JP2019127425A - Molding tool made of glass - Google Patents

Molding tool made of glass Download PDF

Info

Publication number
JP2019127425A
JP2019127425A JP2018011607A JP2018011607A JP2019127425A JP 2019127425 A JP2019127425 A JP 2019127425A JP 2018011607 A JP2018011607 A JP 2018011607A JP 2018011607 A JP2018011607 A JP 2018011607A JP 2019127425 A JP2019127425 A JP 2019127425A
Authority
JP
Japan
Prior art keywords
glass
molding
mold
molded
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018011607A
Other languages
Japanese (ja)
Other versions
JP7125844B2 (en
Inventor
藤本 忠幸
Tadayuki Fujimoto
忠幸 藤本
白石 幸一郎
Koichiro Shiraishi
幸一郎 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2018011607A priority Critical patent/JP7125844B2/en
Priority to TW107143800A priority patent/TWI786235B/en
Priority to KR1020190003122A priority patent/KR20190091194A/en
Priority to CN201910074542.6A priority patent/CN110078358A/en
Publication of JP2019127425A publication Critical patent/JP2019127425A/en
Application granted granted Critical
Publication of JP7125844B2 publication Critical patent/JP7125844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0302Re-forming glass sheets by bending by press-bending between shaping moulds between opposing full-face shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0305Press-bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

To provide a molding tool made of glass excellent in molding performance.SOLUTION: A molding tool made of glass for press-molding glass to be molded is formed of glass satisfying following conditions: (1) a Young's modulus is 85 GPa or higher, (2) a glass-transition temperature is 650°C or higher, and (3) an average thermal expansion coefficient at 100°C-300°C is 30×10/°C to 80×10/°C.SELECTED DRAWING: Figure 2

Description

本発明は、被成形ガラスを押圧成形するガラス製の成形型に関する。   The present invention relates to a glass mold for press-molding glass to be molded.

レンズ等の光学素子の製造において、素材となるガラスを概略の形状にしてから研削や研磨によって仕上げる方法が従来から用いられている。近年では、加熱して軟化させた状態のガラスに対して成形用の型(以下、成形型)による押圧成形を行って、研削や研磨を経ずに光学素子を製造する方法も実用化されている。このような成形型を用いた成形により、球面レンズのみならず、複雑な形状の非球面レンズ等も、低コストで大量に生産することが可能になった。   In the production of an optical element such as a lens, a method of forming a glass as a raw material into a rough shape and then finishing it by grinding or polishing has been conventionally used. In recent years, a method for producing an optical element without performing grinding or polishing by performing press molding with a molding die (hereinafter referred to as a molding die) on glass that has been softened by heating has been put into practical use. There is. By molding using such a mold, not only spherical lenses but also aspherical lenses with complicated shapes can be produced in large quantities at low cost.

押圧成形では、成形型の表面形状(成形面)が被成形物に転写されるため、成形型の精度が極めて需要になる。例えば、押圧時に作用する負荷や加熱を起因とした変形を生じないように、成形型には高い剛性と耐熱性が求められる。また、成形型への被成形物の貼り付きや被成形物の割れを防ぐために、成形型が被成形物に対して適切な熱膨張率を有することも必要となる。   In pressure molding, the surface shape (molding surface) of the mold is transferred to the object to be molded, so the precision of the mold becomes extremely in demand. For example, the mold is required to have high rigidity and heat resistance so as not to cause deformation caused by a load or heating that acts during pressing. In addition, in order to prevent sticking of the molding object to the molding die and cracking of the molding object, it is necessary that the molding die have an appropriate coefficient of thermal expansion with respect to the molding object.

以上のような条件を満たすものとして、金属やセラミックス等を素材とした成形型が広く用いられている。しかし、このような成形型を精度のばらつきを抑えながら削り出し等で個別に製造するには、コストと手間がかかる。特に、光学機器用のガラスレンズを大量生産する場合には、成形型も多く必要とされる。その対策として、ガラス製の成形型を用いる技術が提案されている(例えば、特許文献1〜12)。   As satisfying the above conditions, molds made of metal or ceramics are widely used. However, in order to manufacture such a mold individually by shaving etc., suppressing the dispersion | variation in precision, cost and an effort are required. In particular, when mass-producing glass lenses for optical equipment, a large number of molds are required. As a countermeasure, a technique using a glass mold has been proposed (for example, Patent Documents 1 to 12).

具体的には、基準となる成形面を有するマスター型(母型)を準備し、加熱により軟化させた成形型用ガラス材料をマスター型で押圧成形することによって、マスター型の成形面が転写されたガラス製の成形型(レプリカ型)が得られる。ガラス製の成形型は、高精度のマスター型を一旦製造してしまえば量産が容易で、形状設定の自由度が高いという利点がある。   Specifically, a master mold (mother mold) having a standard molding surface is prepared, and a molding glass material softened by heating is press-molded with the master mold, thereby transferring the molding surface of the master mold. A glass mold (replica mold) is obtained. Glass molds have the advantage that once a high-precision master mold is manufactured, mass production is easy and the degree of freedom of shape setting is high.

特開昭62−226825号公報Japanese Patent Laid-Open No. 62-226825 特開平1−239030号公報JP-A-1-239030 特許第2616964号公報Patent No. 2616964 gazette 特許第2723497号公報Japanese Patent No. 2723497 特許第4832939号公報Patent No. 4832939 特開2007−284300号公報JP 2007-284300 A 特開2006−206394号公報JP 2006-206394 A 特開2005−97009号公報JP 2005-97009 A 特開2004−210550号公報JP 2004-210550 A 特開2008−56540号公報JP 2008-56540 A 特開2007−254234号公報JP 2007-254234 A 特開2005−15266号公報JP 2005-15266 A

ガラス製の成形型においても、前記のような剛性、耐熱性、熱膨張率といった条件が要求されるが、これらの条件を全て高いレベルで満たして実用化することが難しかった。特に、被成形ガラスに対する優れた成形性能を有しつつ、成形型自身も生産しやすいという条件を備えた高性能のガラス製成形型が求められている。そこで本発明は、成形性能に優れるガラス製成形型を提供することを目的とする。   The glass molds are also required to have the above-mentioned conditions such as rigidity, heat resistance, and coefficient of thermal expansion. However, it has been difficult to achieve practical use by satisfying all these conditions at a high level. In particular, there is a demand for a high-performance glass mold that has excellent molding performance with respect to glass to be molded and that is easy to produce the mold itself. Accordingly, an object of the present invention is to provide a glass mold having excellent molding performance.

出願人は、特定の条件を満たすことにより、無理なく製造可能で成形性能に優れる実用化レベルのガラス製成形型を得られるという着眼により本発明を案出した。すなわち本発明は、被成形ガラスを押圧成形するための成形型において、(1)ヤング率が85GPa以上であること、(2)ガラス転移温度が650℃以上であること、(3)100℃〜300℃での平均熱膨張係数が30×10−7/℃〜80×10−7/℃であること、を満たすガラスにより形成されることを特徴としている。 The applicant has devised the present invention by focusing on the fact that, by satisfying specific conditions, a glass mold having a practical level that can be manufactured without difficulty and has excellent molding performance can be obtained. That is, the present invention provides a molding die for press-molding glass to be molded, (1) Young's modulus is 85 GPa or more, (2) Glass transition temperature is 650 ° C. or more, and (3) 100 ° C. to It is characterized in that it is formed of a glass satisfying an average thermal expansion coefficient at 300 ° C. of 30 × 10 −7 / ° C. to 80 × 10 −7 / ° C.

条件(1)を満たすことにより、被成形ガラスを押圧成形する際の負荷に耐える剛性を確保できる。条件(2)を満たすことにより、光学素子等の素材として用いられる被成形ガラスよりもガラス転移温度が高く、成形温度でのガラス製成形型の変形を防止できる。条件(3)を満たすことにより、ガラス製成形型に対する被成形ガラスの貼り付きや被成形ガラスの割れ、マスター型に対する成形型用ガラス材料の貼り付きや成形型用ガラス材料の割れを防ぐ効果が得られる。従って、ガラス製成形型の撓みを生じずに被成形ガラスの貼り付きや割れを防いで、優れた成形結果を得ることができる。   By satisfying the condition (1), it is possible to secure the rigidity that can withstand the load when the glass to be molded is press-molded. By satisfying the condition (2), the glass transition temperature is higher than that of the glass to be molded used as a material such as an optical element, and deformation of the glass mold at the molding temperature can be prevented. By satisfying the condition (3), there is an effect of preventing sticking of the glass to be molded to the glass mold and cracking of the glass to be molded, sticking of the glass material for mold to the master mold and cracking of the glass material for mold. can get. Therefore, it is possible to prevent sticking and cracking of the glass to be formed without causing bending of the glass mold, and to obtain excellent molding results.

成形型を構成するガラス(成形型用ガラス材料)のガラス転移温度をTg(A)、被成形ガラスのガラス転移温度をTg(B)とした場合、Tg(A)−Tg(B)が30℃以上であるとよい。   When the glass transition temperature of the glass constituting the mold (glass material for mold) is Tg (A) and the glass transition temperature of the glass to be molded is Tg (B), Tg (A) -Tg (B) is 30. It is good that it is more than ° C.

成形型を構成するガラス(成形型用ガラス材料)の100℃〜300℃での平均熱膨張係数をα(A)、被成形ガラスの100℃〜300℃での平均熱膨張係数をα(B)とした場合、α(A)−α(B)が+20〜−120であるとよい。   The average thermal expansion coefficient at 100 ° C. to 300 ° C. of the glass (mold glass material) constituting the mold is α (A), and the average thermal expansion coefficient of the glass to be molded at 100 ° C. to 300 ° C. is α (B ), Α (A) −α (B) is preferably +20 to −120.

本発明は、被成形ガラスを押圧成形して光学素子を形成するガラス製成形型に好適である。   The present invention is suitable for a glass mold for press-molding glass to form an optical element.

以上のように、本発明によれば成形性能に優れるガラス製成形型が得られる。   As described above, according to the present invention, a glass mold having excellent molding performance can be obtained.

ガラス製成形型を有するガラス成形装置の断面図である。It is sectional drawing of the glass forming apparatus which has a glass-made shaping | molding die. 本発明を適用したガラス製成形型の実施例と比較例を示す図である。It is a figure which shows the Example and comparative example of the glass mold which applied this invention.

本発明のガラス製成形型を備えたガラス成形装置の一例を図1に示す。図1のガラス成形装置10は、被成形ガラスのガラス塊21から光学素子であるレンズ20を押圧成形によって製造するものであり、ガラス製の成形型である上型11と下型12を備える。上型11と下型12は、案内型13内に相対移動可能に支持されており、互いの間隔を変化させることができる。上型11と下型12は、両方とも移動する可動型であってもよいし、一方を可動型にして他方を移動しない固定型にしてもよい。   An example of a glass forming apparatus provided with the glass mold of the present invention is shown in FIG. A glass molding apparatus 10 in FIG. 1 is for manufacturing a lens 20 as an optical element from a glass lump 21 of glass to be molded by press molding, and includes an upper mold 11 and a lower mold 12 which are glass molds. The upper mold 11 and the lower mold 12 are supported so as to be movable relative to each other in the guide mold 13 and can change the distance between them. Both the upper mold 11 and the lower mold 12 may be movable, or one may be a movable mold and the other may be a fixed mold that does not move.

上型11と下型12は、互いに対向する側に成形面14と成形面15を有している。レンズ20は両面が非球面である両凸レンズであり、成形面14と成形面15はそれぞれレンズ20の各凸面(非球面)に対応する形状の凹面(非球面)である。すなわち、成形面14と成形面15の形状が成形によって転写されてレンズ20の凸面が形成される。なお、本発明のガラス製成形型は、両凸レンズ以外の被成形物の成形にも適用が可能であり、ガラス製成形型の成形面の形状は、被成形物の形状に応じて適宜設定される。例えば、光学素子としては、凹面を有するレンズや、プリズム等の製造にも適用可能である。   The upper mold 11 and the lower mold 12 have a molding surface 14 and a molding surface 15 on opposite sides. The lens 20 is a biconvex lens having both aspheric surfaces, and the molding surface 14 and the molding surface 15 are concave surfaces (aspheric surfaces) each having a shape corresponding to each convex surface (aspheric surface) of the lens 20. That is, the shape of the molding surface 14 and the molding surface 15 is transferred by molding, and the convex surface of the lens 20 is formed. The glass mold of the present invention can also be applied to molding of a molded object other than a biconvex lens, and the shape of the molding surface of the glass mold is appropriately set according to the shape of the molded object. Ru. For example, the optical element can be applied to manufacture of a lens having a concave surface, a prism, and the like.

成形面14、15上にはコーティング層16、17が形成されている。コーティング層16、17は炭素膜等からなり、被成形ガラスの融着を抑える効果を有する。なお、図1に示すコーティング層16、17は単層構造であるが、異なる組成からなる複層構造のコーティング層を設けることもできる。あるいは、コーティング層16、17を備えずに成形面14、15が露出した構成も選択可能である。   Coating layers 16 and 17 are formed on the molding surfaces 14 and 15. The coating layers 16 and 17 are made of a carbon film or the like, and have an effect of suppressing fusion of glass to be molded. In addition, although the coating layers 16 and 17 shown in FIG. 1 are single layer structure, the coating layer of the multilayer structure which consists of a different composition can also be provided. Alternatively, a configuration in which the molding surfaces 14 and 15 are exposed without the coating layers 16 and 17 can be selected.

案内型13の外側には図示を省略するヒーターが設けられている。成形時には、被成形ガラス(ガラス塊21)が軟化する成形温度までヒーターで加熱する。   A heater (not shown) is provided outside the guide mold 13. At the time of molding, the glass is heated with a heater to a molding temperature at which the glass to be molded (glass lump 21) is softened.

図示を省略するが、上型11や下型12は、マスター型(母型)を用いた押圧成形によって製造される。上型11と下型12を製造するためのマスター型が個別に準備される。これらのマスター型は金属等で形成されており、成形面14や成形面15の元となる基準成形面を備えている。加熱して軟化させた成形型用ガラス材料(後述する各条件を満たすガラスであり、レンズ20用の被形成ガラスとは別のもの)を各マスター型の基準成形面で押圧することにより、該基準成形面が成形面14や成形面15として転写された上型11や下型12が成形される。   Although not shown, the upper mold 11 and the lower mold 12 are manufactured by press molding using a master mold (master mold). A master mold for manufacturing the upper mold 11 and the lower mold 12 is separately prepared. These master dies are formed of metal or the like, and have a reference molding surface that is the basis of the molding surface 14 and the molding surface 15. By pressing a glass material for a mold that has been softened by heating (a glass that satisfies the conditions described later and different from the glass to be formed for the lens 20) on the reference molding surface of each master mold, The upper mold 11 and the lower mold 12 having the reference molding surface transferred as the molding surface 14 and the molding surface 15 are molded.

なお、本発明におけるガラス製成形型は、成形面14、15に相当する形状転写用の面を備えた部分を指すものとする。例えば、コーティング層16、17を除く上型11と下型12の全体をガラス製としてもよい。あるいは、上型11と下型12のうち成形面14と成形面15を含む一部のみをガラス製成形型とし、当該ガラス製成形型に金属製等の別の基盤部(図示略)を接合して上型11や下型12を構成することもできる。   In addition, the glass-made shaping | molding die in this invention shall point out the part provided with the surface for shape transfer corresponded to the shaping | molding surface 14 and 15. FIG. For example, the entire upper mold 11 and lower mold 12 except for the coating layers 16 and 17 may be made of glass. Alternatively, only a part of the upper mold 11 and the lower mold 12 including the molding surface 14 and the molding surface 15 is a glass molding die, and another base portion (not shown) made of metal or the like is joined to the glass molding die. Thus, the upper mold 11 and the lower mold 12 can be configured.

出願人は、研究及び実験の結果、以下の条件(1)、(2)及び(3)を満たすガラスが、上型11と下型12のようなガラス製成形型を構成するガラス材料として好適であることを見出した。
(1)ヤング率が85GPa以上であること。
(2)ガラス転移温度(Tg)が650℃以上であること。
(3)100℃〜300℃の平均熱膨張係数(α100−300)が30×10−7/℃〜80×10−7/℃であること。
As a result of research and experiments, the applicant has found that glass satisfying the following conditions (1), (2) and (3) is suitable as a glass material constituting a glass mold such as the upper mold 11 and the lower mold 12. I found it to be.
(1) Young's modulus is 85 GPa or more.
(2) The glass transition temperature (Tg) is 650 ° C. or higher.
(3) The average thermal expansion coefficient (α 100-300) at 100 ° C. to 300 ° C. is 30 × 10 −7 / ° C. to 80 × 10 −7 / ° C.

条件(1)は、成形型の剛性に関係する。押圧成形する際に成形型に撓みが発生すると、成形面の形状が維持されず、被成形ガラスに対する成形精度に影響を及ぼす。ヤング率が85GPa以上であると、被成形ガラスの成形時に所定の押圧力を加えても、負荷による成形型の撓みを防止でき、成形面の精度を損なわずに成形することができる。   Condition (1) relates to the rigidity of the mold. When bending occurs in the molding die during press molding, the shape of the molding surface is not maintained, which affects the molding accuracy of the glass to be molded. When the Young's modulus is 85 GPa or more, even if a predetermined pressing force is applied at the time of molding the glass to be molded, it is possible to prevent the mold from being bent due to a load and to perform molding without impairing the accuracy of the molding surface.

条件(2)は、成形時の加熱による成形型への影響に関係する。被成形ガラスよりもガラス転移点が高いガラスを成形型用ガラス材料とした上で、成形型用ガラス材料のガラス転移点よりも低い温度を成形温度とすることにより、成形型用ガラス材料の軟化を伴わずに被成形ガラスのみを軟化させることができる。   Condition (2) relates to the influence on the mold due to heating during molding. Softening of the glass material for molds is made by using a glass with a glass transition point higher than that of the glass to be molded as the glass material for molds and setting the molding temperature to a temperature lower than the glass transition point of the glass material for molds. Only the glass to be molded can be softened without accompanying.

より詳しくは、成形型用ガラス材料のガラス転移温度をTg(A)、被成形ガラスのガラス転移温度をTg(B)とした場合、Tg(A)−Tg(B)≧30℃であるとよい。さらに、Tg(A)−Tg(B)≧50℃が好ましく、Tg(A)−Tg(B)≧100℃がより好ましい。   More specifically, when Tg (A) is the glass transition temperature of the glass material for the mold and Tg (B) is the glass transition temperature of the glass to be molded, Tg (A) −Tg (B) ≧ 30 ° C. Good. Furthermore, Tg (A) -Tg (B) ≧ 50 ° C. is preferable, and Tg (A) -Tg (B) ≧ 100 ° C. is more preferable.

例えば、出願人が製造するガラスモールドレンズ用の硝材では、ガラス転移点が最も高いものが612℃である(硝材名M−TAFD305)。従って、条件(2)を満たすことにより、ガラス製成形型の熱変形を防ぎながら、様々な光学素子用のガラスに有効な成形温度に設定することができる。   For example, among glass materials for glass mold lenses manufactured by the applicant, one having the highest glass transition point is 612 ° C. (glass material name: M-TAFD 305). Therefore, by satisfying the condition (2), it is possible to set a molding temperature effective for glasses for various optical elements while preventing thermal deformation of the glass molding die.

条件(3)は、成形型と被成形ガラスの熱膨張率の差を適切に管理して、被成形物の貼り付きや割れを防いで良好な成形を行うための条件である。被成形ガラスに対して成形型の熱膨張係数が相対的に大きすぎると、成形時に被成形ガラスの割れが生じやすくなる。また、成形型と被成形ガラスとの熱膨張係数の差が小さすぎると、成形型への被成形ガラスの貼り付きが生じやすくなる。   Condition (3) is a condition for appropriately controlling the difference in the coefficient of thermal expansion between the mold and the glass to be molded to prevent sticking and cracking of the molded object and perform good molding. If the thermal expansion coefficient of the mold is relatively large relative to the glass to be molded, cracking of the glass to be molded tends to occur during molding. In addition, when the difference between the thermal expansion coefficient of the mold and the glass to be molded is too small, sticking of the glass to the mold tends to occur.

より詳しくは、成形型用ガラス材料の平均熱膨張係数(100℃〜300℃)をα(A)、被成形ガラスの平均熱膨張係数(100℃〜300℃)をα(B)とした場合、α(A)−α(B)が+20〜−120であるとよい。さらに、α(A)−α(B)が+10〜−120が好ましく、α(A)−α(B)が0〜−100がより好ましい。ガラスモールドレンズ用の硝材ではα(B)が70〜90前後のものが多く、条件(3)を満たすことにより、被成形ガラスの割れや成形型への貼り付きを防ぐ効果が得られる。   More specifically, when the average thermal expansion coefficient (100 ° C. to 300 ° C.) of the glass material for mold is α (A) and the average thermal expansion coefficient (100 ° C. to 300 ° C.) of the glass to be molded is α (B). , Α (A) −α (B) is preferably +20 to −120. Further, α (A) -α (B) is preferably +10 to -120, and α (A) -α (B) is more preferably 0 to -100. Many glass materials for glass mold lenses have α (B) of around 70 to 90, and satisfying the condition (3) provides an effect of preventing cracking of the glass to be molded and sticking to the mold.

また、条件(3)は、マスター型によって成形型用ガラス材料を押圧成形する際の成形性にも関係する。一例として、炭化ケイ素(SiC)を主素材としてマスター型を形成した場合、炭化ケイ素の平均熱膨張係数(100℃〜300℃)は40×10−7/℃程度であるため、条件(3)によって成形型用ガラス材料を良好に成形してガラス製の成形型を得ることができる。特に、条件(3)の下限値を満たすことで、マスター型の熱膨張率が相対的に過大にならず、ガラス製成形型の割れを生じにくくできる。 Condition (3) also relates to the formability when pressing and forming the glass material for a forming die by the master die. As an example, when the master mold is formed using silicon carbide (SiC) as the main material, the average thermal expansion coefficient (100 ° C. to 300 ° C.) of silicon carbide is about 40 × 10 −7 / ° C., so that the condition (3) As a result, a glass mold can be obtained by forming the glass material for the mold well. In particular, by satisfying the lower limit value of the condition (3), the thermal expansion coefficient of the master die does not become relatively excessive, and it is possible to prevent the glass forming die from being cracked.

例えば、下記の原料組成によれば、条件(1)、(2)及び(3)を満たした成形型用ガラス材料を得ることができる。
モル%表示にて
SiOを50〜75%、
Alを0〜5%、
ZnOを0〜5%、
NaOおよびKOを合計で3〜15%、
MgO、CaO、SrOおよびBaOを合計で14〜35%、
ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2〜9%、
含み、
モル比{(MgO+CaO)/(MgO+CaO+SrO+BaO)}が0.85〜1の範囲であり、かつモル比{Al/(MgO+CaO)}が0〜0.30の範囲であるガラス。
For example, according to the following raw material composition, the glass material for shaping | molding dies which satisfy | fills conditions (1), (2) and (3) can be obtained.
The SiO 2 50~75% by mole percent display,
Al 2 O 3 0-5%
ZnO 0-5%,
3% to 15% of Na 2 O and K 2 O in total,
14 to 35% in total of MgO, CaO, SrO and BaO,
2 to 9% in total of ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 ,
Including
Glass in which molar ratio {(MgO + CaO) / (MgO + CaO + SrO + BaO)} is in the range of 0.85 to 1 and molar ratio {Al 2 O 3 / (MgO + CaO)} is in the range of 0 to 0.30.

<実施例>
ガラス成形装置10において、ガラス製成形型である上型11と下型12の各成形面14、15の間に、被成形ガラスであるガラス塊21を配置し、ヒーターにより成形温度まで加熱して、上型11と下型12を接近移動させて21を所定の圧力でプレスしてレンズ20を成形した実施例を図2に示す。実施例1と実施例2は、2種類の被成形ガラスに対して、本発明を適用したGA、GB、GCの3種類のガラス材料からなるガラス製成形型によってそれぞれ成形を行った結果を示したものである。
<Example>
In the glass forming apparatus 10, a glass lump 21, which is a glass to be formed, is disposed between the molding surfaces 14, 15 of the upper mold 11 and the lower mold 12 which are glass molds, and heated to a molding temperature by a heater. An embodiment in which the lens 20 is formed by moving the upper mold 11 and the lower mold 12 close to each other and pressing 21 with a predetermined pressure is shown in FIG. Example 1 and Example 2 show the results of molding with respect to two types of glass to be molded by glass molding dies composed of three types of glass materials GA, GB, and GC to which the present invention is applied. It is a thing.

・成形型用ガラス材料 GA(サンプル名)
ヤング率(GPa):85
ガラス転移温度(Tg):682℃
100℃〜300℃の平均熱膨張係数(α100−300):77×10−7/℃
比重:2.96g/cm
・成形型用ガラス材料 GB(サンプル名)
ヤング率(GPa):95
ガラス転移温度(Tg):691℃
100℃〜300℃の平均熱膨張係数(α100−300):51×10−7/℃
比重:2.59g/cm
・成形型用ガラス材料 GC(サンプル名)
ヤング率(GPa):87
ガラス転移温度(Tg):720℃
100℃〜300℃の平均熱膨張係数(α100−300):32×10−7/℃
比重:2.60g/cm
<実施例1>
・被成形ガラス M−NBFD130(HOYA株式会社製)
ガラス転移温度(Tg):567℃
100℃〜300℃の平均熱膨張係数(α100−300):74×10−7/℃
<実施例2>
・被成形ガラス M−BACD5N(HOYA株式会社製)
ガラス転移温度(Tg):521℃
100℃〜300℃の平均熱膨張係数(α100−300):88×10−7/℃
[成形結果]
図2に示すように、実施例1、2のいずれも、成形型用ガラス材料GA、GB、GCからなる各ガラス製成形型において成形温度での押圧成形時に有害な変形を生じず、被成形ガラスにおける被成形面の面形状が適正であり、被成形ガラスの割れも生じず、良好な成形結果が得られた。
・ Glass material for molds GA (sample name)
Young's modulus (GPa): 85
Glass transition temperature (Tg): 682 ° C
Average coefficient of thermal expansion (α100-300) at 100 ° C. to 300 ° C .: 77 × 10 −7 / ° C.
Specific gravity: 2.96 g / cm 3
· Glass material for molds GB (sample name)
Young's modulus (GPa): 95
Glass transition temperature (Tg): 691 ° C.
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 51 × 10 −7 / ° C.
Specific gravity: 2.59 g / cm 3
・ Glass material for molds GC (sample name)
Young's modulus (GPa): 87
Glass transition temperature (Tg): 720 ° C.
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 32 × 10 −7 / ° C.
Specific gravity: 2.60 g / cm 3
Example 1
・ Molded glass M-NBFD130 (manufactured by HOYA Corporation)
Glass transition temperature (Tg): 567 ° C.
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 74 × 10 −7 / ° C.
Example 2
・ Molded glass M-BACD5N (manufactured by HOYA Corporation)
Glass transition temperature (Tg): 521 ° C.
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 88 × 10 −7 / ° C.
[Molding result]
As shown in FIG. 2, in each of Examples 1 and 2, no harmful deformation occurs during press molding at the molding temperature in each glass mold made of glass material GA, GB, GC for molding, and molding is performed. The surface shape of the molding surface of the glass was appropriate, and no cracking of the molding glass occurred, and a good molding result was obtained.

続いて、実施例とは異なるガラス材料からなる成形型によって、実施例1、2と同じ被成形ガラスに対する成形を行った比較例を示す。   Then, the comparative example which shape | molded with respect to the same to-be-shaped glass as Example 1, 2 with the shaping | molding die which consists of a glass material different from an Example is shown.

<比較例1>
・成形型用ガラス材料 ZnSF8(株式会社住田光学ガラス製)
ヤング率(GPa):87
ガラス転移温度(Tg):518℃
100℃〜300℃の平均熱膨張係数(α100−300):60×10−7/℃
比重:3.72g/cm
特開2004−210550号公報に、ZnSF8を材料とした成形型が記載されている。
[成形結果]
ZnSF8は、ガラス転移温度が本発明の条件(2)を下回っている。さらにZnSF8のガラス転移温度は、被成形ガラスであるM−NBFD130とM−BACD5Nのガラス転移温度よりも低い。そして、M−NBFD130とM−BACD5Nのいずれの被成形ガラスを成形した場合も、許容範囲を超える成形型の変形が生じて成形不良となった。
Comparative Example 1
・ Glass material for molds ZnSF8 (Sumita Optical Glass Co., Ltd.)
Young's modulus (GPa): 87
Glass transition temperature (Tg): 518 ° C.
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 60 × 10 −7 / ° C.
Specific gravity: 3.72 g / cm 3
Japanese Patent Laid-Open No. 2004-210550 describes a mold using ZnSF8 as a material.
[Molding result]
The ZnSF 8 has a glass transition temperature below the condition (2) of the present invention. Furthermore, the glass transition temperature of ZnSF8 is lower than the glass transition temperatures of M-NBFD130 and M-BACD5N which are molded glass. And even if it shape | molds any glass for shaping | molding of M-NBFD130 and M-BACD5N, the deformation | transformation of the shaping | molding die exceeding an allowable range arose and it became a molding defect.

<比較例2>
・成形型用ガラス材料 S−BSL7(株式会社オハラ製)
ヤング率(GPa):80
ガラス転移温度(Tg):576℃
100℃〜300℃の平均熱膨張係数(α100−300):86×10−7/℃
比重:2.52g/cm
特開2008−56540号公報に、S−BSL7を材料とした成形型が記載されている。
[成形結果]
S−BSL7は、ヤング率が本発明の条件(1)を下回り、ガラス転移温度が本発明の条件(2)を下回り、熱膨張係数が本発明の条件(3)の上限値を超えている。そして、M−NBFD130とM−BACD5Nのいずれの被成形ガラスを成形した場合も、許容範囲を超える成形型の変形が生じて成形不良となった。
Comparative Example 2
・ Glass material for mold S-BSL7 (Ohara Co., Ltd.)
Young's modulus (GPa): 80
Glass transition temperature (Tg): 576 ° C.
Average thermal expansion coefficient (α 100-300) of 100 ° C. to 300 ° C .: 86 × 10 −7 / ° C.
Specific gravity: 2.52 g / cm 3
JP-A-2008-56540 describes a molding die using S-BSL7 as a material.
[Molding result]
In S-BSL7, the Young's modulus is below the condition (1) of the present invention, the glass transition temperature is below the condition (2) of the present invention, and the thermal expansion coefficient is above the upper limit of the condition (3) of the present invention . And even if it shape | molds any glass for shaping | molding of M-NBFD130 and M-BACD5N, the deformation | transformation of the shaping | molding die exceeding an allowable range arose and it became a molding defect.

<比較例3>
・成形型用ガラス材料 S−BSM14(株式会社オハラ製)
ヤング率(GPa):84.9
ガラス転移温度(Tg):663℃
100℃〜300℃の平均熱膨張係数(α100−300):73×10−7/℃
比重:3.43g/cm
特開2007−254234号公報に、S−BSL14を材料とした成形型が記載されている。
[成形結果]
S−BSL14は、ヤング率が本発明の条件(1)を下回っている。そして、M−NBFD130とM−BACD5Nのいずれの被成形ガラスを成形した場合も、被成形面の面形状精度が基準に達しなかった。
Comparative Example 3
・ Glass material for mold S-BSM14 (Ohara Inc.)
Young's modulus (GPa): 84.9
Glass transition temperature (Tg): 663 ° C
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 73 × 10 −7 / ° C.
Specific gravity: 3.43 g / cm 3
JP-A-2007-254234 describes a mold using S-BSL 14 as a material.
[Molding result]
The S-BSL 14 has a Young's modulus lower than the condition (1) of the present invention. And when shaping | molding any glass of M-NBFD130 and M-BACD5N, the surface-shape precision of the to-be-shaped surface did not reach a reference | standard.

<比較例4>
・成形型用ガラス材料 NA32SG(アヴァンストレート株式会社製)
ヤング率(GPa):74
ガラス転移温度(Tg):705℃
100℃〜300℃の平均熱膨張係数(α100−300):34×10−7/℃
比重:2.41g/cm
[成形結果]
NA32SGは、ヤング率が本発明の条件(1)を下回っている。そして、M−NBFD130とM−BACD5Nのいずれの被成形ガラスを成形した場合も、被成形面の面形状精度が基準に達しなかった。
Comparative Example 4
・ Glass material for mold NA32SG (Avant Straight Co., Ltd.)
Young's modulus (GPa): 74
Glass transition temperature (Tg): 705 ° C.
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 34 × 10 −7 / ° C.
Specific gravity: 2.41 g / cm 3
[Molding result]
NA32SG has a Young's modulus lower than the condition (1) of the present invention. And when shaping | molding any glass of M-NBFD130 and M-BACD5N, the surface-shape precision of the to-be-shaped surface did not reach a reference | standard.

<比較例5>
・成形型用ガラス材料 GD(サンプル名)
ヤング率(GPa):69
ガラス転移温度(Tg):670℃
100℃〜300℃の平均熱膨張係数(α100−300):46×10−7/℃
[成形結果]
GD(サンプル名)は、ヤング率が本発明の条件(1)を下回っている。そして、M−NBFD130とM−BACD5Nのいずれの被成形ガラスを成形した場合も、被成形面の面形状精度が基準に達しなかった。
Comparative Example 5
・ Glass material for molds GD (sample name)
Young's modulus (GPa): 69
Glass transition temperature (Tg): 670 ° C.
Average thermal expansion coefficient (α 100-300) of 100 ° C. to 300 ° C .: 46 × 10 −7 / ° C.
[Molding result]
GD (sample name) has a Young's modulus lower than the condition (1) of the present invention. And when shaping | molding any glass of M-NBFD130 and M-BACD5N, the surface-shape precision of the to-be-shaped surface did not reach a reference | standard.

<比較例6>
・成形型用ガラス材料 GE(サンプル名)
ヤング率(GPa):70.2
ガラス転移温度(Tg):705℃
100℃〜300℃の平均熱膨張係数(α100−300):37×10−7/℃
[成形結果]
GE(サンプル名)は、ヤング率が本発明の条件(1)を下回っている。そして、M−NBFD130とM−BACD5Nのいずれの被成形ガラスを成形した場合も、被成形ガラスに割れが生じた。
Comparative Example 6
・ Glass material for molds GE (sample name)
Young's modulus (GPa): 70.2
Glass transition temperature (Tg): 705 ° C.
Average thermal expansion coefficient (α 100-300) of 100 ° C. to 300 ° C .: 37 × 10 −7 / ° C.
[Molding result]
GE (sample name) has a Young's modulus lower than the condition (1) of the present invention. And when forming any molding glass of M-NBFD130 and M-BACD5N, the crack arose in molding glass.

また、下記特許文献には、硼珪酸バリウム系ガラスや硼珪酸ガラスを素材とするガラス製成形型を用いる技術が記載されている。
・硼珪酸バリウム系ガラス(特開2007−284300号公報、特開2006−206394号公報)
ガラス転移温度(Tg):690℃
100℃〜300℃の平均熱膨張係数(α100−300):64×10−7/℃
・硼珪酸バリウム系ガラス(特開2005−97009号公報)
ガラス転移温度(Tg):679℃
100℃〜300℃の平均熱膨張係数(α100−300):55.6×10−7/℃
・硼珪酸バリウム系ガラス(特開2005−97009号公報)
ガラス転移温度(Tg):679℃
100℃〜300℃の平均熱膨張係数(α100−300):55.6×10−7/℃
・硼珪酸ガラス(特開2005−15266号公報)
ガラス転移温度(Tg):540℃
Further, the following patent document describes a technique using a glass forming mold made of barium borosilicate glass or borosilicate glass as a material.
· Barium borosilicate glass (Japanese Patent Laid-Open Nos. 2007-284300 and 2006-206394)
Glass transition temperature (Tg): 690 ° C
Average thermal expansion coefficient (α100-300) of 100 ° C. to 300 ° C .: 64 × 10 −7 / ° C.
・ Barium silicate glass (Japanese Patent Laid-Open No. 2005-97009)
Glass transition temperature (Tg): 679 ° C.
Average thermal expansion coefficient (α 100-300) of 100 ° C. to 300 ° C .: 55.6 × 10 −7 / ° C.
・ Barium silicate glass (Japanese Patent Laid-Open No. 2005-97009)
Glass transition temperature (Tg): 679 ° C.
Average thermal expansion coefficient (α 100-300) of 100 ° C. to 300 ° C .: 55.6 × 10 −7 / ° C.
・ Borosilicate glass (Japanese Patent Laid-Open No. 2005-15266)
Glass transition temperature (Tg): 540 ° C

これらの特許文献には、成形型用ガラス材料である硼珪酸バリウム系ガラスや硼珪酸ガラスのヤング率に関する記載がない。すなわち、成形型を構成するガラスに関して、ヤング率とガラス転移温度と熱膨張係数の全てに条件を設定して、成形型の変形や損傷を防ぎつつ高精度な成形を行うという本発明の技術思想を具有していない。   In these patent documents, there is no description regarding the Young's modulus of barium borosilicate glass and borosilicate glass which are glass materials for forming dies. That is, regarding the glass constituting the mold, the technical concept of the present invention is to perform conditions with high precision while preventing deformation and damage of the mold by setting conditions for all of Young's modulus, glass transition temperature and thermal expansion coefficient. I do not have

以上のように、本発明を適用したガラス製成形型によれば、成形型が高度な剛性と耐熱性を兼ね備えるため、被成形ガラスを押圧成形するときに成形型が変形せずに成形面の面形状を維持できる。また、成形型と被成形ガラスの熱膨張率を適切に管理することで、成形型に対する被成形ガラスの貼り付きや被成形ガラスの割れを防止できる。従って、成形型用ガラス材料として従来提案されたものに比して、成形性能に優れるガラス製成形型を得ることができる。   As described above, according to the glass mold to which the present invention is applied, since the mold has high rigidity and heat resistance, the mold does not deform when press molding the glass to be molded. The surface shape can be maintained. Moreover, sticking of the glass to be molded to the mold and cracking of the glass to be molded can be prevented by appropriately managing the thermal expansion coefficients of the mold and the glass to be molded. Therefore, compared with what was conventionally proposed as a glass material for shaping | molding dies, the glass-made shaping | molding die which is excellent in shaping | molding performance can be obtained.

10 :ガラス成形装置
11 :上型(ガラス製成形型)
12 :下型(ガラス製成形型)
13 :案内型
14 :成形面
15 :成形面
16 :コーティング層
17 :コーティング層
20 :レンズ
21 :ガラス塊(被成形ガラス)
10: Glass forming apparatus 11: Upper mold (glass mold)
12: Lower mold (glass mold)
13: guide die 14: molding surface 15: molding surface 16: coating layer 17: coating layer 20: lens 21: glass lump (glass to be molded)

Claims (4)

被成形ガラスを押圧成形するための成形型において、
(1)ヤング率が85GPa以上であること、
(2)ガラス転移温度が650℃以上であること、
(3)100℃〜300℃での平均熱膨張係数が30×10−7/℃〜80×10−7/℃であること、
を満たすガラスにより形成されることを特徴とするガラス製成形型。
In a mold for press-molding glass to be molded,
(1) Young's modulus is 85 GPa or more,
(2) The glass transition temperature is 650 ° C. or higher,
(3) The average thermal expansion coefficient at 100 ° C. to 300 ° C. is 30 × 10 −7 / ° C. to 80 × 10 −7 / ° C.,
A glass mold that is formed of glass that satisfies
前記成形型を構成する前記ガラスのガラス転移温度をTg(A)、前記被成形ガラスのガラス転移温度をTg(B)とした場合、Tg(A)−Tg(B)が30℃以上である、請求項1記載のガラス製成形型。   When the glass transition temperature of the glass constituting the mold is Tg (A) and the glass transition temperature of the glass to be molded is Tg (B), Tg (A) -Tg (B) is 30 ° C. or higher. The glass mold according to claim 1. 前記成形型を構成する前記ガラスの100℃〜300℃での平均熱膨張係数をα(A)、前記被成形ガラスの100℃〜300℃での平均熱膨張係数をα(B)とした場合、α(A)−α(B)が+20〜−120である、請求項1または2記載のガラス製成形型。   When the average thermal expansion coefficient at 100 ° C. to 300 ° C. of the glass constituting the mold is α (A), and the average thermal expansion coefficient at 100 ° C. to 300 ° C. of the glass to be molded is α (B) , Α (A) −α (B) is +20 to −120, The glass mold according to claim 1 or 2. 前記被成形ガラスを押圧成形して光学素子を形成する、請求項1から3のいずれか1項に記載のガラス製成形型。   The glass mold according to any one of claims 1 to 3, wherein the optical glass is formed by press-molding the glass to be molded.
JP2018011607A 2018-01-26 2018-01-26 glass mold Active JP7125844B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018011607A JP7125844B2 (en) 2018-01-26 2018-01-26 glass mold
TW107143800A TWI786235B (en) 2018-01-26 2018-12-06 Glass mold
KR1020190003122A KR20190091194A (en) 2018-01-26 2019-01-10 Glass material forming die
CN201910074542.6A CN110078358A (en) 2018-01-26 2019-01-25 Glass system molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011607A JP7125844B2 (en) 2018-01-26 2018-01-26 glass mold

Publications (2)

Publication Number Publication Date
JP2019127425A true JP2019127425A (en) 2019-08-01
JP7125844B2 JP7125844B2 (en) 2022-08-25

Family

ID=67413037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011607A Active JP7125844B2 (en) 2018-01-26 2018-01-26 glass mold

Country Status (4)

Country Link
JP (1) JP7125844B2 (en)
KR (1) KR20190091194A (en)
CN (1) CN110078358A (en)
TW (1) TWI786235B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110803861A (en) * 2019-09-02 2020-02-18 湖北新华光信息材料有限公司 Large-size chalcogenide glass forming method and special large-caliber forming die

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012429A (en) * 2000-05-12 2002-01-15 Eastman Kodak Co Glassy mold material for molding precision glass
JP2003063832A (en) * 2001-08-28 2003-03-05 Fuji Photo Optical Co Ltd Mold for forming optical element
JP2011168422A (en) * 2010-02-17 2011-09-01 Nikon Corp Method of forming mark of optical glass member, method of manufacturing optical glass member with mark and optical glass member with mark
JP5770357B1 (en) * 2014-12-26 2015-08-26 冨士ダイス株式会社 High thermal expansion coefficient oxidation resistant hard cermet

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE787885A (en) 1971-08-30 1973-02-23 Du Pont ETHYLENE INTERPOLYMERS IN TABLETS WITH REDUCED TENDENCY TO BLOCKING
JPS62226825A (en) 1986-03-27 1987-10-05 Hoya Corp Production of press lens
JPH01239030A (en) 1988-03-18 1989-09-25 Asahi Optical Co Ltd Production of forming mold for optical element
JP2616964B2 (en) 1988-06-21 1997-06-04 ホーヤ株式会社 Glass press mold
JP2723497B2 (en) 1996-11-18 1998-03-09 ホーヤ株式会社 Manufacturing method of glass mold base
JP4482246B2 (en) * 2001-04-09 2010-06-16 Hoya株式会社 Manufacturing method of glass molded body, manufacturing method of substrate, and manufacturing method of information recording medium
JP2004210550A (en) 2002-12-26 2004-07-29 Canon Inc Molding mold
JP3938107B2 (en) 2003-06-25 2007-06-27 キヤノン株式会社 Hybrid mold
JP2005097009A (en) 2003-09-22 2005-04-14 Matsushita Electric Ind Co Ltd Method for manufacturing mold for shaping glass, and method for manufacturing optical element
JP2006206394A (en) 2005-01-28 2006-08-10 Matsushita Electric Ind Co Ltd Optical device forming mold, method of manufacturing the same and method of manufacturing optical device using the same
JP4832939B2 (en) 2006-03-24 2011-12-07 オリンパス株式会社 Method for manufacturing optical element molding die
JP2007284300A (en) 2006-04-18 2007-11-01 Matsushita Electric Ind Co Ltd Optical element molding die and production method, and method for producing optical element using the same
JP4694446B2 (en) 2006-08-31 2011-06-08 オリンパス株式会社 Mold
US8885447B2 (en) * 2012-03-29 2014-11-11 Hoya Corporation Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium, and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012429A (en) * 2000-05-12 2002-01-15 Eastman Kodak Co Glassy mold material for molding precision glass
JP2003063832A (en) * 2001-08-28 2003-03-05 Fuji Photo Optical Co Ltd Mold for forming optical element
JP2011168422A (en) * 2010-02-17 2011-09-01 Nikon Corp Method of forming mark of optical glass member, method of manufacturing optical glass member with mark and optical glass member with mark
JP5770357B1 (en) * 2014-12-26 2015-08-26 冨士ダイス株式会社 High thermal expansion coefficient oxidation resistant hard cermet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIO MAKISHIMA ET AL.: "Elastic Moduli and Refractive Indices of Aluminosilicate Glasses Containing Y2O3, La2O3, and TiO2", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. vol.61, No.5-6, JPN6021024200, 1978, pages 247 - 249, ISSN: 0004675784 *

Also Published As

Publication number Publication date
TWI786235B (en) 2022-12-11
KR20190091194A (en) 2019-08-05
JP7125844B2 (en) 2022-08-25
CN110078358A (en) 2019-08-02
TW201940440A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6086954B2 (en) Optical bent glass plate and method for producing the same
US7491667B2 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the optical element
US20050223743A1 (en) Process for mass-producing optical elements
JP7102984B2 (en) Manufacturing method of 3D cover glass
JP5042033B2 (en) Method for manufacturing molded product, holding member and molding apparatus
US9376339B2 (en) Optical glass, preform for precision press molding, and optical element
JP2015206880A (en) Optical element, and manufacturing method of optical element
CN102149647A (en) Method of making shaped glass articles
JP7125844B2 (en) glass mold
JP3763552B2 (en) Glass lens having glass coating layer and manufacturing method thereof
JP4559784B2 (en) Optical element manufacturing method
WO2019235443A1 (en) Mold for molding glass lens
JP7286836B2 (en) glass lens mold
JP7422690B2 (en) Glass mold manufacturing method and optical element manufacturing method
JP4426910B2 (en) Mold press mold, optical element manufacturing method, and mold press lens
JP3801136B2 (en) Method for manufacturing glass optical element and method for determining glass composition of glass material
JP5100790B2 (en) Optical element manufacturing method
JP2022107529A (en) Glass molding die for optical element molding, and method for producing optical element
JPH04317427A (en) Spherical formed lens
JP6741558B2 (en) Optical glass, precision press molding preforms and optical elements
JP7132589B2 (en) Optical glass, preforms for precision press molding, and optical elements
CN114751641A (en) Glass molding die for molding optical element, method for manufacturing glass molding die, and method for manufacturing optical element
JPH021778B2 (en)
JP2003063832A (en) Mold for forming optical element
JPH021781B2 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7125844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150