JP2019127645A - Electrolytic nickel plating method including heat treatment process - Google Patents

Electrolytic nickel plating method including heat treatment process Download PDF

Info

Publication number
JP2019127645A
JP2019127645A JP2018011718A JP2018011718A JP2019127645A JP 2019127645 A JP2019127645 A JP 2019127645A JP 2018011718 A JP2018011718 A JP 2018011718A JP 2018011718 A JP2018011718 A JP 2018011718A JP 2019127645 A JP2019127645 A JP 2019127645A
Authority
JP
Japan
Prior art keywords
nickel plating
plating
heat treatment
hardness
electrolytic nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018011718A
Other languages
Japanese (ja)
Other versions
JP6942067B2 (en
Inventor
市原 祥次
Yoshiji Ichihara
祥次 市原
山田 喜康
Yoshiyasu Yamada
喜康 山田
貴洋 古橋
Takahiro Furuhashi
貴洋 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada KK
Original Assignee
Yamada KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada KK filed Critical Yamada KK
Priority to JP2018011718A priority Critical patent/JP6942067B2/en
Publication of JP2019127645A publication Critical patent/JP2019127645A/en
Application granted granted Critical
Publication of JP6942067B2 publication Critical patent/JP6942067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a technology for obtaining a nickel plating film with high hardness of such a level that conventional electrolytic nickel plating technologies cannot have attained using an electrolytic nickel plating and a heat treatment.SOLUTION: There is provided a heat treatment method for an electrolytic nickel plating in which, after a nickel plating film is formed while stirring using an electrolytic nickel plating solution to which a primary brightener and a secondary brightener are added in a suitable concentration, the obtained plated-product is heat-treated. In addition, by using a method in which a surfactant is further added into the electrolytic nickel plating solution and/or a method in which micro bubbles are supplied into the solution to stir together, the nickel plating film with higher hardness can be formed.SELECTED DRAWING: None

Description

本発明は、ニッケルの電気めっきと熱処理方法に関し、より詳しくはニッケルのめっき皮膜硬度を高める電気めっき及び熱処理方法に関する。   The present invention relates to a nickel electroplating and heat treatment method, and more particularly to an electroplating and heat treatment method for increasing nickel plating film hardness.

めっき皮膜は薄く様々な機械的性質を測定するのが難しいので、一般にめっきの機械的特性を表すのにJIS Z 2244に規定されたビッカース硬さ試験機あるいはマイクロビッカース硬さ試験機を用いて測定されたビッカース硬度が用いられる。ビッカース硬度は記号としてはHvが使われ、「Hvは150である」というように表される。一般に材料の硬さが増加するにつれて耐摩耗性が良くなる傾向があるため、耐摩耗性の向上は重要である。
電解ニッケルめっき皮膜のビッカース硬度は通常400程度かそれ以下であるが、光沢剤を添加しためっき液を用いてめっきを施した皮膜では硬度が高くなる。電解ニッケルめっきの添加剤として、種々の化合物を検討した結果、従来から光沢剤として用いられているアリルスルホン酸ナトリウムを用いると、皮膜の硬度Hvが約600というメッキ膜が得られたことが報告されている(非特許文献1)。
このように、電解ニッケルめっきの場合、光沢剤の最適な選択でもHvは約600程度が限度である。また電解ニッケルめっき皮膜については、一般に熱処理を施しても硬度は高くならないと言われてきており、現在、工業的に生産されている電解ニッケルめっき皮膜の硬度は600以下である。
Because the plating film is thin and difficult to measure various mechanical properties, it is generally measured using a Vickers hardness tester or a micro Vickers hardness tester specified in JIS Z 2244 to represent the mechanical properties of plating. Vickers hardness is used. The Vickers hardness Hv is used as a symbol, and is expressed as "Hv is 150". In general, improvement in abrasion resistance is important because abrasion resistance tends to improve as the hardness of the material increases.
The electrolytic nickel plating film usually has a Vickers hardness of about 400 or less, but the film plated with a plating solution to which a brightener is added has a high hardness. As a result of studying various compounds as additives for electrolytic nickel plating, it was reported that using sodium allyl sulfonate, which has been used as a brightener, a plating film with a hardness Hv of about 600 was obtained. (Non-Patent Document 1).
Thus, in the case of electrolytic nickel plating, the Hv is limited to about 600 even for the optimum selection of brighteners. In addition, it is generally said that the hardness does not increase even when heat treatment is performed for the electrolytic nickel plating film, and the hardness of the electrolytic nickel plating film currently produced industrially is 600 or less.

ニッケルめっき皮膜の硬度を高くするには合金めっきという方法もある。ニッケル・コバルトめっきのような合金めっきではHv700程度、ニッケルとタングステンカーバイドの複合めっきではHv800前後の硬度も可能だと言われているが、めっき工程の管理が複雑になりコストも高くなる。   There is also a method called alloy plating to increase the hardness of the nickel plating film. It is said that hardness of around Hv700 is possible for alloy plating such as nickel / cobalt plating, and hardness of around Hv800 is possible for composite plating of nickel and tungsten carbide, but the management of the plating process is complicated and the cost is high.

無電解めっきの場合には、めっき皮膜中にかなりの量のリンやホウ素などが共析し、それによっても硬度が上がると言われている。実際には、無電解ニッケル・リンめっきで得られる皮膜の硬度は600程度であり、無電解ニッケル・ホウ素めっき皮膜の硬度は700程度であるが、これらを300℃以上の温度で熱処理を施すとビッカース硬度はそれぞれ1000と1100程度に向上すると言われている。しかし、無電解めっきはめっき液に含まれる金属イオンを化学的に還元することでめっきを行うので、還元剤の消耗による寿命があり、一定量のめっきを行うたびにめっき液を廃棄しなければならず、したがって電気めっきと比較してコストが大幅に高くなる。
電解ニッケルめっきにおいても、ワット浴やスルファミン酸浴に次亜リン酸などを加え、電析するニッケル被膜中にリンを共析させ、更にはリンが共析したニッケルめっき皮膜を熱処理することで、めっき皮膜の硬度を高めるという研究もある。しかし、次亜リン酸を添加するこの手法は、リンをできる限り均一に分布させるための工程管理に手間がかかり、またリンも決して安い元素ではないのでコストアップになることから、実用化に向けた研究はなされていない。また、前記手法は、従来の無電解ニッケルめっきにおいて、リンやホウ素を共析させ、更には300℃以上の熱処理を行うことで硬度を高めるという手法を模倣したものであり、合金めっきとも類似している。一方、次亜リン酸などを添加せずに行った電解ニッケルめっき皮膜に300℃以上の熱処理を施しても硬度の増加はなく、熱処理効果は得られない。
In the case of electroless plating, it is said that a considerable amount of phosphorus, boron or the like is co-deposited in the plating film, which also increases the hardness. In practice, the hardness of the film obtained by electroless nickel-phosphorus plating is about 600, and the hardness of the electroless nickel-boron film is about 700. However, when these films are heat-treated at a temperature of 300 ° C. or higher Vickers hardness is said to improve to about 1000 and about 1100, respectively. However, since electroless plating is performed by chemically reducing metal ions contained in the plating solution, it has a life due to consumption of the reducing agent, and it is necessary to discard the plating solution every time a certain amount of plating is performed. And therefore the cost is significantly higher compared to electroplating.
Also in electrolytic nickel plating, hypophosphorous acid or the like is added to a watt bath or a sulfamic acid bath, phosphorus is co-deposited in the nickel film to be electrodeposited, and further heat treatment is performed on the nickel plating film co-deposited with phosphorus. There is also research to increase the hardness of the plating film. However, this method of adding hypophosphorous acid takes time and effort to distribute phosphorus as uniformly as possible, and it is costly because phosphorus is never a cheap element. Research has not been done. Moreover, the above method imitates the method of increasing the hardness by co-depositing phosphorus and boron in conventional electroless nickel plating and further performing heat treatment at 300 ° C. or higher, and is similar to alloy plating. ing. On the other hand, even if heat treatment at 300 ° C. or higher is applied to an electrolytic nickel plating film formed without adding hypophosphorous acid or the like, the hardness does not increase and the heat treatment effect cannot be obtained.

以上のように、電解ニッケルめっきは、大がかりな設備も不要で、処理工程の煩雑さも少ないため、コストが大幅に低いという大きなメリットがあるが、皮膜硬度は光沢剤を用いてもHv600程度までしか上がらないといわれ、耐久性、耐摩耗性などの観点で敬遠される傾向もあった。
このような状況から、通常の電解ニッケルめっきの設備を大幅に変更することなく、まためっき皮膜の組成も変えることなく、高硬度のニッケルめっき皮膜が得られれば、実用上大きな意義がある。
As described above, electrolytic nickel plating does not require large-scale equipment, and the complexity of the processing steps is small, so there is a great advantage that the cost is significantly low, but the film hardness is only up to about Hv 600 even when using a brightener. It was said that it did not go up, and it tended to be avoided in terms of durability, wear resistance, etc.
From such a situation, it is practically significant if a high hardness nickel plating film can be obtained without largely changing the equipment of the usual electrolytic nickel plating and without changing the composition of the plating film.

特開平5−112898号公報Japanese Patent Laid-Open No. 5-112898 特許第4942098号公報Japanese Patent No. 4941998 特許第4991472号公報Japanese Patent No. 4991472 特許第5858428号公報Japanese Patent No. 5858428

岸本圭介ら「表面技術」Vol.54, No.10, 2003 p.710-713 “電析ニッケル膜の特性に及ぼす種々の添加剤の影響”Kishimoto, K. et al. “Surface Technology” Vol.54, No.10, 2003 p.710-713 “Effects of various additives on the properties of electrodeposited nickel films” 加瀬敬年「金属表面技術」vol.12, No.2 (1961) p.53〜58. “光沢ニッケルメッキにおける光沢剤および電着物の二三の性質について”Takashi Kase “Metal Surface Technology” vol.12, No.2 (1961) p.53-58. “Some Properties of Brighteners and Electrodeposits in Bright Nickel Plating”

本発明は、通常の電解ニッケルめっきの設備を大幅に変更せず、かつめっき皮膜の組成も変更せずに、従来の電解ニッケルめっきでは得られていないレベルの硬度のニッケルめっき皮膜を得る技術を提供しようというものである。具体的には、光沢剤を添加した通常の電解ニッケルめっき液を用いてニッケルめっきを行う際のめっき方法や熱処理条件を検討することにより、高硬度のニッケル電解めっき皮膜を得る方法を提供する。   The present invention is a technique for obtaining a nickel plating film having a level of hardness not obtained by the conventional electrolytic nickel plating, without largely changing the equipment for ordinary electrolytic nickel plating and without changing the composition of the plating film. It is to provide. Specifically, a method of obtaining a nickel electrolytic plating film with high hardness is provided by examining a plating method and heat treatment conditions when performing nickel plating using a normal electrolytic nickel plating solution to which a brightening agent is added.

ところで、従来から光沢を有しピンホールなどの少ないめっき皮膜を得る技術として、気泡を用いた電気めっき技術が知られており、界面活性剤の添加により表面張力を45dyn/cm以下に調整したメッキ浴内で直径10〜1000μm(例えば100μm)の微細気泡(マイクロバブル)を発生させながらめっきする方法(特許文献1)や、気泡を連続的に発生させ形成させた泡沫層内でめっきする方法(特許文献2)などが知られていた。
本発明者らも、以前から界面活性剤と共に光沢剤を添加しためっき液の泡沫層中で電気めっきすることにより、ピンホールなどの少ない光沢のあるめっき皮膜を得る技術を開発してきた(特許文献3,4)。これらの技術は主に気泡のみの集合体としての泡沫の中でめっきを行うことが中心となっている。
By the way, electroplating technology using air bubbles is known as a technology to obtain a plating film with gloss and few pinholes, and plating with surface tension adjusted to 45 dyn / cm or less by adding a surfactant. A method of plating while generating fine bubbles (microbubbles) having a diameter of 10 to 1000 μm (for example, 100 μm) in a bath (Patent Document 1) or a method of plating in a foam layer formed by continuously generating bubbles Patent Document 2) is known.
The present inventors have also developed a technique for obtaining a glossy plating film with few pinholes by electroplating in a foam layer of a plating solution to which a brightener is added together with a surfactant (patent document). 3, 4). These techniques are mainly performed by plating in foam as an aggregate of only bubbles.

本発明者らは、高硬度のニッケル電解めっき皮膜を得る方法の開発にあたり、これらの気泡を発生させながらの電気めっき法を用いることを想起し、かつ従来電解ニッケルめっきの場合には硬度を上げる効果について否定的な見解がもたれていた加熱処理を施すことを検討することとした。
具体的には、ニッケルの電解めっき液に一次光沢剤と二次光沢剤をそれぞれ適量添加し、更に界面活性剤としてドデシル硫酸ナトリウム(SDS)を少量添加し、直径が500ミクロン以下のマイクロバブルをめっき液中に送入・分散させ撹拌しながら電解ニッケルめっきを行い、その後試験片に対し200℃ 1時間の熱処理を施した。
その結果、めっき面で測定したビッカース硬度(Hv)は、電気ニッケルメッキでは従来達成できないとされた600どころか、800近い高い硬度のニッケルめっき被膜を提供することができた。
次いで、界面活性剤の少量添加を省略した場合、及びマイクロバブルを省略した場合についての実験を行ったところ、いずれも750前後という高硬度のニッケルめっき被膜を提供できた。
以上の知見を得たことで、本発明を完成することができた。
なお、ここで述べる硬さの値はフューチャーテック社製マイクロビッカース硬さ試験機FM-ARS9008を用い、試験荷重50 gf、保持時間15秒で表面側から測定した値である。硬さをメッキ皮膜の側面で測定することもあるが、この場合はめっき皮膜が数十μmといった厚さになるように厚くメッキし、被メッキ物を切断し、断面を研磨した後、硬度を測定する。そのためメッキ皮膜中の結晶の配向がめっき皮膜の薄い場合と同じか否かといった問題だけでなく、切断と研磨という強い履歴を与えてしまうので、十数μmのめっき皮膜の表面側から測定した硬度とは比較ができない。
The present inventors recalled the use of electroplating while generating these air bubbles in developing a method for obtaining a nickel electroplating film having high hardness, and increase the hardness in the case of conventional electrolytic nickel plating. We decided to consider applying heat treatment that had a negative opinion on the effect.
Specifically, an appropriate amount of each of the primary brightening agent and the secondary brightening agent is added to a nickel electrolytic plating solution, and a small amount of sodium dodecyl sulfate (SDS) as a surfactant is further added, and microbubbles having a diameter of 500 microns or less are added. Electrolytic nickel plating was carried out while being fed, dispersed and stirred in a plating solution, and then the test piece was subjected to heat treatment at 200 ° C. for 1 hour.
As a result, the Vickers hardness (Hv) measured on the plating surface was able to provide a nickel plating film having a hardness as high as about 800, rather than 600, which has hitherto been considered impossible to achieve by electroplating.
Next, experiments were conducted on the case where the addition of a small amount of the surfactant was omitted and the case where the microbubbles were omitted. As a result, a nickel plating film having a high hardness of around 750 could be provided.
Having obtained the above findings, the present invention has been completed.
The hardness value described here is a value measured from the surface side using a Micro Vickers hardness tester FM-ARS9008 manufactured by Futuretec Co., Ltd. with a test load of 50 gf and a holding time of 15 seconds. The hardness may be measured on the side of the plating film. In this case, the plating film is plated thickly to a thickness of several tens of μm, the object to be plated is cut, the cross section is polished, and the hardness is increased. taking measurement. Therefore, not only the problem of whether the crystal orientation in the plating film is the same as when the plating film is thin, but also gives a strong history of cutting and polishing, so the hardness measured from the surface side of the tens of μm plating film And can not compare.

本発明は、高硬度のニッケルめっき皮膜を得るための方法であり、ニッケルの電解めっき液に一次光沢剤と二次光沢剤をそれぞれ適量添加したニッケルめっき液を用い、攪拌しながら電解ニッケルめっきを行う工程、及び得られたニッケルめっき製品に100℃以上300℃未満での熱処理を施す工程を含む方法を提供する。
本発明は、さらに硬度のレベルを高めたニッケルめっき皮膜を得るための方法であり、上記電解めっき工程において、一次光沢剤及び二次光沢剤と共に少量の界面活性剤を添加したニッケルめっき液を用いる方法、又は最多直径500ミクロン以下のマイクロバブルを送入しながら攪拌して、めっきを行う方法を提供する。
最も高硬度のニッケルめっき皮膜を得るためには、一次光沢剤、二次光沢剤及び界面活性剤を含む電解めっき液を用い、マイクロバブルを送入し、攪拌しながら電解ニッケルめっきを行い、その後、熱処理を施す工程を設けることが好ましい。
The present invention is a method for obtaining a nickel plating film having high hardness, and using a nickel plating solution prepared by adding an appropriate amount of a primary brightening agent and a secondary brightening agent to an electrolytic plating solution of nickel, electrolytic nickel plating is performed while stirring. A method is provided comprising the steps of conducting and subjecting the obtained nickel plated product to a heat treatment at 100 ° C. or more and less than 300 ° C.
The present invention is a method for obtaining a nickel plating film having a further increased level of hardness, and a nickel plating solution to which a small amount of surfactant is added together with a primary brightening agent and a secondary brightening agent is used in the above electroplating step. A method, or a method of performing plating while stirring while feeding microbubbles having the largest diameter of 500 microns or less, is provided.
In order to obtain a nickel plating film of the highest hardness, using an electrolytic plating solution containing a primary brightening agent, a secondary brightening agent and a surfactant, microbubbles are fed and electrolytic nickel plating is carried out while stirring, and then It is preferable to provide a step of performing heat treatment.

すなわち、本発明は以下の通りである。
〔1〕 ニッケルの電解めっき熱処理方法であって、
(1)電解ニッケルめっき液として、一次光沢剤および二次光沢剤を添加して調製する工程、
(2)電解ニッケルめっき液を撹拌しながら、被めっき物表面にニッケル被膜を形成させる工程、
(3)電解ニッケル被膜が形成されためっき物を、100℃以上300℃未満の温度で5分以上熱処理を施す工程、
を含むことを特徴とする、方法。
〔2〕 電解ニッケル被膜を形成させる工程において、電解ニッケルめっき液中に最多直径が約500ミクロン以下のマイクロバブルを送入し、撹拌しながら被めっき物表面にニッケル被膜を形成させることを特徴とする、前記〔1〕に記載の方法。
〔3〕 電解ニッケルめっき液として、一次光沢剤および二次光沢剤と共に、界面活性剤を添加して調製することを特徴とする、前記〔1〕又は〔2〕に記載の方法。
That is, the present invention is as follows.
[1] A heat treatment method of electrolytic plating of nickel
(1) A step of preparing by adding a primary brightening agent and a secondary brightening agent as an electrolytic nickel plating solution,
(2) forming a nickel film on the surface of the object to be plated while stirring the electrolytic nickel plating solution;
(3) applying a heat treatment to the plated material having the electrolytic nickel film formed thereon at a temperature of 100 ° C. or more and less than 300 ° C. for 5 minutes or more,
A method comprising the steps of:
[2] In the step of forming an electrolytic nickel film, microbubbles having a largest diameter of about 500 microns or less are fed into the electrolytic nickel plating solution, and the nickel film is formed on the surface of the object while stirring. The method according to [1] above.
[3] The method according to [1] or [2], wherein the electrolytic nickel plating solution is prepared by adding a surfactant together with a primary brightener and a secondary brightener.

従来、電解ニッケルめっき皮膜のビッカース硬度は600程度が上限とされていたが、本発明によればビッカース硬度700ないし800程度のニッケルのめっき皮膜を得ることが可能になった。   Conventionally, the upper limit of the Vickers hardness of the electrolytic nickel plating film is about 600, but according to the present invention, it has become possible to obtain a nickel plating film having a Vickers hardness of about 700 to 800.

電解ニッケルめっき処理片の硬度への熱処理温度による影響Influence of heat treatment temperature on hardness of electrolytic nickel plated pieces

1.めっき装置
本発明を実施するための電気めっき装置は特に限定されず、例えば、撹拌装置を備えたステンレス鋼等で形成されためっき槽と、直流電源と、直流電源の正極側に導通する陽極と、負極側に導通する被めっき部材である陰極とを備え、さらに、マイクロバブルを送入する場合にはマイクロバブルを形成できる設備を装着した装置であることが必要である。マイクロバブルを発生させる方式には旋回剪断、加圧発泡、キャビテーション、ベンチュリ―など様々な方式があるが、これらの方式のいずれかに限定されず、必要な大きさのマイクロバブルを形成できる設備であれば良い。
なお、本発明の電解ニッケルめっきの対象となる被めっき物は、一般には鉄、銅などの金属であるが、表面に通電性があるかそれを賦与された物質であればプラスチック、セラミックなどでもよい。
1. Plating apparatus The electroplating apparatus for carrying out the present invention is not particularly limited. For example, a plating tank formed of stainless steel or the like equipped with a stirrer, a DC power supply, and an anode electrically connected to the positive electrode side of the DC power supply It is necessary that the apparatus is equipped with a cathode which is a member to be plated which is electrically connected to the negative electrode side, and further equipped with equipment capable of forming microbubbles when microbubbles are fed. There are various methods of generating micro bubbles such as rotational shear, pressure bubbling, cavitation and venturi, but it is not limited to any of these methods, and equipment that can form micro bubbles of the required size. It is good if it is.
The object to be plated by the electrolytic nickel plating of the present invention is generally a metal such as iron or copper, but may be a plastic, ceramic or the like as long as the surface has electrical conductivity or is provided with it. Good.

2.熱処理装置
熱処理を行う設備に特別な制約はなく、温度を適切に管理できる電気炉などを用いればよい。
めっき皮膜の加熱処理は、一般には、めっき処理による素材の水素脆性の防止、めっき皮膜の特殊な金属への密着性の向上、機械的性質の改善などに使われ、熱処理により、微視的歪の緩和、再結晶による無歪結晶の生成と粗大化、吸蔵ガスの放出、不純物の凝縮などが起こり、めっき皮膜の硬さは加熱と共に低下すると言われていた。
無電解ニッケルめっきでは、300℃以上の熱処理によりめっき皮膜硬度が大きく上昇するが、電解めっきで得られた被膜に同様の熱処理を施しても硬度が高くならないと言われており、したがって、従来、電解めっきで得られたニッケルめっき皮膜に熱処理を施すということも行われていない。
2. Heat treatment apparatus There is no particular restriction on equipment for heat treatment, and an electric furnace or the like capable of appropriately managing the temperature may be used.
The heat treatment of the plating film is generally used to prevent hydrogen embrittlement of the material by the plating treatment, to improve the adhesion of the plating film to a special metal, to improve the mechanical properties, etc. It has been said that the hardness of the plating film decreases with heating due to the relaxation, the generation and coarsening of unstrained crystals by recrystallization, the release of occluded gas, the condensation of impurities, and the like.
In electroless nickel plating, the hardness of the plated film is greatly increased by heat treatment of 300 ° C. or higher, but it is said that the hardness does not become high even if the same heat treatment is applied to the film obtained by electrolytic plating. It is not performed that the heat treatment is performed on the nickel plating film obtained by the electrolytic plating.

3.めっき液
電解ニッケルめっきに使用されるめっき液としてはスルファミン酸浴やストライク浴(ウッド浴)などもあるが、硫酸ニッケル、塩化ニッケル、ホウ酸を主成分としたワット浴が最も一般的で実用的であり、これを利用すればよい。ワット浴を用いて得られるめっき皮膜は素地との密着性が良く半光沢で耐食性があり、ワット浴に光沢剤を加えためっき液で鏡面光沢の皮膜を作成することも行われている。光沢剤を用いるとめっき皮膜の硬度もHv600程度までは上がるということが知られている。
3. Plating Solution There are also sulfamic acid bath and strike bath (wood bath) as a plating solution used for electrolytic nickel plating, but a watt bath mainly composed of nickel sulfate, nickel chloride and boric acid is the most common and practical. This can be used. The plating film obtained using a watt bath has good adhesion to the substrate, is semi-gloss, is corrosion resistant, and forming a mirror gloss film with a plating solution obtained by adding a brightening agent to a watt bath is also performed. It is known that when a brightener is used, the hardness of the plated film also increases to about Hv600.

4.光沢剤
光沢ニッケルめっきの光沢剤には一次光沢剤と二次光沢剤とがある(非特許文献2)。本発明には一般的に光沢剤として知られている化合物を使用してもよく市販されている光沢剤を用いてもよい。
(4−1)一次光沢剤
一次光沢剤は、めっき皮膜中の結晶粒子を微細化することにより光沢を付与する働きをすると言われている。主に可視光の波長のひとけた下程度の大きさの構造が制御されるので、鏡面光沢までは得られないことが多く、半光沢剤とも呼ばれている。
一次光沢剤に利用される硫黄系化合物としては、芳香族スルホン酸類のベンゼンスルホン酸、p-トルエンスルホン酸やこれらのナトリウム塩、1,5ナフタレンジスルホン酸ナトリウム(DNS)、1,3,6-ナフタレントリスルホン酸ナトリウム(TNS)など;芳香族スルホンアミド類のベンゼンスルホン酸アミド、p-トルエンスルホンアミドなど;芳香族スルホンイミド類のオルソベンゼン・スルホンイミド(サッカリン)やそのナトリウム塩など;などがある。一般には、サッカリン、ベンゼンスルホン酸塩又はナフタレンジスルホン酸ナトリウム(DNS)が用いられる。
本発明に使用する一次光沢剤は、これらの化合物の単体あるいはこれらの混合物でもこれらにさらに若干の添加剤を加えたものでもよく、更には一次光沢剤として調合された市販の一次光沢剤であってもよい。
4. Brighteners Brighteners for bright nickel plating include primary and secondary brighteners (Non-patent Document 2). In the present invention, a compound generally known as a brightener may be used or a commercially available brightener may be used.
(4-1) Primary Brightening Agent The primary brightening agent is said to work to impart gloss by refining the crystal particles in the plating film. Since the structure having a size just below the wavelength of visible light is mainly controlled, mirror gloss is often not obtained, and it is also called a semi-gloss agent.
Sulfur compounds used for primary brighteners include aromatic sulfonic acids benzene sulfonic acid, p-toluene sulfonic acid and their sodium salts, sodium 1,5-naphthalenedisulfonate (DNS), 1,3,6- Sodium naphthalene trisulfonate (TNS) and the like; benzenesulfonamide of aromatic sulfonamides, p-toluenesulfonamide and the like; orthobenzene sulfoneimide (saccharin) of aromatic sulfonimides and the sodium salt thereof and the like is there. In general, saccharin, benzene sulfonate or sodium naphthalene disulfonate (DNS) is used.
The primary brightening agent used in the present invention may be a single substance of these compounds, or a mixture of these compounds, or a compound obtained by adding some additives thereto, and is a commercially available primary brightening agent formulated as a primary brightening agent. May be

本発明における一次光沢剤のめっき液への添加量は、通常の添加量として推奨されている範囲の添加量であればよい。一次光沢剤としてここに示した特定の化合物類もしくはその混合物を用いる場合、その添加量は、通常はめっき液1リットルに対して一次光沢剤もしくはその混合物が3ないし9mmol(3〜9mmol/L)程度の範囲が適切であると言われており、本発明においてもこうした範囲で適宜増減すればよい。溶液のかたちで供給されている市販の一次光沢剤を用いる場合にはその一次光沢剤製造者が推奨する範囲の添加量の範囲で適宜増減すればよい。   The addition amount of the primary brightening agent to the plating solution in the present invention may be an addition amount in the range recommended as a normal addition amount. When the specific compounds shown here or a mixture thereof are used as the primary brightener, the addition amount is usually 3 to 9 mmol (3 to 9 mmol / L) of the primary brightener or a mixture thereof per 1 liter of plating solution. A range of degree is said to be appropriate, and in the present invention, it may be appropriately increased or decreased within such a range. When a commercially available primary brightener supplied in the form of a solution is used, it may be appropriately increased or decreased within the range of the addition amount recommended by the primary brightener manufacturer.

(4−2)二次光沢剤
二次光沢剤は、一次光沢剤では達せられない小さな領域を平滑化し、それによって鏡面光沢を得るために利用される。
その作用機序として、表面に吸着されたサッカリンなど一次光沢剤である硫黄系化合物が光の波長の一桁下のレベルで結晶化を制御して大まかな平滑化を行い、ブチンジオールなど二次光沢剤が、めっき表面で還元されブタンジオールに還元される際に結晶粒子によって生じる微細な凹凸を平滑化して光沢を与えると考えられている。
二次光沢剤に利用される物質としては、アルデヒド類のホルムアルデヒド(ホルマリン)など;アリル又はビニル化合物のアリルスルホン酸、ビニルスルホン酸など;アセチレン化合物のブチンジオールなど;ニトリル類のエチレンシアンヒドリンなど;その他、プロパルギルアルコール、クマリン、ゼラチン、チオ尿素などがある。一般には、ブチンジオールやプロパルギルアルコールなどの不飽和アルコール類が用いられるため、二次光沢剤は不飽和アルコール成分とも称される。
本発明に使用する二次光沢剤はこれらの化合物やその混合物、これらにさらに若干の添加剤を加えたものを用いてもよいし、二次光沢剤として調合された市販の二次光沢剤を用いてもよい。
(4-2) Secondary Brightener The secondary brightener is used to smooth small areas which can not be reached by the primary brightener, thereby obtaining a specular gloss.
As the mechanism of action, a sulfur-based compound which is a primary brightening agent such as saccharin adsorbed on the surface controls crystallization at a level one digit lower than the wavelength of light to roughly roughen it, and a secondary such as butynediol It is believed that the brightener smoothes and imparts gloss to the fine irregularities created by the crystalline particles as it is reduced at the plating surface and reduced to butanediol.
Substances used as secondary brighteners include aldehydes such as formaldehyde (formalin); allyl sulfonic acids such as allyl or vinyl compounds and vinyl sulfonic acids; butyne diols such as acetylene compounds; ethylene cyanohydrin such as nitriles Others include propargyl alcohol, coumarin, gelatin, thiourea and the like. In general, since secondary alcohols such as butynediol and propargyl alcohol are used, the secondary brighteners are also referred to as unsaturated alcohol components.
The secondary brightener used in the present invention may be a compound obtained by adding these compounds, a mixture thereof, or some additives, or a commercially available secondary brightener prepared as a secondary brightener. You may use.

本発明における二次光沢剤のめっき液への添加量は、通常の添加量として推奨されている範囲の添加量であればよい。二次光沢剤としてここに示した特定の化合物類もしくはその混合物を用いる場合、その添加量は、通常はめっき液1リットルに対して二次光沢剤もしくはその混合物が0.4ないし1.8ミリモル程度の範囲(0.4〜1.8mmol/L)が適切であると言われており、本発明においてもこうした範囲で適宜増減すればよい。溶液のかたちで供給されている市販の二次光沢剤を用いる場合にはその二次光沢剤製造者が推奨する範囲の添加量の範囲で適宜増減すればよい。   The addition amount of the secondary brightening agent to the plating solution in the present invention may be an addition amount in the range recommended as a normal addition amount. When the specific compounds shown here or a mixture thereof are used as the secondary brightener, the amount added is usually in the range of about 0.4 to 1.8 mmol of secondary brightener or a mixture thereof per liter of plating solution ( It is said that 0.4 to 1.8 mmol / L) is appropriate, and in the present invention, it may be appropriately increased or decreased within such a range. When a commercially available secondary brightener supplied in the form of a solution is used, it may be appropriately increased or decreased within the range of the addition amount recommended by the secondary brightener manufacturer.

5.界面活性剤
界面活性剤としては、一般に汎用性が高く安価なドデシル硫酸ナトリウム(SDS、ラウリル硫酸ナトリウムともいう。)などが好ましく、実際にも使われることが多いが、その他の陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤、さらに両性イオン性界面活性剤なども利用できる。
陰イオン性界面活性剤としては、典型的にはドデシル硫酸ナトリウム(SDS)などのアルキル硫酸塩であるが、他にα−オレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、そのリン酸エステル、パーフルオロオレフィンスルホン酸塩、パーフルオロアルキルベンゼンスルホン酸塩、パーフルオロエーテルスルホン酸塩等が挙げられる。尚、これらの陰イオン性アニオン界面活性剤の塩のカチオンとしては、例えば、ナトリウム、カリウム、ジエチルジメチルアンモニウム、テトラメチルアンモニウム等が挙げられる。
非イオン性界面活性剤としては、例えば、炭素数C4〜C25アルキルフェノール系、炭素数C4〜C20アルカノール、ポリアルキレングリコール系等が挙げられる。陽イオン性界面活性剤としては、例えば、ラウリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、ジメチルベンジルラウリルアンモニウム塩等が挙げられる。
両性イオン性界面活性剤としては、例えば、ベタイン、スルホベタイン、エチレンオキサイド及び/又はプロピレンオキシドとアルキルアミン又はジアミンとの縮合生成物の硫酸化又はスルホン酸化付加物等が挙げられる。
5. Surfactant As a surfactant, sodium dodecyl sulfate (SDS, also called sodium lauryl sulfate), which is generally versatile and inexpensive, is preferable, and is often used in practice, but other anionic surfactants are also used. Also usable are agents, cationic surfactants, nonionic surfactants, and further zwitterionic surfactants.
Anionic surfactants are typically alkyl sulfates such as sodium dodecyl sulfate (SDS), but also α-olefin sulfonates, alkyl benzene sulfonates, phosphates thereof, perfluoroolefins. Sulfonate, perfluoroalkylbenzene sulfonate, perfluoroether sulfonate and the like can be mentioned. In addition, as a cation of the salt of these anionic anionic surfactant, sodium, potassium, diethyldimethyl ammonium, tetramethyl ammonium etc. are mentioned, for example.
As a nonionic surfactant, carbon number C4-C25 alkylphenol type | system | group, carbon number C4-C20 alkanol, polyalkylene glycol type | system | group etc. are mentioned, for example. Examples of cationic surfactants include lauryl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, dimethyl benzyl lauryl ammonium salt and the like.
Examples of the zwitterionic surfactant include betaine, sulfobetaine, ethylene oxide and / or a sulfated or sulfonated adduct of a condensation product of propylene oxide and an alkylamine or diamine.

めっき液に界面活性剤を添加する場合には添加量は臨界ミセル濃度の10分の1以上であることが必要であるが、臨界ミセル濃度やそれ以上の濃度になる量を添加しても問題は無い。界面活性剤の種類にもよるが、SDSの場合であれば、0.1〜10g/L好ましくは、0.5〜5g/L添加する。   When adding a surfactant to the plating solution, the addition amount must be at least one-tenth of the critical micelle concentration, but adding a concentration that exceeds or exceeds the critical micelle concentration is problematic. There is no. Depending on the type of surfactant, in the case of SDS, 0.1 to 10 g / L, preferably 0.5 to 5 g / L is added.

6.マイクロバブル
マイクロバブルは、マイクロバブルを発生させるための設備をめっき槽に装着し、これを稼働させることで発生させる(特許文献1など)。マイクロバブルを発生させる設備には、加圧・旋回、加圧発泡、旋回・剪断、キャビテーション、ベンチュリーなど様々な方式のものがあるが、いずれを用いてもよい。
マイクロバブルの泡の大きさは、泡の直径の分布のピークすなわち最多直径が約500μm以下であることが必要である。
6. Microbubbles Microbubbles are generated by attaching a facility for generating microbubbles to a plating tank and operating it (see Patent Document 1 and the like). There are various types of equipment for generating microbubbles, such as pressurizing / swirling, pressurizing foaming, swirling / shearing, cavitation, and venturi, any of which may be used.
The bubble size of the microbubbles needs to be at the peak or largest diameter of the bubble diameter distribution of about 500 μm or less.

めっきを開始する前にノズルに気体を送ってある程度の量のマイクロバブルをめっき液中に存在せしめることが必要である。そのためには、例えばめっき液1リットルに対し1分間に0.1〜0.2リットル程度の気体を2ないし3分程度ノズルに送ればよいが、これより気体流量を多くして時間を短くしても良いし、遅くして時間を長くしても良い。
マイクロバブルは浮力が小さく例えば10分といっためっきをする間はかなりのマイクロバブルがめっき液中にとどまるので、めっきを行っている間、連続してマイクロバブルを発生させていても良く、マイクロバブルの発生を減速ないし停止しても良い。
Before starting the plating, it is necessary to send a gas to the nozzle to cause a certain amount of microbubbles to be present in the plating solution. For this purpose, for example, about 1 to 0.2 liters of gas per minute of plating solution may be sent to the nozzle for about 2 to 3 minutes, but the gas flow rate may be increased to shorten the time. You can slow down and increase the time.
Since the microbubbles have small buoyancy and remain in the plating solution during plating, for example, for 10 minutes, the microbubbles may be continuously generated during plating, and the microbubbles Generation may be decelerated or stopped.

以下、実施例に基づき本発明実施の形態についてさらに詳述する。但し、本発明実施の形態はこれらの実施例に限定されるものではない。
本発明におけるその他の用語や概念は、当該分野において慣用的に使用される用語の意味に基づくものであり、本発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。また、各種の分析などは、使用した分析機器又は試薬の取り扱い説明書、カタログなどに記載の方法を準用して行った。
なお、本明細書中に引用した先行技術文献、特許公報及び特許出願明細書中の記載内容は、本発明の記載内容として参照されるものとする。
The embodiments of the present invention will be described in detail below based on examples. However, the embodiment of the present invention is not limited to these examples.
Other terms and concepts in the present invention are based on the meanings of terms that are conventionally used in the field, and various techniques used to implement the present invention include those that clearly indicate the source. Those skilled in the art can easily and surely carry out the present invention based on known documents and the like except for the above. In addition, various analyzes and the like were carried out using the methods described in the instruction manuals and catalogs of the analytical instruments or reagents used.
The contents of the prior art documents, patent publications and patent applications cited in this specification are to be referred to as the contents of the present invention.

(実施例1)熱処理工程を含む電解ニッケルめっき方法
(1−1)電解ニッケルめっき工程及び熱処理工程
水1000部に、硫酸ニッケル240部、塩化ニッケル45部及び硼酸30部を溶解し、pH4〜5に調整した。これに一次光沢剤としてサッカリンをめっき液1Lあたり16mmolと、二次光沢剤としてブチンジオールをめっき液1L当たり5.8mmol加えて、本実施例で用いるニッケルめっき液とした。
調製しためっき液を攪拌機とサイクロン方式(ベンチュリー方式)のマイクロバブル作成用ノズルを設けためっき槽に入れ、マイクロバブルを発生させつつ撹拌を継続しながら、平均電流密度5 A/dm2で10分間ハルセル鉄板に対して電解ニッケルめっきを行った。
めっき終了後、作成しためっき試験片を水洗し乾燥した後硬度を測定した。めっき皮膜の硬度はマイクロビッカース硬さ試験機で位置を変えて3点測定し、平均値を求めた。
また、同じ条件でめっきを施した試験片を、電気炉を用い、200℃で1時間という条件で熱処理を行った。熱処理後のめっき試験片に対しても同様の手法で硬度を測定した。
EXAMPLE 1 Electrolytic Nickel Plating Method Including Heat Treatment Step (1-1) Electrolytic Nickel Plating Step and Heat Treatment Step In 1000 parts of water, 240 parts of nickel sulfate, 45 parts of nickel chloride and 30 parts of oxalic acid are dissolved, pH 4 to 5 Adjusted to To this, 16 mmol of saccharin per liter of plating solution as a primary brightening agent and 5.8 mmol per liter of plating solution as a secondary brightening agent were added to obtain a nickel plating solution used in this example.
The prepared plating solution is placed in a plating tank provided with a stirrer and a cyclone type (venturi type) micro bubble forming nozzle, and generation of micro bubbles is continued while stirring is performed for 10 minutes at an average current density of 5 A / dm 2. Electrolytic nickel plating was performed on the Hull cell iron plate.
After completion of plating, the prepared plating test piece was washed with water and dried, and then the hardness was measured. The hardness of the plated film was measured at three points by changing the position with a micro Vickers hardness tester, and the average value was determined.
Further, the test pieces plated under the same conditions were heat-treated at 200 ° C. for 1 hour using an electric furnace. The hardness of the plated test piece after heat treatment was also measured in the same manner.

(1−2)熱処理工程による効果
熱処理を施さない状態の試験片のめっき皮膜のビッカース硬度は583であり、通常のニッケル電解めっきで得られる硬度とほぼ同様であったのに対し、熱処理後のめっき皮膜の硬度は722であり、かなり高くなっていることがわかる。
(1-2) Effects of Heat Treatment Step The Vickers hardness of the plated film of the test piece in the state not subjected to heat treatment is 583, which is substantially the same as the hardness obtained by ordinary nickel electrolytic plating, but after heat treatment The hardness of the plating film is 722 and it can be seen that the hardness is considerably high.

(1−3)界面活性剤配合による効果
本実施例(1−1)に示したニッケルめっき液を用い、マイクロバブルを共存させる同じめっき条件下でめっき処理を施した場合、及びニッケルめっき液にドデシル硫酸ナトリウムを0.1 重量%の割合で添加しためっき液を用い、マイクロバブルは共存させず攪拌のみを行う条件下でめっき処理を施した場合について、それぞれ(1−1)と同様の熱処理工程を施した。
両者について、(1−1)と同様の測定条件で熱処理前及び熱処理後のめっき皮膜の硬度を測定したところ、両者の熱処理後の硬度はほぼ同等であった。すなわち、めっき液中に界面活性剤を少量添加することで、マイクロバブル共存の場合と同程度の効果が得られることがわかった。
(1-3) Effect of Surfactant Formulation When using the nickel plating solution shown in this example (1-1) and performing plating treatment under the same plating conditions in which microbubbles coexist, and in the nickel plating solution The same heat treatment process as in (1-1) was performed for each case where plating was performed under the condition that only stirring was performed without coexisting microbubbles using a plating solution to which sodium dodecyl sulfate was added at a ratio of 0.1% by weight. gave.
About both, when the hardness of the plating film before and after heat processing was measured on the same measurement conditions as (1-1), both hardness after heat processing was substantially equivalent. That is, it was found that by adding a small amount of surfactant to the plating solution, the same effect as in the case of coexistence of microbubbles can be obtained.

(実施例2)界面活性剤含有めっき液によるマイクロバブル共存下のめっき処理工程及び熱処理工程
実施例1(1−1)と同様に調製したニッケルめっき液に、さらに界面活性剤としてドデシル硫酸ナトリウムを0.1重量%添加した。当該調製めっき液を用いて、実施例1と同じ条件でマイクロバブル共存下に攪拌しながらハルセル鉄板に対して電解ニッケルめっきを行った。得られためっき試験片の水洗・乾燥後のビッカース硬度は622であった。
また同じ条件でめっきした試験片の200℃1時間熱処理後の硬度は794と熱処理後の硬度は大幅に上昇した。
(Example 2) Plating treatment step and heat treatment step in the presence of microbubbles with a surfactant-containing plating solution To a nickel plating solution prepared in the same manner as in Example 1 (1-1), sodium dodecyl sulfate was further added as a surfactant. 0.1 wt% was added. Using the prepared plating solution, electrolytic nickel plating was performed on a hullel iron plate while stirring in the presence of microbubbles under the same conditions as in Example 1. The Vickers hardness of the obtained plated test piece after washing with water and drying was 622.
The hardness of the test piece plated under the same conditions after heat treatment at 200 ° C. for 1 hour was 794, and the hardness after heat treatment significantly increased.

(実施例3)電解ニッケルめっき皮膜硬度に対する熱処理温度による影響
実施例2で得られためっき処理工程後の試験片に対し、100℃、150℃、200℃、250℃。300℃と温度を変えて1時間の熱処理工程を施した。めっき皮膜の硬度は100℃では718、150℃では744、200℃では794、250℃では791であり、いずれも熱処理前の硬度622と比較して大幅に高く、しかも温度が高い方が硬度も高くなる傾向があったが、無電解ニッケルめっきの場合と異なり、300℃では443と低下した。(図1)
Example 3 Influence of Heat Treatment Temperature on Electrolytic Nickel Plating Film Hardness With respect to the test piece after the plating treatment step obtained in Example 2, 100 ° C., 150 ° C., 200 ° C., 250 ° C. The temperature was changed to 300 ° C., and a heat treatment process was performed for 1 hour. The hardness of the plated film is 718 at 100 ° C, 744 at 150 ° C, 794 at 200 ° C and 791 at 250 ° C, both of which are significantly higher than the hardness 622 before heat treatment, and the higher the temperature, the higher the hardness. It tended to be higher, but it decreased to 443 at 300 ° C, unlike in the case of electroless nickel plating. (Figure 1)

Claims (3)

ニッケルの電解めっき熱処理方法であって、
(1)電解ニッケルめっき液として、一次光沢剤および二次光沢剤を添加して調製する工程、
(2)電解ニッケルめっき液を撹拌しながら、被めっき物表面にニッケル被膜を形成させる工程、
(3)電解ニッケル被膜が形成されためっき物を、100℃以上300℃未満の温度で5分以上熱処理を施す工程、
を含むことを特徴とする、方法。
A nickel electrolytic plating heat treatment method,
(1) A step of preparing by adding a primary brightening agent and a secondary brightening agent as an electrolytic nickel plating solution,
(2) forming a nickel film on the surface of the object to be plated while stirring the electrolytic nickel plating solution;
(3) applying a heat treatment to the plated material having the electrolytic nickel film formed thereon at a temperature of 100 ° C. or more and less than 300 ° C. for 5 minutes or more,
A method comprising the steps of:
電解ニッケル被膜を形成させる工程において、電解ニッケルめっき液中に最多直径が約500ミクロン以下のマイクロバブルを送入し、撹拌しながら被めっき物表面にニッケル被膜を形成させることを特徴とする、請求項1に記載の方法。   In the step of forming the electrolytic nickel film, microbubbles having the largest diameter of about 500 microns or less are fed into the electrolytic nickel plating solution, and the nickel film is formed on the surface of the object while stirring. Item 2. The method according to Item 1. 電解ニッケルめっき液として、一次光沢剤および二次光沢剤と共に、界面活性剤を添加して調製することを特徴とする、請求項1又は2に記載の方法。   The method according to claim 1, wherein the electrolytic nickel plating solution is prepared by adding a surfactant together with a primary brightener and a secondary brightener.
JP2018011718A 2018-01-26 2018-01-26 Electrolytic nickel plating method including heat treatment step Active JP6942067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011718A JP6942067B2 (en) 2018-01-26 2018-01-26 Electrolytic nickel plating method including heat treatment step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011718A JP6942067B2 (en) 2018-01-26 2018-01-26 Electrolytic nickel plating method including heat treatment step

Publications (2)

Publication Number Publication Date
JP2019127645A true JP2019127645A (en) 2019-08-01
JP6942067B2 JP6942067B2 (en) 2021-09-29

Family

ID=67471948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011718A Active JP6942067B2 (en) 2018-01-26 2018-01-26 Electrolytic nickel plating method including heat treatment step

Country Status (1)

Country Link
JP (1) JP6942067B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005931A1 (en) 2019-07-09 2021-01-14 株式会社Pentas Stent and affixing method for element wires in stent
CN113174613A (en) * 2021-04-12 2021-07-27 中国科学院兰州化学物理研究所 Preparation method of sulfur-free nickel button
KR20220099367A (en) * 2021-01-06 2022-07-13 와이엠티 주식회사 Additive for electrolytic plating solution and high current electrolytic nickel-plating solution comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021005931A1 (en) 2019-07-09 2021-01-14 株式会社Pentas Stent and affixing method for element wires in stent
KR20220099367A (en) * 2021-01-06 2022-07-13 와이엠티 주식회사 Additive for electrolytic plating solution and high current electrolytic nickel-plating solution comprising the same
KR102496247B1 (en) * 2021-01-06 2023-02-06 와이엠티 주식회사 Additive for electrolytic plating solution and high current electrolytic nickel-plating solution comprising the same
CN113174613A (en) * 2021-04-12 2021-07-27 中国科学院兰州化学物理研究所 Preparation method of sulfur-free nickel button
CN113174613B (en) * 2021-04-12 2023-06-02 中国科学院兰州化学物理研究所 Preparation method of sulfur-free nickel button

Also Published As

Publication number Publication date
JP6942067B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP2019127645A (en) Electrolytic nickel plating method including heat treatment process
CN100480434C (en) Pyrophosphoric acid bath for use in copper-tin alloy plating
CN101942684B (en) Alkaline electroplating Zn-Ni alloy additive, electroplating solution and preparation method
JP2757972B2 (en) High speed electroplating of tin plate
US2525942A (en) Electrodepositing bath and process
CN103132114B (en) The manufacture method of wear-resisting workpiece and scuff-resistant coating thereof
Sadiku-Agboola et al. Influence of operation parameters on metal deposition in bright nickel-plating process
JP3046594B1 (en) Anodizing system for metals utilizing vibrating flow agitation
TWI441958B (en) Pyrophosphate-containing bath for cyanide-free deposition of copper-tin alloys
US2927066A (en) Chromium alloy plating
CN101250727B (en) Multifunctional composite electrochemical deposition liquid and method of use thereof
CN1500916A (en) Gradient composite deposite for continuous casting crystallizer copper plate and production method thereof
WO2003080896A1 (en) High speed acid copper plating
RU2666391C1 (en) Bath for electrolytic coating with copper-nickel alloys
CN102330122A (en) Electroplate liquid for electroplating semi-bright nickel at high speed as well as preparation method and application thereof
JP3571627B2 (en) Electrochemical reaction method
WO2017077655A1 (en) Nickel-plating additive and satin nickel-plating bath containing same
JP2017172017A (en) Satin nickel plating bath and satin nickel plating method
US3041255A (en) Electrodeposition of bright nickel
CN109371434A (en) A kind of neutrality nickel plating solution and neutral nickel plating technology
NO147994B (en) PROCEDURE FOR THE PREPARATION OF AN ELECTROLYTIC DEPOSIT AND PLATING SOLUTION FOR EXECUTING THE PROCEDURE
US2984603A (en) Platinum plating composition and process
JP2006265603A (en) Electrochemical surface treatment device and electrochemical surface treatment method
JPH022957B2 (en)
JP2004308003A (en) Electrochemical surface treatment method for metallic member, and electrochemical surface treatment apparatus for metallic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6942067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150