化するものであってもよい。また、側壁部21の内周面21aは、下方に凸となるように湾曲した曲面状であってもよい。 The present invention can be appropriately modified and implemented without departing from the spirit of the present invention. For example, in the above embodiment, the inner circumferential surface 21a of the side wall portion 21 has been described a case where formed on a plane having a constant inclination angle theta 2, not limited thereto, the inner circumference of the side wall portion 21 surface 21a may be of a stepwise inclination angle theta 2 is changed. Further, the inner peripheral surface 21a of the side wall portion 21 may be a curved surface curved so as to be convex downward.

1…半導体発光装置
2…パッケージ基板
3…蓋体
4…半導体発光素子
5…ツェナーダイオード
21…側壁部
21a…内周面
22…底壁部
41…透明基板
42…窒化物半導体層
DESCRIPTION OF SYMBOLS 1 ... semiconductor light emitting device 2 ... package substrate 3 ... lid 4 ... semiconductor light emitting element 5 ... Zener diode 21 ... sidewall portion 21 a ... inner circumferential surface 22 ... bottom wall portion 41 ... transparent substrate 42 ... nitride semiconductor layer

Claims (6)

環状の側壁部と、該側壁部の一方の開口を塞ぐ底壁部と、を一体に有するパッケージ基板と、
前記側壁部の中空部に収容され前記底壁部上に実装された半導体発光素子と、を備え、
前記側壁部の内周面が、前記底壁部と離れるほど外方へと拡がる傾斜面に形成されており、
前記側壁部の軸方向に沿った前記半導体発光素子の高さをhとし、前記半導体発光素子の前記底壁部側の端部と前記傾斜面との前記軸方向に対して垂直な方向に沿った距離をdとしたとき、前記軸方向に対して垂直な面に対する前記傾斜面の傾斜角度θが、下式
θ≦{(180−θ)/2}×1.32
θ={arctan(h/d)}×180/π
の条件を満たしている、
半導体発光装置。
A package substrate integrally having an annular side wall portion and a bottom wall portion closing one opening of the side wall portion;
A semiconductor light emitting device housed in the hollow portion of the side wall and mounted on the bottom wall;
The inner circumferential surface of the side wall portion is formed in an inclined surface which is expanded outward as it is separated from the bottom wall portion,
Let h be the height of the semiconductor light emitting device along the axial direction of the side wall portion, and be along a direction perpendicular to the axial direction of the end portion on the bottom wall portion side of the semiconductor light emitting device and the inclined surface When the distance is d, the inclination angle θ 2 of the inclined surface with respect to the plane perpendicular to the axial direction is: θ 2 ≦ {(180−θ 1 ) / 2} × 1.32
θ 1 = {arctan (h / d)} × 180 / π
Meet the conditions of,
Semiconductor light emitting device.
前記傾斜面の傾斜角度θが、45度以上である、
請求項1に記載の半導体発光装置。
The inclination angle theta 2 of the inclined surfaces is 45 degrees or more,
The semiconductor light emitting device according to claim 1.
前記側壁部が、平面視で矩形状に形成されており、
前記側壁部の内周面である4つの面のうち、少なくとも、最も前記半導体発光素子に近い面が、前記条件を満たしている、
請求項1または2に記載の半導体発光装置。
The side wall portion is formed in a rectangular shape in plan view,
Of the four surfaces that are the inner peripheral surface of the side wall portion, at least the surface closest to the semiconductor light emitting element satisfies the condition.
The semiconductor light-emitting device according to claim 1.
前記側壁部の中空部に収容され前記底壁部上に実装されており、前記半導体発光素子を保護するツェナーダイオードを備え、
前記側壁部の内周面である4つの面のうち、前記半導体発光素子の前記ツェナーダイオード側の面を除く3つの面が、前記条件を満たしている、
請求項3に記載の半導体発光装置。
It is housed in the hollow part of the side wall part and mounted on the bottom wall part, and comprises a Zener diode that protects the semiconductor light emitting element,
Among the four surfaces which are the inner peripheral surfaces of the side wall portion, three surfaces other than the surface on the side of the zener diode of the semiconductor light emitting element satisfy the conditions.
The semiconductor light emitting device according to claim 3.
前記半導体発光素子は、紫外光を発光する発光ダイオードであり、紫外光を吸収する層を含んでいる、
請求項1乃至4の何れか1項に記載の半導体発光装置。
The semiconductor light emitting device is a light emitting diode that emits ultraviolet light, and includes a layer that absorbs ultraviolet light.
The semiconductor light-emitting device according to any one of claims 1 to 4.
前記半導体発光素子は、透明基板及び前記透明基板上に設けられた窒化物半導体層を有し、前記窒化物半導体層を前記底壁部側にして実装されており、
前記透明基板の幅をLとしたとき、前記透明基板の厚さDが、下式
D≧(L/2)×tanθ
θ=sin−1(n/n
但し、n:空気の屈折率
:透明基板の屈折率
を満たしている、
請求項1乃至5の何れか1項に記載の半導体発光装置。
The semiconductor light emitting device has a transparent substrate and a nitride semiconductor layer provided on the transparent substrate, and is mounted with the nitride semiconductor layer on the bottom wall side,
When the width of the transparent substrate is L, the thickness D of the transparent substrate is as follows: D ≧ (L / 2) × tan θ
θ = sin −1 (n 1 / n 2 )
Where n 1 is the refractive index of air
n 2 : satisfies the refractive index of the transparent substrate,
The semiconductor light-emitting device according to any one of claims 1 to 5.
JP2018010626A 2018-01-25 2018-01-25 Semiconductor light emitting device Active JP6793139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010626A JP6793139B2 (en) 2018-01-25 2018-01-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010626A JP6793139B2 (en) 2018-01-25 2018-01-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2019129256A true JP2019129256A (en) 2019-08-01
JP6793139B2 JP6793139B2 (en) 2020-12-02

Family

ID=67473198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010626A Active JP6793139B2 (en) 2018-01-25 2018-01-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP6793139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132061A (en) * 2020-02-18 2021-09-09 日機装株式会社 Semiconductor package substrate, semiconductor package, and semiconductor light emitting device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306002A (en) * 2006-05-11 2007-11-22 Lg Innotek Co Ltd Light emitting apparatus and method of manufacturing same
JP2008053263A (en) * 2006-08-22 2008-03-06 Toyoda Gosei Co Ltd Light emitting element, and light source device provided therewith
JP2010219324A (en) * 2009-03-17 2010-09-30 Nichia Corp Light-emitting device
JP2012023249A (en) * 2009-07-15 2012-02-02 Mitsubishi Chemicals Corp Semiconductor light-emitting element, semiconductor light-emitting device, semiconductor light-emitting element manufacturing method and semiconductor light-emitting device manufacturing method
WO2012144046A1 (en) * 2011-04-21 2012-10-26 創光科学株式会社 Nitride semiconductor ultraviolet light-emitting element
US20120307481A1 (en) * 2010-12-15 2012-12-06 Sung Chul Joo Light emitting diode (led) packages, systems, devices and related methods
JP2014096539A (en) * 2012-11-12 2014-05-22 Tokuyama Corp Ultraviolet light-emitting element, and light-emitting structure
JP2016063210A (en) * 2014-09-12 2016-04-25 株式会社東芝 Semiconductor light-emitting device and lead frame
JP2016103636A (en) * 2014-11-28 2016-06-02 エルジー イノテック カンパニー リミテッド Light emitting element package
JP2016154179A (en) * 2015-02-20 2016-08-25 コニカミノルタ株式会社 Light-emitting device and manufacturing method thereof
JP2017076793A (en) * 2015-10-14 2017-04-20 エルジー イノテック カンパニー リミテッド Light-emitting element package and lighting device
JP2017098552A (en) * 2015-11-27 2017-06-01 エルジー イノテック カンパニー リミテッド Light-emitting element package and lighting system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306002A (en) * 2006-05-11 2007-11-22 Lg Innotek Co Ltd Light emitting apparatus and method of manufacturing same
JP2008053263A (en) * 2006-08-22 2008-03-06 Toyoda Gosei Co Ltd Light emitting element, and light source device provided therewith
JP2010219324A (en) * 2009-03-17 2010-09-30 Nichia Corp Light-emitting device
JP2012023249A (en) * 2009-07-15 2012-02-02 Mitsubishi Chemicals Corp Semiconductor light-emitting element, semiconductor light-emitting device, semiconductor light-emitting element manufacturing method and semiconductor light-emitting device manufacturing method
US20120307481A1 (en) * 2010-12-15 2012-12-06 Sung Chul Joo Light emitting diode (led) packages, systems, devices and related methods
WO2012144046A1 (en) * 2011-04-21 2012-10-26 創光科学株式会社 Nitride semiconductor ultraviolet light-emitting element
JP2014096539A (en) * 2012-11-12 2014-05-22 Tokuyama Corp Ultraviolet light-emitting element, and light-emitting structure
JP2016063210A (en) * 2014-09-12 2016-04-25 株式会社東芝 Semiconductor light-emitting device and lead frame
JP2016103636A (en) * 2014-11-28 2016-06-02 エルジー イノテック カンパニー リミテッド Light emitting element package
JP2016154179A (en) * 2015-02-20 2016-08-25 コニカミノルタ株式会社 Light-emitting device and manufacturing method thereof
JP2017076793A (en) * 2015-10-14 2017-04-20 エルジー イノテック カンパニー リミテッド Light-emitting element package and lighting device
JP2017098552A (en) * 2015-11-27 2017-06-01 エルジー イノテック カンパニー リミテッド Light-emitting element package and lighting system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021132061A (en) * 2020-02-18 2021-09-09 日機装株式会社 Semiconductor package substrate, semiconductor package, and semiconductor light emitting device
US11664480B2 (en) 2020-02-18 2023-05-30 Nikkiso Co., Ltd. Semiconductor package substrate, semiconductor package and semiconductor light-emitting device
JP7370274B2 (en) 2020-02-18 2023-10-27 日機装株式会社 Semiconductor packages and semiconductor light emitting devices

Also Published As

Publication number Publication date
JP6793139B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
TWI613839B (en) Light emitting diode chip having distributed bragg reflector
US10581219B2 (en) Semiconductor laser device
US7465959B2 (en) Semiconductor light emitting device, semiconductor light emitting apparatus, and method of manufacturing semiconductor light emitting device
US9935249B2 (en) Light emitting device and method for manufacturing the same
JP4632697B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR20160046538A (en) Light emitting device and method of fabricating the same
JP6146506B2 (en) Semiconductor laser device and backlight device using the semiconductor laser device
US10734557B2 (en) Light-emitting device and manufacturing method thereof
US10644477B2 (en) Light source device
JP2016058689A (en) Semiconductor light-emitting device
JP2007165726A (en) Semiconductor light-emitting diode
US20160056351A1 (en) Light-emitting device
JP2002353497A (en) Light-emitting device
US20220209495A1 (en) Laser device
JP4862386B2 (en) Semiconductor light emitting diode
JP2019129256A (en) Semiconductor light emitting device
KR20050070854A (en) Semiconductor light emitting diode device
JP6631609B2 (en) Method for manufacturing semiconductor laser device
JP2017045795A (en) Manufacturing method of optical member, manufacturing method of semiconductor laser device and semiconductor laser device
US20160079487A1 (en) Semiconductor light-emitting device
JP2020126948A (en) Light emitting device, package, and base
JP7307711B2 (en) semiconductor light emitting device
JP2014175496A (en) Semiconductor light-emitting element and method of manufacturing the same
KR20200011172A (en) Semiconductor light emitting device
TWI694649B (en) High-radiation surface-emitting laser structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6793139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250