JP2019129095A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2019129095A
JP2019129095A JP2018010949A JP2018010949A JP2019129095A JP 2019129095 A JP2019129095 A JP 2019129095A JP 2018010949 A JP2018010949 A JP 2018010949A JP 2018010949 A JP2018010949 A JP 2018010949A JP 2019129095 A JP2019129095 A JP 2019129095A
Authority
JP
Japan
Prior art keywords
conduction path
positive
side conduction
positive electrode
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018010949A
Other languages
Japanese (ja)
Other versions
JP7029632B2 (en
Inventor
常治 吉村
Joji Yoshimura
常治 吉村
杉山 徹
Toru Sugiyama
徹 杉山
晶紀 江田
Akinori Eda
晶紀 江田
土井 孝吉
Kokichi Doi
孝吉 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018010949A priority Critical patent/JP7029632B2/en
Publication of JP2019129095A publication Critical patent/JP2019129095A/en
Application granted granted Critical
Publication of JP7029632B2 publication Critical patent/JP7029632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To propose a sealed battery including a current interruption mechanism capable of reliably interrupting a current at the time of overcharging.SOLUTION: A current interruption mechanism 17 includes: a conducting part 17a made of a plurality of aluminum wires or an aluminum foil and forming a part of a positive electrode side conducting path; an enclosure 17b enclosing the conducting part 17a; an electrolyte 17c sealed in the enclosure 17b; and a contact piece 17d comprising metal nobler than aluminum and penetrating through the enclosure 17b. A drive device is constituted so as to bring the contact piece 17d into contact with the conducting part 17a when receiving output from a voltage detection part.SELECTED DRAWING: Figure 2

Description

本発明は、密閉型電池に関する。   The present invention relates to a sealed battery.

特開2015−60658号公報には、過充電を防止する装置として過充電時に溶断されて電流を遮断する電流遮断部を備えた二次電池が開示されている。
同公報で提案される電流遮断部は、所定の閾値以上の電流が流れると通過する電流を遮断する。電流遮断部は、一方を正極端子に接続し、他方を正極短絡リードに接続されている。電流遮断部は、電流遮断部を流れる電流が所定の閾値を超過した場合に融解し、正極短絡リードを流れる電流を遮断する。たとえば、電流遮断部は、ヒューズなどであるとされている。
JP-A-2015-60658 discloses a secondary battery provided with a current interrupting unit which is melted down at the time of overcharging to interrupt the current as a device for preventing overcharging.
The current interrupting unit proposed in the same publication interrupts a passing current when a current exceeding a predetermined threshold flows. One of the current interrupting units is connected to the positive terminal and the other is connected to the positive short-circuit lead. The current interrupting unit melts when the current flowing through the current interrupting unit exceeds a predetermined threshold, and interrupts the current flowing through the positive electrode short-circuit lead. For example, the current interrupter is considered to be a fuse or the like.

また、特開2013−157154号公報には、過充電時に電気分解されてガスを発生させる添加剤を電解液に含める。そして、過充電時に密閉型電池のケース内でガスを発生させ、密閉型電池のケース内の内圧を高くする。そして、密閉型電池のケース内の内圧が高くなることに起因して、電流を遮断させる機構が提案されている。   Moreover, in Unexamined-Japanese-Patent No. 2013-157154, the additive which makes it electrolyze at the time of overcharge and generate | occur | produces gas is included in electrolyte solution. Then, gas is generated in the case of the sealed battery at the time of overcharging, and the internal pressure in the case of the sealed battery is increased. Then, a mechanism for interrupting the current has been proposed due to the increase of the internal pressure in the case of the sealed battery.

特開2015−60658号公報Unexamined-Japanese-Patent No. 2015-60658 特開2013−157154号公報JP, 2013-157154, A

ところで、過充電を防止する装置としての電流遮断部は、通常電流では遮断されず、過充電が検知された際に確実に遮断されることが望ましい。特開2015−60658号公報に開示される構造では、通常電流では遮断されず、過充電が検知された際に確実に遮断されるように、電流遮断部を設定することが難しい。   By the way, it is desirable that the current interrupting unit as a device for preventing overcharge is not interrupted by the normal current but is surely interrupted when overcharge is detected. In the structure disclosed in Japanese Patent Application Laid-Open No. 2015-60658, it is difficult to set the current interrupting unit so that it is not interrupted by normal current and is reliably interrupted when overcharge is detected.

また、例えば、プラグインハイブリッド車や電気自動車などの電動車両の駆動源として用いられる用途では、リチウムイオン二次電池などの密閉型電池には、高容量化が求められる。高容量化に伴い、電池ケースに含まれる活物質の量が増える。このため、通常の充放電でも生じうるガスが多くなりやすい。さらに、電池ケース内の省スペース化が図られると、デッドスペースが少なくなる。このため、通常の充放電で生じうる微量のガスが徐々に蓄積されて電池ケースの内圧が高くなりやすい。そこで、本発明者は、高容量化に伴い、密閉型電池の電池ケースには、安全弁とは別に、リリーフ弁が必要になると考えている。しかし、リリーフ弁が設けられていると、電池ケースの内圧を一定レベルに保ちうるので、電池ケース内の圧力が高くなることに起因して作動するような電流遮断機構が作動しにくくなる。   Further, for example, in applications used as a drive source of an electric-powered vehicle such as a plug-in hybrid vehicle or an electric vehicle, higher capacity is required for a sealed battery such as a lithium ion secondary battery. As the capacity increases, the amount of active material contained in the battery case increases. For this reason, the gas which may be produced also by usual charge and discharge tends to be large. Furthermore, if space saving in the battery case is achieved, the dead space is reduced. For this reason, a trace amount of gas that can be generated by normal charge and discharge is gradually accumulated, and the internal pressure of the battery case tends to be high. Therefore, the inventor of the present invention thinks that, with the increase in capacity, a relief valve is required in the battery case of the sealed battery separately from the safety valve. However, if the relief valve is provided, the internal pressure of the battery case can be kept at a constant level, and thus the current interrupting mechanism that operates due to the increase of the pressure in the battery case becomes difficult to operate.

ここで提案される密閉型電池の一実施形態は、正極集電部と負極集電部を有する電極体と、電極体が収容された電池ケースと、電池ケースに取り付けられた正極端子と、正極集電部と正極端子とを接続する正極側導通経路と、電池ケースに取り付けられた負極端子と、負極集電部と負極端子とを接続する負極側導通経路と、正極側導通経路に取り付けられ、当該正極側導通経路を遮断する電流遮断機構と、正極側導通経路と負極側導通経路との電位差が、予め定められた電位差よりも高い場合に電流を出力する電圧検知部と、電圧検知部からの出力を受けて、電流遮断機構を作動させて正極側導通経路を遮断する駆動装置とを備えている。   One embodiment of the sealed battery proposed here includes an electrode body having a positive electrode current collector and a negative electrode current collector, a battery case containing the electrode body, a positive electrode terminal attached to the battery case, a positive electrode A positive-side conduction path connecting the current collector and the positive terminal, a negative terminal attached to the battery case, a negative-side conduction path connecting the negative current collector and the negative terminal, and a positive-side conduction path. A current blocking mechanism that blocks the positive-side conduction path, a voltage detection unit that outputs a current when the potential difference between the positive-side conduction path and the negative-side conduction path is higher than a predetermined potential difference, and a voltage detection unit And a driving device that operates the current interrupting mechanism to interrupt the positive electrode side conduction path.

電流遮断機構は、複数のアルミ線またはアルミ箔からなり、正極側導通経路の一部をなす導通部と、導通部を囲う囲いと、囲いに封入された電解液と、アルミよりも貴な金属で構成され、囲いを貫通した接触片とを備えている。駆動装置は、電圧検知部からの出力を受けたときに接触片を導通部に接触させるように構成されている。   The current interrupting mechanism consists of a plurality of aluminum wires or aluminum foils, a conducting part that forms part of the positive-side conduction path, an enclosure that surrounds the conducting part, an electrolyte enclosed in the enclosure, and a metal that is nobler than aluminum And a contact piece penetrating the enclosure. The drive device is configured to bring the contact piece into contact with the conductive portion when receiving the output from the voltage detection unit.

この密閉型電池では、過充電時に電圧検知部からの出力を受けて、接触片が導通部に接触するように構成されている。接触片は、アルミよりも貴な金属で構成されており、囲いの中で導通部が溶出し、正極側導通経路が断線される。これにより、電池への通電がより確実に遮断される。   In this sealed battery, the contact piece is configured to be in contact with the conduction portion in response to an output from the voltage detection unit during overcharge. The contact piece is made of a metal nobler than aluminum, and the conductive portion elutes in the enclosure, and the positive-side conductive path is disconnected. As a result, energization of the battery is cut off more reliably.

図1は、密閉型電池10の模式図である。FIG. 1 is a schematic view of a sealed battery 10. 図2は、電流遮断機構17の拡大図である。FIG. 2 is an enlarged view of the current interrupting mechanism 17. 図3は、他の形態における電流遮断機構17の拡大図である。FIG. 3 is an enlarged view of the current interrupting mechanism 17 in another form. 図4は、電流が遮断された状態を示す電流遮断機構17の拡大図である。FIG. 4 is an enlarged view of the current interruption mechanism 17 showing a state in which the current is interrupted.

以下、ここで提案される密閉型電池の一実施形態を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。本発明は、特に言及されない限りにおいて、ここで説明される実施形態に限定されない。各図面は模式的に描かれており、必ずしも実物を反映していない。また、各図面は、一例を示すのみであり、特に言及されない限りにおいて本発明を限定しない。また、同一の作用を奏する部材・部位には、適宜に同一の符号を付し、重複する説明を省略する。   Hereinafter, an embodiment of a sealed battery proposed here will be described. The embodiments described herein are, of course, not intended to limit the present invention in particular. The invention is not limited to the embodiments described herein unless specifically stated. Each drawing is drawn schematically and does not necessarily reflect the real thing. Also, each drawing shows only one example, and does not limit the present invention unless otherwise stated. In addition, the same reference numerals are appropriately given to members and portions exhibiting the same function, and the overlapping description will be omitted.

図1は、密閉型電池10の模式図である。
密閉型電池10は、図1に示されているように、電極体11と、電池ケース12と、正極端子13と、正極側導通経路14と、負極端子15と、負極側導通経路16と、電流遮断機構17と、電圧検知部18と、駆動装置19とを備えている。
FIG. 1 is a schematic diagram of a sealed battery 10.
As shown in FIG. 1, the sealed battery 10 includes an electrode body 11, a battery case 12, a positive electrode terminal 13, a positive electrode side conduction path 14, a negative electrode terminal 15, a negative electrode side conduction path 16, A current interruption mechanism 17, a voltage detection unit 18, and a drive device 19 are provided.

電極体11は、正極集電部11aと負極集電部11bとを有している。電極体11は、いわゆる電池要素である。なお、電極体11の具体的な形態は、特に限定されない限りにおいて、ここで例示される形態に限定されない。密閉型電池10は、例えば、固体電解質を含む全固体電池でもよい。電極体11は、全固体電池に用いられるものでもよい。   The electrode body 11 has a positive electrode current collector 11a and a negative electrode current collector 11b. The electrode body 11 is a so-called battery element. In addition, the specific form of the electrode body 11 is not limited to the form illustrated here unless it is limited in particular. The sealed battery 10 may be, for example, an all solid battery containing a solid electrolyte. The electrode body 11 may be used for an all solid state battery.

電極体11は、詳細な図示は省略するが、例えば、セパレータシートを介在させて、正極シートと負極シートとを重ねた、いわゆる積層型の電極体でもよい。また、電極体11の他の形態として、正極シートと、第1のセパレータシートと、負極シートと、第2のセパレータシートとを、それぞれ長尺の帯状の部材とする。電極体11は、長尺の帯状の第1のセパレータシートまたは第2のセパレータシートを介在させて、正極シートと負極シートとを重ねて捲回した、いわゆる捲回電極体でもよい。   Although detailed illustration is omitted, the electrode body 11 may be a so-called laminated electrode body in which a positive electrode sheet and a negative electrode sheet are stacked with a separator sheet interposed therebetween, for example. Moreover, as another form of the electrode body 11, a positive electrode sheet, a 1st separator sheet, a negative electrode sheet, and a 2nd separator sheet are each used as an elongate strip | belt-shaped member. The electrode body 11 may be a so-called wound electrode body obtained by winding a positive electrode sheet and a negative electrode sheet with a long strip-shaped first separator sheet or second separator sheet interposed therebetween.

正極シートは、例えば、正極集電箔(例えば、アルミニウム箔)に、幅方向の片側の端部に一定の幅で設定された未形成部を除いて、正極活物質を含む正極活物質層が両面に形成されているとよい。正極集電箔で正極活物質層が形成されない未形成部は、電極体11の正極集電部11aとなりうる。正極活物質は、例えば、リチウムイオン二次電池では、リチウム遷移金属複合材料のように、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸収しうる材料である。正極活物質は、一般的にリチウム遷移金属複合材料以外にも種々提案されており、特に限定されない。   In the positive electrode sheet, for example, a positive electrode active material layer containing a positive electrode active material is formed on a positive electrode current collector foil (for example, an aluminum foil) except for an unformed portion set at a certain width at one end in the width direction. It is good to be formed on both sides. The unformed portion where the positive electrode active material layer is not formed in the positive electrode current collector foil can be the positive electrode current collector portion 11 a of the electrode body 11. For example, in a lithium ion secondary battery, the positive electrode active material is a material capable of releasing lithium ions during charging and absorbing lithium ions during discharging, such as a lithium transition metal composite material. Various positive electrode active materials are generally proposed besides lithium transition metal composite materials, and are not particularly limited.

負極シートは、負極集電箔(例えば、銅箔)に、幅方向の片側の縁に一定の幅で設定された未形成部を除いて、負極活物質を含む負極活物質層が両面に形成されているとよい。負極集電箔で負極活物質層が形成されない未形成部は、電極体11の負極集電部11bとなりうる。負極活物質は、例えば、リチウムイオン二次電池では、天然黒鉛のように、充電時にリチウムイオンを吸蔵し、充電時に吸蔵したリチウムイオンを放電時に放出しうる材料である。負極活物質は、一般的に天然黒鉛以外にも種々提案されており、特に限定されない。   In the negative electrode sheet, a negative electrode active material layer containing a negative electrode active material is formed on both sides of a negative electrode current collector foil (for example, copper foil) except for an unformed part set at a certain width on one edge in the width direction. It is good to be done. An unformed portion where the negative electrode active material layer is not formed in the negative electrode current collector foil can be the negative electrode current collector portion 11 b of the electrode body 11. For example, in the case of a lithium ion secondary battery, the negative electrode active material is a material that can occlude lithium ions during charging and release lithium ions occluded during charging, such as natural graphite. Various negative electrode active materials are generally proposed besides natural graphite, and are not particularly limited.

セパレータシートには、例えば、所要の耐熱性を有する電解質が通過しうる多孔質の樹脂シートが用いられる。セパレータシートについても種々提案されており、特に限定されない。負極シートの負極活物質層は、セパレータシートを介在させた状態で正極シートの正極活物質層を覆っているとよい。セパレータシートは、さらに正極シートの正極活物質層および負極シートの負極活物質層を覆っているとよい。
正極集電部11aとしての未形成部と負極集電部11bとしての未形成部とは、幅方向において互いに反対側に向けられている。そして、正極集電部11aとしての未形成部は、セパレータシートの幅方向の片側にはみ出ている。負極集電部11bとしての未形成部は、幅方向の反対側においてセパレータシートからはみ出ている。
As the separator sheet, for example, a porous resin sheet through which an electrolyte having required heat resistance can pass is used. Various types of separator sheets have also been proposed, and are not particularly limited. The negative electrode active material layer of the negative electrode sheet may cover the positive electrode active material layer of the positive electrode sheet with a separator sheet interposed. The separator sheet may further cover the positive electrode active material layer of the positive electrode sheet and the negative electrode active material layer of the negative electrode sheet.
The non-formed part as the positive electrode current collector 11a and the non-formed part as the negative electrode current collector 11b are directed to opposite sides in the width direction. And the non-formation part as the positive electrode current collection part 11a protrudes in the one side of the width direction of a separator sheet. The non-formed part as the negative electrode current collector part 11b protrudes from the separator sheet on the opposite side in the width direction.

電池ケース12には、電極体11が収容されている。電池ケース12は、図1では、模式的に二点鎖線で示されている。電池ケース12は、例えば、扁平な角型のアルミケースであり得る。   An electrode body 11 is accommodated in the battery case 12. The battery case 12 is schematically shown by a two-dot chain line in FIG. The battery case 12 may be, for example, a flat rectangular aluminum case.

正極端子13は、電池ケース12に取り付けられた電極端子である。
正極側導通経路14は、正極集電部11aと正極端子13とを接続する導通経路である。ここで正極側導通経路14には、例えば、アルミニウムやアルミ合金などの金属が用いられる。
The positive electrode terminal 13 is an electrode terminal attached to the battery case 12.
The positive electrode side conduction path 14 is a conduction path that connects the positive electrode current collector 11 a and the positive electrode terminal 13. Here, for the positive electrode side conduction path 14, for example, a metal such as aluminum or an aluminum alloy is used.

負極端子15は、電池ケース12に取り付けられた電極端子である。
負極側導通経路16は、負極集電部11bと負極端子15とを接続する導通経路である。ここで負極側導通経路16には、例えば、銅や銅合金などの金属が用いられる。
電池ケース12の外部において、正極端子13と負極端子15は、パワーコントロールユニットP1を介して外部電源G1および出力装置に接続されている。
The negative electrode terminal 15 is an electrode terminal attached to the battery case 12.
The negative electrode side conduction path 16 is a conduction path that connects the negative electrode current collector 11 b and the negative electrode terminal 15. Here, for the negative electrode side conduction path 16, for example, a metal such as copper or a copper alloy is used.
Outside the battery case 12, the positive terminal 13 and the negative terminal 15 are connected to the external power source G1 and the output device via the power control unit P1.

図2は、電流遮断機構17の拡大図である。
電流遮断機構17は、図2に示されているように、導通部17aと、囲い17bと、電解液17cと、接触片17dとを備えている。
FIG. 2 is an enlarged view of the current interrupting mechanism 17.
As shown in FIG. 2, the current interruption mechanism 17 includes a conduction portion 17a, an enclosure 17b, an electrolytic solution 17c, and a contact piece 17d.

導通部17aは、複数のアルミ線またはアルミ箔からなり、正極側導通経路の一部をなす部位である。この実施形態では、導通部17aは、囲い17bに取り付けられる端子17a1,17a2と、複数のアルミ線またはアルミ箔からなる断線部17a3とを備えている。端子17a1,17a2は、互いに対向し、かつ、囲い17bを貫通するように取り付けられている。断線部17a3は、対向する端子17a1,17a2を繋ぐように配線されている。断線部17a3にアルミ線が用いられる場合には、アルミ線の直径は、大凡10μm以上1000μm以下であるとよい。また断線部17a3にアルミ箔が用いられる場合には、アルミ箔の厚さが大凡1μm以上100μm以下であるとよい。また、断線部17a3に用いられる複数のアルミ線またはアルミ箔の断面積を合わせて、密閉型電池10で入出力される電流が十分に許容されうる断面積を備えているとよい。   Conducting portion 17a is a portion which is made of a plurality of aluminum wires or aluminum foils and forms a part of the positive electrode side conduction path. In this embodiment, the conduction part 17a includes terminals 17a1 and 17a2 attached to the enclosure 17b, and a disconnection part 17a3 made of a plurality of aluminum wires or aluminum foils. The terminals 17a1 and 17a2 are attached to each other so as to face each other and to pass through the enclosure 17b. The disconnection portion 17a3 is wired so as to connect the opposing terminals 17a1 and 17a2. When an aluminum wire is used for the disconnection portion 17a3, the diameter of the aluminum wire may be approximately 10 μm or more and 1000 μm or less. When an aluminum foil is used for the broken portion 17a3, the thickness of the aluminum foil is preferably approximately 1 μm to 100 μm. Moreover, it is preferable that the cross-sectional areas of a plurality of aluminum wires or aluminum foils used for the disconnection portion 17a3 are combined to have a cross-sectional area that can sufficiently allow current input and output in the sealed battery 10.

囲い17bは、導通部17aを囲う部材である。この実施形態では、囲い17bは、略直方体の樹脂ケースで構成されている。導通部17aの端子17a1,17a2は、囲い17bの対向する面に貫通している。そして、囲い17bの内部で、端子17a1,17a2の間に、複数のアルミ線またはアルミ箔からなる断線部17a3が配線されている。   The enclosure 17 b is a member that encloses the conduction portion 17 a. In this embodiment, the enclosure 17b is configured of a substantially rectangular resin case. The terminals 17a1 and 17a2 of the conduction portion 17a pass through the facing surfaces of the enclosure 17b. And in the inside of the enclosure 17b, the disconnection part 17a3 which consists of several aluminum wire or aluminum foil is wired between terminal 17a1, 17a2.

電解液17cは、囲い17bに封入されているとよい。電解液17cは、囲い17bの内部の電気伝導性を確保するための溶液であればよい。密閉型電池10の電池反応には寄与しない。密閉型電池10に電極体11とともに収容される電解液とは別の溶液でよい。また密閉型電池10に電極体11とともに収容される電解液と同じ溶液でもよい。電解液17cには、例えば、エチレンカーボネートとジメチルカーボネートなどの混合溶媒にLiPFなどの電解質塩を溶解させたものが用いられうる。 The electrolytic solution 17c may be enclosed in an enclosure 17b. The electrolyte solution 17c may be a solution for ensuring electrical conductivity inside the enclosure 17b. It does not contribute to the battery reaction of the sealed battery 10. It may be a solution different from the electrolytic solution contained in the sealed battery 10 together with the electrode body 11. The same solution as the electrolytic solution contained in the sealed battery 10 together with the electrode body 11 may be used. As the electrolytic solution 17c, for example, a solution obtained by dissolving an electrolyte salt such as LiPF 6 in a mixed solvent such as ethylene carbonate and dimethyl carbonate can be used.

接触片17dは、アルミよりも貴な金属(例えば、銅など)で構成され、囲い17bを貫通している。この実施形態では、囲い17bにおいて、導通部17aの端子17a2の近傍に配置されている。接触片17dは、金属軸あるいは金属板で構成され、囲い17bを貫通するように設けられているとよい。   The contact piece 17d is made of a metal (such as copper) nobler than aluminum and penetrates the enclosure 17b. In this embodiment, the enclosure 17b is disposed in the vicinity of the terminal 17a2 of the conducting portion 17a. The contact piece 17d may be formed of a metal shaft or a metal plate, and may be provided to penetrate the enclosure 17b.

例えば、端子17a1,17a2の間にアルミ線またはアルミ箔からなる断線部17a3が配線された導通部17aを用意する。端子17a1,17a2を取り付ける面の中間部位で分割できるように構成された半割型のケースからなる囲い17bを用意する。そして、囲い17bを構成する半割型のケースの縁には、端子17a1,17a2を取り付けるための窪みを形成しておく。また、囲い17bを構成する半割型のケースには電解液17cを注入するための注入孔が形成されているとよい。また、端子17a2を取り付けるための窪みの近傍に接触片17dが貫通するように取り付けられているとよい。   For example, a conductive portion 17a is prepared in which a disconnection portion 17a3 made of an aluminum wire or an aluminum foil is wired between the terminals 17a1 and 17a2. An enclosure 17b is prepared which is comprised of a half-split case configured to be split at an intermediate portion of the surface to which the terminals 17a1 and 17a2 are attached. And the hollow for attaching terminal 17a1, 17a2 is formed in the edge of the case of the half type which comprises enclosure 17b. In addition, it is preferable that an injection hole for injecting the electrolyte solution 17c be formed in the case of the half type which constitutes the enclosure 17b. In addition, it is preferable that the contact piece 17d be attached so as to penetrate in the vicinity of the recess for attaching the terminal 17a2.

端子17a1,17a2を取り付けた半割型のケースを合わせて囲い17bを閉じる。この際、囲い17bの繋ぎ目および端子17a1,17a2の取付部において液漏れがないように溶着させるとよい。そして、上述のように、囲い17bに導通部17aが取り付けられて囲い17bが閉じられた状態において、囲い17bに電解液17cを注入する。電解液17cが注入された後、電解液を注入した注入孔を封止するとよい。
電解液17cが注入された後の電流遮断機構17は、導通部17aの端子17a2および接触片17dが下に向けられて配置される。
The enclosure 17b is closed together with the half-shaped case to which the terminals 17a1 and 17a2 are attached. At this time, it is preferable to weld so that there is no liquid leakage at the joint of the enclosure 17b and the attachment portions of the terminals 17a1 and 17a2. As described above, the electrolytic solution 17c is injected into the enclosure 17b in a state where the conducting portion 17a is attached to the enclosure 17b and the enclosure 17b is closed. After the electrolytic solution 17c is injected, the injection hole into which the electrolytic solution has been injected may be sealed.
The current interrupting mechanism 17 after the electrolyte solution 17c is injected is arranged with the terminal 17a2 and the contact piece 17d of the conduction part 17a facing downward.

電圧検知部18は、正極側導通経路14と負極側導通経路16との電位差が、予め定められた電位差よりも高い場合に電流を出力するように構成されている。電圧検知部18は、例えば、ツェナーダイオードまたはツェナーダイオードを含む電子回路で構成されているとよい。   The voltage detector 18 is configured to output a current when the potential difference between the positive-side conduction path 14 and the negative-side conduction path 16 is higher than a predetermined potential difference. The voltage detection unit 18 may be configured by, for example, a Zener diode or an electronic circuit including a Zener diode.

ここで、正極側導通経路14と負極側導通経路16との電位差は、正極側導通経路14の電位と、負極側導通経路16の電位との電位差である。正極側導通経路14の電位は、電池ケース12内において、正極集電部11a、正極側導通経路14および正極端子13のうち何れかの電位が採られるとよい。負極側導通経路16の電位は、電池ケース12内において、負極集電部11b、負極側導通経路16および負極端子15のうち何れかの電位が採られるとよい。例えば、図1では、電圧検知部18の一端は、電流遮断機構17および駆動装置19を介して正極側導通経路14に接続されており、電圧検知部18の他端は、負極集電部11bに接続されている。これにより、正極側導通経路14と負極側導通経路16との電位差が、予め定められた電位差よりも高い場合に駆動装置19に電流を出力するように構成されている。   Here, the potential difference between the positive electrode side conduction path 14 and the negative electrode side conduction path 16 is a potential difference between the potential of the positive electrode side conduction path 14 and the potential of the negative electrode side conduction path 16. The potential of the positive electrode side conduction path 14 may be any one of the positive electrode current collector 11 a, the positive electrode side conduction path 14, and the positive electrode terminal 13 in the battery case 12. The potential of the negative electrode side conduction path 16 may be any one of the negative electrode current collector 11 b, the negative electrode side conduction path 16, and the negative electrode terminal 15 in the battery case 12. For example, in FIG. 1, one end of the voltage detection unit 18 is connected to the positive-side conduction path 14 via the current interrupt mechanism 17 and the drive device 19, and the other end of the voltage detection unit 18 is connected to the negative electrode current collector 11 b. It is connected to the. Thereby, when the potential difference between the positive electrode side conduction path 14 and the negative electrode side conduction path 16 is higher than a predetermined potential difference, a current is output to the driving device 19.

電圧検知部18は、正極側導通経路14と負極側導通経路16との間の電位差に基づいて検知される電圧が、予め定められた過充電電圧よりも低い場合には、駆動装置19および正極側導通経路14と負極側導通経路16とを絶縁している。電圧検知部18によって検知される電圧が予め定められた過充電電圧以上になると、駆動装置19および正極側導通経路14と負極側導通経路16とが導通される。   When the voltage detected based on the potential difference between the positive-side conduction path 14 and the negative-side conduction path 16 is lower than a predetermined overcharge voltage, the voltage detection unit 18 and the positive-side conduction path 14 The side conduction path 14 and the negative side conduction path 16 are insulated. When the voltage detected by the voltage detector 18 is equal to or higher than a predetermined overcharge voltage, the drive device 19 and the positive-side conduction path 14 and the negative-side conduction path 16 are conducted.

正極側導通経路14と負極側導通経路16との間の電位差に基づいて検知される電圧が、予め定められた過充電電圧以上になるのは、外部電源G1に接続されて、密閉型電池10が充電されている場合である。このため、電圧検知部18によって駆動装置19および正極側導通経路14と負極側導通経路16とが導通されると、外部電源G1,正極側導通経路14,駆動装置19,負極側導通経路16という閉回路が形成される。このため、外部電源G1を電源として、駆動装置19を作動させることができる。   The voltage detected based on the potential difference between the positive electrode side conduction path 14 and the negative electrode side conduction path 16 becomes equal to or higher than a predetermined overcharge voltage because it is connected to the external power source G1 and the sealed battery 10 Is charged. Therefore, when the drive device 19 and the positive-side conduction path 14 and the negative-side conduction path 16 are conducted by the voltage detector 18, the external power supply G1, the positive-side conduction path 14, the drive device 19, and the negative-side conduction path 16 are referred to. A closed circuit is formed. Therefore, the drive device 19 can be operated with the external power supply G1 as a power supply.

図3は、他の形態における電流遮断機構17の拡大図である。
駆動装置19は、電圧検知部18からの出力を受けて、接触片17dが導通部17aに接触するように構成されている。例えば、駆動装置19は、囲い17bの外に置いて接触片17dに力F2を作用させ、接触片17dを変形させて導通部17aに接触させる機構であるとよい。例えば、接触片17dと導通部17aの端子の間に、絶縁部材17eを介在させておく。また、接触片17dを導通部17aに向けて押すばねを配置しておく。そして、駆動装置19は、絶縁部材17eを外すように動作するとよい。この場合、接触片17dは、シート状の柔らかい部材でもよい。
FIG. 3 is an enlarged view of the current interrupt mechanism 17 according to another embodiment.
The drive device 19 is configured such that the contact piece 17d contacts the conduction portion 17a in response to the output from the voltage detection unit 18. For example, the driving device 19 may be a mechanism that is placed outside the enclosure 17b and applies a force F2 to the contact piece 17d to deform the contact piece 17d to contact the conduction portion 17a. For example, the insulating member 17e is interposed between the contact piece 17d and the terminal of the conducting portion 17a. In addition, a spring that pushes the contact piece 17d toward the conduction portion 17a is disposed. The driving device 19 may operate so as to remove the insulating member 17e. In this case, the contact piece 17d may be a sheet-like soft member.

他の変形例として、駆動装置19には、圧電素子によって、電圧検知部18からの出力を受けて接触片17dに力を作用させるように構成してもよい。また、ヒーター(電熱線)とバイメタルを組み合わせて、電圧検知部18からの出力によってヒーターを発熱させて、バイメタルを駆動させて接触片17dに力を作用させるように構成してもよい。アルミ、銅間に設置している絶縁部材17eとしての樹脂を熱で溶かすようにしてもよい。   As another modification, the driving device 19 may be configured to receive an output from the voltage detection unit 18 and to apply a force to the contact piece 17d by a piezoelectric element. Further, the heater (electric heating wire) and the bimetal may be combined, and the heater may be heated by the output from the voltage detection unit 18 to drive the bimetal and apply a force to the contact piece 17d. The resin as the insulating member 17e disposed between aluminum and copper may be melted by heat.

図4は、電流が遮断された状態を示す電流遮断機構17の拡大図である。図4では、図2に示された電流遮断機構17において、電流が遮断された状態が示されている。
駆動装置19は、図4に示されているように、電圧検知部18からの出力を受けて接触片17dに力F1を作用させ、接触片17dが導通部17aに接触させる。接触片17dが導通部17aに接触すると、導通部17aに用いられているアルミと、接触片17dに用いられている銅が接触する。この際、アルミは銅よりも卑な金属であるから、導通部17aと接触片17dとが電解液中で内部電池を形成する。このため、囲い17bの中で導通部17aが溶出する。導通部17aは、断線部17a3がアルミ線あるいはアルミ箔で形成されており、素早く溶出する。断線部17a3が溶出すると、正極側導通経路14が断線される。このように、この電流遮断機構17によれば、電圧検知部18によって検知される電圧が予め定められた過充電電圧以上になる。駆動装置19および正極側導通経路14と負極側導通経路16とが導通される。なお、正極側導通経路14が断線された後、電圧検知部18で検知される電圧が下がると、駆動装置19への出力が停止される。
FIG. 4 is an enlarged view of the current interrupt mechanism 17 showing a state where the current is interrupted. FIG. 4 shows a state in which the current is interrupted in the current interruption mechanism 17 shown in FIG.
As shown in FIG. 4, the driving device 19 receives an output from the voltage detection unit 18 and applies a force F1 to the contact piece 17d so that the contact piece 17d contacts the conduction portion 17a. When the contact piece 17d contacts the conduction part 17a, the aluminum used for the conduction part 17a and the copper used for the contact piece 17d come into contact. At this time, since aluminum is a base metal rather than copper, the conductive portion 17a and the contact piece 17d form an internal battery in the electrolytic solution. For this reason, the conduction | electrical_connection part 17a elutes in the enclosure 17b. In the conductive portion 17a, the broken portion 17a3 is formed of aluminum wire or aluminum foil, and dissolves quickly. When the disconnection portion 17a3 is eluted, the positive electrode side conduction path 14 is disconnected. As described above, according to the current interrupting mechanism 17, the voltage detected by the voltage detection unit 18 becomes equal to or higher than the predetermined overcharge voltage. The drive device 19 and the positive electrode side conduction path 14 are electrically connected to the negative electrode side conduction path 16. In addition, if the voltage detected by the voltage detection part 18 falls after the positive electrode side conduction | electrical_connection path 14 is disconnected, the output to the drive device 19 will be stopped.

以上、ここで提案される密閉型電池について、種々説明した。特に言及されない限りにおいて、ここで挙げられた密閉型電池の実施形態などは、本発明を限定しない。   In the above, various descriptions have been made of the sealed battery proposed here. Unless otherwise stated, the embodiments of the sealed battery and the like listed here do not limit the present invention.

10 密閉型電池
11 電極体
11a 正極集電部
11b 負極集電部
12 電池ケース
13 正極端子
14 正極側導通経路
15 負極端子
16 負極側導通経路
17 電流遮断機構
17a 導通部
17a1 端子
17a1,17a2 端子
17a3 断線部
17b 囲い
17c 電解液
17d 接触片
17e 絶縁部材
18 電圧検知部
19 駆動装置
F1 力
F2 力
G1 外部電源
P1 パワーコントロールユニット
DESCRIPTION OF SYMBOLS 10 Sealed battery 11 Electrode body 11a Positive electrode current collection part 11b Negative electrode current collection part 12 Battery case 13 Positive electrode terminal 14 Positive electrode side conduction path 15 Negative electrode terminal 16 Negative electrode side conduction path 17 Current interruption mechanism 17a Conduction part 17a1 Terminals 17a1, 17a2 Terminal 17a3 Disconnection part 17b Enclosure 17c Electrolyte 17d Contact piece 17e Insulating member 18 Voltage detection part 19 Drive device F1 Force F2 Force G1 External power supply P1 Power control unit

Claims (1)

正極集電部と負極集電部を有する電極体と、
前記電極体が収容された電池ケースと、
前記電池ケースに取り付けられた正極端子と、
前記正極集電部と前記正極端子とを接続する正極側導通経路と、
前記電池ケースに取り付けられた負極端子と、
前記負極集電部と前記負極端子とを接続する負極側導通経路と、
前記正極側導通経路に取り付けられ、当該正極側導通経路を遮断する電流遮断機構と、
前記正極側導通経路と前記負極側導通経路との電位差が、予め定められた電位差よりも高い場合に電流を出力する電圧検知部と、
前記電圧検知部からの出力を受けて、前記電流遮断機構を作動させて前記正極側導通経路を遮断する駆動装置と
を備え、
前記電流遮断機構は、
複数のアルミ線またはアルミ箔からなり、正極側導通経路の一部をなす導通部と、
前記導通部を囲う囲いと、
前記囲いに封入された電解液と、
前記アルミよりも貴な金属で構成され、前記囲いを貫通した接触片と
を備え、
前記駆動装置は、
前記電圧検知部からの出力を受けたときに前記接触片を前記導通部に接触させるように構成された、
密閉型電池。
An electrode body having a positive electrode current collector and a negative electrode current collector;
A battery case containing the electrode body;
A positive terminal attached to the battery case;
A positive-side conduction path connecting the positive-electrode current collector and the positive-electrode terminal;
A negative electrode terminal attached to the battery case;
A negative-side conduction path connecting the negative-electrode current collector and the negative-electrode terminal;
A current interrupting mechanism attached to the positive electrode side conduction path for interrupting the positive electrode side conduction path;
A voltage detector that outputs a current when a potential difference between the positive-side conduction path and the negative-side conduction path is higher than a predetermined potential difference;
A driving device configured to receive the output from the voltage detection unit and operate the current interrupting mechanism to interrupt the positive electrode side conduction path;
The current interruption mechanism is:
A conductive portion made of a plurality of aluminum wires or aluminum foils and forming a part of the positive electrode side conductive path;
An enclosure enclosing the conducting portion;
An electrolyte solution enclosed in the enclosure;
It is composed of a noble metal than the aluminum, and includes a contact piece penetrating the enclosure,
The driving device is
When the output from the voltage detection unit is received, the contact piece is configured to contact the conduction portion.
Sealed battery.
JP2018010949A 2018-01-25 2018-01-25 Sealed battery Active JP7029632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010949A JP7029632B2 (en) 2018-01-25 2018-01-25 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010949A JP7029632B2 (en) 2018-01-25 2018-01-25 Sealed battery

Publications (2)

Publication Number Publication Date
JP2019129095A true JP2019129095A (en) 2019-08-01
JP7029632B2 JP7029632B2 (en) 2022-03-04

Family

ID=67473134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010949A Active JP7029632B2 (en) 2018-01-25 2018-01-25 Sealed battery

Country Status (1)

Country Link
JP (1) JP7029632B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013245A (en) * 2011-06-29 2013-01-17 Toyota Motor Corp Power storage system
WO2014109284A1 (en) * 2013-01-11 2014-07-17 パナソニック株式会社 Battery pack
JP2017073285A (en) * 2015-10-07 2017-04-13 デクセリアルズ株式会社 Switching element, electronic component, and battery system
JP2018006080A (en) * 2016-06-29 2018-01-11 株式会社オートネットワーク技術研究所 Short circuit protection device in battery monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013245A (en) * 2011-06-29 2013-01-17 Toyota Motor Corp Power storage system
WO2014109284A1 (en) * 2013-01-11 2014-07-17 パナソニック株式会社 Battery pack
JP2017073285A (en) * 2015-10-07 2017-04-13 デクセリアルズ株式会社 Switching element, electronic component, and battery system
JP2018006080A (en) * 2016-06-29 2018-01-11 株式会社オートネットワーク技術研究所 Short circuit protection device in battery monitoring system

Also Published As

Publication number Publication date
JP7029632B2 (en) 2022-03-04

Similar Documents

Publication Publication Date Title
KR101106999B1 (en) Rechargeable battery
JP5517974B2 (en) Secondary battery
KR100881641B1 (en) Middle or Large-sized Battery Pack Having Safety System
KR101601135B1 (en) Secondary battery and Electrode lead assembly applied for the same
EP2793295A2 (en) Rechargeable battery
KR101812273B1 (en) Battery module including bus bar for cutting off current flowing
EP2854201A1 (en) Rechargeable battery
US11658369B2 (en) Overcharge protection systems having dual spiral disk features for prismatic lithium ion battery cells
US10644345B2 (en) Short circuiting structure for lithium secondary battery having excellent stability against overcharge and pouch type lithium secondary batter comprising the same
JP6821309B2 (en) Rechargeable battery and rechargeable battery assembly
US20160293927A1 (en) Battery Cell for a Battery and Method for producing a Battery Cell
KR101128667B1 (en) Secondary Battery of Improved Safety
JP6365562B2 (en) Secondary battery
JP7029632B2 (en) Sealed battery
KR102267056B1 (en) Battery module, battery pack including the same, and vehicle including the same
KR101112447B1 (en) Secondary Battery of Improved Safety
JP6975386B2 (en) Sealed battery
EP3989356B1 (en) Battery, battery module and battery pack
KR20140110190A (en) Safety kit for secondary battery and Secondary battery comprising the same
KR102443898B1 (en) A battery pack charge system configured to prevent overcharge and A vehicle comprising the same
KR20120066363A (en) Secondary electric cell and battery pack with enhanced safety
JP2021193651A (en) Battery pack
KR20210007242A (en) A battery module having a structure capable of overcharge prevention, A battery pack comprising the same and A vehicle comprising the battery pack
KR20200053375A (en) A battery cell having a structure capable of overcharge prevention, A battery pack comprising the same and A vehicle comprising the battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R151 Written notification of patent or utility model registration

Ref document number: 7029632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151