JP2019127427A - Method for producing silicon carbide fine particles - Google Patents

Method for producing silicon carbide fine particles Download PDF

Info

Publication number
JP2019127427A
JP2019127427A JP2018011803A JP2018011803A JP2019127427A JP 2019127427 A JP2019127427 A JP 2019127427A JP 2018011803 A JP2018011803 A JP 2018011803A JP 2018011803 A JP2018011803 A JP 2018011803A JP 2019127427 A JP2019127427 A JP 2019127427A
Authority
JP
Japan
Prior art keywords
silicon carbide
precursor
fine particles
silicon
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018011803A
Other languages
Japanese (ja)
Inventor
貴裕 石崎
Takahiro Ishizaki
貴裕 石崎
篠田 佳和
Yoshikazu Shinoda
佳和 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Rundum Co Ltd
Shibaura Institute of Technology
Original Assignee
Pacific Rundum Co Ltd
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Rundum Co Ltd, Shibaura Institute of Technology filed Critical Pacific Rundum Co Ltd
Priority to JP2018011803A priority Critical patent/JP2019127427A/en
Publication of JP2019127427A publication Critical patent/JP2019127427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a method for producing silicon carbide fine particles, which can afford silicon carbide fine particles having excellent particle size uniformity and in which temperature control is easy at a low temperature.SOLUTION: The method for producing silicon carbide fine particles comprises: a precursor preparation step of preparing a silicon carbide precursor by performing a plasma treatment in a solution containing a carbon source and a silicon source; an impurity removal step of providing the silicon carbide precursor, prepared in the precursor preparation step, with a heat treatment to remove an impurity phase; an acid/alkali treatment step of performing an acid/alkali treatment of the silicon carbide precursor after the impurity removal step to remove silicon oxide.SELECTED DRAWING: None

Description

本発明は、炭化ケイ素微粒子の製造方法、より具体的には、ソリューションプラズマ処理による炭化ケイ素微粒子の製造方法に関する。   The present invention relates to a method for producing silicon carbide fine particles, and more specifically to a method for producing silicon carbide fine particles by solution plasma treatment.

炭化ケイ素(SiC)は、ダイヤモンドとシリコンの中間的な性質を備え、硬度、耐熱性及び化学的安定性に優れることから、研削研磨材や耐火物から半導体の電子素子やパワーデバイスまで幅広く利用されている。   Silicon carbide (SiC) has an intermediate property of diamond and silicon and is excellent in hardness, heat resistance and chemical stability, so it is widely used from grinding abrasives and refractories to semiconductor electronic devices and power devices. ing.

この炭化ケイ素には、3C(立方晶)、4H(六方晶)、6H(六方晶)等の様々な結晶構造を具備する炭化ケイ素が存在し、それぞれで異なる特性を有している。   There exist silicon carbides having various crystal structures such as 3C (cubic crystal), 4H (hexagonal crystal), 6H (hexagonal crystal), and the like, and they have different characteristics.

そして、かかる炭化ケイ素は様々な方法で生産されており、例えば特許文献1(特開2017−081801号公報)には、アチソン法により、ケイ素を含む珪酸質原料及び炭素を含む炭素質原料を含有する炭化ケイ素製造用原料を焼成して炭化ケイ素を製造する炭化ケイ素の製造方法が開示されている。   Such silicon carbide is produced by various methods, and for example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2017-081801) contains a siliceous raw material containing silicon and a carbonaceous raw material containing carbon according to Acheson method. A method for producing silicon carbide is disclosed in which a raw material for producing silicon carbide is fired to produce silicon carbide.

特開2017−081801号公報Unexamined-Japanese-Patent No. 2017-081801

しかしながら、上記特許文献1等による従来の方法では、温度が約2000℃とかなり高く、温度制御が困難であり、加えて、得られる炭化ケイ素微粒子の粒径は大きいため、粒径が均一で微細な炭化ケイ素微粒子を製造することが困難であった。   However, in the conventional method according to Patent Document 1 etc., the temperature is as high as about 2000 ° C., and temperature control is difficult, and additionally, the particle diameter of the obtained silicon carbide fine particles is large, so the particle diameter is uniform and fine. It was difficult to produce various silicon carbide fine particles.

そこで、本発明の目的は、微細で粒径の均一性に優れた炭化ケイ素微粒子を得られ、低温度での温度制御が容易な炭化ケイ素微粒子の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing silicon carbide fine particles, which is fine and can obtain silicon carbide fine particles excellent in uniformity of particle diameter and can be easily controlled in temperature at low temperature.

本発明者は上記目的を達成すべく、従来の炭化ケイ素微粒子の製造方法について、鋭意研究を重ねて検討した結果、プラズマ処理を用い、熱処理及び酸・アルカリ処理を組み合わせることが極めて有効であることを見出し、本発明に到達した。   The inventors of the present invention conducted intensive studies on conventional methods for producing silicon carbide fine particles in order to achieve the above object, and as a result, it is extremely effective to combine heat treatment and acid / alkali treatment using plasma treatment. The present invention has been achieved.

即ち、本発明は、
炭素源及びケイ素源を含む溶液中でプラズマ処理を行い、炭化ケイ素前駆体を作成する前駆体作成工程と、
前記前駆体作成工程において作成した前記炭化ケイ素前駆体に熱処理を加えて不純物相を除去する不純物除去工程と、
前記不純物除去工程を経た後の前記炭化ケイ素前駆体に酸・アルカリ処理を行い、酸化ケイ素を除去する酸・アルカリ処理工程、
を具備することを特徴とする炭化ケイ素微粒子の製造方法、
を提供するものである。
That is, the present invention
A precursor forming step of performing plasma treatment in a solution containing a carbon source and a silicon source to form a silicon carbide precursor;
An impurity removing step of removing an impurity phase by applying a heat treatment to the silicon carbide precursor prepared in the precursor preparing step;
An acid / alkali treatment step for removing silicon oxide by performing acid / alkali treatment on the silicon carbide precursor after the impurity removal step,
A method for producing silicon carbide fine particles, comprising:
To provide

このような構成を有する本発明の炭化ケイ素微粒子の製造方法においては、前記溶液中の炭素源とケイ素源との体積割合が、50〜80:20〜50(合計100)であること、が好ましい。   In the method for producing silicon carbide fine particles of the present invention having such a configuration, the volume ratio of the carbon source to the silicon source in the solution is preferably 50 to 80:20 to 50 (total 100). .

また、上記の本発明の炭化ケイ素微粒子の製造方法においては、上記の前記プラズマ処理がソリューションプラズマ処理であること、が好ましい。   In the method for producing silicon carbide fine particles of the present invention, the plasma treatment is preferably a solution plasma treatment.

本発明に係る炭化ケイ素微粒子の製造方法によれば、従来に比べて低温度で、温度制御し易いプロセスで、粒径の均一性に優れた炭化ケイ素微粒子をより確実に製造することができる。   According to the method for producing silicon carbide fine particles according to the present invention, silicon carbide fine particles excellent in the uniformity of the particle diameter can be more reliably produced by a process which is easy to control the temperature at a low temperature compared to the conventional method.

本発明の炭化ケイ素微粒子の製造方法においてソリューションプラズマ処理を実施するために用いるソリューションプラズマ発生装置1の一例の構造を示す模式図である。It is a schematic diagram which shows the structure of an example of the solution plasma generator 1 used in order to implement solution plasma processing in the manufacturing method of the silicon carbide microparticles | fine-particles of this invention. 本発明の炭化ケイ素微粒子の製造方法の一実験例において、前駆体作成工程における炭素源及びケイ素源の体積割合を変化させた場合の不純物の存在を示す炭化ケイ素前駆体のXRD(X線回折)の結果を示すグラフである。In an experimental example of the method for producing silicon carbide fine particles of the present invention, XRD (X-ray diffraction) of silicon carbide precursor showing the presence of impurities when the volume ratio of carbon source and silicon source is changed in the precursor preparation step It is a graph which shows the result of. 図2に示す実験例において得られた炭化ケイ素前駆体について、FT−IR(フーリエ変換赤外分光光度計)を用いて化学結合状態を分析した結果を示すグラフである。It is a graph which shows the result of having analyzed the chemical-bond state about the silicon carbide precursor obtained in the example of an experiment shown in Drawing 2 using FT-IR (Fourier transform infrared spectrophotometer). 図2に示す実験例において、ケイ素源の体積割合が40、60及び80体積%の場合に得られた炭化ケイ素前駆体のSEM像及びEDS像を示す写真である。It is a photograph which shows the SEM image and EDS image of the silicon carbide precursor obtained when the volume ratio of a silicon source is 40, 60 and 80 volume% in the experiment shown in FIG. 図2に示す実験例において、前駆体作成工程で得た炭化ケイ素微粒子について、熱処理を加えて不純物を除去した後の炭化ケイ素微粒子のXRD(X線回折)の結果を示すグラフである。In the example of an experiment shown in FIG. 2, it is a graph which shows the result of the XRD (X-ray diffraction) of the silicon carbide fine particle after heat processing is added and the impurity is removed about the silicon carbide fine particle obtained at the precursor preparation process. 図2に示す実験例において、前駆体作成工程で得た炭化ケイ素微粒子に熱処理を加えて不純物を除去した後の炭化ケイ素微粒子について、FT−IR(フーリエ変換赤外分光光度計)を用いて化学結合状態を分析した結果を示すグラフである。In the experimental example shown in FIG. 2, the silicon carbide fine particles obtained by subjecting the silicon carbide fine particles obtained in the precursor preparation step to heat treatment to remove impurities are chemically modified using FT-IR (Fourier transform infrared spectrophotometer) It is a graph which shows the result of having analyzed binding state. 図2に示す実験例において、前駆体作成工程で得た炭化ケイ素微粒子に熱処理を加えて不純物を除去した後の炭化ケイ素微粒子について、ケイ素源の体積割合が40、60及び80体積%の場合に得られた炭化ケイ素前駆体のSEM像及びEDS像を示す写真である。In the experimental example shown in FIG. 2, in the case of silicon carbide fine particles after heat treatment is applied to the silicon carbide fine particles obtained in the precursor preparation step to remove impurities, the volume ratio of the silicon source is 40, 60 and 80 volume%. It is a photograph which shows the SEM image and EDS image of the obtained silicon carbide precursor. 図2に示す実験例において、ケイ素源の体積割合が40、60及び80体積%の場合に得られた炭化ケイ素前駆体について、酸・アルカリ処理後の炭化ケイ素微粒子のXRD(X線回折)の結果を示すグラフである。In the experimental example shown in FIG. 2, with respect to silicon carbide precursors obtained when the volume proportion of the silicon source is 40, 60 and 80 volume%, XRD (X-ray diffraction) of silicon carbide fine particles after acid / alkali treatment It is a graph which shows a result. 図2に示す実験例において、ケイ素源の体積割合が40、60及び80体積%の場合に得られた炭化ケイ素前駆体について、酸・アルカリ処理後の炭化ケイ素微粒子のFT−IR(フーリエ変換赤外分光光度計)を用いて化学結合状態を分析した結果を示すグラフである。In the experimental example shown in FIG. 2, FT-IR (Fourier transform red) of silicon carbide fine particles after acid / alkali treatment was used for silicon carbide precursors obtained when the volume ratio of the silicon source was 40, 60 and 80% by volume. It is a graph which shows the result of having analyzed the chemical bond state using the outer spectrophotometer. 図2に示す実験例において、ケイ素源の体積割合が60体積%の場合に得られた炭化ケイ素前駆体(左)と酸・アルカリ処理後の炭化ケイ素微粒子(右)について、FT−IR(フーリエ変換赤外分光光度計)を用いて化学結合状態を分析した結果を示すグラフである。In the experimental example shown in FIG. 2, FT-IR (Fourier) is obtained for the silicon carbide precursor (left) obtained when the volume ratio of the silicon source is 60% by volume and the silicon carbide fine particles after acid / alkali treatment (right). It is a graph which shows the result of having analyzed the chemical bond state using the conversion infrared spectrophotometer. 図2に示す実験例において得られた炭化ケイ素微粒子について、粒径を測定した結果を示すグラフである。It is a graph which shows the result of having measured the particle size about the silicon carbide microparticles | fine-particles obtained in the experiment example shown in FIG.

本発明の炭化ケイ素微粒子の製造方法は、(1)炭素源及びケイ素源を含む溶液中でプラズマ処理を行い、炭化ケイ素前駆体を作成する前駆体作成工程と、(2)前記前駆体作成工程において作成した前記炭化ケイ素前駆体に熱処理を加えて不純物相を除去する不純物除去工程と、(3)前記不純物除去工程を経た後の前記炭化ケイ素前駆体に酸・アルカリ処理を行い、酸化ケイ素を除去する酸・アルカリ処理工程と、を具備する、以下、本発明の炭化ケイ素微粒子の製造方法の代表的な実施形態について、工程ごとに詳細に説明するが、本発明はこれらのみに限定されるものではない。   The method for producing silicon carbide fine particles of the present invention comprises (1) a precursor forming step of forming a silicon carbide precursor by performing plasma treatment in a solution containing a carbon source and a silicon source, and (2) the precursor forming step Heat treatment is performed on the silicon carbide precursor prepared in 2) to remove the impurity phase, and (3) the silicon carbide precursor after the impurity removal step is subjected to an acid / alkali treatment to obtain silicon oxide. Hereinafter, representative embodiments of the method for producing silicon carbide fine particles according to the present invention, including an acid / alkali treatment step to be removed, will be described in detail step by step, but the present invention is limited thereto only It is not a thing.

(一)前駆体作成工程
まず、本発明の炭化ケイ素微粒子の製造方法においては、炭素源及びケイ素源を含む溶液中でプラズマ処理を行い、炭化ケイ素前駆体を作成する。
(1) Precursor creation step First, in the method for producing silicon carbide fine particles of the present invention, a silicon carbide precursor is created by performing plasma treatment in a solution containing a carbon source and a silicon source.

ここで、本発明におけるケイ素源としては液状のケイ素化合物が用いられる。液状のケイ素源としては、例えば、ケイ酸アルカリ水溶液を酸分解あるいは脱アルカリすることにより得られたもの、例えば、水ガラスの脱アルカリにより得られたケイ酸ポリマー;水酸基(−OH)を有する有機化合物とケイ酸とのエステル;テトラエトキシシラン(Si(OC)、テトラメトキシシラン(Si(OCH)オルトケイ酸テトラメチル等の加水分解性ケイ酸化合物と、有機化合物または有機金属化合物とのエステル等が挙げられる。 Here, a liquid silicon compound is used as a silicon source in the present invention. Examples of the liquid silicon source include those obtained by acid decomposition or dealkalization of an alkali silicate aqueous solution, for example, a silicate polymer obtained by dealkalization of water glass; an organic compound having a hydroxyl group (—OH). Esters of compounds with silicic acid; hydrolysable silicic acid compounds such as tetraethoxysilane (Si (OC 2 H 5 ) 4 ), tetramethoxysilane (Si (OCH 3 ) 4 ) orthosilicic acid, organic compounds or Examples thereof include esters with organic metal compounds.

また、本発明における炭素源としても液状の炭素化合物が用いられる、液状の炭素源は、常温、常圧にて、液状である有機化合物と、酸を加えることにより、液状となる固体状の有機化合物とを含む。有機化合物とは、炭素を分子内に含有し、加熱により炭素を残留させる化合物である。   In addition, a liquid carbon compound is also used as a carbon source in the present invention. The liquid carbon source is a solid organic compound that becomes liquid by adding an organic compound that is liquid at normal temperature and pressure and an acid. And compounds. An organic compound is a compound that contains carbon in the molecule and leaves the carbon by heating.

かかる液状の炭素源としては、例えばベンゼン、トルエン、キシレン、アニリン、ピリジン、ピラジン、トリアジン等の芳香族炭化水素や、ヘキサン、シクロヘキサン、デカリン等の脂肪族炭化水素、さらにメタノール、エタノール、プロパノール等のアルコール類等、室温で液状の有機化合物が挙げられる。   Examples of such liquid carbon sources include aromatic hydrocarbons such as benzene, toluene, xylene, aniline, pyridine, pyrazine, and triazine, aliphatic hydrocarbons such as hexane, cyclohexane, and decalin, and methanol, ethanol, propanol, and the like. Examples thereof include alcohols and other organic compounds which are liquid at room temperature.

なお、上記炭素源は、必ずしも5員環又は6員環を化学構造に有する必要はなく、例えば不飽和結合を有する炭素化合物等、重合した後に5員環及び/又は6員環を形成する炭素化合物でも良い。上記不飽和結合を有する炭素化合物としては、例えばエチレン性不飽和モノマー等が挙げられ、また、炭素と炭素、水素及び酸素以外の異種元素とを含み、少なくとも一の不飽和結合を有する炭素化合物としては、アクリロニトリル等が挙げられる。   The carbon source does not necessarily have a 5- or 6-membered ring in the chemical structure, and for example, a carbon compound having an unsaturated bond or the like, which forms a 5- or 6-membered ring after polymerization. It may be a compound. Examples of the carbon compound having an unsaturated bond include an ethylenically unsaturated monomer and the like, and further, as a carbon compound containing carbon and carbon, hydrogen, and different elements other than oxygen and having at least one unsaturated bond Examples include acrylonitrile and the like.

炭素源及びケイ素源を含む溶液(分散溶液)は、ケイ素源及び炭素源(必要に応じて更に有機溶媒)を混合することにより調製すればよい。   What is necessary is just to prepare the solution (dispersion solution) containing a carbon source and a silicon source by mixing a silicon source and a carbon source (an organic solvent further if needed).

ここで、上記の溶液中の炭素源とケイ素源との体積割合は、本発明の効果を損なわない範囲で適宜決定すればよいが、なかでも50〜80:20〜50(合計100)であることが好ましい。この範囲であれば、より確実に粒径が小さくかつ均一な炭化ケイ素微粒子を製造することができる。   Here, the volume ratio between the carbon source and the silicon source in the above solution may be appropriately determined within the range that does not impair the effects of the present invention, but in particular, it is 50 to 80:20 to 50 (total 100). Is preferred. If it is this range, a silicon carbide fine particle with a small particle diameter and uniform can be manufactured more reliably.

そして、前駆体作成工程では、上記の溶液にソリューションプラズマ処理等のプラズマ処理を施す。即ち、上記のケイ素源及び炭素源を含む溶液中でプラズマを発生させる、いわゆる「ソリューションプラズマ処理」を施す(例えば特開2014−100617号公報)。この方法によれば、炭素源から得られるカーボン材料に、いわば異種元素であるケイ素を導入し、炭化ケイ素前駆体を生成することができる。   In the precursor preparation step, the solution is subjected to plasma treatment such as solution plasma treatment. That is, a so-called "solution plasma process" is performed in which a plasma is generated in a solution containing the silicon source and the carbon source described above (for example, JP-A-2014-100617). According to this method, a silicon carbide precursor can be generated by introducing silicon, which is a different element, into a carbon material obtained from a carbon source.

ついで、上記の溶液にソリューションプラズマ処理を施す(ソリューションプラズマ処理工程)。このソリューションプラズマ処理は、例えば図1に示す装置により実施することができる。図1は、本発明の炭化ケイ素微粒子の製造方法において炭化ケイ素前駆体を製造するためソリューションプラズマ処理を実施するために用いるソリューションプラズマ発生装置10の一例の模式図である。   Then, the solution is subjected to solution plasma processing (solution plasma processing step). This solution plasma processing can be implemented, for example, by the apparatus shown in FIG. FIG. 1 is a schematic view of an example of a solution plasma generator 10 used to perform solution plasma processing to produce a silicon carbide precursor in the method of producing silicon carbide fine particles of the present invention.

ソリューションプラズマ発生装置10は、撹拌装置7を備え、溶液(液相)2中でソリューションプラズマ4を発生させるためのものであり、ケイ素源及び炭素源を含む溶液2が、ガラス製のビーカー等の容器5に入れられる。また、プラズマを発生させるための一対の電極6は所定の間隔を以て溶液2中に配設され、絶縁部材9を介して容器5に保持されている。   The solution plasma generator 10 is provided with a stirrer 7 and is for generating a solution plasma 4 in the solution (liquid phase) 2, and the solution 2 containing a silicon source and a carbon source is a glass beaker or the like. It is placed in the container 5. A pair of electrodes 6 for generating plasma are disposed in the solution 2 at a predetermined interval and are held in the container 5 via an insulating member 9.

電極6は外部電源8に接続されており、この外部電源8から所定の条件のパルス電圧が印加される。これによって、一対の電極6間に、定常的にソリューションプラズマ4を発生させることができる。   The electrode 6 is connected to an external power supply 8, and a pulse voltage of a predetermined condition is applied from the external power supply 8. As a result, the solution plasma 4 can be constantly generated between the pair of electrodes 6.

電極6としては、例えば、平板状電極や棒状電極及びその組合せ等の様々な形態であってよく、その材質についても特に制限はないが、なかでも、電界を局所的に集中させることが可能なタングステンからなる線状電極(針状電極)6を用いるのが好ましい。その他、鉄や白金等の他の金属材料からなる電極を用いるようにしてもよい   The electrode 6 may have various forms such as, for example, a flat electrode, a rod-like electrode, and a combination thereof, and the material is not particularly limited, but among them, the electric field can be locally concentrated. It is preferable to use a linear electrode (needle-like electrode) 6 made of tungsten. In addition, electrodes made of other metal materials such as iron and platinum may be used.

かかる電極6は、電界集中を妨げる余分な電流を抑えるために、先端部(例えば、数mm程度)のみを露出させ、後の部分は絶縁部材9等で絶縁しておくことが望ましい。絶縁部材9は、例えばセラミック製、ゴム製又は樹脂(例えば、フッ素樹脂)製であればよい。図1においては、絶縁部材9は電極6を容器5に固定し、電極6と容器5との水密を保つための栓をも兼ねている。   It is desirable that such an electrode 6 exposes only the tip (for example, several mm) and insulate the later portion with the insulating member 9 or the like in order to suppress an extra current that hinders the concentration of the electric field. The insulating member 9 may be made of, for example, ceramic, rubber, or resin (for example, fluororesin). In FIG. 1, the insulating member 9 fixes the electrode 6 to the container 5 and also serves as a plug for keeping the electrode 6 and the container 5 watertight.

かかる装置10において、ソリューションプラズマを発生させるためのパルス電圧の印加条件は、溶液2中に含まれるケイ素源及び炭素源の種類やその濃度等の条件、更には装置10の構成条件等によって調整すればよく、例えば、電圧(二次電圧):約±1.5kV、周波数:約50〜150kHz、パルス幅:約0.5〜1.0μsの範囲とすればよい。電極間距離や放電時間等については適宜調整すればよい。   In the apparatus 10, the application conditions of the pulse voltage for generating the solution plasma may be adjusted according to the conditions such as the types and concentrations of the silicon source and carbon source contained in the solution 2, and the configuration conditions of the apparatus 10. For example, voltage (secondary voltage): about ± 1.5 kV, frequency: about 50 to 150 kHz, pulse width: about 0.5 to 1.0 μs. The distance between the electrodes, the discharge time, and the like may be appropriately adjusted.

詳細には分からないが、このようなソリューションプラズマ処理により、炭素源およびケイ素源となる原料の結合が分解され、炭化ケイ素の前駆体が生成されるものと考えられる。   Although not known in detail, it is considered that such solution plasma treatment decomposes the bond between the carbon source and the raw material serving as the silicon source to generate a silicon carbide precursor.

より具体的には、発生したソリューションプラズマは炭素源およびケイ素源となる原料の化学結合を細かく分解し、水素ラジカル・酸素ラジカル・炭素ラジカル・ケイ素ラジカルといった、各種活性種を発生させる。これらの活性種が再結合する事で炭化ケイ素の前駆体が形成されるものと推測される。   More specifically, the generated solution plasma finely decomposes the chemical bonds of the carbon source and the silicon source, and generates various active species such as hydrogen radical, oxygen radical, carbon radical and silicon radical. It is presumed that a silicon carbide precursor is formed by recombination of these active species.

なお、ソリューションプラズマ処理後は、常法により、例えばフィルタを用いた濾過及び電気炉を用いた乾燥により、炭化ケイ素前駆体を得ることができる。   After solution plasma treatment, a silicon carbide precursor can be obtained by a conventional method, for example, filtration using a filter and drying using an electric furnace.

(二)不純物除去工程
次に、上記の前駆体作成工程において作成した前記炭化ケイ素前駆体に熱処理を加えて不純物相を除去する。
(2) Impurity removing step Next, the silicon carbide precursor created in the precursor creating step is subjected to heat treatment to remove the impurity phase.

ここでいう不純物とは、例えばグラファイトやタングステンカーバイド、Si等の炭素化合物である。この熱処理は、上記のソリューションプラズマ処理を施した後の溶液を加熱することにより実施することができる。例えばマッフル炉を用いることができる。   The impurities here are, for example, carbon compounds such as graphite, tungsten carbide, and Si. This heat treatment can be performed by heating the solution after the solution plasma treatment is performed. For example, a muffle furnace can be used.

加熱温度は、グラファイトやタングステンカーバイドが酸化分解する温度であればよく、例えば500〜700℃であればよい。   The heating temperature may be a temperature at which graphite or tungsten carbide is oxidatively decomposed, and may be, for example, 500 to 700 ° C.

また、加熱雰囲気は大気下でよく、加熱時間は、グラファイト等の炭素化合物が分解・除去されるように適宜調整すればよい。なお、常温から上記加熱温度まで、所定の速度で昇温させ、上記加熱温度から常温まで、所定の温度で降温させてもよい。   The heating atmosphere may be in the air, and the heating time may be adjusted as appropriate so that a carbon compound such as graphite is decomposed and removed. Note that the temperature may be increased from room temperature to the heating temperature at a predetermined rate, and the temperature may be decreased from the heating temperature to room temperature at a predetermined temperature.

(三)酸・アルカリ処理工程
ついで、上記の不純物除去工程を経た後の炭化ケイ素前駆体に酸・アルカリ処理を行う。この酸・アルカリ処理は、SiOxで示される各種酸化ケイ素を完全に除去するための工程である。
(3) Acid / alkali treatment step Next, the silicon carbide precursor after the impurity removal step is subjected to acid / alkali treatment. The acid / alkali treatment is a step for completely removing various silicon oxides represented by SiOx.

この工程では、上記の不純物除去工程を経た後の炭化ケイ素前駆体を、例えば水酸化ナトリウム溶液等のアルカリ溶液又は弗酸等の酸溶液に浸漬させることにより実施できる。浸漬時には攪拌を行ってもよい。   This step can be carried out by immersing the silicon carbide precursor after the above-mentioned impurity removal step in an alkaline solution such as sodium hydroxide solution or an acid solution such as hydrofluoric acid. Stirring may be performed during immersion.

ここで、酸・アルカリ処理の時間は、SiOxで示される各種酸化ケイ素をケイ酸ナトリウム等に変換させて完全に除去できるように調整すればよく、例えば数時間とする。また、酸・アルカリ処理圧力は大気圧でよく、酸・アルカリ処理温度は、例えば常温〜150℃であればよい。   Here, the time of the acid / alkali treatment may be adjusted so that various silicon oxides represented by SiOx can be completely converted by being converted to sodium silicate or the like, for example, several hours. The acid / alkali treatment pressure may be atmospheric pressure, and the acid / alkali treatment temperature may be, for example, from room temperature to 150 ° C.

上記の前駆体作成工程(一)と、不純物除去工程(二)と、酸・アルカリ処理工程(三)と、を経て得られた本発明の炭化ケイ素微粒子は、例えば300nm未満、好ましくは100〜200nmの粒径を有し、その均一性にも優れるものである。研削研磨材や耐火物から半導体の電子素子やパワーデバイスまで好適に使用可能である。   The silicon carbide fine particles of the present invention obtained through the above precursor preparation step (1), the impurity removal step (2), and the acid / alkali treatment step (3) have, for example, less than 300 nm, preferably 100 to It has a particle size of 200 nm and has excellent uniformity. It can be suitably used from ground abrasives and refractories to semiconductor electronic devices and power devices.

以上、本発明の炭化ケイ素微粒子の製造方法の代表的な例について説明したが、本発明はこれらのみに限定されるわけではなく、本発明の技術的思想の範囲内で、種々の設計変更が可能であり、かかる設計変更も全て本発明に含まれるものである。以下、実施例を用いて本発明の複合材料をより具体的に説明するが、本発明がかかる実施例に限定されないものであることは言うまでもない。   As mentioned above, although the typical example of the manufacturing method of silicon carbide particulates of the present invention was explained, the present invention is not necessarily limited only to these, Various design changes are within the limits of the technical idea of the present invention. It is possible and all such design changes are included in the present invention. Hereinafter, although the composite material of this invention is demonstrated more concretely using an Example, it cannot be overemphasized that this invention is not limited to this Example.

(一)前駆体作成工程
まず、ケイ素源である東京化成(株)製のテトラメトキシシラン(TMOS)を10〜90ml及び炭素源である(株)関東化学(株)製のヘキサン10〜90mlを混合(合計100ml)し、溶液を得た。
ついで、得られた溶液図1に示すソリューションプラズマ発生装置((株)栗田製作所:MPP−HV04)10を用い、電圧:±1.1kV、周波数:100kHz、パルス幅:0.7μs、電極距離1mm及び放電時間1時間の条件で、ソリューションプラズマ処理を施した。
その後、フィルタ孔:0.1mmの条件で濾過を行い、また、電気炉を用いて温度:100℃及び時間:12時間の条件で乾燥を行い、炭化ケイ素前駆体を得た。
[評価]
得られた炭化ケイ素前駆体のXRD(X線回折、(株)理学:SmartLab)を測定し、その結果を図2に示した。図2に示すように、炭化ケイ素前駆体には炭化ケイ素に加えて不純物も含まれていることがわかった。
また、図2に示す実験例において得られた炭化ケイ素前駆体について、FT−IR(フーリエ変換赤外分光光度計、(株)島津製作所:IR−Prestage−21)を用いて化学結合状態を分析し、その結果を図3に示した。図3に示すように、Si−C結合(1)由来のピークが認められるものの、主だった結合状態はそれ以外であることがわかった。
更に、ケイ素源(TMOS)の体積割合が40、60及び80体積%の場合に得られた炭化ケイ素前駆体について、SEM(走査型電子顕微鏡、日本電子(株):JSM−7610F)像(左)及びEDS(エネルギー分散型X線分光器)像(右)を撮影し、図4に示した。図4から、粒径の小さな炭化ケイ素前駆体が作成されていることがわかった。
(I) Precursor Preparation Step First, 10 to 90 ml of tetramethoxysilane (TMOS) manufactured by Tokyo Kasei Chemical Co., Ltd., which is a silicon source, and 10 to 90 ml of hexane manufactured by Kanto Chemical Co., Ltd., which is a carbon source Mix (total 100 ml) to obtain a solution.
Next, using the solution plasma generator (manufactured by Kurita Mfg. Co., Ltd .: MPP-HV04) 10 shown in the obtained solution FIG. 1, voltage: ± 1.1 kV, frequency: 100 kHz, pulse width: 0.7 μs, electrode distance 1 mm Solution plasma treatment was performed under the conditions of and discharge time of 1 hour.
Then, it filtered on the conditions of filter hole: 0.1mm, and also dried on the conditions of temperature: 100 degreeC and time: 12 hours using the electric furnace, and obtained the silicon carbide precursor.
[Evaluation]
XRD (X-ray diffraction, Rigaku Corporation: SmartLab) of the obtained silicon carbide precursor was measured, and the result is shown in FIG. As shown in FIG. 2, it was found that the silicon carbide precursor contains impurities in addition to silicon carbide.
Moreover, about the silicon carbide precursor obtained in the experiment example shown in FIG. 2, a chemical bond state is analyzed using FT-IR (Fourier transform infrared spectrophotometer, Shimadzu Corp .: IR-Prestage-21) The results are shown in FIG. As shown in FIG. 3, although a peak derived from the Si—C bond (1) was observed, it was found that the main bonding state was other than that.
Furthermore, about the silicon carbide precursor obtained when the volume proportion of the silicon source (TMOS) is 40, 60 and 80% by volume, an SEM (scanning electron microscope, JEOL Ltd .: JSM-7610F) image (left) ) And EDS (energy dispersive X-ray spectrometer) images (right) were taken and are shown in FIG. It was found from FIG. 4 that a silicon carbide precursor with a small particle size was produced.

(二)不純物除去(熱処理)工程
次に、上記前駆体作成工程で得られた炭化ケイ素前駆体に対して、熱処理を行った。熱処理は、マッフル炉を用いて、昇温速度:15℃/分、加熱温度:600℃、加熱(保持)時間:3時間、降温速度:5℃/分の条件で実施した。
[評価]
熱処理を施した後の炭化ケイ素前駆体のXRD(X線回折)を測定し、その結果を図5に示した。図5に示すように、熱処理によってSiOやグラファイト等の不純物量が大きく減少していることがわかった。
また、上記の熱処理を施した後の炭化ケイ素微粒子について、FT−IR(フーリエ変換赤外分光光度計)を用いて化学結合状態を分析し、その結果を図6に示した。図6に示すように、Si−C結合(1)由来のピークが認められるものの、Si−O(2)やC−C(4)由来のピーク強度がやや減少していることがわかった。
更に、ケイ素源(TMOS)の体積割合が10、50及び90体積%の場合に得られた熱処理後の炭化ケイ素前駆体について、SEM(走査型電子顕微鏡)像(左)及びEDS(エネルギー分散型X線分光器)像(右)を撮影し、図7に示した。図7から、熱処理によって形状が変化し、粒径がより小さくなっていることがわかった。
(2) Impurity removal (heat treatment) process Next, the silicon carbide precursor obtained in the precursor preparation process was subjected to a heat treatment. The heat treatment was carried out using a muffle furnace under the conditions of a heating rate: 15 ° C./min, a heating temperature: 600 ° C., a heating (holding) time: 3 hours, and a cooling rate: 5 ° C./min.
[Evaluation]
The XRD (X-ray diffraction) of the silicon carbide precursor after the heat treatment was measured, and the result is shown in FIG. As shown in FIG. 5, it was found that the amount of impurities such as SiO 2 and graphite was greatly reduced by the heat treatment.
Moreover, about the silicon carbide fine particle after performing said heat processing, the chemical bond state was analyzed using FT-IR (Fourier transform infrared spectrophotometer), and the result was shown in FIG. As shown in FIG. 6, although the peak derived from Si-C bond (1) was recognized, it turned out that the peak intensity | strength derived from Si-O (2) or CC (4) has decreased a little.
Furthermore, SEM (scanning electron microscope) images (left) and EDS (energy dispersive type) of silicon carbide precursors after heat treatment obtained when the volume proportion of silicon source (TMOS) is 10, 50 and 90% by volume An X-ray spectrograph) image (right) was taken and is shown in FIG. From FIG. 7, it was found that the shape was changed by the heat treatment and the particle size was smaller.

(三)酸・アルカリ処理工程
上記不純物除去(熱処理)工程を経た炭化ケイ素前駆体(TMOS40、60及び80体積%)に対して、酸・アルカリ処理を行って、炭化ケイ素微粒子を得た。酸・アルカリ処理は、6M水酸化ナトリウム水溶液を用い、処理時間:6時間及び処理温度:100℃の条件で実施した。
[評価]
酸・アルカリ処理を施した後の炭化ケイ素微粒子のXRD(X線回折)を測定し、その結果を図8に示した。図8に示すように、熱処理及び酸・アルカリ処理によってSiOxは完全に除去され、Si−C由来のピークが見受けられた(なお、26°のSiOはガラス製試料ホルダによるものである。)。
また、上記の熱処理及び酸・アルカリ処理を施した後の炭化ケイ素微粒子について、FT−IR(フーリエ変換赤外分光光度計)を用いて化学結合状態を分析し、その結果を図9に示した。図9に示すように、Si−C結合(1)由来のピークが主として認められることがわかった。
更に、ケイ素源(TMOS)の体積割合が60体積%の場合について、熱処理後で酸・アルカリ処理前の炭化ケイ素前駆体と、熱処理及び酸・アルカリ処理後の炭化ケイ素微粒子について、FT−IR(フーリエ変換赤外分光光度計)を用いて分子構造を分析し、図10(左:炭化ケイ素前駆体、右:炭化ケイ素微粒子)に示した。図10から、酸・アルカリ処理によってSi−O由来のピークがなくなっていることがわかった。
(3) Acid / alkali treatment step The silicon carbide precursor (TMOS 40, 60 and 80% by volume) that had undergone the impurity removal (heat treatment) step was subjected to acid / alkali treatment to obtain silicon carbide fine particles. The acid / alkali treatment was carried out using a 6 M aqueous solution of sodium hydroxide under the conditions of treatment time: 6 hours and treatment temperature: 100 ° C.
[Evaluation]
The XRD (X-ray diffraction) of the silicon carbide fine particles after the acid / alkali treatment was measured, and the results are shown in FIG. As shown in FIG. 8, SiOx was completely removed by heat treatment and acid / alkali treatment, and a peak derived from Si—C was observed (26 ° SiO 2 is due to a glass sample holder). .
Moreover, about the silicon carbide fine particle after performing said heat processing and acid-alkali treatment, a chemical bond state was analyzed using FT-IR (Fourier transform infrared spectrophotometer), and the result was shown in FIG. . As shown in FIG. 9, it was found that a peak derived from Si-C bond (1) was mainly observed.
Furthermore, in the case where the volume ratio of silicon source (TMOS) is 60% by volume, FT-IR (silicon carbide precursor after heat treatment and before acid / alkali treatment and silicon carbide fine particles after heat treatment and acid / alkali treatment) The molecular structure was analyzed using a Fourier transform infrared spectrophotometer and shown in FIG. 10 (left: silicon carbide precursor, right: silicon carbide fine particles). From FIG. 10, it was found that the acid-alkali treatment eliminated the peak derived from Si-O.

ここで、上記の前駆体作成工程、不純物除去工程及び酸・アルカリ処理工程を実施して得た炭化ケイ素微粒子(ケイ素源(TMOS)の体積割合が20〜90体積%)について、 動的光散乱法(Beckman Coulter社製:Delsa(商品名)Max CORE)にて、粒径を測定し、その結果を図11に示した。図11から、ナノオーダーの炭化ケイ素微粒子が得られ、しかも、±3nm程度とバラツキが極めて少ない炭化ケイ素微粒子が得られたことがわかった。   Here, dynamic light scattering is performed for silicon carbide fine particles (the volume ratio of the silicon source (TMOS) is 20 to 90% by volume) obtained by performing the precursor preparation step, the impurity removal step, and the acid / alkali treatment step described above. The particle size was measured by the method (manufactured by Beckman Coulter: Delsa (trade name) Max CORE), and the results are shown in FIG. It is understood from FIG. 11 that silicon carbide fine particles of nano order were obtained, and silicon carbide fine particles of very small variation of about ± 3 nm were obtained.

2・・・炭素源及びケイ素源を含む溶液、
4・・・ソリューションプラズマ、
5・・・容器、
6・・・電極、
7・・・撹拌装置、
8・・・外部電源、
9・・・絶縁部材、
10・・・ソリューションプラズマ発生装置。

2 ··· Solution containing carbon source and silicon source,
4 ··· Solution plasma,
5 ・ ・ ・ container,
6 ・ ・ ・ electrode,
7 ··· Stirring device,
8 ・ ・ ・ External power supply,
9 ・ ・ ・ Insulating member,
10 ··· Solution plasma generator.

Claims (3)

炭素源及びケイ素源を含む溶液中でプラズマ処理を行い、炭化ケイ素前駆体を作成する前駆体作成工程と、
前記前駆体作成工程において作成した前記炭化ケイ素前駆体に熱処理を加えて不純物相を除去する不純物除去工程と、
前記不純物除去工程を経た後の前記炭化ケイ素前駆体に酸・アルカリ処理を行い、酸化ケイ素を除去する酸・アルカリ処理工程と、
を具備することを特徴とする炭化ケイ素微粒子の製造方法。
A precursor forming step of performing plasma treatment in a solution containing a carbon source and a silicon source to form a silicon carbide precursor;
An impurity removing step of removing an impurity phase by applying a heat treatment to the silicon carbide precursor prepared in the precursor preparing step;
An acid / alkali treatment step for removing silicon oxide by performing acid / alkali treatment on the silicon carbide precursor after the impurity removal step;
A method of producing silicon carbide fine particles, comprising:
前記溶液中のケイ素源と炭素源との体積割合が、50〜80:20〜50(合計100)であること、
を特徴とする請求項1に記載の炭化ケイ素微粒子の製造方法。
The volume ratio of silicon source to carbon source in the solution is 50-80: 20-50 (total 100);
The method for producing silicon carbide fine particles according to claim 1, wherein
前記プラズマ処理がソリューションプラズマ処理であること、
を特徴とする請求項1又は2に記載の炭化ケイ素微粒子の製造方法。
Said plasma processing is solution plasma processing;
The method for producing silicon carbide fine particles according to claim 1 or 2, characterized in that
JP2018011803A 2018-01-26 2018-01-26 Method for producing silicon carbide fine particles Pending JP2019127427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011803A JP2019127427A (en) 2018-01-26 2018-01-26 Method for producing silicon carbide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011803A JP2019127427A (en) 2018-01-26 2018-01-26 Method for producing silicon carbide fine particles

Publications (1)

Publication Number Publication Date
JP2019127427A true JP2019127427A (en) 2019-08-01

Family

ID=67471829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011803A Pending JP2019127427A (en) 2018-01-26 2018-01-26 Method for producing silicon carbide fine particles

Country Status (1)

Country Link
JP (1) JP2019127427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298897B1 (en) * 2020-05-13 2021-09-07 삼정이앤알 주식회사 Manufacturing method of SiC using wasted solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298897B1 (en) * 2020-05-13 2021-09-07 삼정이앤알 주식회사 Manufacturing method of SiC using wasted solar cell

Similar Documents

Publication Publication Date Title
KR102230714B1 (en) Seed member particles with carbon allotropes
US11629054B2 (en) Boron nitride nanotube purification
KR100364095B1 (en) Massive purification method of carbon nanotubes
CN1775696A (en) Diamond-coated porous substrate and liquid treatment apparatus and liquid treatment method using same
EP1885653A1 (en) Porous silicon particles
WO2013109948A1 (en) Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same
TWI488804B (en) Graphite oxide preparation method
JP6559118B2 (en) Nickel powder
KR20110069781A (en) Fibers including nanoparticles and a method of producing the nanoparticles
JP2019127427A (en) Method for producing silicon carbide fine particles
KR102361800B1 (en) Nickel Powder and Nickel Paste
JP5370055B2 (en) Method for producing silicon lower oxide particles and dispersion of the particles
TWI596061B (en) Process for producing hollow silicon bodies
JP2010254506A (en) Method for producing nanodiamond
JP2009132872A (en) Method for producing light-emitting fine silicon particle
KR101851879B1 (en) Manufacturing method of high purity silicon carbide using metal silicon and arc discharge
KR101792242B1 (en) Graphene and method for manufacturing the same
JP2008142659A (en) Method of manufacturing photocatalyst coating film and photocatalyst member
KR102123753B1 (en) Method for manufacturing silicene quantum dots and silicene quantum dots manufactured by the same
JP2002029843A (en) Protective member for plasma treatment apparatus
JP2014156363A (en) Method for producing fine silicon particle
JP2015078109A (en) METHOD FOR SYNTHESIZING ZnO:Ga NANOPARTICLES AND METHOD FOR PRODUCING ZnO:Ga FILM
CN117488268A (en) Preparation method of SiV color center-containing nano diamond powder
KR20200079751A (en) Recycling Method of SiC By-product From The Deposition Process
US20150307775A1 (en) Method of preparing a composite article and composite article