JP2019127793A - Sinkage suppression structure for sinkage suppression object - Google Patents

Sinkage suppression structure for sinkage suppression object Download PDF

Info

Publication number
JP2019127793A
JP2019127793A JP2018011472A JP2018011472A JP2019127793A JP 2019127793 A JP2019127793 A JP 2019127793A JP 2018011472 A JP2018011472 A JP 2018011472A JP 2018011472 A JP2018011472 A JP 2018011472A JP 2019127793 A JP2019127793 A JP 2019127793A
Authority
JP
Japan
Prior art keywords
ground improvement
suppression
settlement
wall
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018011472A
Other languages
Japanese (ja)
Other versions
JP7108416B2 (en
Inventor
正一 津國
Shoichi Tsukuni
正一 津國
一生 小西
Kazuo Konishi
一生 小西
一広 金田
Kazuhiro Kaneda
一広 金田
芳雄 平井
Yoshio Hirai
芳雄 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Takenaka Doboku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Takenaka Doboku Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2018011472A priority Critical patent/JP7108416B2/en
Publication of JP2019127793A publication Critical patent/JP2019127793A/en
Application granted granted Critical
Publication of JP7108416B2 publication Critical patent/JP7108416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Abstract

To provide a sinkage suppression structure for sinkage suppression objects that is particularly superior in versatility by using a frame-like (grid-like) ground improvement wall and a partial ground improvement body at the same time as a configuration in which they are independent from each other.SOLUTION: The sinkage suppression structure for sinkage suppression objects is composed of a sinkage suppression object 1 supported on the ground 10, a frame-like ground improvement wall 2 built in the ground 10 so as to surround the sinkage suppression object 1 in plan view, and a partial ground improvement body 3 that is formed by partially improving, in a plate shape, the ground 10 between the outer surface of the sinkage suppression object 1 and the inner surface of the frame-like ground improvement wall 2 in plan view. The depth of the partial ground improvement body 3 is formed more shallowly than that of the frame-like ground improvement wall 2, and the partial ground improvement body 3 is provided away from the frame-like ground improvement wall 2. The partial ground improvement body 3 is formed rectangularly along the frame-like ground improvement wall 2 in plan view.SELECTED DRAWING: Figure 1

Description

本発明は、沈下抑制対象物(特には、コンテナ等の輸送用収容体、戸建住宅、建物等の建築構造物、又は盛土等の土木構造物)の周辺地盤に液状化対策を施してなる、沈下抑制対象物の沈下抑制構造の技術分野に属する。   In the present invention, countermeasures for liquefaction are applied to the surrounding ground of a subsidence suppression object (in particular, a transport container such as a container, a detached house, a building structure such as a building, or a civil engineering structure such as embankment). , Belongs to the technical field of the sinking suppression structure of the sinking suppression object.

液状化する可能性がある地盤(軟弱地盤)上に戸建住宅等の建築構造物が構築されている場合、又は将来構築される予定がある場合には、地震による震災時に地盤が液状化して建築構造物が沈下する等の被害を受けないように又は被害を軽減できるように、予め地盤処理する液状化防止構造(沈下抑制構造)を実現することの重要性は既に知られている。   If a building structure such as a detached house is constructed on the ground that is likely to liquefy (soft ground), or if it is planned to be constructed in the future, the ground will be liquefied during an earthquake disaster Therefore, the importance of realizing a liquefaction prevention structure (subsidence suppression structure) for ground treatment in advance so as to prevent damage such as settlement of a building structure or to reduce damage has already been known.

ちなみに、前記液状化防止構造として、枠状(格子状)の地盤改良壁を造成して液状化防止対象地盤を囲い込む公知(TOFT工法(登録商標)等)の液状化防止構造はよく知られているところである。
この枠状(格子状)の地盤改良壁は、格子間隔を狭くしたり、地盤改良壁の剛性を高めたりすることで液状化防止効果を向上させることができる。しかし、地盤改良壁の剛性を高めてもその効果は限定的であることが既に分かっており、また、格子間隔を狭くすると改良土量が増えて不経済となるほか、なにより前記建築構造物(沈下抑制対象物)の形態によっては実施できない場合がある等、前記枠状(格子状)の地盤改良壁の単独での実施には自ずと限界があった。
By the way, as the liquefaction preventing structure, a well known liquefaction preventing structure (the TFT method (registered trademark), etc.) is well known, in which a frame-like (grid) ground improvement wall is created to enclose the liquefaction preventing ground. It is about to
This frame-like (grid-like) ground improvement wall can improve the liquefaction preventing effect by narrowing the grid interval or enhancing the rigidity of the ground improvement wall. However, it has already been found that the effect is limited even if the rigidity of the ground improvement wall is increased, and if the lattice spacing is narrowed, the amount of improved soil increases and it becomes uneconomical, above all, the building structure Depending on the form of the (subsidence suppression object), there is a limit to the implementation of the frame-shaped (lattice-like) ground improvement wall alone.

そこで、例えば特許文献1、2には、前記したような枠状(格子状)の地盤改良壁をベースとし、これに種々の工夫を施した液状化対策工を付加した技術が開示されている。   Therefore, for example, Patent Documents 1 and 2 disclose a technique in which a liquefaction countermeasure work that is based on a frame-like (lattice-like) ground improvement wall as described above and added various measures to this is added. .

具体的に、特許文献1には、図1等に示したように、液状化層の上端から下端にまで到達する高さを有する鉛直固化壁(10)を、平面視が格子状となるように形成してなる液状化対策構造であって、前記鉛直固化壁は、液状化層(S)の下の非液状化層(C)に根入れされ、一般部(11)と、一般部の上部に形成された増厚部(12)とにより構成されて、前記鉛直固化壁の上部の壁厚が、当該鉛直固化壁に沿って形成された平面視矩形枠状の壁により下部の壁厚よりも増厚されていること等を特徴とする、液状化対策構造が開示されている(請求項1等参照)。   Specifically, in Patent Document 1, as shown in FIG. 1 and the like, the vertical solidified wall (10) having a height reaching from the upper end to the lower end of the liquefied layer is in a lattice shape in plan view. The vertical solidification wall is embedded in the non-liquefied layer (C) below the liquefied layer (S), and is formed into a general part (11) and a general part. The wall thickness of the upper part of the vertical solidified wall is constituted by the thickened part (12) formed in the upper part, and the wall thickness of the lower part is formed by the rectangular frame-like wall formed in plan view along the vertical solidified wall. A liquefaction countermeasure structure is disclosed which is characterized by being thicker than that (see claim 1 and the like).

特許文献2には、図1等に示したように、既設建物(40)の外側地盤の複数箇所に噴射管(31、32)を挿入して、前記噴射管の先端部に設けた噴出口から、既設建物の地下部分に地盤改良材を注入することにより形成される地盤改良体(10)であって、前記既設建物を取り囲む地盤中に形成した外周壁部(11)と、各外周壁部と連続して各外周壁部から既設建物の略中央部に向かって突出するバットレス部(12)とからなることを特徴とする、地盤改良体が開示されている(請求項1等参照)。   In Patent Document 2, as shown in FIG. 1 and the like, jet nozzles (31, 32) are inserted into a plurality of locations on the outer ground of the existing building (40), and the jet nozzle provided at the tip of the jet pipe A ground improvement body (10) formed by injecting a ground improvement material into an underground part of an existing building, and an outer peripheral wall portion (11) formed in the ground surrounding the existing building, and each outer peripheral wall The ground improvement body is characterized by comprising a buttress part (12) projecting from each outer peripheral wall part toward the substantially central part of the existing building continuously with the part (see claim 1 etc.). .

特許第5697854号公報Japanese Patent No. 5698754 特開2013−189804号公報JP, 2013-189804, A

前記特許文献1に係る技術は、前記沈下抑制対象物を避けて実施できるので、軟弱地盤上の沈下抑制対象物が不動産(構造物)、動産(コンテナ)にかかわらず適用でき、また、新設、既設にかかわらず適用できる。
しかしながら、前記したベースとなる枠状の地盤改良壁(鉛直固化壁の一般部に相当する。)に、増厚部を一体的に剛結して実施する構成であるが故に、前記増厚部が沈下すると、これに追従して本体である一般部も変形したり、沈下したりして、その結果、前記一般部と増厚部とからなる鉛直固化壁(地盤改良壁)全体の面外変形が増大し、せん断変形抑制効果が低下するおそれがあった。
また、前記鉛直固化壁は、前記一般部と前記増厚部とを渾然一体に形成する言わば異形の地盤改良壁であるが故に、画像解析や構造設計はもとより、作業上も煩雑であった。
Since the technology according to Patent Document 1 can be implemented avoiding the settlement suppression object, the settlement suppression object on soft ground can be applied regardless of real estate (structure) and movable property (container), and new construction, It can be applied regardless of existing facilities.
However, since the thickened portion is integrally rigidly mounted on the frame-shaped ground improvement wall (corresponding to the general part of the vertical solidified wall) serving as the base described above, the thickened portion When the subsidence occurs, the general part of the main body deforms or subsides following this, and as a result, the entire vertical solidified wall (ground improvement wall) consisting of the general part and the thickened part is out of plane. The deformation may be increased, and the shear deformation suppressing effect may be reduced.
Further, since the vertically solidified wall is a so-called irregularly shaped ground improvement wall in which the general portion and the thickened portion are integrally formed, it is complicated in operation as well as in image analysis and structural design.

前記特許文献2に係る技術も前記沈下抑制対象物を避けて実施できるので、前記特許文献1に係る技術と同様に、軟弱地盤上の沈下抑制対象物が不動産(構造物)、動産(コンテナ)にかかわらず適用でき、また、新設、既設にかかわらず適用できる。
しかしながら、前記したベースとなる枠状の地盤改良壁(外周壁部に相当する。)に、バットレス部を一体的に剛結して実施する構成であるが故に、前記特許文献1に係る技術と同様に、前記バットレス部が沈下すると、これに追従して本体である外周壁部も変形したり、沈下したりして、その結果、前記外周壁部とバットレス部とからなる地盤改良体全体の面外変形が増大し、せん断変形抑制効果が低下するおそれがあった。
また、前記地盤改良体は、前記外周壁部と前記バットレス部とを一体化して形成する言わば異形の地盤改良壁であるが故に、画像解析や構造設計はもとより、作業上も煩雑であった。
Since the technology according to Patent Document 2 can also be carried out while avoiding the object of subsidence suppression, the object of subsidence suppression on soft ground is a real estate (structure), movable property (container) as in the technology according to Patent Document 1. It can be applied regardless of whether it is new or existing.
However, since the buttress portion is integrally rigidly mounted on the frame-shaped ground improvement wall (corresponding to the outer peripheral wall portion) serving as the base described above, the technique according to the patent document 1 and Similarly, when the buttress portion sinks, the outer peripheral wall portion, which is the main body, deforms or sinks following this, resulting in the entire ground improvement body comprising the outer peripheral wall portion and the buttress portion. There was a possibility that the out-of-plane deformation increased and the shear deformation suppressing effect was lowered.
Further, since the ground improvement body is a so-called irregular ground improvement wall formed by integrating the outer peripheral wall portion and the buttress portion, it is complicated in operation as well as image analysis and structural design.

本発明は、上述した背景技術の課題に鑑みて案出されたものであり、その目的とするところは、枠状(格子状)の地盤改良壁と板状の部分的地盤改良体とを各々独立した構成で併用することにより、前記特許文献1、2に係る課題をすべて解消できることはもとより、汎用性に特に優れた沈下抑制対象物の沈下抑制構造を提供することにある。   The present invention has been devised in view of the problems of the background art described above, and the object of the present invention is to provide a frame-like (lattice-like) ground improvement wall and a plate-like partial ground improvement body, respectively. It is to provide a settlement restraining structure for a settlement restraining object that is particularly excellent in versatility, as well as being able to eliminate all of the problems related to Patent Documents 1 and 2 by using them together in an independent configuration.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係る沈下抑制対象物の沈下抑制構造は、地盤上に支持された沈下抑制対象物と、前記地盤中に平面視にて前記沈下抑制対象物を取り囲むように造成された枠状の地盤改良壁と、平面視にて前記沈下抑制対象物の外側面と前記枠状の地盤改良壁の内側面との間の地盤を部分的に板状に改良してなる部分的地盤改良体とからなり、前記部分的地盤改良体は、前記枠状の地盤改良壁よりも深度が浅く形成され、前記枠状の地盤改良壁と離間して設けられていることを特徴とする。   As means for solving the problems of the background art, a settlement restraining structure for a settlement restraining target object according to the invention described in claim 1 is a plan view of the settlement restraining target object supported on the ground and the ground. A frame-like ground improvement wall formed so as to surround the object of subsidence suppression, and a ground between the outer side surface of the object of subsidence suppression and the inner side surface of the frame-like ground improvement wall in plan view The partial ground improvement body is formed with a depth shallower than the frame-shaped ground improvement wall, and the partial ground improvement body is formed by partially improving the frame-like ground improvement wall. And spaced apart from each other.

請求項2に記載した発明は、請求項1に記載した沈下抑制対象物の沈下抑制構造において、前記部分的地盤改良体は、平面視にて、前記枠状の地盤改良壁のうち少なくとも2つの地盤改良壁に沿う形状に形成されていることを特徴とする。   A second aspect of the present invention is the subsidence suppression structure for a subsidence suppression object according to the first aspect, wherein the partial ground improvement body is at least two of the frame-shaped ground improvement walls in plan view. It is characterized in that it is formed in a shape along the ground improvement wall.

請求項3に記載した発明は、請求項1又は2に記載した沈下抑制対象物の沈下抑制構造において、前記部分的地盤改良体は、その内側縁が、平面視にて、前記沈下抑制対象物に接する程度に近接、前記沈下抑制対象物と離間、及び、前記沈下抑制対象物とラップの内いずれか1つ又は2つ以上の組み合わせにより形成されていることを特徴とする。   The invention described in claim 3 is the subsidence suppression structure of the subsidence suppression object according to claim 1 or 2, wherein the partial ground improvement body has an inner edge in plan view, the subsidence suppression object. It is formed by one or a combination of two or more of proximity, separation from the settlement suppression target object, and the settlement suppression target object and wrap.

請求項4に記載した発明は、請求項1〜3のいずれか1項に記載した沈下抑制対象物の沈下抑制構造において、前記枠状の地盤改良壁は、非液状化層には到達しない深さに設定されていることを特徴とする。   According to a fourth aspect of the present invention, in the subsidence suppression structure for a subsidence suppression object according to any one of the first to third aspects, the frame-shaped ground improvement wall has a depth that does not reach the non-liquefied layer. Is set in the following manner.

本発明に係る沈下抑制対象物の沈下抑制構造によれば、以下の作用効果を奏する。
(1)枠状の地盤改良壁と部分的地盤改良体とを各々独立した構成で併用したことで、沈下抑制対象物の沈下量を低減する効果は、以下に説明した実験結果や解析結果から明らかなように、前記枠状の地盤改良壁の単独施工と比し、向上することが分かった。さらに云えば、沈下量を無対策時の60%以下に低減できることが分かった。
(2)前記部分的地盤改良体は、前記沈下抑制対象物と一切接合することなく実施できるので、前記沈下抑制対象物は、住宅等の不動産に適用できることはもとより、例えばコンテナ等の輸送用収容体が積載されるコンテナヤードでも十分に適用できる。
(3)前記部分的地盤改良体は、平面視にて前記沈下抑制対象物を避けて造成することをコンセプトにしているので、構造物を新設する場合はもとより、既設構造物にも好適に実施できる。
(4)前記部分的地盤改良体は、前記枠状の地盤改良壁と離間した独立した構成で造成(構築)するので、前記特許文献1、2にかかる問題も生じない。すなわち、前記部分的地盤改良体が沈下しても、枠状の地盤改良壁が変形したり、沈下したりする等の悪影響を一切受けない。よって、枠状の地盤改良壁全体の面外変形が増大したり、せん断変形抑制効果が低下したりする問題も生じない。
(5)前記部分的地盤改良体と前記枠状の地盤改良壁とは各々独立して内外に別異に造成する構成なので、前記特許文献1、2と比し、画像解析や構造設計はもとより、造成作業も明解に分担できる等、シンプル且つ容易である。また、前記部分的地盤改良体と前記枠状の地盤改良壁との造成作業は、ある程度のタイムラグが許容できる等、融通性に優れている。加えて、改修・補修工事もそれぞれ別異に行うことができるので、自在性にも優れている。
(6)まとめると、本発明は、枠状(格子状)の地盤改良壁と部分的地盤改良体とを各々独立した構成で併用することにより、前記特許文献1、2に係る課題をすべて解消できることはもとより、汎用性に特に優れた沈下抑制対象物の沈下抑制構造を実現することができる。
The subsidence suppression structure for a subsidence suppression object according to the present invention has the following effects.
(1) The effect of reducing the amount of subsidence of the subsidence suppression object by combining the frame-shaped ground improvement wall and the partial ground improvement body in an independent configuration is based on the experimental results and analysis results explained below. As is apparent, it was found that the frame-shaped ground improvement wall was improved as compared with the single construction. Furthermore, it was found that the amount of settlement can be reduced to 60% or less when no countermeasure is taken.
(2) Since the partial ground improvement body can be carried out without being joined to the settlement suppression object at all, the settlement suppression object is applicable not only to real estate such as housing but also, for example, storage for transportation of containers etc. It can be applied to container yards where the body is loaded.
(3) Since the partial ground improvement body is based on the concept that it is created by avoiding the settlement suppressing object in a plan view, the construction is suitably carried out not only for the existing structure but also for the construction of a new structure. it can.
(4) Since the partial ground improvement body is built (built) in an independent configuration separated from the frame-like ground improvement wall, the problems relating to the Patent Documents 1 and 2 do not occur either. That is, even if the partial ground improvement body sinks, there is no adverse effect such as deformation or sinking of the frame-shaped ground improvement wall. Therefore, the problem that the out-of-plane deformation of the entire frame-shaped ground improvement wall increases or the shear deformation suppressing effect is reduced does not occur.
(5) Since the partial ground improvement body and the frame-like ground improvement wall are independently constructed separately inside and outside, the image analysis and the structural design as well as the Patent Documents 1 and 2 are not limited. It is simple and easy, as the creation work can be clearly shared. In addition, the creation work of the partial ground improvement body and the frame-shaped ground improvement wall is excellent in flexibility, such as allowing a certain amount of time lag. In addition, renovation and repair work can be performed separately, so it has excellent flexibility.
(6) In summary, the present invention eliminates all the problems related to Patent Documents 1 and 2 by using a frame-like (lattice-like) ground improvement wall and a partial ground improvement body together in an independent configuration. Not only can it be done, but it is possible to realize the sinking suppression structure of the sinking suppression object which is particularly excellent in versatility.

Aは、本発明に係る沈下抑制対象物(図示例はコンテナの集合体)の沈下抑制構造の実施例1を示した平面図であり、Bは、AのB−B線矢視断面図である。A is the top view which showed Example 1 of the subsidence suppression structure of the subsidence suppression target object (illustration example is an aggregate | assembly of a container) which concerns on this invention, B is A BB arrow sectional drawing of A. is there. Aは、前記実施例1のバリエーションを示した平面図であり、Bは、AのB−B線矢視断面図である。A is a plan view showing a variation of the first embodiment, and B is a cross-sectional view taken along the line B-B of A. Aは、地盤(軟弱地盤)上に沈下抑制対象物を設置しただけで沈下抑制手段を導入していない無対策状態を示した平面図であり、Bは、同立面図である。A is the top view which showed the non-measures state which did not introduce the subsidence suppression means only by installing the subsidence suppression object on the ground (soft ground), and B is an elevational view. Aは、前記図3の状態から枠状(格子状)の地盤改良壁を造成した状態を示した平面図であり、Bは、AのB−B線矢視断面図である。A is a plan view showing a state in which a frame-like (lattice-like) ground improvement wall is constructed from the state of FIG. 3, and B is a cross-sectional view taken along the line B-B of A. FIG. Aは、遠心模型振動実験の実験ケース(Case−A〜C)を示した表であり、Bは、前記実験ケース中、Case−Bの振動台で計測した水平応答加速度の時刻歴を示したグラフであり、Cは、前記実験ケースの沈下抑制対象物(コンテナ)の沈下量を示した表である。A is a table showing an experimental case (Case-A to C) of a centrifugal model vibration experiment, and B shows a time history of horizontal response acceleration measured by a Case-B shaking table in the experimental case. It is a graph, C is the table which showed the amount of settlement of the settlement control object (container) of the above-mentioned experiment case. A〜Cは、前記実験ケース(Case−A〜C)を示した計測器配置図である。AC is a meter arrangement | positioning figure which showed the said experimental case (Case-AC). Aは、解析モデル図であり、Bは、図8の表中、Case−1、2、3の各実施状況を概略的に示した立断面図である。なお、AのQ−Q断面図中の符号▽は、地下水位を示す。A is an analysis model diagram, and B is an elevation cross-sectional view schematically showing each implementation of Case-1, 2 and 3 in the table of FIG. The symbol ▽ in the QQ sectional view of A indicates the groundwater level. 本発明に係る沈下抑制対象物の沈下抑制構造のバリエーション(Case−1〜13)の解析結果を纏めた表である。It is the table | surface which put together the analysis result of the variation (Case-1-13) of the settlement suppression structure of the settlement suppression object which concerns on this invention. A〜Dは、図8の表中、順に、Case−9、11、12、13の実施状況を概略的に示した立断面図である。A to D are elevation sectional views schematically showing the implementation states of Case-9, 11, 12, and 13 in order in the table of FIG. 前記無対策の初期応力状態でのせん断応力コンター図である。It is a shear stress contour figure in the above-mentioned non-measure initial stress state. A〜Cは、本発明に係る沈下抑制対象物の沈下抑制構造の更なるバリエーションを概略的に示した平面図である。A to C are plan views schematically showing further variations of the settlement suppressing structure of the settlement suppressing object according to the present invention.

次に、本発明に係る沈下抑制対象物の沈下抑制構造の実施例を図面に基づいて説明する。   Next, an embodiment of the settlement suppressing structure of the settlement suppressing object according to the present invention will be described based on the drawings.

本発明に係る沈下抑制対象物の沈下抑制構造は、図1A、Bに示したように、地盤10上に支持された沈下抑制対象物1と、前記地盤10中に平面視にて前記沈下抑制対象物1を取り囲むように造成された枠状の地盤改良壁2と、平面視にて前記沈下抑制対象物1の外側面と前記枠状の地盤改良壁2の内側面との間の地盤10を部分的に板状に改良してなる部分的地盤改良体3とからなり、前記部分的地盤改良体3は、前記枠状の地盤改良壁2よりも深度が浅く形成され、前記枠状の地盤改良壁2と離間して設けられている。   As shown in FIGS. 1A and 1B, the settlement restraining structure for a settlement restraining object according to the present invention includes the settlement restraining object 1 supported on the ground 10, and the settlement restraining in plan view in the ground 10. A frame-like ground improvement wall 2 formed so as to surround the object 1, and a ground 10 between the outer side surface of the subsidence suppression target object 1 and the inner side surface of the frame-like ground improvement wall 2 in plan view. The partial ground improvement body 3 is formed with a depth smaller than that of the frame-shaped ground improvement wall 2 and is partially improved. It is provided separately from the ground improvement wall 2.

前記地盤10は、地下水位がGL−1.5mで、液状化層Sの深さが20.0m(GL−1.5m〜GL−21.5m)で、液状化層Sの直下に非液状化層(例えば砕石層)Tを有する軟弱地盤である。   The ground 10 has a groundwater level of GL-1.5 m, a depth of the liquefied layer S of 20.0 m (GL-1.5 m to GL-21.5 m), and is non-liquid under the liquefied layer S. It is a soft ground with a hardened layer (eg crushed stone layer) T.

前記沈下抑制対象物1は、地盤10上のコンテナヤードに整列させて段積みした複数のコンテナ1aを1つの集合体としている。通常、コンテナ1aは、門型のコンテナ用クレーンの走行方向(通常、図1Aの上下方向)に連続して設置されるものであるが、本明細書では説明の便宜上、1個あたり幅2.4m、奥行12.2m、高さ2.6mのサイズのコンテナ1aを、当該幅方向に適宜間隔をあけて6列、高さ方向に4段の計24個集合させた一塊を沈下抑制対象物1としている。   The settlement control target object 1 forms a plurality of containers 1a stacked and stacked in line in a container yard on the ground 10 as one assembly. Usually, the container 1a is continuously installed in the traveling direction of the portal container crane (usually the vertical direction in FIG. 1A). Subsidence suppression object for a set of 24 containers of 4m in depth, 12.2m in height and 2.6m in height, gathered in a total of 24 rows in 6 rows and 4 steps in the height direction at appropriate intervals in the width direction 1 is assumed.

前記枠状の地盤改良壁2は、地盤(軟弱地盤)10にセメント系固化材を混合・撹拌して構築される柱状の改良体を隣接間でオーバーラップさせた状態で格子状に連続配置させるTOFT工法(登録商標)で構築されている。
図示例に係る枠状の地盤改良壁2は、格子間隔(格子中心間隔)Lが縦横ともに25m、壁厚が1.0m、高さが前記液状化層Sと同じ20.0m(GL−1.5m〜GL−21.5m)で実施されている。
The frame-shaped ground improvement wall 2 is continuously arranged in a grid shape in a state in which a columnar improvement body constructed by mixing and stirring a cement-based solidifying material in the ground (soft ground) 10 is overlapped between adjacent portions. It is constructed with the TOFT method (registered trademark).
The frame-shaped ground improvement wall 2 according to the illustrated example has a lattice spacing (lattice center spacing) L of 25 m in both length and width, a wall thickness of 1.0 m, and a height of 20.0 m (GL-1) which is the same as that of the liquefied layer S. 0.5m to GL-21.5m).

前記部分的地盤改良体3は、本実施例では、平面視にて、前記枠状の地盤改良壁2に沿う矩形状(斜線参照)に造成されている。
また、前記部分的地盤改良体3は、その外側面3aが、前記枠状の地盤改良壁2(の内側面)に対し、0.3m離間して形成され、その内側面3bが、平面視にて、前記沈下抑制対象物1に接する程度に近接して(略面一状態に)造成されている。
さらに、前記部分的地盤改良体3は、図1Bに示すように、高さ寸法が2.5m(GL−1.5m〜GL−4.0m)であり、天端を前記枠状の地盤改良壁2(地下水位)と同等に設定して造成されている。
なお、上記した形態の部分的地盤改良体3の施工には、公知の機械式撹拌や噴射式撹拌による地盤改良工法、或いは薬液注入による方法が、施工スペース等に応じて適宜採用して実施される。
In the present embodiment, the partial ground improvement body 3 is formed in a rectangular shape (see hatched lines) along the frame-like ground improvement wall 2 in a plan view.
Further, the partial ground improvement body 3 is formed such that an outer surface 3a thereof is separated from the frame-like ground improvement wall 2 (inner side surface) by 0.3 m, and an inner side surface 3b thereof is viewed in plan view. In this case, it is formed close to (approximately flush with) the extent to which the object 1 for settlement control is in contact.
Furthermore, as shown in FIG. 1B, the partial ground improvement body 3 has a height dimension of 2.5 m (GL-1.5 m to GL-4.0 m), and the ground improvement of the frame-like ground improvement It is constructed with the same setting as wall 2 (groundwater level).
In addition, for the construction of the partial ground improvement body 3 having the above-described form, a known ground improvement method by mechanical stirring or jet stirring, or a method by chemical solution injection is appropriately adopted depending on the construction space or the like. Ru.

まとめると、本発明は、上記したように、前記沈下抑制対象物1の周辺地盤に公知のTOFT工法(登録商標)等による枠状(格子状)の地盤改良壁2を造成することに加え、今般新たに補助的な液状化対策工として前記形態の部分的地盤改良体3を導入したことを特徴とする。
前記部分的地盤改良体3の液状化対策工を今般新たに付加した根拠は、例えば、図10に示した「せん断応力コンター図」が挙げられる。
これは、地盤(10)上に沈下抑制対象物(1)を設置しただけで沈下抑制手段を導入していない無対策時(図3A、B参照)の初期応力状態(液状化層のせん断剛性を1/300に低下させる前)でのせん断応力コンター図(単位:kPa)である。地下水位はGL−2.8mである。
この図10において、沈下抑制対象物(1)の端部から枠状の地盤改良壁(2)が入る位置の中間あたり(A部)まで初期せん断応力が大きい。逆に、沈下抑制対象物の直下の中央部(B部)では初期せん断応力が小さい。これは、前記A部の地盤は、沈下抑制対象物の自重による初期せん断応力が作用しているので、初期状態で前記B部の地盤に比べ、破壊面に近い状態にあることを示している。
そこで、本出願人らは、初期状態で破壊面から遠い位置にある前記B部の地盤に未改良部を残しても沈下抑制効果への影響は少なく、逆に、破壊面に近い位置にある前記A部の地盤の表層部を部分的に改良すると沈下抑制効果への影響が大きく、前記枠状の地盤改良壁2と併用したときには高い効果が得られることに着目して、本提案に至ったのである。
In summary, the present invention, as described above, in addition to creating a frame-like (lattice-like) ground improvement wall 2 by a known TOFT method (registered trademark) or the like on the ground surrounding the subsidence suppression object 1, This time, it is characterized in that a partial ground improvement body 3 of the above-mentioned form is introduced as a new auxiliary liquefaction countermeasure work.
The reason why the liquefaction countermeasure work for the partial ground improvement body 3 is newly added is, for example, the “shear stress contour diagram” shown in FIG.
This is because the initial stress state (see Fig. 3A and B) of the initial stress state (liquefied layer) is not established (refer to Figs. 3A and 3B) without setting the settlement suppressing means only by installing the settlement suppressing object (1) on the ground (10). FIG. 2 is a shear stress contour diagram (unit: kPa) in FIG. The groundwater level is GL-2.8m.
In FIG. 10, the initial shear stress is large from the end of the settlement suppression object (1) to the middle of the position where the frame-like ground improvement wall (2) enters (A part). On the other hand, the initial shear stress is small at the central portion (B portion) directly under the object of subsidence suppression. This indicates that the ground of the part A is in a state closer to the fracture surface in the initial state than the ground of the part B, since the initial shear stress by the self-weight of the object of settlement control is applied. .
Therefore, the present applicants have little influence on the settlement suppression effect even if an unimproved portion is left in the ground of the B portion that is far from the fracture surface in the initial state, and conversely, the location is close to the fracture surface. Partial improvement of the surface part of the ground of the part A significantly affects the settlement suppressing effect, and focusing on the fact that high effects can be obtained when used together with the frame-shaped ground improvement wall 2, the present proposal It is

本出願人らは、上述した発明の構成の作用効果を確認するべく、前記実施例1の構成に則った遠心模型振動実験(60G場)を行った。以下、具体的に説明する。   Applicants conducted a centrifugal model vibration experiment (60 G field) according to the configuration of Example 1 in order to confirm the operation and effect of the configuration of the invention described above. The details will be described below.

<遠心模型振動実験の概要>
図5Aに5種(Case−A、Case−B(1)、(2)、Case−C(1)、(2))の実験概要を示す。図6は、当該5種に対応した計測器配置図(縮尺:1/60)を示す。
以下、特に記載のない限り、前記沈下抑制対象物1を「コンテナ1」、前記枠状の地盤改良壁2を「格子壁2」、前記部分的地盤改良体3を「板状改良体3」と表記する。前記枠状の地盤改良壁2の一軸圧縮強度は、1500kPaである。
また、図6は、図示の便宜上、格子壁2が横長の長方形状としている。
<Outline of centrifugal model vibration experiment>
FIG. 5A shows an experimental outline of five types (Case-A, Case-B (1), (2), Case-C (1), (2)). FIG. 6 shows a measurement device layout (scale: 1/60) corresponding to the five types.
Unless otherwise specified, the subsidence suppression object 1 is “container 1”, the frame-shaped ground improvement wall 2 is “lattice wall 2”, and the partial ground improvement body 3 is “plate-like improvement body 3”. It is written as The uniaxial compressive strength of the frame-shaped ground improvement wall 2 is 1500 kPa.
In FIG. 6, the lattice wall 2 has a horizontally long rectangular shape for convenience of illustration.

具体的に、前記Case−Aは、地盤10上にコンテナ1を設置しただけで沈下抑制手段を導入していない無対策状態のケースである(図3参照)。
前記Case−B(1)は、前記Case−Aにかかるコンテナ1の周囲に、前記実施例1に係る構成の格子壁2を造成したケースである(図4参照)。
前記Case−B(2)は、前記Case−B(1)にかかる格子壁2の内側に、前記実施例1に係る構成の板状改良体3と比して高さを2倍として板状に改良した部分的地盤改良体13を造成したケースである(図2参照)。前記部分的地盤改良体13の一軸圧縮強度は、150kPaである。
前記Case−C(1)は、前記Case−B(1)にかかる格子壁2の内側に、まさに前記実施例1に係る構成の板状改良体3を造成したケースである(図1参照)。前記板状改良体3の一軸圧縮強度は、800kPaである。
前記Case−C(2)は、外形(形態や寸法)は、前記Case−B(2)と同一であるが(図2参照)、前記板状改良体3の一軸圧縮強度は、800kPaである。
Specifically, the Case-A is a case in which no countermeasure is taken in that the subsidence suppression means is not introduced just by installing the container 1 on the ground 10 (see FIG. 3).
The Case-B (1) is a case in which the lattice wall 2 of the configuration according to the first embodiment is formed around the container 1 according to the Case-A (see FIG. 4).
The Case-B (2) has a plate-like shape on the inside of the lattice wall 2 according to the Case-B (1) with a height twice as high as that of the plate-like improved body 3 according to the first embodiment. This is a case where the partial ground improvement body 13 improved to (1) is created (see FIG. 2). The uniaxial compressive strength of the partial ground improvement body 13 is 150 kPa.
The Case-C (1) is a case in which the plate-like improved body 3 having the configuration according to the Example 1 is formed inside the lattice wall 2 according to the Case-B (1) (see FIG. 1). . The uniaxial compression strength of the plate-like modified body 3 is 800 kPa.
The Case-C (2) has the same outer shape (shape and dimensions) as the Case-B (2) (see FIG. 2), but the uniaxial compressive strength of the plate-like improved body 3 is 800 kPa. .

前記実験の入力地震動には南海トラフを想定した地震波を用いた。
図5Bに示すのは、Case−Bの振動台で計測した水平応答加速度の時刻歴を示す。最大加速度は227Galであった。
コンテナ1として、前記実施例1に係る構成、すなわち、コンテナ(幅2.4m、奥行12.2m、高さ2.6m)を適宜間隔(0.3mを2箇所)をあけて水平方向に6列、高さ方向に4段積み上げた状態をモデル化したコンテナ模型を製作した。コンテナ部の加振方向幅は15.0m、加振直交方向幅は12.2m、高さは10.4mである。また、コンテナ接地圧は、42.89kPaである。
地下水位は、前記実施例1と同様に、GL−1.5mに設定した。液状化層も前記実施例1と同様に、GL−1.5m〜GL−21.5mで、Dr(相対密度)=70%で模型地盤を作成した。
For the input ground motion in the experiment, seismic waves assuming the Nankai Trough were used.
FIG. 5B shows a time history of horizontal response acceleration measured with a Case-B shaking table. The maximum acceleration was 227 Gal.
As the container 1, the configuration according to Example 1 described above, that is, the container (width 2.4m, depth 12.2m, height 2.6m) is separated by 6 in the horizontal direction with appropriate intervals (0.3m in two places). A container model was created that models the state of four rows stacked in a row and height direction. The width of the container in the direction of vibration is 15.0 m, the width in the direction perpendicular to vibration is 12.2 m, and the height is 10.4 m. The container ground pressure is 42.89 kPa.
The groundwater level was set to GL-1.5 m as in Example 1. In the same manner as in Example 1, the liquefied layer was GL-1.5 m to GL-21.5 m, and a model ground was prepared with Dr (relative density) = 70%.

<実験結果及び考察>
図5Cは、前記5種のCase−A、B、Cの沈下抑制対象物1(コンテナ)沈下量を示している。
なお、本発明に係る格子壁2と板状改良体3とを併用した場合の沈下抑制効果は、単なる格子壁2のみの沈下抑制効果よりも高ければよく、より好ましくは、無対策の沈下量と比し、60%以下に軽減できれば十分に効果有りと云える。
<Experimental result and consideration>
FIG. 5C shows the amount of subsidence 1 (container) subsidence of the five types of Case-A, B, and C.
In addition, the settlement suppression effect at the time of using the lattice wall 2 and the plate-like modified body 3 according to the present invention in combination may be higher than the settlement suppression effect of only the lattice wall 2 alone, more preferably, the settlement amount without measures If it can be reduced to 60% or less, it can be said that there is a sufficient effect.

以上を踏まえ、図5Cの実験結果を参照すると、Case−A(図3参照)にかかる無対策の平均沈下量が、0.641mであるのに対し、Case−B(1)(図4参照)にかかる格子壁2を用いた場合の平均沈下量は0.396mであり、コンテナ沈下量を無対策の場合の62%に低減する効果がある。
さらに、本発明の構成のように、Case−B(2)(図2参照)にかかる格子壁2と板状改良体3とを併用した場合の平均沈下量は0.252mであり、コンテナ沈下量を無対策の場合の39%に低減する効果が認められた。すなわち、前記板状改良体3を併用することによってコンテナ沈下量を抑制する効果が高くなる。
次に、前記実施例1の構成であるCase−C(1)(図1参照)にかかる平均沈下量は0.255mであり、コンテナ沈下量を無対策の場合の40%に低減する効果がある。
次に、Case−C(2)(図2参照)にかかる平均沈下量は0.178mであり、コンテナ沈下量を無対策の場合の28%に低減する効果がある。
Based on the above, referring to the experimental results in FIG. 5C, the average unsettled amount of Case-A (see FIG. 3) is 0.641 m, whereas Case-B (1) (see FIG. 4). ) Has an effect of reducing the container settlement amount to 62% in the case of no countermeasure.
Furthermore, as in the configuration of the present invention, when using the lattice wall 2 according to Case-B (2) (see FIG. 2) and the plate-like modified body 3 in combination, the average amount of settlement is 0.252 m. The effect of reducing the amount to 39% in the case of no measures was recognized. That is, the effect of suppressing the amount of container settlement is enhanced by using the plate-like improved body 3 in combination.
Next, the average subsidence amount of Case-C (1) (see FIG. 1), which is the configuration of Example 1, is 0.255 m, and the effect of reducing the container subsidence amount to 40% in the case of no countermeasures. is there.
Next, the average amount of subsidence applied to Case-C (2) (see FIG. 2) is 0.178 m, and there is an effect of reducing the amount of container subsidence to 28% when no countermeasure is taken.

また、Case−Bに比べてCase−Cの板状改良体3の一軸圧縮強度が高いことから、板状改良体3の改良深度が同じ場合、板状改良体3の強度の高い方が、沈下抑制対象物1(コンテナ)の沈下抑制効果が高い。
Case−Cの板状改良体3の一軸圧縮強度が同じであることから、板状改良体3の改良深度の深い方が、沈下抑制対象物1(コンテナ)の沈下抑制効果が高い。
Moreover, since the uniaxial compressive strength of the plate-like improved body 3 of Case-C is higher than that of Case-B, when the improvement depth of the plate-like improved body 3 is the same, the higher strength of the plate-like improved body 3 is The settlement suppression effect of the settlement suppression object 1 (container) is high.
Since the uniaxial compressive strength of the plate-like improved body 3 of Case-C is the same, the deeper improvement depth of the plate-like improved body 3 has a higher settlement suppression effect of the settlement suppression object 1 (container).

次に、本出願人らは、前記遠心模型振動実験に比べて簡易な方法ではあるが、前記部分的地盤改良体3の形態バリエーションについて、種々の解析を行った。   Next, although the present inventors are a simple method compared with the said centrifugal model vibration experiment, they analyzed various about the form variation of the said partial ground improvement body 3. As shown in FIG.

<解析の概要>
(その1)
図7Aは、沈下抑制対象物1(コンテナ)に対する沈下抑制対策として、格子間隔25mの格子壁2での対策検討で用いた解析モデルを示している。
地下水位は、GL−2.8m。液状化層の深さは17.2m(GL−2.8m〜GL−20.0m)。液状化層Sの直下に非液状化層(砂礫層)を有する。
また、接地圧41.8kPaのコンテナ1の周囲を、格子間隔25mの格子壁2で囲っている。格子壁2の改良深度は、液状化層と同じ17.2m(GL−2.8m〜GL−20.0m)。格子壁2の幅は0.9mである。格子壁2のせん断剛性は700,000(kPa)。板状改良体3のせん断剛性は、格子壁2の1/5の140,000(kPa)とした。
図7Bは、後述する解析ケース(Case−1〜13)のうち、Case−1〜3の各実施状況を概略的に示した立断面図である。
(その2)
図8は、前記解析モデルを用いて行った解析ケース(Case−1〜13)の検討結果を纏めた表である。
図8の表中、「格子間隔」は、前記格子壁2の格子中心間隔を示している。「未改良部有り(幅0.1m)」又は「未改良部有り(幅0.5m)」は、前記格子壁2の内側面と前記板状改良体3の外側面との離間距離(Do)が0.1m又は0.5mであることを示している(ちなみに前記実施例1では、0.3m)。
また、「格子内全て」は、前記板状改良体3を、前記格子壁2で囲った軟弱地盤の全面を覆う板状に形成したことを示している(図7Bの右図参照)。「コンテナにかからない」は、図9Bに示すように、板状改良体3の内側面3bが、平面視にて、前記コンテナ1に接する程度に近接して(略面一状態に)造成されていることを示している。「コンテナ下1mかかる」は、図9Aに示すように、前記板状改良体3が、平面視にて、前記コンテナ1と1mラップするように形成されていることを示している。ここで、このラップを符号Lで表し、後述するコンテナ1と板状改良体3との離間距離(スペース)を符号Diで表す。
(その3)
沈下抑制対策効果を検討するための本解析手法には、液状化層のせん断剛性を初期せん断剛性から一定の割合で低下させて自重解析を行い、自重解析結果から得られる沈下抑制対象物1(コンテナ)の沈下量で沈下抑制対策効果を評価する簡易な手法を用いた。
検討では、液状化層のせん断剛性を、初期せん断剛性の1/300に低下させた。液状化層は、Mohr‐Coulombモデルでモデル化した弾塑性解析を実施している。
<Overview of analysis>
(1)
FIG. 7A shows an analysis model used in a countermeasure study on a lattice wall 2 having a lattice interval of 25 m as a settlement suppression measure for the settlement suppression target 1 (container).
The groundwater level is GL-2.8m. The depth of the liquefied layer is 17.2 m (GL-2.8 m to GL-20.0 m). A non-liquefied layer (sand gravel layer) is provided immediately below the liquefied layer S.
In addition, the periphery of the container 1 having a contact pressure of 41.8 kPa is surrounded by the lattice wall 2 having a lattice spacing of 25 m. The improvement depth of the lattice wall 2 is 17.2 m (GL-2.8 m to GL-20.0 m), which is the same as that of the liquefied layer. The width of the lattice wall 2 is 0.9 m. The shear rigidity of the lattice wall 2 is 700,000 (kPa). The shear rigidity of the plate-like modified body 3 was set to 140,000 (kPa) which is 1/5 of the lattice wall 2.
FIG. 7B is an elevational cross-sectional view schematically showing implementation states of Cases 1 to 3 in analysis cases (Case-1 to 13) described later.
(Part 2)
FIG. 8 is a table summarizing examination results of analysis cases (Case-1 to Case 13) performed using the analysis model.
In the table of FIG. 8, “lattice interval” indicates the lattice center interval of the lattice wall 2. “Unmodified part (0.1 m in width)” or “Unmodified part (0.5 m in width)” is the distance between the inner surface of the lattice wall 2 and the outer surface of the plate-like improved body 3 (Do ) Is 0.1 m or 0.5 m (by the way, in Example 1, 0.3 m).
Further, “all in the lattice” indicates that the plate-like improved body 3 is formed in a plate shape covering the entire surface of the soft ground surrounded by the lattice wall 2 (see the right figure in FIG. 7B). As shown in FIG. 9B, “not applied to the container” is formed so that the inner side surface 3b of the plate-like improvement body 3 is close enough to be in contact with the container 1 in a plan view (substantially flush). Show that. “It takes 1 m under the container” indicates that the plate-like improvement body 3 is formed so as to overlap with the container 1 in a plan view as shown in FIG. 9A. Here, this lap is represented by a symbol L, and a separation distance (space) between a container 1 and a plate-like improvement body 3 described later is represented by a symbol Di.
(3)
In this analysis method for examining the settlement suppression measures effect, the shear rigidity of the liquefaction layer is reduced at a constant rate from the initial shear rigidity and the self weight analysis is performed, and the settlement suppression object 1 obtained from the self weight analysis result ( A simple method was used to evaluate the effect of subsidence suppression measures based on the amount of subsidence.
In the examination, the shear stiffness of the liquefaction layer was reduced to 1/300 of the initial shear stiffness. The liquefaction layer performs elasto-plastic analysis modeled by Mohr-Coulomb model.

<考察>
(Case−1)
地盤10上にコンテナ1を設置しただけで沈下抑制手段を導入していない無対策状態のケースを示している(図7Bの左図参照)。
この無対策のコンテナ沈下量は、図8の右端欄の通り、0.40mであった。
(Case−2)
前記無対策状態から、格子間隔25mの格子壁2の対策を行ったケースを示している(図7Bの中央図参照)。コンテナ沈下量は0.30mであり、無対策と比し、0.1mの低減効果が認められた。
(Case−3)
参考までに、格子壁2と軟弱地盤の全面を覆う板状に形成した改良体(高さ寸法1.0m:GL−2.8m〜GL−3.8m)とを併用する対策を行ったケースを示している(図7Bの右図参照)。コンテナ沈下量は0.15mであり、無対策と比し、0.25mの低減効果が認められた。
(Case−4)
参考までに、格子壁2と板状改良体3(高さ寸法2.2m:GL−2.8m〜GL−5.0m)とを併用し、かつ両者を剛結する一方、前記板状改良体3とコンテナ1とは、平面視にて略面一状態(図9B参照)とする対策を行ったケースを示している。コンテナ沈下量は0.16mであり、無対策と比し、0.24mの低減効果が認められた。
<Discussion>
(Case-1)
A case is shown in which the container 1 is simply installed on the ground 10 and no countermeasures against settlement are introduced (see the left figure in FIG. 7B).
The amount of unsettled container settlement was 0.40 m as shown in the rightmost column of FIG.
(Case-2)
The case where the countermeasure of the lattice wall 2 of 25 m of lattice intervals is taken is shown from the said non-measure state (refer the center figure of FIG. 7B). The container subsidence amount was 0.30 m, and a reduction effect of 0.1 m was recognized compared with no countermeasures.
(Case-3)
For reference, a case where measures are taken together with the lattice wall 2 and a plate-shaped improved body (height dimension: 1.0 m: GL-2.8 m to GL-3.8 m) formed to cover the entire surface of the soft ground (See the right figure in FIG. 7B). The container subsidence amount was 0.15 m, and a reduction effect of 0.25 m was recognized compared with no countermeasure.
(Case-4)
For reference, the lattice wall 2 and the plate-like improvement body 3 (height dimension 2.2 m: GL-2.8 m to GL-5.0 m) are used in combination and rigidly connected to each other. The body 3 and the container 1 show a case where measures are taken so as to be substantially flush (see FIG. 9B) in plan view. The container subsidence amount was 0.16 m, and a reduction effect of 0.24 m was recognized compared with no countermeasure.

以下に説明するCase−5〜13はそれぞれ、本発明に係る上記実施例1のバリエーションを示している。
各バリエーションのコンテナ沈下量は、前記遠心模型振動実験の場合と同様に、単なる格子壁2のみの沈下抑制効果(Case−2の0.3m)よりも高ければよく、より好ましくは、無対策の沈下量(Case−1の0.4m)と比し、60%以下に軽減できれば十分に効果有りと考える。
Case-5 to 13 described below each show a variation of the first embodiment according to the present invention.
As in the case of the above-mentioned centrifugal model vibration experiment, the container settlement amount of each variation may be higher than the settlement suppression effect (0.3 m of Case-2) of only the lattice wall 2 alone, and more preferably, no countermeasure If it can be reduced to 60% or less compared to the amount of settlement (0.4 m of Case-1), it is considered to be sufficiently effective.

(Case−5)
格子壁2と板状改良体3(高さ寸法1.0m:GL−2.8m〜GL−3.8m)とを併用し、かつ両者を0.1m離間する一方、前記板状改良体3とコンテナ1とは、平面視にて略面一状態(図9B参照)とする対策を行ったケースを示している。
コンテナ沈下量は0.18mであり、無対策の場合の45%に低減する効果が認められた。よって、本発明に十分に適用可能な構成であることが分かった。
(Case−6)
前記Case−5に係る板状改良体3の高さ寸法を1.0mから2.2m(GL−2.8m〜GL−5.0m)に高く形成したケースを示している。
コンテナ沈下量は0.16mであり、無対策の場合の40%に低減する効果が認められた。よって、本発明に十分に適用可能な構成であることが分かった。
また、このCase−6とCase−4とは、剛結しているか否かの違いしかなく、そうするとコンテナ沈下量は、小数第二位まではともに0.16mとほとんど変わらないことから、格子壁2と板状改良体3とは剛結していても、0.1m離間していても、液状化対策効果に差がないことが分かった。
(Case−7)
前記Case−5に係る板状改良体3の高さ寸法を1.0mから7.2m(GL−2.8m〜GL−10.0m)に高く形成したケースを示している。
コンテナ沈下量は0.12mであり、無対策の場合の30%に低減する効果が認められた。よって、本発明に十分に適用可能な構成であることが分かった。
また、Case−5、6、7は、板状改良体3の高さ寸法(改良厚さ)が低いか高いかの違いしかなく、そうすると、高さ寸法が高くなるとコンテナ沈下量を低減させる効果は大きくなることが分かった。
さらに、高さ寸法が2.2mのCase−6のコンテナ沈下量(0.16m)は、高さ寸法が1.0mの前記軟弱地盤の全面を覆う板状に形成した改良体のコンテナ沈下量(0.15m)とほぼ同等であることから、格子壁2に板状改良体3を併用する場合、当該板状改良体3の改良深度(高さ寸法)を適切に設定すれば、格子壁2内の軟弱地盤の全面に板状の改良体を施工するのと同等の効果が得られることが分かった。
(Case-5)
While the lattice wall 2 and the plate-like improvement body 3 (height dimension: 1.0 m: GL-2.8 m to GL-3.8 m) are used in combination and separated from each other by 0.1 m, the plate-like improvement body 3 And the container 1 has shown the case where the measure made into a substantially flush state (refer FIG. 9B) in planar view was performed.
The container subsidence amount was 0.18 m, and an effect of reducing it to 45% in the case of no measures was recognized. Therefore, it turned out that it is the structure applicable enough to this invention.
(Case-6)
The case where the height dimension of the plate-shaped improvement body 3 which concerns on said Case-5 was formed high from 1.0 m to 2.2 m (GL-2.8m-GL-5.0m) is shown.
The amount of container subsidence was 0.16 m, and an effect of reducing it to 40% when no countermeasure was taken was recognized. Therefore, it was found that the configuration is sufficiently applicable to the present invention.
In addition, Case-6 and Case-4 only differ in whether they are rigid or not, and then the container settlement amount hardly changes from 0.16 m to the second decimal place, so the lattice wall It was found that there was no difference in the liquefaction countermeasure effect even if 2 and the plate-like improved body 3 were rigidly connected or separated by 0.1 m.
(Case-7)
The case where the height dimension of the plate-like improved body 3 which concerns on said Case-5 was formed high in 1.0 m-7.2 m (GL-2.8 m-GL-10.0 m) is shown.
The amount of container subsidence was 0.12 m, and an effect of reducing it to 30% when no countermeasure was taken was recognized. Therefore, it was found that the configuration is sufficiently applicable to the present invention.
Moreover, Case-5, 6, 7 has only the difference whether the height dimension (improved thickness) of the plate-like modified body 3 is low or high, and in that case, the effect of reducing the amount of container settlement when the height dimension becomes high. Was found to be large.
Furthermore, the container settlement amount (0.16 m) of Case-6 with a height dimension of 2.2 m is the container settlement amount of the improved body formed in a plate shape covering the entire soft ground with a height dimension of 1.0 m. (0.15 m) is almost equivalent to the lattice wall 2, when the plate-like improvement body 3 is used together, if the improvement depth (height dimension) of the plate-like improvement body 3 is appropriately set, the lattice wall It was found that the same effect as that obtained by constructing a plate-like improved body over the entire soft ground in No. 2 was obtained.

(Case−8〜Case−10)
このCase−8〜Case−10は、前記Case−5〜Case−7と比し、図9Aに示すように、前記部分的地盤改良体3が、平面視にて、前記沈下抑制対象物1と1mラップLするように形成されている点が相違する。
それぞれのコンテナ沈下量は順に、0.17m、0.14m、0.11mと、部分的地盤改良体3の深度が同じで平面的な改良範囲が狭いCase−5、Case−6、Case−7と順に比べてコンテナの沈下量は0.1〜0.2m小さくなっていることが認められる。
このことから、部分的地盤改良体3の平面的な施工範囲が沈下抑制対象物1の下方にまで延びて一部ラップする方がラップさせない場合と比し、沈下抑制効果が高いことが分かる。なお、部分的地盤改良体3の前記ラップ部は噴射式撹拌による地盤改良工法が好適である。
(Case-8 to Case-10)
The Case-8 to Case-10 are compared with the Case-5 to Case-7, and as shown in FIG. 9A, the partial ground improvement body 3 and the settlement suppression target object 1 in plan view It is different in that it is formed to be 1 m wrap L.
The amount of subsidence of each container is 0.17 m, 0.14 m, and 0.11 m in order, and the depth of the partial ground improvement body 3 is the same, and the flat improvement range is narrow. Case-5, Case-6, Case-7 It can be seen that the amount of subsidence of the containers is smaller by 0.1 to 0.2 m than in order.
From this, it can be seen that the subsidence suppression effect is higher than the case where the planar construction range of the partial ground improvement body 3 extends below the subsidence suppression object 1 and partially wraps it. In addition, the said lap | wrap part of the partial ground improvement body 3 is suitable for the ground improvement construction method by jet type stirring.

(Case−11)
前記Case−6と比し、格子壁2と板状改良体3との離間距離(スペース)Doを、0.1mから0.5mに拡大することで、改良体積を大きく低減する対策を行ったケースを示している。
コンテナ沈下量は0.16mであり、無対策の場合の40%に低減する効果が認められた。よって、本発明に十分に適用可能な構成であることが分かった。
また、このCase−11とCase−6とは、前記したように、離間距離が0.1mから0.5mに拡大した違いしかなく、そうするとコンテナ沈下量は、小数第二位まではともに0.16mとほとんど変わらないことから、板状改良体3と格子壁2との離間距離をある程度広げても、コンテナ沈下量に及ぼす影響は小さいことが分かった。
(Case−12)
前記Case−6と比し、コンテナ1と板状改良体3との離間距離(スペース)Diを、0(ゼロ)から0.5mに拡大し、その分、改良体積を大きく低減する対策を行ったケースを示している。
コンテナ沈下量は0.18mであり、無対策の場合の45%に低減する効果が認められた。よって、本発明に十分に適用可能な構成であることが分かった。
(Case−13)
前記Case−12と比し、スペースDoを、0.1mから0.5mに拡大し、その分、改良体積を大きく低減する対策を行ったケースを示している。
コンテナ沈下量は0.18mであり、無対策の場合の45%に低減する効果が認められた。よって、本発明に十分に適用可能な構成であることが分かった。
このCase−13にかかる部分的地盤改良体3は、枠状の地盤改良壁2と0.5m離間し、沈下抑制対象物1とも0.5m離間しているにもかかわらず、Case−2にかかる格子状地盤改良単独のコンテナ沈下量(0.30m)よりもはるかに小さいことから、前記した3者に各々スペースDo、Diがあったとしても、格子状地盤改良(沈下抑制)と併用する効果が得られることが分かった。
(Case-11)
Compared with the case 6 above, by increasing the separation distance (space) Do between the lattice wall 2 and the plate-like reformed body 3 from 0.1 m to 0.5 m, measures were taken to greatly reduce the improvement volume. The case is shown.
The amount of container subsidence was 0.16 m, and an effect of reducing it to 40% when no countermeasure was taken was recognized. Therefore, it turned out that it is the structure applicable enough to this invention.
In addition, as described above, Case-11 and Case-6 only differ from each other in that the separation distance is expanded from 0.1 m to 0.5 m, and in this case, the container settlement amount is 0. 0 for both decimal places. Since it hardly changed with 16 m, it turned out that the influence which it has on container settlement amount is small, even if the separation distance of the plate-shaped modifier 3 and the lattice wall 2 is extended to some extent.
(Case-12)
Compared with the case 6 above, the separation distance (space) Di between the container 1 and the plate-like improved body 3 is expanded from 0 (zero) to 0.5 m, and the improvement volume is largely reduced accordingly. Case is shown.
The container subsidence amount was 0.18 m, and an effect of reducing it to 45% in the case of no measures was recognized. Therefore, it was found that the configuration is sufficiently applicable to the present invention.
(Case-13)
Compared with Case-12, the case where the space Do is expanded from 0.1 m to 0.5 m, and a measure for greatly reducing the improved volume is shown.
The container subsidence amount was 0.18 m, and an effect of reducing it to 45% in the case of no measures was recognized. Therefore, it was found that the configuration is sufficiently applicable to the present invention.
Although the partial ground improvement body 3 according to Case 13 is separated by 0.5 m from the frame-shaped ground improvement wall 2 and by 0.5 m from the object 1 for suppressing settlement, Because it is much smaller than the container settlement amount (0.30 m) of this grid-like ground improvement alone, even if each of the above three has space Do and Di, they are used together with grid-like ground improvement (sinking suppression) It turned out that an effect could be obtained.

<追加した解析の概要>
本出願人らは、その後、さらに実施例バリエーションの追加解析を行った。
(追加解析1)
この追加解析1は、前記Case−6と比し、格子壁2の下端が非液状化層へは到達しない短尺タイプである点のみが異なり、その他は同様の条件である。
具体的に、前記Case−6にかかる格子壁2の改良深度は、液状化層と同じ17.2m(GL−2.8m〜GL−20.0m)であるのに対し、当該追加解析では、図示等は省略するが、当該改良深度を12.2m(GL−2.8m〜GL−15.0m)に設定した。
その結果、コンテナ沈下量は、0.162mであり、前記Case−6の0.16mとほとんど変わらないことが分かった。
よって、前記格子壁2は、液状化層へ到達しない深さで実施しても良好な沈下抑制効果が得られることが分かった。
(追加解析2)
続いて、前記追加解析1と同様の条件で、格子壁2の改良深度を7.2m(GL−2.8m〜GL−10.0m)に設定すると、その結果、コンテナ沈下量は、0.169mであり、前記Case−6の0.16mとほとんど変わらないことが分かった。
よって、前記格子壁2は、液状化層へ到達しない深さはもとより、液状化層までの距離の半分程度の深さであっても良好な沈下抑制効果が得られることが分かった。
<Summary of added analysis>
Applicants then performed further analysis of the example variation.
(Additional analysis 1)
The additional analysis 1 is different from Case 6 in that the lower end of the lattice wall 2 is a short type not reaching the non-liquefied layer, and the other conditions are the same.
Specifically, the improvement depth of the lattice wall 2 according to the Case-6 is 17.2 m (GL-2.8 m to GL-20.0 m), which is the same as that of the liquefied layer. Although illustration is omitted, the improvement depth is set to 12.2 m (GL-2.8 m to GL-15.0 m).
As a result, it was found that the amount of container settlement was 0.162 m, which was almost the same as 0.16 m of Case-6.
Therefore, it has been found that the lattice wall 2 can obtain a good settlement suppression effect even when implemented at a depth that does not reach the liquefied layer.
(Additional analysis 2)
Subsequently, when the improvement depth of the lattice wall 2 is set to 7.2 m (GL-2.8 m to GL-10.0 m) under the same conditions as the additional analysis 1, as a result, the container settlement amount is 0. 0. 169 m, which was found to be almost the same as the case-6 0.16 m.
Therefore, it has been found that the grid wall 2 can obtain a good settlement suppressing effect even if the depth does not reach the liquefaction layer as well as about half the distance to the liquefaction layer.

(追加解析3)
この追加解析3は、前記Case−6と比し、図11Aに示したように、板状改良体3を矩形状ではなく、前記格子壁2のうち対向する2つの地盤改良壁に沿う平行な形状に形成している点のみが異なり、その他は同様の条件である。
コンテナ沈下量は、0.225mであり、上記Case−5〜13に比して、大きいものの、単なる格子壁2のみの沈下抑制効果(Case−2の0.3m)よりも高く、無対策の沈下量(Case−1の0.4m)と比し、56%と、60%以下に軽減できているので沈下抑制効果があることが分かった。
このように、板状改良体3を平行な形状に形成した場合の好適な適用例として、盛土が挙げられる。前記盛土は、両端部(法尻部)よりも中央部に掛かる荷重が大きいという形状的特性ゆえに、前記板状改良体3を、平面視にて、盛土(沈下抑制対象物1)と1m以上(コンテナの場合よりも幅広く)ラップするように形成して実施することが好ましい。
(追加解析4)
この追加解析4は、前記Case−6と比し、図11Bに示したように、板状改良体3を矩形状ではなく、平面視にて、前記格子壁2のうち直角2方向の地盤改良壁に沿う略L字状に形成されている点のみが異なり、その他は同様の条件である。
コンテナ沈下量は、0.203mであり、上記Case−5〜13に比して、大きいものの、単なる格子壁2のみの沈下抑制効果(Case−2の0.3m)よりも高く、無対策の沈下量(Case−1の0.4m)と比し、51%と、60%以下に軽減できているので沈下抑制効果があることが分かった。
その他、解析は省略するが、図11Cに示したように、板状改良体3を、平面視にてコ字形状に形成して実施しても、前記図11A、Bよりも改良体積が大きいので、少なくとも前記図11A、Bと同程度の沈下抑制効果があることは容易に推察できる。
(Additional analysis 3)
In this additional analysis 3, as shown in FIG. 11A, the plate-like improvement body 3 is not rectangular, but is parallel to two opposite ground improvement walls of the lattice wall 2 as shown in FIG. 11A. The only difference is that it is formed into a shape, and the other conditions are the same.
The amount of container settlement is 0.225 m, which is larger than the above Cases 5 to 13, but it is higher than the settlement suppressing effect of only the lattice wall 2 (0.3 m of Case 2), and no countermeasure Compared with the amount of subsidence (Case-1 0.4 m), it was found to have a subsidence suppression effect because it was reduced to 56% and 60% or less.
Thus, embankment is mentioned as a suitable application example at the time of forming plate-like improvement object 3 in parallel shape. Since the embankment has a shape characteristic that the load applied to the central part is larger than the both ends (the fore end part), the embankment (the object of settlement suppression 1) is not less than 1 m in plan view. It is preferable to form and implement a wrap (wider than in the case of a container).
(Additional analysis 4)
This additional analysis 4 is compared with the case 6 and, as shown in FIG. 11B, the plate-like improved body 3 is not rectangular, and ground improvement in two orthogonal directions of the lattice wall 2 in plan view Only the point which is formed in the substantially L shape along a wall differs, and others are the same conditions.
The amount of container settlement is 0.203 m, which is larger than the above Cases 5 to 13, but it is higher than the settlement suppressing effect of only the lattice wall 2 (0.3 m of Case 2), and no countermeasure Compared to the amount of subsidence (Case-1 0.4 m), it was found to have a subsidence suppressing effect because it was reduced to 51% and 60% or less.
In addition, although analysis is omitted, as shown in FIG. 11C, even if the plate-like improved body 3 is formed in a U shape in plan view and implemented, the improved volume is larger than that in FIGS. 11A and 11B. Therefore, it can be easily inferred that there is at least the same settlement suppression effect as in FIGS. 11A and 11B.

以上に本発明の実施例を図面に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。
ちなみに、前記沈下抑制対象物1がコンテナ1aで構成される場合、通常、コンテナ1aは、門型のコンテナ用クレーンの走行方向(通常、図1Aの上下方向)に連続して設置されるので、その場合、要所(コンテナ1aと枠状の地盤改良壁2及び部分的地盤改良体3の改良部との干渉部位)でコンテナ1aの一時撤去が必要になる。
The embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to the illustrated examples, and variations of design changes and application that a person skilled in the art normally performs without departing from the technical idea thereof. Note that it includes the range.
By the way, when the subsidence suppression object 1 is composed of a container 1a, the container 1a is normally installed continuously in the traveling direction of the portal container crane (usually the vertical direction in FIG. 1A). In that case, temporary removal of the container 1a is required at a key place (the interference site between the container 1a and the frame-shaped ground improvement wall 2 and the partial improvement unit 3).

1 沈下抑制対象物(コンテナ)
1a コンテナ
2 枠状の地盤改良壁(格子壁)
3 部分的地盤改良体(板状改良体)
13 部分的地盤改良体(板状改良体)
10 地盤
1 Settlement control object (container)
1a Container 2 Frame-shaped ground improvement wall (lattice wall)
3 Partial ground improvement body (plate-like improvement body)
13 Partial ground improvement body (plate-like improvement body)
10 ground

Claims (4)

地盤上に支持された沈下抑制対象物と、
前記地盤中に平面視にて前記沈下抑制対象物を取り囲むように造成された枠状の地盤改良壁と、
平面視にて前記沈下抑制対象物の外側面と前記枠状の地盤改良壁の内側面との間の地盤を部分的に板状に改良してなる部分的地盤改良体とからなり、
前記部分的地盤改良体は、前記枠状の地盤改良壁よりも深度が浅く形成され、前記枠状の地盤改良壁と離間して設けられていることを特徴とする、沈下抑制対象物の沈下抑制構造。
A subsidence suppression object supported on the ground,
A frame-like ground improvement wall constructed so as to surround the settlement suppressing object in plan view in the ground;
It consists of a partial ground improvement body formed by partially improving the ground between the outer side surface of the settlement control object and the inner side surface of the frame-like ground improvement wall in plan view,
The partial ground improvement body is formed to be shallower than the frame-like ground improvement wall, and is provided apart from the frame-like ground improvement wall, the settlement of the settlement suppressing object Suppression structure.
前記部分的地盤改良体は、平面視にて、前記枠状の地盤改良壁のうち少なくとも2つの地盤改良壁に沿う形状に形成されていることを特徴とする、請求項1に記載した沈下抑制対象物の沈下抑制構造。   2. The settlement suppression according to claim 1, wherein the partial ground improvement body is formed in a shape along at least two ground improvement walls among the frame-shaped ground improvement walls in a plan view. Structure that suppresses settlement of objects. 前記部分的地盤改良体は、その内側縁が、平面視にて、前記沈下抑制対象物に接する程度に近接、前記沈下抑制対象物と離間、及び、前記沈下抑制対象物とラップの内いずれか1つ又は2つ以上の組み合わせにより形成されていることを特徴とする、請求項1又は2に記載した沈下抑制対象物の沈下抑制構造。   The partial ground improvement body is close to the extent that the inner edge of the partial ground improvement body is in contact with the subsidence suppression object in plan view, separated from the subsidence suppression object, and any of the subsidence suppression object and lap The sinking suppression structure of the sinking suppression object according to claim 1 or 2, characterized in that it is formed of one or two or more combinations. 前記枠状の地盤改良壁は、非液状化層には到達しない深さに設定されていることを特徴とする、請求項1〜3のいずれか1項に記載した沈下抑制対象物の沈下抑制構造。   The said frame-shaped ground improvement wall is set to the depth which does not reach a non-liquefaction layer, The settlement suppression of the settlement suppression target object of any one of Claims 1-3 characterized by the above-mentioned. Construction.
JP2018011472A 2018-01-26 2018-01-26 Subsidence control structure for subsidence control object Active JP7108416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011472A JP7108416B2 (en) 2018-01-26 2018-01-26 Subsidence control structure for subsidence control object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011472A JP7108416B2 (en) 2018-01-26 2018-01-26 Subsidence control structure for subsidence control object

Publications (2)

Publication Number Publication Date
JP2019127793A true JP2019127793A (en) 2019-08-01
JP7108416B2 JP7108416B2 (en) 2022-07-28

Family

ID=67471108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011472A Active JP7108416B2 (en) 2018-01-26 2018-01-26 Subsidence control structure for subsidence control object

Country Status (1)

Country Link
JP (1) JP7108416B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189804A (en) * 2012-03-14 2013-09-26 Maeda Corp Soil improvement body
JP2013253376A (en) * 2012-06-05 2013-12-19 Takenaka Doboku Co Ltd Liquefaction prevention structure and liquefaction prevention method
JP2014012981A (en) * 2012-06-08 2014-01-23 Ohbayashi Corp Liquefaction countermeasure structure
JP2014062393A (en) * 2012-09-21 2014-04-10 Maeda Corp Soil improvement body for liquefaction countermeasure and formation method thereof
JP2014118752A (en) * 2012-12-17 2014-06-30 Taisei Corp Subgrade liquefaction countermeasure structure utilizing structure load
JP5697854B2 (en) * 2009-05-26 2015-04-08 大成建設株式会社 Liquefaction countermeasure structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697854B2 (en) * 2009-05-26 2015-04-08 大成建設株式会社 Liquefaction countermeasure structure
JP2013189804A (en) * 2012-03-14 2013-09-26 Maeda Corp Soil improvement body
JP2013253376A (en) * 2012-06-05 2013-12-19 Takenaka Doboku Co Ltd Liquefaction prevention structure and liquefaction prevention method
JP2014012981A (en) * 2012-06-08 2014-01-23 Ohbayashi Corp Liquefaction countermeasure structure
JP2014062393A (en) * 2012-09-21 2014-04-10 Maeda Corp Soil improvement body for liquefaction countermeasure and formation method thereof
JP2014118752A (en) * 2012-12-17 2014-06-30 Taisei Corp Subgrade liquefaction countermeasure structure utilizing structure load

Also Published As

Publication number Publication date
JP7108416B2 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP2012007410A (en) Reinforcement structure for structure of rectangular cross section
JP6074158B2 (en) Ground improvement body and ground improvement construction method
JP2019127793A (en) Sinkage suppression structure for sinkage suppression object
JP5728300B2 (en) Ground improvement body and piled raft foundation equipped with the same
JP6238088B2 (en) Improved ground and ground improvement method
JP5350555B1 (en) Liquefaction prevention structure and liquefaction prevention method
JP6132144B2 (en) Structure liquefaction damage reducing structure and liquefaction damage reducing method
JP2016199920A (en) Liquefaction countermeasure structure
JP2010007381A (en) Liquefaction preventing structure
JP5478371B2 (en) Ground liquefaction countermeasure method
JP3196470U (en) Seismic isolation structure
JP3196933U (en) Ground improvement auxiliary member, preparation kit for ground improvement auxiliary member, and improved ground structure
JP2014051852A (en) Ground improvement structure
JP2014227767A (en) Rockfall prevention fence
JP2013189804A (en) Soil improvement body
JP6017302B2 (en) Construction and its construction method
JP4968695B2 (en) Ground improvement structure
JP6818503B2 (en) building
JP2010077639A (en) Method for rapidly restoring damaged fill by combining large-sized sandbag with rod-like reinforcing material
JP5919429B1 (en) Ground liquefaction prevention method
JP7467815B2 (en) Ground improvement structure
JP6438711B2 (en) Slope stabilization structure
JP2014181538A (en) Ground reinforcement method
JP2012132174A (en) Foundation structure of building, and the building
JP2013108299A (en) Soil improvement method for preventing liquefaction upon earthquake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7108416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150