JP2021193651A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2021193651A
JP2021193651A JP2020099368A JP2020099368A JP2021193651A JP 2021193651 A JP2021193651 A JP 2021193651A JP 2020099368 A JP2020099368 A JP 2020099368A JP 2020099368 A JP2020099368 A JP 2020099368A JP 2021193651 A JP2021193651 A JP 2021193651A
Authority
JP
Japan
Prior art keywords
secondary battery
battery
short
electrode terminal
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020099368A
Other languages
Japanese (ja)
Inventor
伸夫 松井
Nobuo Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020099368A priority Critical patent/JP2021193651A/en
Publication of JP2021193651A publication Critical patent/JP2021193651A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To provide a battery pack capable of appropriately suppressing the occurrence of a chain of overheating from among a plurality of secondary batteries.SOLUTION: A set of two secondary batteries 10A to 10E adjacent to each other and connected in series is referred to as a series connection unit. Series connection bus bars 20A to 20D electrically connect positive electrode terminals 15A to 15E of one secondary battery and negative electrode terminals 16A to 16E of the other secondary battery in the series connection unit. A short-circuit bus bar 30 is installed between the negative electrode terminal of one secondary battery and the positive electrode terminal of the other secondary battery in the series connection unit, and is installed between the positive electrode terminal and the negative electrode terminal of each secondary battery. The short-circuit bus bar passes through a flow path of the gas discharged from safety valves 14A to 14E. An insulating portion 40 cuts off the conduction between the terminals by the short-circuiting bus bar while being installed in the short-circuiting bus bar, and short-circuits the secondary battery by being heated and melted.SELECTED DRAWING: Figure 1

Description

本開示は、複数の二次電池を積層させた組電池に関する。 The present disclosure relates to an assembled battery in which a plurality of secondary batteries are stacked.

複数の二次電池(電池セルまたは短電池とも言う。)が積層されて連結された組電池は、パソコンや携帯端末等のポータブル電源、あるいはEV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。組電池を構成する各々の二次電池には、過充電および加熱等に起因する過剰な温度上昇(以下、「過昇温」という。)が発生する場合がある。二次電池の充電量が多い程、過昇温は発生し易い。従って、過昇温が発生する可能性がある二次電池を短絡させることが望ましい。 An assembled battery in which a plurality of secondary batteries (also referred to as battery cells or short batteries) are stacked and connected is a portable power source such as a personal computer or a mobile terminal, or an EV (electric vehicle), HV (hybrid vehicle), PHV ( It is widely used as a power source for driving vehicles such as plug-in hybrid vehicles. Excessive temperature rise (hereinafter referred to as “overheating”) due to overcharging, heating, or the like may occur in each of the secondary batteries constituting the assembled battery. The larger the amount of charge of the secondary battery, the more likely it is that overheating will occur. Therefore, it is desirable to short-circuit the secondary battery, which may cause excessive temperature rise.

例えば、特許文献1に記載の組電池では、隣り合う一組の二次電池のうち、正常時には接続されていない正極荷電部と負極荷電部の間に、二次電池の温度上昇に応じて通電する短絡部材が設けられる。これにより、二次電池の過昇温の抑制が図られている。 For example, in the assembled battery described in Patent Document 1, of a pair of adjacent secondary batteries, electricity is supplied between the positive electrode charged portion and the negative electrode charged portion, which are not normally connected, according to the temperature rise of the secondary battery. A short-circuit member is provided. As a result, the excessive temperature rise of the secondary battery is suppressed.

特開2017−157274号公報JP-A-2017-157274

組電池を構成する複数の二次電池の1つに過昇温が発生すると、過昇温が発生した二次電池から隣接する二次電池に熱が伝わる結果、隣接する二次電池にも過昇温が発生する場合がある。複数の二次電池の間で過昇温が次々に連鎖して発生すると、組電池を構成する多数の二次電池に影響が広がってしまう。特許文献1に記載の組電池では、二次電池から発生した熱が短絡部材に伝わる前に、隣接する二次電池に熱が伝わってしまう結果、複数の二次電池の間で過昇温が連鎖して発生する可能性がある。 When an overheating occurs in one of the plurality of secondary batteries constituting the assembled battery, heat is transferred from the secondary battery in which the overheating occurs to the adjacent secondary battery, and as a result, the adjacent secondary battery also becomes excessive. A temperature rise may occur. If excessive temperature rise occurs in a chain among a plurality of secondary batteries, the effect spreads to a large number of secondary batteries constituting the assembled battery. In the assembled battery described in Patent Document 1, the heat generated from the secondary battery is transferred to the adjacent secondary battery before being transferred to the short-circuit member, and as a result, the temperature rises excessively among the plurality of secondary batteries. It can occur in a chain.

本発明の典型的な目的は、複数の二次電池の間で過昇温が連鎖して発生することを適切に抑制することが可能な組電池を提供することである。 A typical object of the present invention is to provide an assembled battery capable of appropriately suppressing the occurrence of chained overheating among a plurality of secondary batteries.

ここに開示される一態様の組電池は、複数の二次電池が積層された組電池であって、上記二次電池は、発電要素を内部に収容する電池ケースと、上記電池ケースに設けられた正極端子および負極端子と、上記電池ケースの内圧が上昇した際に、上記電池ケースの内部から外部に気体を排出する安全弁と、を備え、互いに隣接し、且つ直列に接続される2つの二次電池の組を直列接続ユニットとした場合に、上記直列接続ユニットにおける一方の二次電池の正極端子と他方の二次電池の負極端子を電気的に接続する直列接続バスバーと、上記直列接続ユニットにおける上記一方の二次電池の負極端子と上記他方の二次電池の正極端子の間に架設されると共に、上記一方の二次電池および上記他方の二次電池の各々の正極端子と負極端子の間に架設され、且つ、上記安全弁から排出される気体の流路を通過する短絡用バスバーと、上記短絡用バスバーに設置されている状態で上記短絡用バスバーによる端子間の導通を遮断すると共に、上記安全弁から排出される気体によって加熱溶融されることで上記二次電池を短絡させる絶縁部と、を備える。 The assembled battery of one aspect disclosed herein is an assembled battery in which a plurality of secondary batteries are stacked, and the secondary battery is provided in a battery case for accommodating a power generation element inside and the battery case. Two two terminals that are adjacent to each other and are connected in series with a positive and negative terminals and a safety valve that discharges gas from the inside of the battery case to the outside when the internal pressure of the battery case rises. When the set of secondary batteries is a series connection unit, the series connection bus bar that electrically connects the positive terminal of one secondary battery and the negative terminal of the other secondary battery in the series connection unit, and the series connection unit. In addition to being installed between the negative terminal of the one secondary battery and the positive terminal of the other secondary battery in the above, the positive terminal and the negative terminal of each of the one secondary battery and the other secondary battery in the above. While being installed between the short-circuit bus bar that is installed between the batteries and passing through the flow path of the gas discharged from the safety valve, and the short-circuit bus bar that is installed in the short-circuit bus bar, the conduction between the terminals of the short-circuit bus bar is cut off. It is provided with an insulating portion that short-circuits the secondary battery by being heated and melted by the gas discharged from the safety valve.

本開示に係る組電池では、直列接続ユニットに含まれる一方の二次電池に過昇温が発生すると、安全弁から排出される高温の気体によって、短絡用バスバーに設置されている絶縁部が加熱溶融される。その結果、短絡用バスバーが架設されている複数の端子間が導通されて、直列接続ユニットに含まれる他方の二次電池(つまり、過昇温が発生した二次電池に隣接する隣接二次電池)が外部短絡する。外部短絡した隣接二次電池のSOCは低下するので、隣接二次電池の温度上昇が抑制される。従って、複数の二次電池の間で過昇温が連鎖して発生することが、適切に抑制される。 In the assembled battery according to the present disclosure, when an excessive temperature rise occurs in one of the secondary batteries included in the series connection unit, the insulating portion installed in the short-circuit bus bar is heated and melted by the high-temperature gas discharged from the safety valve. Will be done. As a result, the plurality of terminals on which the short-circuit bus bar is erected are conducted, and the other secondary battery included in the series connection unit (that is, the adjacent secondary battery adjacent to the secondary battery in which the overheating has occurred) is conducted. ) Is short-circuited externally. Since the SOC of the adjacent secondary battery short-circuited externally decreases, the temperature rise of the adjacent secondary battery is suppressed. Therefore, it is appropriately suppressed that the overheating occurs in a chain among the plurality of secondary batteries.

本実施形態の組電池1の平面図である。It is a top view of the assembled battery 1 of this embodiment. 図1におけるA−A線矢視方向断面図である。FIG. 1 is a cross-sectional view taken along the line AA in FIG. 比較例の組電池における第3二次電池10Cで過昇温が発生した場合の、各二次電池10の温度推移の一例を示す図である。It is a figure which shows an example of the temperature transition of each secondary battery 10 when the overheating occurs in the 3rd secondary battery 10C in the assembled battery of the comparative example. 実施例の組電池における第3二次電池10Cで過昇温が発生した場合の、各二次電池10の温度推移の一例を示す図である。It is a figure which shows an example of the temperature transition of each secondary battery 10 when the overheating occurs in the 3rd secondary battery 10C in the assembled battery of an Example.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。 Hereinafter, one of the typical embodiments in the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art. In the following drawings, members / parts having the same function are described with the same reference numerals. Further, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations.

本明細書において、「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。 As used herein, the term "battery" refers to a general storage device capable of extracting electrical energy, and is a concept including a primary battery and a secondary battery. "Secondary battery" refers to a general storage device that can be charged and discharged repeatedly, and includes so-called storage batteries (that is, chemical batteries) such as lithium ion secondary batteries, nickel hydrogen batteries, and nickel cadmium batteries, as well as electric double layer capacitors and the like. Includes capacitors (ie, physical batteries).

図1および図2を参照して、本実施形態の組電池1の構成について説明する。組電池1は、複数の二次電池(電池セル)10(10A〜10E)を備える。各々の二次電池10は、扁平な形状(本実施形態では、略矩形板状)に形成されている。扁平な複数の二次電池10は、所定の積層方向(図1および図2における左右方向)に積層されている。本実施形態では、扁平な二次電池10の厚み方向が積層方向となる。なお、図1および図2では、組電池1の構造の理解を容易にするために、積層された複数の二次電池10の間に隙間が設けられている。しかし、実際には、複数の二次電池10は隙間なく密着された状態で積層されている。 The configuration of the assembled battery 1 of the present embodiment will be described with reference to FIGS. 1 and 2. The assembled battery 1 includes a plurality of secondary batteries (battery cells) 10 (10A to 10E). Each secondary battery 10 is formed in a flat shape (in this embodiment, a substantially rectangular plate shape). The plurality of flat secondary batteries 10 are stacked in a predetermined stacking direction (left-right direction in FIGS. 1 and 2). In the present embodiment, the thickness direction of the flat secondary battery 10 is the stacking direction. In addition, in FIGS. 1 and 2, a gap is provided between the plurality of stacked secondary batteries 10 in order to facilitate understanding of the structure of the assembled battery 1. However, in reality, the plurality of secondary batteries 10 are stacked in close contact with each other without any gaps.

本実施形態では、5つの二次電池10(図1および図2の左側から順に、二次電池10A,10B,10C,10D,10E)を備えた組電池1を例示して説明を行う。しかし、組電池1が備える二次電池10の数が5つに限定されないことは言うまでもない。また、本実施形態では、複数の二次電池10の全てが直列に接続される場合を例示する。しかし、複数の二次電池10に、直列に接続される複数の二次電池10の組と、並列に接続される二次電池10の組が共に含まれていてもよい。 In the present embodiment, the assembled battery 1 provided with the five secondary batteries 10 (secondary batteries 10A, 10B, 10C, 10D, 10E in order from the left side of FIGS. 1 and 2) will be illustrated and described. However, it goes without saying that the number of secondary batteries 10 included in the assembled battery 1 is not limited to five. Further, in the present embodiment, a case where all of the plurality of secondary batteries 10 are connected in series is illustrated. However, the plurality of secondary batteries 10 may include both a set of a plurality of secondary batteries 10 connected in series and a set of secondary batteries 10 connected in parallel.

二次電池10について説明する。本実施形態では、複数の二次電池10の各々の構成は同一のため、纏めて説明を行う。なお、図1および図2では、第1二次電池10Aの符号に「A」、第2二次電池10Bの各構成の符号の末尾に「B」、第3二次電池10Cの各構成の符号の末尾に「C」、第4二次電池10Dの各構成の符号の末尾に「D」、第5二次電池10Eの各構成の符号の末尾に「E」を付している。また、本実施形態では、二次電池の一種であるリチウムイオン二次電池を組電池1に使用する場合を例示する。ただし、二次電池10はリチウムイオン二次電池に限定されない。各々の二次電池10は、電池ケース11(11A〜11E)、発電要素13(13A〜13E)(図2参照)、正極端子15(15A〜15E)、および負極端子16(16A〜16E)を備える。 The secondary battery 10 will be described. In the present embodiment, the configurations of the plurality of secondary batteries 10 are the same, and thus the description will be given collectively. In addition, in FIGS. 1 and 2, the code of the primary secondary battery 10A is "A", the code of each configuration of the secondary battery 10B is "B" at the end, and each configuration of the third secondary battery 10C. "C" is added to the end of the code, "D" is added to the end of the code of each configuration of the 4th secondary battery 10D, and "E" is added to the end of the code of each configuration of the 5th secondary battery 10E. Further, in the present embodiment, a case where a lithium ion secondary battery, which is a kind of secondary battery, is used for the assembled battery 1 is exemplified. However, the secondary battery 10 is not limited to the lithium ion secondary battery. Each secondary battery 10 includes a battery case 11 (11A to 11E), a power generation element 13 (13A to 13E) (see FIG. 2), a positive electrode terminal 15 (15A to 15E), and a negative electrode terminal 16 (16A to 16E). Be prepared.

電池ケース11は、発電要素13(電極体および電解液)を内部に密閉した状態で収容する。本実施形態における電池ケース11の形状は、扁平な角形である。電池ケース11には、安全弁14と、外部接続用の正極端子15および負極端子16が設けられている。安全弁14は、電池ケース11の内圧が所定レベル以上に上昇した場合に、電池ケース11の内部から外部に気体を排出することで、内圧を解放する。本実施形態の安全弁14(14A〜14E)は、扁平角形である電池ケース11の上部の蓋体に形成されている。従って、安全弁14から排出される気体の流路は、安全弁14から上方に延びる。なお、本実施形態の組電池1では、安全弁14は、後述する短絡用バスバー30の直下に設けられる。従って、図1では安全弁14が点線で示されている。また、本実施形態では、正極端子15および負極端子16も、電池ケース11の上部の蓋体に設けられている。電池ケース11の材質は、軽量で熱伝導性が良い材質が望ましい。一例として、本実施形態の電池ケース11の材質には、熱伝導性が高く且つ適度な剛性を有するアルミニウムが用いられている。しかし、電池ケースの構成を変更することも可能である。例えば、電池ケースとして、可撓性を有するラミネートが用いられてもよい。 The battery case 11 houses the power generation element 13 (electrode body and electrolytic solution) in a sealed state inside. The shape of the battery case 11 in this embodiment is a flat square shape. The battery case 11 is provided with a safety valve 14, a positive electrode terminal 15 for external connection, and a negative electrode terminal 16. When the internal pressure of the battery case 11 rises above a predetermined level, the safety valve 14 releases the internal pressure by discharging gas from the inside of the battery case 11 to the outside. The safety valves 14 (14A to 14E) of the present embodiment are formed on the upper lid of the flat square battery case 11. Therefore, the flow path of the gas discharged from the safety valve 14 extends upward from the safety valve 14. In the assembled battery 1 of the present embodiment, the safety valve 14 is provided directly under the short-circuit bus bar 30, which will be described later. Therefore, in FIG. 1, the safety valve 14 is shown by a dotted line. Further, in the present embodiment, the positive electrode terminal 15 and the negative electrode terminal 16 are also provided on the upper lid of the battery case 11. The material of the battery case 11 is preferably a material that is lightweight and has good thermal conductivity. As an example, aluminum having high thermal conductivity and appropriate rigidity is used as the material of the battery case 11 of the present embodiment. However, it is also possible to change the configuration of the battery case. For example, a flexible laminate may be used as the battery case.

電極体では、正極、負極、およびセパレータが重ね合わされている。正極では、正極集電体の片面または両面に正極活物質層が塗工されている。正極活物質層が塗工されずに正極集電体が露出した部分には、正極集電端子が接合される。正極集電端子には、正極端子15が電気的に接続される。負極では、負極集電体の片面または両面に負極活物質層が塗工されている。負極活物質層が塗工されずに負極集電体が露出した部分には、負極集電端子が接合される。負極集電端子には、負極端子16が電気的に接続される。電極体を構成する材料、部材は、従来の一般的な二次電池(本実施形態ではリチウムイオン二次電池)に用いられるものと同様のものを制限なく使用可能である。また、電極体とともに電池ケース11に収容される電解液は、適当な非水溶媒に支持塩を含有するものであり、従来公知の電解液を特に制限なく採用することができる。 In the electrode body, a positive electrode, a negative electrode, and a separator are superposed. In the positive electrode, a positive electrode active material layer is applied to one side or both sides of the positive electrode current collector. A positive electrode current collector terminal is joined to a portion where the positive electrode current collector is exposed without being coated with the positive electrode active material layer. The positive electrode terminal 15 is electrically connected to the positive electrode current collector terminal. In the negative electrode, a negative electrode active material layer is coated on one side or both sides of the negative electrode current collector. A negative electrode current collector terminal is bonded to a portion where the negative electrode current collector is exposed without coating the negative electrode active material layer. The negative electrode terminal 16 is electrically connected to the negative electrode current collector terminal. As the materials and members constituting the electrode body, the same materials and members as those used for a conventional general secondary battery (lithium ion secondary battery in this embodiment) can be used without limitation. Further, the electrolytic solution housed in the battery case 11 together with the electrode body contains a supporting salt in an appropriate non-aqueous solvent, and a conventionally known electrolytic solution can be adopted without particular limitation.

組電池1における複数の二次電池10の接続関係について説明する。組電池1を構成する複数の二次電池10のうち、互いに隣接し且つ直列に接続される2つの二次電池10の組を、直列接続ユニットという。前述したように、本実施形態では、5つの二次電池10の全てが直列に接続される場合を例示する。この場合、互いに隣接する全ての二次電池10の組が、直列接続ユニットとなる。つまり、本実施形態の組電池1には、第1二次電池10Aと第2二次電池10Bの組、第2二次電池10Bと第3二次電池10Cの組、第3二次電池10Cと第4二次電池10Dの組、第4二次電池10Dと第5二次電池10Eの組の5つの直列接続ユニットが含まれる。 The connection relationship between the plurality of secondary batteries 10 in the assembled battery 1 will be described. Of the plurality of secondary batteries 10 constituting the assembled battery 1, a set of two secondary batteries 10 adjacent to each other and connected in series is called a series connection unit. As described above, the present embodiment illustrates the case where all five secondary batteries 10 are connected in series. In this case, all the sets of the secondary batteries 10 adjacent to each other form the series connection unit. That is, the assembled battery 1 of the present embodiment includes a set of the primary secondary battery 10A and the secondary secondary battery 10B, a set of the secondary secondary battery 10B and the third secondary battery 10C, and a set of the third secondary battery 10C. And a set of 4th secondary battery 10D, and a set of 4th secondary battery 10D and 5th secondary battery 10E are included in 5 series connection units.

各々の直列接続ユニットは、直列接続バスバー20(20A〜20D)を備える。直列接続バスバー20は、各々の直列接続ユニットにおける一方の二次電池10の正極端子15と、他方の二次電池10の負極端子16を電気的に接続する。詳細には、図1に示す例では、第1二次電池10Aと第2二次電池10Bを含む直列接続ユニットにおいて、第1二次電池10Aの正極端子15Aと、第2二次電池10Bの負極端子16Bが、直列接続バスバー20Aによって接続される。第2二次電池10Bと第3二次電池10Cを含む直列接続ユニットにおいて、第2二次電池10Bの正極端子15Bと、第3二次電池10Cの負極端子16Cが、直列接続バスバー20Bによって接続される。第3二次電池10Cと第4二次電池10Dを含む直列接続ユニットにおいて、第3二次電池10Cの正極端子15Cと、第4二次電池10Dの負極端子16Dが、直列接続バスバー20Cによって接続される。第4二次電池10Dと第5二次電池10Eを含む直列接続ユニットにおいて、第4二次電池10Dの正極端子15Dと、第5二次電池10Eの負極端子16Eが、直列接続バスバー20Dによって接続される。なお、図1に示す例では、第1二次電池10Aの負極端子16Aと、第5二次電池10Eの正極端子15Eは、外部接続バスバー22によって外部機器に電気的に接続される。 Each series connection unit includes a series connection bus bar 20 (20A to 20D). The series connection bus bar 20 electrically connects the positive electrode terminal 15 of one secondary battery 10 and the negative electrode terminal 16 of the other secondary battery 10 in each series connection unit. Specifically, in the example shown in FIG. 1, in the series connection unit including the primary secondary battery 10A and the secondary secondary battery 10B, the positive electrode terminal 15A of the primary secondary battery 10A and the secondary secondary battery 10B The negative electrode terminal 16B is connected by the series connection bus bar 20A. In the series connection unit including the second secondary battery 10B and the third secondary battery 10C, the positive electrode terminal 15B of the secondary battery 10B and the negative electrode terminal 16C of the third secondary battery 10C are connected by the series connection bus bar 20B. Will be done. In the series connection unit including the third secondary battery 10C and the fourth secondary battery 10D, the positive electrode terminal 15C of the third secondary battery 10C and the negative electrode terminal 16D of the fourth secondary battery 10D are connected by the series connection bus bar 20C. Will be done. In the series connection unit including the 4th secondary battery 10D and the 5th secondary battery 10E, the positive electrode terminal 15D of the 4th secondary battery 10D and the negative electrode terminal 16E of the 5th secondary battery 10E are connected by the series connection bus bar 20D. Will be done. In the example shown in FIG. 1, the negative electrode terminal 16A of the primary secondary battery 10A and the positive electrode terminal 15E of the fifth secondary battery 10E are electrically connected to an external device by an external connection bus bar 22.

組電池1は、短絡用バスバー30を備える。短絡用バスバー30は、組電池1内の複数の二次電池10の間で過昇温が連鎖して発生することを抑制するために、過昇温が発生した二次電池10に隣接し、且つ直列に接続された二次電池10(隣接二次電池)を外部短絡させる。 The assembled battery 1 includes a short-circuit bus bar 30. The short-circuit bus bar 30 is adjacent to the secondary battery 10 in which the overheating has occurred in order to prevent the overheating from occurring in a chain among the plurality of secondary batteries 10 in the assembled battery 1. Moreover, the secondary batteries 10 (adjacent secondary batteries) connected in series are externally short-circuited.

図1に示すように、短絡用バスバー30は、各々の直列接続ユニットにおける一方の二次電池10の負極端子16と、他方の二次電池10の正極端子15の間に架設される。詳細には、図1に示す例では、第1二次電池10Aと第2二次電池10Bを含む直列接続ユニットにおいて、第1二次電池10Aの負極端子16Aと第2二次電池10Bの正極端子15Bの間に短絡用バスバー30が架設される。第2二次電池10Bと第3二次電池10Cを含む直列接続ユニットにおいて、第2二次電池10Bの負極端子16Bと第3二次電池10Cの正極端子15Cの間に短絡用バスバー30が架設される。第3二次電池10Cと第4二次電池10Dを含む直列接続ユニットにおいて、第3二次電池10Cの負極端子16Cと第4二次電池10Dの正極端子15Dの間に短絡用バスバー30が架設される。第4二次電池10Dと第5二次電池10Eを含む直列接続ユニットにおいて、第4二次電池10Dの負極端子16Dと第5二次電池10Eの正極端子15Eの間に短絡用バスバー30が架設される。 As shown in FIG. 1, the short-circuit bus bar 30 is installed between the negative electrode terminal 16 of one secondary battery 10 and the positive electrode terminal 15 of the other secondary battery 10 in each series connection unit. Specifically, in the example shown in FIG. 1, in the series connection unit including the primary secondary battery 10A and the secondary secondary battery 10B, the negative electrode terminal 16A of the primary secondary battery 10A and the positive electrode of the secondary secondary battery 10B are used. A short-circuit bus bar 30 is installed between the terminals 15B. In the series connection unit including the secondary battery 10B and the tertiary secondary battery 10C, the short-circuit bus bar 30 is erected between the negative electrode terminal 16B of the secondary battery 10B and the positive electrode terminal 15C of the tertiary secondary battery 10C. Will be done. In the series connection unit including the third secondary battery 10C and the fourth secondary battery 10D, the short-circuit bus bar 30 is erected between the negative electrode terminal 16C of the third secondary battery 10C and the positive electrode terminal 15D of the fourth secondary battery 10D. Will be done. In the series connection unit including the 4th secondary battery 10D and the 5th secondary battery 10E, the short-circuit bus bar 30 is erected between the negative electrode terminal 16D of the 4th secondary battery 10D and the positive electrode terminal 15E of the 5th secondary battery 10E. Will be done.

また、短絡用バスバー30は、各々の直列接続ユニットにおける各々の二次電池10内の正極端子15と負極端子16の間に架設される。例えば、第1二次電池10Aと第2二次電池10Bを含む直列接続ユニットにおいて、短絡用バスバー30は、第1二次電池10Aの正極端子15Aと負極端子16Aの間に架設されると共に、第2二次電池10Bの正極端子15Bと負極端子16Bの間に架設される。 Further, the short-circuit bus bar 30 is installed between the positive electrode terminal 15 and the negative electrode terminal 16 in each secondary battery 10 in each series connection unit. For example, in the series connection unit including the primary secondary battery 10A and the secondary secondary battery 10B, the short-circuit bus bar 30 is installed between the positive electrode terminal 15A and the negative electrode terminal 16A of the primary secondary battery 10A, and is installed. It is installed between the positive electrode terminal 15B and the negative electrode terminal 16B of the secondary secondary battery 10B.

さらに、短絡用バスバー30は、各々の直列接続ユニット内の2つの安全弁14から排出される気体の流路を通過する。例えば、第1二次電池10Aと第2二次電池10Bを含む直列接続ユニットにおいて、短絡用バスバー30は、第1二次電池10Aの安全弁14Aから排出される気体の流路(本実施形態では、安全弁14Aの上方)を通過する(流路に交差する)と共に、第2二次電池10Bの安全弁14Bから排出される気体の流路(本実施形態では、安全弁14Bの上方)を通過する。 Further, the short-circuit bus bar 30 passes through a flow path of gas discharged from the two safety valves 14 in each series connection unit. For example, in the series connection unit including the primary secondary battery 10A and the secondary secondary battery 10B, the short-circuit bus bar 30 is a flow path of gas discharged from the safety valve 14A of the primary secondary battery 10A (in the present embodiment). , Above the safety valve 14A) and through the flow path of the gas discharged from the safety valve 14B of the secondary battery 10B (above the safety valve 14B in this embodiment).

図2に示すように、短絡用バスバー30には絶縁部40が設けられている。絶縁部40は、短絡用バスバー30に設置されている状態で、短絡用バスバー30による端子間の導通を遮断(絶縁)する。また、絶縁部40は、安全弁14から排出される高温の気体によって加熱溶融されることで、短絡用バスバー30による端子間の導通を開始させる。その結果、二次電池10が外部短絡する。絶縁部40は、絶縁性を有し、且つ加熱されることで溶融する材質(例えば樹脂等)によって形成されている。絶縁部40が短絡用バスバー30に設置されている状態(つまり、絶縁部40が溶融されていない状態)では、電気伝導性を有する短絡用バスバー30と端子の間に絶縁部40が介在し、短絡用バスバー30と端子が非接触となる結果、短絡用バスバー30による端子間の導通が遮断される。絶縁部40が溶融されると、短絡用バスバー30と端子が接触し、端子間が導通される。 As shown in FIG. 2, the short-circuit bus bar 30 is provided with an insulating portion 40. The insulating portion 40 cuts off (insulates) the continuity between the terminals of the short-circuit bus bar 30 while being installed in the short-circuit bus bar 30. Further, the insulating portion 40 is heated and melted by the high-temperature gas discharged from the safety valve 14 to start conduction between the terminals by the short-circuit bus bar 30. As a result, the secondary battery 10 is short-circuited externally. The insulating portion 40 has an insulating property and is formed of a material (for example, resin or the like) that melts when heated. In a state where the insulating portion 40 is installed in the short-circuit bus bar 30 (that is, in a state where the insulating portion 40 is not melted), the insulating portion 40 is interposed between the short-circuit bus bar 30 having electrical conductivity and the terminal. As a result of the short-circuit bus bar 30 and the terminals not contacting each other, the conduction between the terminals by the short-circuit bus bar 30 is cut off. When the insulating portion 40 is melted, the short-circuit bus bar 30 and the terminal come into contact with each other, and the terminals are made conductive.

一例として、本実施形態では、短絡用バスバー30の全体が絶縁部40によって覆われる(コーティングされる)ことで、短絡用バスバー30による導通が遮断される。しかし、短絡用バスバー30に絶縁部40を設置する方法を変更することも可能である。例えば、絶縁部40は、短絡用バスバー30の全体でなく、短絡用バスバー30と端子が近接する位置にのみ設置されていてもよい。 As an example, in the present embodiment, the entire short-circuit bus bar 30 is covered (coated) by the insulating portion 40, so that the conduction by the short-circuit bus bar 30 is cut off. However, it is also possible to change the method of installing the insulating portion 40 on the short-circuit bus bar 30. For example, the insulating portion 40 may be installed not only at the entire short-circuit bus bar 30, but only at a position where the short-circuit bus bar 30 and the terminal are close to each other.

短絡用バスバー30によって過昇温の連鎖が抑制される原理について、詳細に説明する。以下では、直列接続ユニットに含まれる2つの二次電池10のうち、過昇温が発生した二次電池10を「過昇温二次電池」と言い、他方の二次電池10を「隣接二次電池」という。過昇温二次電池の安全弁14から高温の気体が排出されると、短絡用バスバー30のうち、過昇温二次電池の正極端子15と負極端子16の間に架設された部分が、高温の気体によって加熱される。熱は、短絡用バスバー30を通じて、過昇温二次電池の正極端子15および負極端子16まで伝導し、さらに、隣接二次電池の端子(正極端子15または負極端子16)まで伝導する。その結果、短絡用バスバー30のうち、少なくとも、過昇温二次電池の両端子の部分と、隣接二次電池の端子の部分に設けられた絶縁部40が溶融する。よって、過昇温二次電池の両端子、および隣接二次電池の端子の間が、短絡用バスバー30によって導通されて、隣接二次電池が外部短絡する。外部短絡した隣接二次電池のSOC(State Of Charge)は低下するので、過昇温二次電池で発生した熱が隣接二次電池に伝導しても、隣接二次電池では過昇温が発生し難い。従って、複数の二次電池の間で過昇温が連鎖して発生することが抑制される。 The principle that the chain of overheating is suppressed by the short-circuit bus bar 30 will be described in detail. In the following, of the two secondary batteries 10 included in the series connection unit, the secondary battery 10 in which the overheating has occurred is referred to as an "overheating secondary battery", and the other secondary battery 10 is referred to as an "adjacent secondary battery". It is called "next battery". When high-temperature gas is discharged from the safety valve 14 of the overheated secondary battery, the portion of the short-circuit bus bar 30 installed between the positive electrode terminal 15 and the negative electrode terminal 16 of the overheated secondary battery becomes hot. It is heated by the gas of. The heat is conducted through the short-circuit bus bar 30 to the positive electrode terminal 15 and the negative electrode terminal 16 of the overheated secondary battery, and further to the terminals of the adjacent secondary battery (positive electrode terminal 15 or the negative electrode terminal 16). As a result, at least both terminals of the overheated secondary battery and the insulating portion 40 provided at the terminal portion of the adjacent secondary battery of the short-circuit bus bar 30 are melted. Therefore, both terminals of the overheated secondary battery and the terminals of the adjacent secondary battery are conducted by the short-circuit bus bar 30, and the adjacent secondary battery is short-circuited externally. Since the SOC (State Of Charge) of the adjacent secondary battery short-circuited externally decreases, even if the heat generated by the overheated secondary battery is conducted to the adjacent secondary battery, the excessive temperature rise occurs in the adjacent secondary battery. It's hard to do. Therefore, it is possible to prevent the overheating from occurring in a chain among the plurality of secondary batteries.

例えば、第1二次電池10Aで過昇温が発生すると、第1二次電池10Aの正極端子15Aおよび負極端子16Aと、第1二次電池10Aと共に直列接続ユニットを構成する第2二次電池10Bの正極端子15Bの間が、短絡用バスバー30によって導通される。その結果、第1二次電池10Aと共に直列接続ユニットを構成する第2二次電池10Bが、外部短絡する。 For example, when an excessive temperature rise occurs in the primary secondary battery 10A, a secondary battery constituting a series connection unit together with the positive electrode terminal 15A and the negative electrode terminal 16A of the primary secondary battery 10A and the primary secondary battery 10A. The short-circuit bus bar 30 conducts electricity between the positive electrode terminals 15B of 10B. As a result, the secondary secondary battery 10B constituting the series connection unit together with the primary secondary battery 10A is externally short-circuited.

また、第3二次電池10Cで過昇温が発生した場合を想定する。第3二次電池10Cと第2二次電池10Bは、共に直列接続ユニットを構成する。また、第3二次電池10Cと第4二次電池10Dも、直列接続ユニットを構成する。従って、第3二次電池10Cで過昇温が発生すると、第3二次電池10Cの正極端子15Cおよび負極端子16Cと、第2二次電池10Bの負極端子16Bと、第4二次電池10Dの正極端子15Dの間が、短絡用バスバー30によって導通される。その結果、第3二次電池10Cに隣接する第2二次電池10Bと第4二次電池10Dが、外部短絡する。 Further, it is assumed that an excessive temperature rise occurs in the third secondary battery 10C. The third secondary battery 10C and the second secondary battery 10B both form a series connection unit. Further, the third secondary battery 10C and the fourth secondary battery 10D also form a series connection unit. Therefore, when an excessive temperature rise occurs in the third secondary battery 10C, the positive electrode terminal 15C and the negative electrode terminal 16C of the third secondary battery 10C, the negative electrode terminal 16B of the secondary secondary battery 10B, and the fourth secondary battery 10D Between the positive electrode terminals 15D of the above, the short-circuit bus bar 30 conducts the conduction. As a result, the secondary secondary battery 10B and the fourth secondary battery 10D adjacent to the tertiary secondary battery 10C are short-circuited externally.

<比較試験>
図3および図4を参照して、短絡用バスバー30および絶縁部40を組電池1に設けることの効果を確認するための比較試験の結果について説明する。本試験では、2つの組電池を準備した。実施例の組電池は、上記で説明した本実施形態の組電池1(図1および図2参照)である。他方の比較例の組電池は、前述した短絡用バスバー30および絶縁部40を備えていないが、他の構成は全て本実施形態の組電池1と同じである。本試験では、まず、実施例の組電池、および比較例の組電池の両方について、25℃の環境下で全ての二次電池のSOCを100%とした。次いで、積層された5つの二次電池10における真ん中の第3二次電池10Cに釘を刺すことで、第3二次電池10Cに強制的に過昇温を発生させた。図3は、比較例の組電池における各二次電池の温度推移を示す。図4は、実施例の組電池における各二次電池の温度推移を示す。
<Comparative test>
With reference to FIGS. 3 and 4, the results of a comparative test for confirming the effect of providing the short-circuit bus bar 30 and the insulating portion 40 on the assembled battery 1 will be described. In this test, two assembled batteries were prepared. The assembled battery of the embodiment is the assembled battery 1 (see FIGS. 1 and 2) of the present embodiment described above. The other comparative example battery does not include the short-circuit bus bar 30 and the insulating portion 40 described above, but all other configurations are the same as those of the battery 1 of the present embodiment. In this test, first, for both the assembled battery of the example and the assembled battery of the comparative example, the SOC of all the secondary batteries was set to 100% in an environment of 25 ° C. Next, by piercing the middle third secondary battery 10C in the five stacked secondary batteries 10 with a nail, the tertiary secondary battery 10C was forcibly overheated. FIG. 3 shows the temperature transition of each secondary battery in the assembled battery of the comparative example. FIG. 4 shows the temperature transition of each secondary battery in the assembled battery of the embodiment.

図3に示すように、比較例の組電池では、第3二次電池10Cで発生した熱が、隣接する第2二次電池10Bおよび第4二次電池10Dに伝導することで、第2二次電池10Bおよび第4二次電池10Dでも過昇温が発生した。さらにその後、第2二次電池10Bで発生した熱が、隣接する第1二次電池10Aに伝導することで、第1二次電池10Aでも過昇温が発生した。また、第4二次電池10Dで発生した熱が、隣接する第5二次電池10Eに伝導することで、第5二次電池10Eでも過昇温が発生した。以上のように、比較例の組電池では、複数の二次電池10の間で過昇温が連鎖して発生した。 As shown in FIG. 3, in the assembled battery of the comparative example, the heat generated in the third secondary battery 10C is conducted to the adjacent secondary secondary battery 10B and the fourth secondary battery 10D to conduct the second secondary battery. Overheating also occurred in the secondary battery 10B and the fourth secondary battery 10D. Further, after that, the heat generated in the secondary secondary battery 10B was conducted to the adjacent primary secondary battery 10A, so that the overheating also occurred in the primary secondary battery 10A. Further, the heat generated in the 4th secondary battery 10D is conducted to the adjacent 5th secondary battery 10E, so that the overheating also occurs in the 5th secondary battery 10E. As described above, in the assembled battery of the comparative example, overheating occurred in a chain among the plurality of secondary batteries 10.

図4に示すように、実施例の組電池では、第3二次電池10Cで発生した熱が、隣接する第2二次電池10Bおよび第4二次電池10Dに伝導したものの、第2二次電池10Bおよび第4二次電池10Dでは、短絡用バスバー30および絶縁部40によって外部短絡が生じていた。従って、第2二次電池10Bおよび第4二次電池10Dでは、過昇温は発生しなかった。よって、第2二次電池10Bに隣接する第1二次電池10A、および、第4二次電池10Dに隣接する第5二次電池10Eでも、過昇温は発生しなかった。以上のように、実施例の組電池では、短絡用バスバー30および絶縁部40を用いることで、過昇温の連鎖が抑制されたことが分かる。 As shown in FIG. 4, in the assembled battery of the embodiment, the heat generated in the third secondary battery 10C was conducted to the adjacent secondary secondary battery 10B and the fourth secondary battery 10D, but the secondary secondary battery 10C. In the battery 10B and the fourth secondary battery 10D, an external short circuit occurred due to the short circuit bus bar 30 and the insulating portion 40. Therefore, in the second secondary battery 10B and the fourth secondary battery 10D, the overheating did not occur. Therefore, the overheating did not occur even in the primary secondary battery 10A adjacent to the secondary secondary battery 10B and the fifth secondary battery 10E adjacent to the fourth secondary battery 10D. As described above, it can be seen that in the assembled battery of the embodiment, the chain of overheating was suppressed by using the short-circuit bus bar 30 and the insulating portion 40.

以上、具体的な実施形態を挙げて詳細な説明を行ったが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。例えば、上記実施形態の組電池1では、複数の二次電池10の全てが直列に接続される場合を例示した。しかし、複数の二次電池10に、直列に接続される複数の二次電池10の組と、並列に接続される二次電池10の組が共に含まれていてもよい。この場合でも、互いに隣接する2つの二次電池10のうち、直列に接続される直列接続ユニットに、短絡用バスバーおよび絶縁部が設置されることで、過昇温の連鎖は適切に抑制される。 Although the detailed description has been given with reference to specific embodiments, these are merely examples and do not limit the scope of the claims. The techniques described in the claims include various modifications and modifications of the above-described embodiments. For example, in the assembled battery 1 of the above embodiment, a case where all of the plurality of secondary batteries 10 are connected in series is illustrated. However, the plurality of secondary batteries 10 may include both a set of a plurality of secondary batteries 10 connected in series and a set of secondary batteries 10 connected in parallel. Even in this case, the chain of overheating is appropriately suppressed by installing the short-circuit bus bar and the insulating portion in the series connection unit connected in series among the two secondary batteries 10 adjacent to each other. ..

1 組電池
10 二次電池
11 電池ケース
13 発電要素
14 安全弁
15 正極端子
16 負極端子
20 直列接続バスバー
30 短絡用バスバー
40 絶縁部

1 set battery 10 secondary battery 11 battery case 13 power generation element 14 safety valve 15 positive electrode terminal 16 negative electrode terminal 20 series connection bus bar 30 short circuit bus bar 40 insulation

Claims (1)

複数の二次電池が積層された組電池であって、
前記二次電池は、
発電要素を内部に収容する電池ケースと、
前記電池ケースに設けられた正極端子および負極端子と、
前記電池ケースの内圧が上昇した際に、前記電池ケースの内部から外部に気体を排出する安全弁と、
を備え、
互いに隣接し、且つ直列に接続される2つの二次電池の組を直列接続ユニットとした場合に、
前記直列接続ユニットにおける一方の二次電池の正極端子と他方の二次電池の負極端子を電気的に接続する直列接続バスバーと、
前記直列接続ユニットにおける前記一方の二次電池の負極端子と前記他方の二次電池の正極端子の間に架設されると共に、前記一方の二次電池および前記他方の二次電池の各々の正極端子と負極端子の間に架設され、且つ、前記安全弁から排出される気体の流路を通過する短絡用バスバーと、
前記短絡用バスバーに設置されている状態で前記短絡用バスバーによる端子間の導通を遮断すると共に、前記安全弁から排出される気体によって加熱溶融されることで前記二次電池を短絡させる絶縁部と、
を備えた、組電池。

It is an assembled battery in which multiple secondary batteries are stacked.
The secondary battery is
A battery case that houses the power generation element inside,
The positive electrode terminal and the negative electrode terminal provided in the battery case,
A safety valve that discharges gas from the inside of the battery case to the outside when the internal pressure of the battery case rises.
Equipped with
When a set of two secondary batteries adjacent to each other and connected in series is used as a series connection unit,
A series connection bus bar that electrically connects the positive electrode terminal of one secondary battery and the negative electrode terminal of the other secondary battery in the series connection unit.
It is installed between the negative electrode terminal of the one secondary battery and the positive electrode terminal of the other secondary battery in the series connection unit, and the positive electrode terminal of each of the one secondary battery and the other secondary battery. A short-circuit bus bar installed between the and the negative electrode terminal and passing through the flow path of the gas discharged from the safety valve.
An insulating portion that cuts off the conduction between the terminals by the short-circuit bus bar while being installed in the short-circuit bus bar and short-circuits the secondary battery by being heated and melted by the gas discharged from the safety valve.
With a built-in battery.

JP2020099368A 2020-06-08 2020-06-08 Battery pack Pending JP2021193651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020099368A JP2021193651A (en) 2020-06-08 2020-06-08 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020099368A JP2021193651A (en) 2020-06-08 2020-06-08 Battery pack

Publications (1)

Publication Number Publication Date
JP2021193651A true JP2021193651A (en) 2021-12-23

Family

ID=79168824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020099368A Pending JP2021193651A (en) 2020-06-08 2020-06-08 Battery pack

Country Status (1)

Country Link
JP (1) JP2021193651A (en)

Similar Documents

Publication Publication Date Title
EP3512008B1 (en) Battery module, and battery pack and vehicle including the same
CN107949932B (en) Battery cell having venting structure using adhesive tape
TWI734880B (en) Bettery cell and bettery pack
JP6204320B2 (en) Battery stack
JP6344245B2 (en) Battery module
JP5866463B2 (en) Battery cell assembly with improved safety and battery module including the same
KR20120139609A (en) Soldering connector, and battery module and battery pack comprising the same
KR20140044440A (en) Battery pack
JP7034405B2 (en) Battery module, battery pack including it and automobile
KR20180058370A (en) Electrode Assembly Comprising Separator Having Insulation-enhancing Part Formed on Edge Portion of Electrode
JP5673838B2 (en) Secondary battery
EP3540823B1 (en) Battery module, and battery pack and vehicle including same
KR20080015165A (en) Secondary battery with improved safety and compact structure
US9843032B2 (en) Battery module
KR20120136718A (en) Battery cell of novel structure and battery pack employed with the same
JP7167447B2 (en) laminated battery
KR20130113145A (en) Unit module assembly of enhanced stability and battery module comprising the same
KR20130014250A (en) Secondary battery having improved safety, and battery pack using the same
JP2021193651A (en) Battery pack
KR20140129600A (en) Secondary battery and Component for secondary battery applied for it
KR20120130557A (en) Electrode Assembly of Improved Safety And Secondary Battery with the Same
KR101641621B1 (en) Secondary electric cell and battery pack with enhanced safety
KR102267056B1 (en) Battery module, battery pack including the same, and vehicle including the same
KR101450951B1 (en) Electrode lead for secondary battery with improved safety and secondary battery using the same
KR102157594B1 (en) Electrode Assembly Comprising Safety Element and Secondary Battery Having the Same