JP2019127604A - Film deposition apparatus for metallic film - Google Patents

Film deposition apparatus for metallic film Download PDF

Info

Publication number
JP2019127604A
JP2019127604A JP2018008137A JP2018008137A JP2019127604A JP 2019127604 A JP2019127604 A JP 2019127604A JP 2018008137 A JP2018008137 A JP 2018008137A JP 2018008137 A JP2018008137 A JP 2018008137A JP 2019127604 A JP2019127604 A JP 2019127604A
Authority
JP
Japan
Prior art keywords
anode
substrate
film
metal
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018008137A
Other languages
Japanese (ja)
Other versions
JP6996312B2 (en
Inventor
飯坂 浩文
Hirofumi Iizaka
浩文 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018008137A priority Critical patent/JP6996312B2/en
Publication of JP2019127604A publication Critical patent/JP2019127604A/en
Application granted granted Critical
Publication of JP6996312B2 publication Critical patent/JP6996312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

To provide a film deposition apparatus capable of easily avoiding formation of a metallic film with reduced gloss.SOLUTION: The film deposition apparatus for forming the metallic film on a surface of a substrate by reducing metal ions derived from an anode on a substrate according to one aspect of the embodiment comprises at least: a solution chamber that is placed between the anode and a solid electrolyte membrane and stores a metal solution; pressing means for relatively pressing the anode and the substrate to bring the substrate and the solid electrolyte membrane into contact with each other; and a power supply unit that applies voltage between the anode and the substrate. The film deposition apparatus has a voltage measurement unit for measuring an immersion potential Vbetween the anode and the substrate when the substrate and the solid electrolyte membrane are brought into contact with each other, and a maximum electrolytic reaction potential Vbetween the anode and the substrate when a constant current is applied, and a control unit that determines whether the potential difference (V-V) between the maximum electrolytic reaction potential Vand the immersion potential Vis equal to or greater than a predetermined set value.SELECTED DRAWING: Figure 1

Description

本開示は、金属皮膜の成膜装置に関する。   The present disclosure relates to a film forming apparatus for a metal film.

例えば電子回路基板等を製造する際には、金属回路パターンを形成するために、基板の表面に金属皮膜が成膜される。このような金属皮膜の成膜技術として、例えば特許文献1は、Si等の半導体基板の表面に、無電解めっき処理等のめっき処理により金属皮膜を成膜する技術を開示している。また、スパッタリング等のPVD法により金属皮膜を成膜する技術も知られている。   For example, when an electronic circuit board or the like is manufactured, a metal film is formed on the surface of the substrate in order to form a metal circuit pattern. As a film forming technology of such a metal film, for example, Patent Document 1 discloses a technology of forming a metal film on a surface of a semiconductor substrate such as Si by a plating process such as an electroless plating process. In addition, a technique for forming a metal film by a PVD method such as sputtering is also known.

無電解めっき処理等のめっき処理の場合、めっき処理後の水洗が必要であり、また、水洗後の廃液を処理する必要もあった。また、PVD法により基板表面に成膜を行う場合、形成した金属皮膜に内部応力が生じるため、金属皮膜の厚膜化には制限があった。特に、スパッタリングの場合、高真空下でしか成膜できない場合があるという制限もあった。   In the case of plating treatment such as electroless plating treatment, washing with water after the plating treatment is necessary, and it is also necessary to treat the waste liquid after washing with water. In addition, when a film is formed on the substrate surface by the PVD method, internal stress is generated in the formed metal film, so that there is a limit to increasing the thickness of the metal film. In particular, in the case of sputtering, there is a limitation that a film can be formed only under a high vacuum.

このような点を鑑みて、例えば、特許文献2には、陽極と、陰極と、陽極と陰極との間に配置される固体電解質と、陽極と陰極との間に電圧を印加する電源部とを用いた、金属皮膜の成膜装置が開示されている。特許文献2に記載の装置では、陽極は、金属皮膜を構成する金属材料からなり、陽極及び陰極に電圧を印加することにより、陽極の一部がイオン化する。特許文献2に記載の装置では、陽極のイオン化によって生成する金属イオンが固体電解質を通過して陰極側に配置された基板に析出し、基板表面に金属皮膜が形成される。   In view of such a point, for example, Patent Document 2 discloses an anode, a cathode, a solid electrolyte disposed between the anode and the cathode, and a power supply unit that applies a voltage between the anode and the cathode. An apparatus for forming a metal film is disclosed. In the apparatus described in Patent Document 2, the anode is made of a metal material constituting a metal film, and a part of the anode is ionized by applying a voltage to the anode and the cathode. In the device described in Patent Document 2, metal ions generated by ionization of the anode pass through the solid electrolyte and are deposited on the substrate disposed on the cathode side, and a metal film is formed on the substrate surface.

特開2010−037622号公報Unexamined-Japanese-Patent No. 2010-037622 特開平05−148681号公報Japanese Patent Application Laid-Open No. 05-148681

ここで、陽極と基板との間に電圧を印加して金属皮膜の成膜工程を続けると、徐々に陽極が酸化され、陽極の表面に酸化膜が形成される。陽極表面に酸化膜が形成されると、陽極が十分に溶解しなくなり、金属溶液中の金属イオン濃度が低下する。その結果、形成される金属皮膜の光沢が低下してしまう。金属皮膜の光沢が低下すると、製品価値の低下や、機械的性質の変化等の問題が生じる。   Here, when a voltage is applied between the anode and the substrate to continue the film forming process of the metal film, the anode is gradually oxidized to form an oxide film on the surface of the anode. When the oxide film is formed on the anode surface, the anode is not sufficiently dissolved, and the metal ion concentration in the metal solution is lowered. As a result, the gloss of the formed metal film is reduced. When the gloss of the metal film decreases, problems such as a decrease in product value and a change in mechanical properties occur.

そのため、光沢が低下した金属皮膜の形成を防ぐためには、成膜工程中等において陽極の状態、すなわち陽極の酸化膜の形成状態を常に把握することが考えられる。陽極の状態を把握する方法としては、例えば、陽極を直接視認する方法が考えられるが、一般的に陽極はハウジング内に収容されているため、陽極の状態を外から確認することはできない。陽極の状態を確認するためには、成膜装置を解体して陽極を視認できる状態にする必要や陽極を取り出して分析する必要があり、手間及びコストがかかる。そこで、成膜装置を解体せずに、容易に陽極における酸化膜の厚さを確認でき、光沢が低下した金属皮膜の形成を回避できる手段の開発が望まれている。   Therefore, in order to prevent the formation of the metal film with reduced gloss, it is conceivable to always grasp the state of the anode, that is, the formation state of the oxide film of the anode during the film forming process or the like. As a method of grasping the state of the anode, for example, a method of directly visualizing the anode can be considered, but since the anode is generally accommodated in the housing, the state of the anode can not be confirmed from the outside. In order to confirm the state of the anode, it is necessary to disassemble the film forming apparatus to make the anode visible and to take out the anode for analysis, which requires labor and cost. Therefore, it is desirable to develop a means capable of easily confirming the thickness of the oxide film at the anode without disassembling the film forming apparatus, and avoiding the formation of a metal film with reduced gloss.

本開示の目的は、上記課題に鑑みてなされたものであり、光沢が低下した金属皮膜の形成を容易に回避できる成膜装置を提供することである。   An object of the present disclosure has been made in view of the above problems, and is to provide a film forming apparatus capable of easily avoiding the formation of a metal film having a reduced gloss.

本実施形態の一形態は、以下の通りである。   One form of this embodiment is as follows.

(1) 陽極と、前記陽極と陰極となる基材との間に配置される固体電解質膜と、前記陽極と前記固体電解質膜との間に配置され、金属溶液を収容する溶液室と、前記陽極と前記基材とを相対的に押圧して前記基材と前記固体電解質膜とを接触させる押圧手段と、前記陽極及び前記基材の間に電圧を印加する電源部と、を少なくとも備え、前記陽極に由来する金属イオンを前記基板上で還元することで金属皮膜を前記基材の表面に成膜する成膜装置であって、
前記基材と前記固体電解質膜とが接触したときの前記陽極と前記基材の間の浸漬電位Vと、定電流を通電したときの前記陽極と前記基材の間の最大電解反応電位Vとを測定する電圧測定部と、
前記最大電解反応電位Vと前記浸漬電位Vとの電位差(V−V)が所定の設定値以上であるかどうかを判断する制御部と、
を備える、成膜装置。
(2) 前記制御部は、前記電位差(V−V)が所定の設定値以上である場合に、通電を停止する、(1)に記載の成膜装置。
(3) 前記設定値が、1.4Vである、(1)又は(2)に記載の成膜装置。
(4) 前記定電流が、前記金属皮膜を形成するために通電される、(1)〜(3)のいずれか1つに記載の成膜装置。
(5) 陽極と、陰極となる基材と、前記陽極と前記基材の間に配置された固体電解質膜と、前記陽極と前記固体電解質膜との間に配置された金属溶液とを用い、前記陽極に由来する金属イオンを前記基板上で還元することで金属皮膜を前記基材の表面に成膜する金属皮膜の製造方法であって、
前記陽極と前記基材とを相対的に押圧して前記固体電解質膜と前記基材とを接触させる工程と、
前記基材と前記固体電解質膜とが接触したときの前記陽極と前記基材の間の浸漬電位Vを測定する工程と、
前記陽極と前記基材の間に定電流を通電させる工程と、
前記定電流を通電したときの前記陽極と前記基材の間の最大電解反応電位Vを測定する工程と、
前記最大電解反応電位Vと前記浸漬電位Vの電位差(V−V)が所定の設定値以上であるかどうかを判断する工程と、
を含む製造方法。
(6) 前記電位差(V−V)が所定の設定値以上である場合に、通電を停止する、(5)に記載の製造方法。
(7) 前記設定値が、1.4Vである、(5)又は(6)に記載の製造方法。
(8) 前記定電流を、金属皮膜を形成するために通電する、(5)〜(7)のいずれか1つに記載の製造方法。
(1) an anode, a solid electrolyte membrane disposed between the anode and the base material serving as the cathode, a solution chamber disposed between the anode and the solid electrolyte membrane, and containing a metal solution; At least a pressing means for relatively pressing an anode and the base material to bring the base material and the solid electrolyte membrane into contact with each other, and a power supply unit for applying a voltage between the anode and the base material, A film forming apparatus for forming a metal film on the surface of the base material by reducing metal ions derived from the anode on the substrate,
Maximum electrolytic reaction voltage V between the immersion potential V 1, and the anode upon conducting the constant current the substrate between the anode and the substrate when said substrate and said solid electrolyte membrane is in contact A voltage measuring unit that measures 2 ;
A control unit that determines whether or not a potential difference (V 2 −V 1 ) between the maximum electrolytic reaction potential V 2 and the immersion potential V 1 is a predetermined set value or more;
A film forming apparatus comprising:
(2) The film forming apparatus according to (1), wherein the control unit stops energization when the potential difference (V 2 −V 1 ) is equal to or greater than a predetermined set value.
(3) The film deposition apparatus according to (1) or (2), wherein the set value is 1.4V.
(4) The film forming apparatus according to any one of (1) to (3), wherein the constant current is energized to form the metal film.
(5) Using an anode, a base material serving as a cathode, a solid electrolyte membrane disposed between the anode and the base material, and a metal solution disposed between the anode and the solid electrolyte membrane, A metal film manufacturing method for forming a metal film on the surface of the base material by reducing metal ions derived from the anode on the substrate,
Relatively pressing the anode and the substrate to bring the solid electrolyte membrane into contact with the substrate;
Measuring the immersion potential V 1 between the anode and the substrate when the substrate and the solid electrolyte membrane are in contact;
Passing a constant current between the anode and the substrate;
Measuring a maximum electrolytic reaction voltage V 2 between the anode and the substrate when energized said constant current,
Determining whether a potential difference (V 2 −V 1 ) between the maximum electrolytic reaction potential V 2 and the immersion potential V 1 is equal to or greater than a predetermined set value;
Manufacturing method.
(6) The manufacturing method according to (5), wherein energization is stopped when the potential difference (V 2 −V 1 ) is equal to or greater than a predetermined set value.
(7) The manufacturing method according to (5) or (6), wherein the set value is 1.4V.
(8) The manufacturing method according to any one of (5) to (7), wherein the constant current is energized to form a metal film.

本開示により、光沢が低下した金属皮膜の形成を容易に回避できる成膜装置を提供することができる。   According to the present disclosure, it is possible to provide a film forming apparatus that can easily avoid the formation of a metal film having a reduced gloss.

本実施形態に係る金属皮膜の成膜装置の構成例を示す模式的概略図である。1 is a schematic diagram illustrating a configuration example of a metal film deposition apparatus according to an embodiment. 図1に示す金属皮膜の成膜装置による成膜方法を説明するための模式的概略図である。FIG. 2 is a schematic diagram for explaining a film forming method using the metal film forming apparatus shown in FIG. 1. 実施例で得られた陽極の酸化膜の厚さと電位差(V−V)との関係を示すグラフである。It is a graph showing the relationship between the thickness and the potential difference of the oxide film of the anode obtained in Example (V 2 -V 1). 陽極3(酸化膜の厚さ:0.06μm)を用いてニッケル皮膜を成膜した際における時間−電圧曲線(縦軸:電圧、横軸:時間)である。4 is a time-voltage curve (vertical axis: voltage, horizontal axis: time) when a nickel film is formed using the anode 3 (thickness of oxide film: 0.06 μm). 陽極6(酸化膜の厚さ:0.18μm)を用いてニッケル皮膜を成膜した際における時間−電圧曲線(縦軸:電圧、横軸:時間)である。4 is a time-voltage curve (vertical axis: voltage, horizontal axis: time) when a nickel film is formed using the anode 6 (thickness of oxide film: 0.18 μm). 陽極9(酸化膜の厚さ:3.00μm)を用いてニッケル皮膜を成膜した際における時間−電圧曲線(縦軸:電圧、横軸:時間)である。6 is a time-voltage curve (vertical axis: voltage, horizontal axis: time) when a nickel film is formed using the anode 9 (thickness of oxide film: 3.00 μm).

本実施形態は、陽極と、前記陽極と陰極となる基材との間に配置される固体電解質膜と、前記陽極と前記固体電解質膜との間に配置され、金属溶液を収容する溶液室と、前記陽極と前記基材とを相対的に押圧して前記基材と前記固体電解質膜とを接触させる押圧手段と、前記陽極及び前記基材の間に電圧を印加する電源部と、を少なくとも備え、前記陽極に由来する金属イオンを前記基板上で還元することで金属皮膜を前記基材の表面に成膜する成膜装置であって、前記基材と前記固体電解質膜とが接触したときの前記陽極と前記基材の間の浸漬電位Vと、定電流を通電したときの前記陽極と前記基材の間の最大電解反応電位Vとを測定する電圧測定部と、前記最大電解反応電位Vと前記浸漬電位Vとの電位差(V−V)が所定の設定値以上であるかどうかを判断する制御部と、を備える、成膜装置である。 The present embodiment includes an anode, a solid electrolyte membrane disposed between the anode and the base material serving as the cathode, a solution chamber disposed between the anode and the solid electrolyte membrane, and containing a metal solution, A pressing means for pressing the anode and the base material relatively to bring the base material and the solid electrolyte membrane into contact with each other, and a power supply unit for applying a voltage between the anode and the base material. A film forming apparatus for forming a metal film on the surface of the substrate by reducing metal ions derived from the anode on the substrate, wherein the substrate and the solid electrolyte film are in contact with each other. the immersion potential V 1 of the between the anode and the substrate, and a voltage measuring unit for measuring the maximum electrolytic reaction voltage V 2 between the anode and the substrate when energized with a constant current, said maximum electrolyte the potential difference between the reaction potential V 2 and the immersion potential V 1 (V 2 -V 1) And a control unit for determining whether equal to or higher than a predetermined value, a film formation apparatus.

本実施形態により、光沢が低下した金属皮膜の形成を容易に回避できる成膜装置を提供することができる。   According to the present embodiment, it is possible to provide a film forming apparatus that can easily avoid the formation of a metal film having a reduced gloss.

図1は、本実施形態に係る金属皮膜の成膜装置1の構成例を示す模式的断面図である。図1に示すように、本実施形態に係る成膜装置1は、固相電析法により金属皮膜を形成する装置であり、金属溶液に由来する金属イオンを還元することで金属を析出させることにより金属皮膜を基材Bの表面に形成する。   FIG. 1 is a schematic cross-sectional view showing a configuration example of a metal film deposition apparatus 1 according to the present embodiment. As shown in FIG. 1, a film forming apparatus 1 according to the present embodiment is an apparatus for forming a metal film by solid phase electrodeposition, and depositing metal by reducing metal ions derived from a metal solution. A metal film is formed on the surface of the substrate B by

成膜装置1は、陽極11と、陽極11と基材B(陰極)との間に配置される固体電解質膜13と、陽極11と基材Bとの間に電圧を印加する電源部16と、を備えている。また、成膜装置1は、金属溶液Lを収容する溶液室15を備えており、溶液室15は、陽極11と固体電解質膜13に金属溶液Lが接触するように、固体電解質膜13と陽極11との間に配置されている。溶液室15は、ハウジング12により形成されている。具体的には、ハウジング12は、金属溶液Lを収容する収容空間Sを有し、収容空間Sの基材側に開口部12aを有している。固体電解質膜13は、ハウジング12の開口部12aを封止するようにハウジング12に取付けられている。また、成膜装置1は、基材Bを載置する載置台40を備えている。載置台40は、例えば金属製である。載置台40には、電源部16の負極が接続されており、陽極11には、電源部16の正極が接続されている。なお、載置台40と基材Bの成膜される表面(金属薄膜(不図示))とは導通している。これにより、基材Bの表面を陰極として機能させることができる。また、成膜装置1には、さらに、ハウジング12の上部に、バネ等の緩衝部材19を介して押圧手段18が設けられている。押圧手段18は、例えば、油圧式又は空気式のシリンダを挙げることができる。これにより、固体電解質膜13を基材Bの表面に押圧しながら金属皮膜を成膜することができる。また、緩衝部材19により、固体電解質膜13を基材Bの表面に緩やかに押圧することができる。また、成膜装置1は、陽極11と基材Bとの間の電位を測定可能な電圧測定部50を備える。電圧測定部50としては、例えば、電圧計が挙げられる。電圧測定部50により、記基材Bと固体電解質膜13とが接触したときの陽極11と基材Bの間の浸漬電位Vと、定電流を通電したときの陽極11と基材Bの間の最大電解反応電位Vと、を測定することができる。また、成膜装置1は、制御部51を備え、該制御部51は、電圧測定部50により測定した最大電解反応電位Vと浸漬電位Vとの電位差(V−V)が、所定の設定値以上であるかどうかを判断する。また、制御部51は、電源部16と信号線を介して接続されており、電位差(V−V)が所定の設定値以上である場合に、通電を停止させることができる。 The film forming apparatus 1 includes an anode 11, a solid electrolyte film 13 disposed between the anode 11 and the base material B (cathode), and a power supply unit 16 for applying a voltage between the anode 11 and the base material B It is equipped with. The film forming apparatus 1 further includes a solution chamber 15 for containing the metal solution L. The solution chamber 15 has the solid electrolyte film 13 and the anode such that the metal solution L is in contact with the anode 11 and the solid electrolyte film 13. 11. The solution chamber 15 is formed by the housing 12. Specifically, the housing 12 has a storage space S for storing the metal solution L, and has an opening 12 a on the base material side of the storage space S. The solid electrolyte membrane 13 is attached to the housing 12 so as to seal the opening 12 a of the housing 12. In addition, the film forming apparatus 1 includes a mounting table 40 on which the base material B is mounted. The mounting table 40 is made of, for example, metal. A negative electrode of the power supply unit 16 is connected to the mounting table 40, and a positive electrode of the power supply unit 16 is connected to the anode 11. In addition, the mounting table 40 and the surface (a metal thin film (not shown)) on which the film formation of the base material B is conducted are conducted. Thereby, the surface of the base material B can be functioned as a cathode. Further, the film forming apparatus 1 is further provided with a pressing means 18 on the upper portion of the housing 12 via a buffer member 19 such as a spring. Examples of the pressing means 18 include a hydraulic or pneumatic cylinder. Thereby, the metal film can be formed while pressing the solid electrolyte film 13 against the surface of the base material B. In addition, the solid electrolyte film 13 can be gently pressed against the surface of the base material B by the buffer member 19. The film forming apparatus 1 further includes a voltage measurement unit 50 capable of measuring the potential between the anode 11 and the base material B. Examples of the voltage measuring unit 50 include a voltmeter. The immersion potential V 1 between the anode 11 and the substrate B when the substrate B and the solid electrolyte film 13 are in contact with each other by the voltage measurement unit 50, and the anode 11 and the substrate B when a constant current is applied. And the maximum electrolytic reaction potential V 2 between them can be measured. The film forming apparatus 1 further includes a control unit 51. The control unit 51 has a potential difference (V 2 −V 1 ) between the maximum electrolytic reaction potential V 2 measured by the voltage measurement unit 50 and the immersion potential V 1 . It is determined whether it is equal to or more than a predetermined set value. In addition, the control unit 51 is connected to the power supply unit 16 via a signal line, and can stop energization when the potential difference (V 2 −V 1 ) is equal to or more than a predetermined set value.

基材Bは、成膜される表面が陰極(すなわち導電性を有する表面)として機能するものであれば、特に限定されるものではない。例えば、基材Bは、アルミニウムや鉄等の金属材料からなってもよい。また、基材Bは、エポキシ樹脂等の高分子樹脂又はセラミックス等の表面に、銅、ニッケル、銀又は鉄等の金属層が被覆されたものでもよい。図1では、基材Bは、樹脂製の基材の表面に、レジストRが部分的に形成された基材であり、レジストRから露出した表面には、金属薄膜(図示せず)が形成されている。したがって、基材Bの金属薄膜が陰極として機能する。   The substrate B is not particularly limited as long as the surface on which the film is formed functions as a cathode (that is, a surface having conductivity). For example, the base material B may be made of a metal material such as aluminum or iron. Further, the base material B may be one in which a metal layer such as copper, nickel, silver or iron is coated on the surface of a polymer resin such as an epoxy resin or ceramics. In FIG. 1, the base material B is a base material in which a resist R is partially formed on the surface of a resin base material, and a metal thin film (not shown) is formed on the surface exposed from the resist R It is done. Therefore, the metal thin film of the base material B functions as a cathode.

陽極11は、形成される金属皮膜の金属と同じ金属を含み、金属溶液Lに溶解する可溶性陽極である。陽極の溶解により、金属溶液中に金属イオンを供給することができる。陽極11の形状は、例えば、ブロック状又は平板状である。   The anode 11 is a soluble anode that contains the same metal as the metal film to be formed and dissolves in the metal solution L. Dissolution of the anode can provide metal ions in the metal solution. The shape of the anode 11 is, for example, block or flat.

固体電解質膜13は、金属溶液Lに接触させることにより、金属イオンを内部に含有することができ、電圧を印加したときに基材Bの表面に金属イオンが還元され、金属イオン由来の金属を析出させることができるものであれば、特に限定されない。固体電解質膜の材質としては、例えば、デュポン社製のナフィオン(登録商標)等のフッ素系樹脂、炭化水素系樹脂、ポリアミック酸樹脂、旭硝子社製のセレミオン(CMV、CMD、CMFシリーズ)等のイオン交換機能を有する樹脂を挙げることができる。   The solid electrolyte film 13 can contain metal ions by being brought into contact with the metal solution L, and when a voltage is applied, the metal ions are reduced to the surface of the base material B, and metal derived from the metal ions is obtained. There is no particular limitation as long as it can be deposited. Examples of the material of the solid electrolyte membrane include ions such as fluorine resins such as Nafion (registered trademark) manufactured by DuPont, hydrocarbon resins, polyamic acid resins, and selemions (CMV, CMD, CMF series) manufactured by Asahi Glass. A resin having an exchange function can be mentioned.

金属溶液Lは、上述したように成膜すべき金属皮膜の金属をイオンの状態で含有している液(電解液)である。このような金属に、銅、ニッケル、銀、又は鉄を挙げることができ、金属溶液Lは、これらの金属を、硝酸、リン酸、コハク酸、硫酸ニッケル、又はピロリン酸等の酸で溶解(イオン化)した水溶液である。また、金属溶液Lとしては、ワット浴、ウッド浴、スルファミン酸浴等を用いてもよい。   The metal solution L is a liquid (electrolytic solution) containing the metal of the metal film to be formed as described above in an ionic state. Examples of such metals include copper, nickel, silver, and iron. The metal solution L is dissolved in an acid such as nitric acid, phosphoric acid, succinic acid, nickel sulfate, or pyrophosphoric acid ( (Ionized) aqueous solution. As the metal solution L, a Watt bath, a wood bath, a sulfamic acid bath, or the like may be used.

金属溶液LのpHは、好ましくは2.0〜5.0であり、より好ましくは2.5〜4.5である。このようなpHに設定することによって、金属皮膜の析出電流効率を向上させることができ、金属皮膜を高速で形成し易くできる。なお、金属皮膜の成膜速度は、pH以外にも、例えば、金属溶液中の金属イオンや、電流値、陽極材料、陽極面積、温度等の条件により調整することができる。金属溶液Lは、例えば、溶媒、pH緩衝剤を含んでいてもよい。   The pH of the metal solution L is preferably 2.0 to 5.0, more preferably 2.5 to 4.5. By setting the pH to such a value, the deposition current efficiency of the metal film can be improved, and the metal film can be easily formed at high speed. In addition, the film-forming speed | rate of a metal film can be adjusted with conditions, such as a metal ion in a metal solution, an electric current value, anode material, an anode area, temperature, etc. besides pH, for example. The metal solution L may contain, for example, a solvent and a pH buffer.

ハウジング12の材質としては、例えば、金属材料等を挙げることができるが、その材料は特に限定されるものではない。   Examples of the material of the housing 12 include a metal material, but the material is not particularly limited.

電圧測定部50は、陽極11と基材Bとの間の電位を測定できるように配置される。電圧測定部50により、基材Bと固体電解質膜13とが接触したときの陽極11と基材Bの間の浸漬電位Vと、定電流を通電したときの陽極11と基材Bの間の最大電解反応電位Vと、を測定する。電圧測定部50により、成膜時における電圧値をモニタリングすることができる。 The voltage measuring unit 50 is arranged so that the potential between the anode 11 and the base material B can be measured. The voltage measuring unit 50, between the substrate B and the immersion potential V 1 of the between the anode 11 and the substrate B when solid electrolyte film 13 is in contact, the anode 11 and the substrate B when energized with a constant current The maximum electrolytic reaction potential V 2 of The voltage measurement unit 50 can monitor the voltage value during film formation.

制御部51は、電圧測定部50により測定した最大電解反応電位Vと浸漬電位Vとの電位差(V−V)が、所定の設定値以上であるかどうかを判断する。また、制御部51は、電源部16と信号線を介して接続されており、電位差(V−V)が所定の設定値以上である場合に、通電を停止させることができる。制御部51は、例えば、ROM、RAM、CPU等を備えるマイクロコンピュータ等で構成される。 The control unit 51 determines whether or not the potential difference (V 2 −V 1 ) between the maximum electrolytic reaction potential V 2 measured by the voltage measurement unit 50 and the immersion potential V 1 is equal to or greater than a predetermined set value. The control unit 51 is connected to the power supply unit 16 through a signal line, and can stop energization when the potential difference (V 2 −V 1 ) is equal to or greater than a predetermined set value. The control unit 51 is configured by, for example, a microcomputer including a ROM, a RAM, a CPU, and the like.

以下でも詳細を説明するように、最大電解反応電位Vと浸漬電位Vとの電位差(V−V)は、陽極に形成される酸化膜の厚さと相関関係を有し、陽極の酸化膜の厚さが大きくなるにしたがって、電位差(V−V)も大きくなる。それゆえ、電位差(V−V)を測定することにより、陽極上の酸化膜の厚さを間接的に把握することができる。そこで、光沢が低下した金属皮膜が形成されない酸化膜の厚さの閾値を別に確認しておき、その酸化膜厚さの閾値に対応する電位差(V−V)を上述の所定値として設定しておく。これにより、電位差(V−V)が設定した所定値以上となった場合、つまり酸化膜厚さが閾値を超えた場合に、制御部51により通電を停止させることができるため、光沢が低下した金属皮膜の形成を防ぐことができる。 As will be described in detail below, the potential difference (V 2 −V 1 ) between the maximum electrolytic reaction potential V 2 and the immersion potential V 1 has a correlation with the thickness of the oxide film formed on the anode, and As the thickness of the oxide film increases, the potential difference (V 2 −V 1 ) also increases. Therefore, the thickness of the oxide film on the anode can be indirectly grasped by measuring the potential difference (V 2 −V 1 ). Therefore, the threshold value of the thickness of the oxide film on which the metal film with reduced gloss is not formed is confirmed separately, and the potential difference (V 2 −V 1 ) corresponding to the threshold value of the oxide film thickness is set as the predetermined value. Keep it. Thereby, when the potential difference (V 2 -V 1 ) becomes equal to or greater than the set predetermined value, that is, when the oxide film thickness exceeds the threshold, the control unit 51 can stop the energization, so that the gloss is improved. It can prevent the formation of a reduced metal film.

以下に、本実施形態に係る成膜装置1を用いた成膜方法を説明する。図2は、図1に示す成膜装置1の成膜時の状態を説明するための模式的断面図である。   Below, the film-forming method using the film-forming apparatus 1 which concerns on this embodiment is demonstrated. FIG. 2 is a schematic cross-sectional view for explaining a state during film formation of the film forming apparatus 1 shown in FIG.

まず、図1に示すように、固体電解質膜13に対向するように、載置台40に、レジストR及び金属薄膜(不図示)が形成された基材Bを配置する。次に、図2に示すように、押圧手段18を用いて、ハウジング12を載置台40に向かって降下させ、固体電解質膜13を基材Bの表面に押圧する。   First, as shown in FIG. 1, a base material B on which a resist R and a metal thin film (not shown) are formed is placed on a mounting table 40 so as to face the solid electrolyte membrane 13. Next, as shown in FIG. 2, the housing 12 is lowered toward the mounting table 40 using the pressing means 18, and the solid electrolyte film 13 is pressed against the surface of the base material B.

ここで、電圧測定部50により、基材Bと固体電解質膜13とが接触したときの陽極11と基材Bの間の浸漬電位Vを測定する。浸漬電位は自然電位とも称される。測定された浸漬電位Vは、制御部51に送られ、記録され得る。 Here, the voltage measuring unit 50 measures the immersion potential V 1 between the anode 11 and the base material B when the base material B and the solid electrolyte membrane 13 are in contact with each other. The immersion potential is also referred to as the natural potential. The measured immersion potential V 1 can be sent to the control unit 51 and recorded.

次に、固体電解質膜13を基材Bの表面に押圧した状態で、電源部16により陽極11と基材Bとの間に電圧を印加する。溶液室15の金属溶液Lは、陽極11及び固体電解質膜13に接触しており、固体電解質膜13に供給された金属イオンは、固体電解質膜13に接触した基材Bの露出した表面に移動する。移動した金属イオンは、基材BのレジストRから露出した表面で還元され、基材Bの露出した表面には金属イオンに由来した金属が析出する。これにより、基材Bの上に金属皮膜を成膜することができる。金属溶液中の金属イオンは、陽極の一部が溶解することにより補充される。   Next, in a state where the solid electrolyte membrane 13 is pressed against the surface of the base material B, a voltage is applied between the anode 11 and the base material B by the power supply unit 16. The metal solution L in the solution chamber 15 is in contact with the anode 11 and the solid electrolyte film 13, and the metal ions supplied to the solid electrolyte film 13 move to the exposed surface of the substrate B in contact with the solid electrolyte film 13. Do. The moved metal ions are reduced on the surface of the base material B exposed from the resist R, and the metal derived from the metal ions is deposited on the exposed surface of the base material B. Thereby, a metal film can be formed on the substrate B. Metal ions in the metal solution are replenished by dissolving a part of the anode.

金属皮膜を形成するための通電は定電流により行われ、電圧測定部50により、定電流を通電したときの陽極11と基材Bの間の最大電解反応電位Vを測定する。測定された浸漬電位最大電解反応電位Vは、制御部51に送られ、記録され得る。そして、制御部51は、最大電解反応電位Vと浸漬電位Vとの電位差(V−V)が、所定の設定値以上であるかどうかを判断し、電位差(V−V)が所定の設定値以上である場合に、電源部16による通電を停止させる。電位差(V−V)が所定の設定値未満である場合は、そのまま通電させ、金属皮膜を形成させる。 Energization for forming the metal coating is performed by a constant current, the voltage measuring unit 50 measures the maximum electrolytic reaction voltage V 2 between the anode 11 and the substrate B when energized a constant current. The measured corrosion potential maximum electrolytic reaction voltage V 2 is sent to the control unit 51 may be recorded. Then, the control unit 51, the potential difference between the maximum electrolytic reaction voltage V 2 and the immersion potential V 1 (V 2 -V 1) judging whether equal to or higher than a predetermined value, the potential difference (V 2 -V 1 ) Is greater than or equal to a predetermined set value, energization by the power supply unit 16 is stopped. When the potential difference (V 2 −V 1 ) is less than the predetermined set value, the current is applied as it is to form a metal film.

上記測定は、基板毎に繰り返し行うことができる。金属皮膜の成膜工程を繰り返し行うにつれて陽極の酸化膜は厚くなっていくため、ある閾値を超えたときに自動的に通電が停止するように、電位差(V−V)の設定値を選択することができる。通電が停止した場合、陽極を新しいものに交換することができる。 The above measurement can be repeated for each substrate. Since the oxide film of the anode becomes thicker as the metal film deposition process is repeated, the set value of the potential difference (V 2 − V 1 ) is set so that the current is automatically stopped when a certain threshold is exceeded. You can choose. The anode can be replaced with a new one if the current ceases.

このようにして、本実施形態に係る成膜装置によれば、光沢が低下した金属皮膜の形成を容易に回避することができる。   In this way, according to the film forming apparatus according to the present embodiment, it is possible to easily avoid the formation of a metal film having a reduced gloss.

陽極として、ニッケル板(NI−313520、ニラコ社製)を用意した。このニッケル板を電気炉により熱処理して酸化膜を形成した。ニッケル板は、大気雰囲気下において、1時間、所定の温度(25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃及び800℃)で加熱した。酸化膜の厚さは、オージェ電子分光法により計測した。表1に、作製した陽極1〜9を示す。   A nickel plate (NI-313520, manufactured by Niraco) was prepared as an anode. This nickel plate was heat-treated with an electric furnace to form an oxide film. The nickel plate was heated at a predetermined temperature (25 ° C., 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C. and 800 ° C.) for 1 hour under an air atmosphere. The thickness of the oxide film was measured by Auger electron spectroscopy. In Table 1, the produced anodes 1 to 9 are shown.

次に、陽極1〜9を用いて、以下の成膜条件により、ニッケル皮膜を基板上に形成した。
ニッケル皮膜の膜厚:4μm
基板:銅スパッタ基板
電流密度:100mA/cm
塩化ニッケル浴:1M塩化ニッケル水溶液+酢酸(pH4.0)
温度:80℃
圧力:1.0MPa
成膜面積:10mm×10mm
電解質膜:イオン交換膜(N117、デュポン社製)
Next, using the anodes 1 to 9, a nickel film was formed on the substrate under the following film forming conditions.
Nickel film thickness: 4 μm
Substrate: Copper sputtered substrate Current density: 100 mA / cm 2
Nickel chloride bath: 1M nickel chloride aqueous solution + acetic acid (pH 4.0)
Temperature: 80 ° C
Pressure: 1.0 MPa
Deposition area: 10mm x 10mm
Electrolyte membrane: ion exchange membrane (N117, manufactured by DuPont)

なお、成膜領域は、基板上にポリイミドテープ(650R♯25、株式会社寺岡製作所)を用いて10×10mm角の開口部を形成することにより作製した。   The film formation region was produced by forming an opening of 10 × 10 mm square on a substrate using a polyimide tape (650R # 25, Teraoka Seisakusho Co., Ltd.).

本実施例では、図1に示すような成膜装置を用いて、酸化膜の厚さが異なるニッケル陽極(陽極1〜9)により、銅スパッタ基板上にニッケル皮膜を成膜した。そして、ニッケル皮膜の成膜工程において、電圧計により、成膜時における電圧値をモニタリングし、基材と固体電解質膜とが接触したときの陽極と基材の間の浸漬電位Vと、定電流を通電したときの陽極と基材の間の最大電解反応電位Vとを測定した。表2に、陽極の酸化膜の厚さと電位差(V−V)を示し、図3にその結果をグラフ化したものを示す。 In this example, a nickel film was formed on a copper sputter substrate using nickel anodes (anodes 1 to 9) having different oxide film thicknesses using a film forming apparatus as shown in FIG. In the nickel film formation step, the voltage value during film formation is monitored by a voltmeter, and the immersion potential V 1 between the anode and the substrate when the substrate and the solid electrolyte membrane are in contact with each other. the maximum electrolytic reaction voltage V 2 between the anode and the substrate when energized current was measured. Table 2 shows the thickness and potential difference (V 2 −V 1 ) of the oxide film of the anode, and FIG. 3 shows a graph of the results.

図3からも明らかなように、陽極の酸化膜の厚さが大きくなるにしたがって、電位差(V−V)も大きくなるため、陽極の酸化膜の厚さと電位差(V−V)は相関関係を有することが理解される。それゆえ、陽極の酸化膜の厚さと電位差(V−V)の相関関係と、光沢が低下した金属皮膜が形成されない酸化膜の厚さの閾値とを予め確認しておき、光沢が低下した金属皮膜が形成されない酸化膜の厚さの閾値に対応する電位差(V−V)を上述の所定値として設定する。これにより、電位差(V−V)が設定した所定値以上となった場合、つまり酸化膜厚さが閾値を超えた場合に、制御部51により通電を停止させることができるため、光沢が低下した金属皮膜の形成を防ぐことができる。 As apparent from FIG. 3, as the thickness of the anode oxide film increases, the potential difference (V 2 −V 1 ) also increases. Therefore, the thickness of the anode oxide film and the potential difference (V 2 −V 1 ) Is understood to have a correlation. Therefore, the correlation between the thickness of the oxide film of the anode and the potential difference (V 2 −V 1 ) and the threshold value of the thickness of the oxide film at which the metal film with reduced gloss is not formed are confirmed in advance to reduce the gloss. The potential difference (V 2 −V 1 ) corresponding to the threshold value of the thickness of the oxide film where the metal film is not formed is set as the predetermined value. Thereby, when the potential difference (V 2 -V 1 ) becomes equal to or greater than the set predetermined value, that is, when the oxide film thickness exceeds the threshold, the control unit 51 can stop the energization, so that the gloss is improved. It can prevent the formation of a reduced metal film.

成膜時における電圧値のモニタリング結果の代表例として、陽極3(酸化膜の厚さ:0.06μm)、陽極6(酸化膜の厚さ:0.18μm)及び陽極9(酸化膜の厚さ:3.00μm)を用いてニッケル皮膜を成膜した場合で得られた時間−電圧曲線を図4、5及び6に示す。これらの図に示されるように、定電流方式における成膜時の時間−電圧曲線では、電解質膜が基板に接触してから、10秒ほどで一段階目の一定の電位(平坦電位)が現れる。この電位が一定になったときの電位が浸漬電位Vである。そして、電圧を負荷して定電流を流すと、急激に電圧が上昇した後、電圧はゆっくりと減少して一定値に近づき、二段階目の平坦電圧があらわれる。本実施形態では、定電流を流したときの最大電解反応電位Vを測定する。最大電解反応電位Vは、通常、図4〜6に示されるように、電圧を負荷した直後に現れる。 As a representative example of the monitoring result of the voltage value at the time of film formation, anode 3 (thickness of oxide film: 0.06 μm), anode 6 (thickness of oxide film: 0.18 μm), and anode 9 (thickness of oxide film: 3.00) The time-voltage curves obtained in the case of depositing a nickel film using μm) are shown in FIGS. As shown in these figures, in the time-voltage curve at the time of film formation in the constant current method, a constant electric potential (flat potential) appears in the first step about 10 seconds after the electrolyte membrane contacts the substrate. . Potential when the potential became constant is immersion potential V 1. When a constant current is applied with a voltage applied, the voltage rapidly increases and then slowly decreases and approaches a constant value, and a flat voltage at the second stage appears. In the present embodiment, to measure the maximum electrolytic reaction potential V 2 when a current of a constant current. Maximum electrolytic reaction voltage V 2 is generally as shown in Figure 4-6, it appears immediately after the load voltage.

以下、酸化膜が厚い陽極を用いると、電位差(V−V)が大きくなる理由について考察する。一般に、電位差(V−V)は、活性化過電圧(陰極でのイオンの放電・析出、陽極での溶解・イオンの生成では、電荷が移動する。電荷移動過程における活性化エネルギーに対応して、電解電位が平衡電位からずれる。このずれを活性化過電圧と呼ぶ。)、拡散過電圧(電解中、陰極近傍の金属イオンは減少する。また、陽極近傍では、溶解供給のため、金属イオン濃度はニッケル浴沖合いの濃度より高い。この濃度傾斜とイオンの拡散に伴う平衡電位からのずれを拡散過電圧と呼ぶ。)及び抵抗過電圧(電極の表面に形成される皮膜の抵抗による電圧変化を抵抗過電圧と呼ぶ。)の和から構成される。また、一般に、金属めっきにおいて、陰極では、金属イオンが還元されて金属が析出し、陽極では、金属が酸化され、金属イオンが形成される。そのため、陽極が酸化されると、金属から金属イオンが生成される活性化エネルギーよりも、陽極表面の金属酸化物から金属イオンが生成される活性化エネルギーが高いために、電解電位が平衡電位からずれ、活性化過電圧が高くなり、電位差(V−V)が大きくなると考えられる。 Hereinafter, the reason why the potential difference (V 2 −V 1 ) increases when the anode having a thick oxide film is used will be considered. In general, the potential difference (V 2 −V 1 ) is an activation overvoltage (charge is transferred during discharge / deposition of ions at the cathode and dissolution / ion generation at the anode. Corresponds to the activation energy in the charge transfer process. The electrolysis potential deviates from the equilibrium potential.This deviation is called the activation overvoltage.) Diffusion overvoltage (metal ions near the cathode decrease during electrolysis. Also, in the vicinity of the anode, the concentration of metal ions increases due to dissolution supply. Is higher than the concentration off the nickel bath.The deviation from the equilibrium potential due to the concentration gradient and ion diffusion is called diffusion overvoltage.) And resistance overvoltage (voltage change due to the resistance of the film formed on the electrode surface is resistance overvoltage) It is composed of the sum of In general, in metal plating, metal ions are reduced and metal is deposited at the cathode, and metals are oxidized and metal ions are formed at the anode. Therefore, since the activation energy at which metal ions are generated from the metal oxide on the surface of the anode is higher than the activation energy at which metal ions are generated from the metal when the anode is oxidized, the electrolytic potential is It is considered that the shift, the activation overpotential is increased, and the potential difference (V 2 −V 1 ) is increased.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It is possible to make changes.

1: 成膜装置
11: 陽極
12: ハウジング
12a:開口部
13: 固体電解質膜
15:溶液室
16:電源部
18:押圧手段
19:緩衝部材
40:載置台
50:電圧測定部
51:制御部
B:基材
L:金属溶液
R:レジスト
S:収容空間
1: Film forming apparatus 11: Anode 12: Housing 12a: Opening 13: Solid electrolyte film 15: Solution chamber 16: Power supply unit 18: Pressing means 19: Buffer member 40: Mounting table 50: Voltage measurement unit 51: Control unit B : Substrate L: Metal solution R: Resist S: Accommodation space

Claims (1)

陽極と、前記陽極と陰極となる基材との間に配置される固体電解質膜と、前記陽極と前記固体電解質膜との間に配置され、金属溶液を収容する溶液室と、前記陽極と前記基材とを相対的に押圧して前記基材と前記固体電解質膜とを接触させる押圧手段と、前記陽極及び前記基材の間に電圧を印加する電源部と、を少なくとも備え、前記陽極に由来する金属イオンを前記基板上で還元することで金属皮膜を前記基材の表面に成膜する成膜装置であって、
前記基材と前記固体電解質膜とが接触したときの前記陽極と前記基材の間の浸漬電位Vと、定電流を通電したときの前記陽極と前記基材の間の最大電解反応電位Vとを測定する電圧測定部と、
前記最大電解反応電位Vと前記浸漬電位Vとの電位差(V−V)が所定の設定値以上であるかどうかを判断する制御部と、
を備える、成膜装置。
An anode, a solid electrolyte membrane disposed between the substrate serving as the anode and the cathode, a solution chamber disposed between the anode and the solid electrolyte membrane, containing a metal solution, the anode and the A pressure means that presses the base material relatively to bring the base material and the solid electrolyte membrane into contact with each other; and a power source that applies a voltage between the anode and the base material. A film forming apparatus for forming a metal film on the surface of the substrate by reducing metal ions derived from the substrate on the substrate,
Maximum electrolytic reaction voltage V between the immersion potential V 1, and the anode upon conducting the constant current the substrate between the anode and the substrate when said substrate and said solid electrolyte membrane is in contact A voltage measuring unit that measures 2 ;
A control unit that determines whether or not a potential difference (V 2 −V 1 ) between the maximum electrolytic reaction potential V 2 and the immersion potential V 1 is a predetermined set value or more;
A film forming apparatus comprising:
JP2018008137A 2018-01-22 2018-01-22 Metal film film forming equipment Active JP6996312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018008137A JP6996312B2 (en) 2018-01-22 2018-01-22 Metal film film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008137A JP6996312B2 (en) 2018-01-22 2018-01-22 Metal film film forming equipment

Publications (2)

Publication Number Publication Date
JP2019127604A true JP2019127604A (en) 2019-08-01
JP6996312B2 JP6996312B2 (en) 2022-02-04

Family

ID=67471962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008137A Active JP6996312B2 (en) 2018-01-22 2018-01-22 Metal film film forming equipment

Country Status (1)

Country Link
JP (1) JP6996312B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322598A (en) * 2001-04-24 2002-11-08 Fujikura Ltd Method for controlling concentration of plating bath and device therefor
JP2006342403A (en) * 2005-06-09 2006-12-21 Sharp Corp Plating device, plating treatment controller, plating method, and plating treatment control method
JP2014051701A (en) * 2012-09-06 2014-03-20 Toyota Motor Corp Metal film deposition apparatus and deposition method
JP2015092012A (en) * 2013-10-03 2015-05-14 トヨタ自動車株式会社 Nickel solution for film formation and film formation method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322598A (en) * 2001-04-24 2002-11-08 Fujikura Ltd Method for controlling concentration of plating bath and device therefor
JP2006342403A (en) * 2005-06-09 2006-12-21 Sharp Corp Plating device, plating treatment controller, plating method, and plating treatment control method
JP2014051701A (en) * 2012-09-06 2014-03-20 Toyota Motor Corp Metal film deposition apparatus and deposition method
JP2015092012A (en) * 2013-10-03 2015-05-14 トヨタ自動車株式会社 Nickel solution for film formation and film formation method using the same

Also Published As

Publication number Publication date
JP6996312B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
US9677185B2 (en) Film formation apparatus and film formation method for forming metal film
EP2818585B1 (en) Film formation device and film formation method for forming metal film
CN105970277B (en) It is used to form the coating forming apparatus and coating shaping method of metal coating
JP2019127604A (en) Film deposition apparatus for metallic film
JP6455454B2 (en) Metal film deposition method
CN105780085B (en) A kind of method of uranium surface differential arc oxidation
CN109735869B (en) Corrosion-resistant conductive alloy film layer and preparation method and application thereof
KR102012731B1 (en) Hexavalent Chrome Plating Solution And Crack Free Pulse Electroplating Method Using of The Same
JP2012527524A (en) Method and apparatus for controlled electrolysis of thin layers
Feng et al. Effect of Magnetic Field on Corrosion Behaviors of Gold-Coated Titanium as Cathode Plates for Proton Exchange Membrane Fuel Cells
JP2023084362A (en) Metal film forming apparatus
JPH0885894A (en) Electrode
JP5333149B2 (en) Method for forming gold plating layer on stainless steel substrate and plating apparatus used therefor
JPH03183136A (en) Manufacture of semiconductor device
KR102012726B1 (en) Hexavalent Chrome Plating Solution And Crack Free Pulse-Reverse Electroplating Method Using of The Same
JPS624894A (en) Manufacturing device for electrolytic copper foil
JP2023058770A (en) Film-formation device of metal film and film-formation method of metal film
US20170175281A1 (en) Method of forming metal coating
TW595286B (en) A surface treatment procedures for a cooper film of soft PCB
JP2022055435A (en) Deposition method of metallic film, and deposition apparatus of metallic film
JP2017218603A (en) Film deposition method of metal film
JP2024046910A (en) METHOD AND APPARATUS FOR FORMING METAL PLATING FILM
US3368950A (en) Methods for electrodeposition on thin conductive films
JP2022094460A (en) Film deposition apparatus and film deposition method for metal plating film
KR20200067242A (en) Method of forming nickel film and nickel solution used for the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R151 Written notification of patent or utility model registration

Ref document number: 6996312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151