JP2019126959A - Manufacturing method of bearing retainer - Google Patents

Manufacturing method of bearing retainer Download PDF

Info

Publication number
JP2019126959A
JP2019126959A JP2018009562A JP2018009562A JP2019126959A JP 2019126959 A JP2019126959 A JP 2019126959A JP 2018009562 A JP2018009562 A JP 2018009562A JP 2018009562 A JP2018009562 A JP 2018009562A JP 2019126959 A JP2019126959 A JP 2019126959A
Authority
JP
Japan
Prior art keywords
resin
resin injection
injection gate
circumferential direction
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018009562A
Other languages
Japanese (ja)
Other versions
JP6988509B2 (en
Inventor
吉和 倉本
Yoshikazu Kuramoto
吉和 倉本
相原 成明
Shigeaki Aihara
成明 相原
隆之 平本
Takayuki Hiramoto
隆之 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2018009562A priority Critical patent/JP6988509B2/en
Publication of JP2019126959A publication Critical patent/JP2019126959A/en
Application granted granted Critical
Publication of JP6988509B2 publication Critical patent/JP6988509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a bearing retainer manufacturing method capable of improving weld strength by causing molten resin to flow in the weld.SOLUTION: Of a plurality of column part 20, half of the column part 20 are each provided with a resin injection gate 51, and the column part 20 provided with the resin injection gate 51 and the column part 20 spaced apart from the resin injection gate 51 in the circumferential direction are alternately arranged in the circumferential direction, and among the plurality of resin injection gates 51, between a resin injection gate 51 and the two resin injection gate 51 that is farthest from the resin injection gate 51 toward both sides in the circumferential direction, a resin reservoir 41, 42 that can store a molten resin by flowing molten resin from a cavity Ca are provided respectively, and a relative difference is provided in a cross-sectional areas of a communication passage 41a, 42a that communicates with the cavity Ca of the two resin reservoir 41, 42.SELECTED DRAWING: Figure 2

Description

本発明は、軸受用保持器の製造方法に関する。   The present invention relates to a method for manufacturing a bearing cage.

従来の軸受用保持器の製造方法として、成形金型内に形成した略円環状のキャビティの周縁部に設けられた複数の樹脂射出ゲートから、溶融樹脂をキャビティ内に射出することによって成形される軸受用保持器の製造方法であって、軸受用保持器は、略円環状の基部と、基部の軸方向一端側面から、周方向に所定の間隔で軸方向に突出する複数且つ偶数個の柱部と、隣り合う一対の柱部の互いに対向する面と基部の軸方向一端側面とによって形成された、柱部と同数のポケットと、を有し、複数の柱部のうち、半数の柱部には、それぞれ樹脂射出ゲートが設けられ、樹脂射出ゲートが設けられる柱部と、樹脂射出ゲートが設けられない柱部と、が周方向に交互に配置され、複数の樹脂射出ゲートのうち、1個の樹脂射出ゲートの断面積が、他の樹脂射出ゲートの断面積よりも大きく、樹脂射出ゲートが設けられない複数の柱部のうち、他の樹脂射出ゲートよりも断面積が大きい樹脂射出ゲートが設けられた柱部と径方向に対向する柱部に、又は当該対向する柱部の近傍の柱部に、溶融樹脂を貯留可能な樹脂溜りが設けられており、柱部と連通する樹脂溜りの連通部(開口部)の断面積を、複数の樹脂射出ゲートの断面積のうち最小であるものよりも小さくするものが知られている(例えば、特許文献1参照)。   As a conventional manufacturing method of a bearing cage, it is molded by injecting molten resin into a cavity from a plurality of resin injection gates provided on the peripheral portion of a substantially annular cavity formed in a molding die. A manufacturing method of a bearing cage, wherein the bearing cage comprises a base having a substantially annular shape, and a plurality of even number of pillars axially projecting at predetermined intervals in a circumferential direction from one side surface of the base in the axial direction. And a number of pockets equal to the number of pillars formed by the mutually opposing surfaces of a pair of adjacent pillars and the axial end face of the base, and half of the plurality of pillars are pillars In each of the plurality of resin injection gates, a resin injection gate is provided, and a pillar portion provided with the resin injection gate and a pillar portion not provided with the resin injection gate are alternately arranged in the circumferential direction. The cross-sectional area of one resin injection gate is the other Among a plurality of pillars larger than the cross sectional area of the resin injection gate and not provided with the resin injection gate, radially opposed to the pillar provided with the resin injection gate larger in cross sectional area than the other resin injection gates A resin reservoir capable of storing molten resin is provided in the column portion or in the column portion in the vicinity of the opposing column portion, and the cross-sectional area of the communicating portion (opening) of the resin reservoir communicating with the column portion is It is known to make the cross-sectional area of a plurality of resin injection gates smaller than the smallest one (see, for example, Patent Document 1).

特開2016−114100号公報JP, 2016-114100, A

しかしながら、上記特許文献1に記載の軸受用保持器の製造方法では、樹脂溜りの連通部の断面積を、樹脂射出ゲートのうち最小の断面積であるものをよりも小さくしているため、小径の保持器を成形するなど、樹脂射出ゲートの断面積が小さい場合、樹脂溜りの連通部の断面積が過度に小さくなることがある。これにより、樹脂溜りに溶融樹脂が流入する前に、樹脂溜りの連通部で溶融樹脂が固化してしまうため、樹脂溜りの機能を発揮することができなくなり、ウェルドにおける強制的な樹脂の流動が起こらず、補強繊維材の配向を制御することができないことがあった。   However, in the method of manufacturing the bearing cage described in Patent Document 1, the cross-sectional area of the resin reservoir communication portion is smaller than that of the resin injection gate, which is the smallest cross-sectional area, When the cross-sectional area of the resin injection gate is small, such as molding the cage, the cross-sectional area of the communicating portion of the resin reservoir may be excessively reduced. As a result, the molten resin solidifies in the communicating portion of the resin reservoir before the molten resin flows into the resin reservoir, so that the resin reservoir function can not be exhibited, and forced resin flow in the weld occurs. It did not occur, and the orientation of the reinforcing fiber material could not be controlled.

本発明は、上述した課題を鑑みてなされたものであり、その目的は、樹脂射出ゲートの大きさの影響を受けることなく、ウェルドにおける溶融樹脂の流動を起こして、ウェルドの強度を向上することができる軸受用保持器の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is to improve the strength of welds by causing the flow of molten resin in welds without being affected by the size of the resin injection gate. An object of the present invention is to provide a method for manufacturing a bearing retainer that can be used.

本発明の上記目的は、下記の構成により達成される。
(1)成形金型内に形成した円環状のキャビティの周縁部に設けられた複数の樹脂射出ゲートから、溶融樹脂を前記キャビティ内に射出することによって成形される軸受用保持器の製造方法であって、前記軸受用保持器は、略円環状の基部と、前記基部の軸方向一端側面から、周方向に所定の間隔で軸方向に突出する複数且つ偶数個の柱部と、隣り合う一対の前記柱部の互いに対向する面と前記基部の軸方向一端側面とによって形成された、前記柱部と同数のポケットと、を有し、複数の前記柱部のうち、半数の前記柱部には、それぞれ前記樹脂射出ゲートが設けられ、前記樹脂射出ゲートが設けられる前記柱部と、前記樹脂射出ゲートから周方向に離間している前記柱部と、が周方向に交互に配置され、複数の前記樹脂射出ゲートのうち、ある1個の前記樹脂射出ゲートとこのある1個の前記樹脂射出ゲートから周方向両側に向かって最も遠い2つの前記樹脂射出ゲートとの間に、前記キャビティから溶融樹脂が流入して溶融樹脂を貯留可能な樹脂溜りがそれぞれ設けられ、前記2つの樹脂溜りは、前記キャビティと連通する連通路をそれぞれ有し、前記2つの樹脂溜りの前記連通路の断面積に相対差が設けられることを特徴とする軸受用保持器の製造方法。
(2)2つの前記樹脂溜りは、断面積を大きくした前記樹脂射出ゲートに対して周方向で対称に配置されることを特徴とする(1)に記載の軸受用保持器の製造方法。
(3)前記樹脂溜りは、隣り合う前記樹脂射出ゲート間の周方向中間位置に配置されることを特徴とする(1)又は(2)に記載の軸受用保持器の製造方法。
(4)2つの前記樹脂溜りは、断面積を大きくした前記樹脂射出ゲートとこの断面積を大きくした前記樹脂射出ゲートから周方向両側に隣り合う前記樹脂射出ゲートとの間にそれぞれ配置されることを特徴とする(1)〜(3)のいずれか1つに記載の軸受用保持器の製造方法。
The above object of the present invention is achieved by the following constitution.
(1) A manufacturing method of a bearing cage formed by injecting molten resin into the cavity from a plurality of resin injection gates provided on the peripheral portion of an annular cavity formed in a molding die The bearing cage includes a pair of even and even number of pillars axially projecting at predetermined intervals in a circumferential direction from a substantially annular base, one end side surface of the base in the axial direction, and a pair And the number of pockets equal to the number of the pillars formed by the mutually facing surfaces of the pillars and the side surfaces of the base in the axial direction, and half of the plurality of pillars The resin injection gate is provided, and the pillars provided with the resin injection gate and the pillars spaced apart from the resin injection gate in the circumferential direction are alternately disposed in the circumferential direction, Of the resin injection gate Molten resin flows from the cavity between the one resin injection gate and the two resin injection gates farthest from the one resin injection gate in the circumferential direction. Reservable resin reservoirs are respectively provided, and the two resin reservoirs have communication paths respectively communicating with the cavity, and a relative difference is provided in the cross-sectional area of the communication paths of the two resin reservoirs. A method for manufacturing a bearing cage.
(2) The method for manufacturing a bearing cage according to (1), wherein the two resin reservoirs are disposed symmetrically in the circumferential direction with respect to the resin injection gate having a large cross-sectional area.
(3) The method for manufacturing a bearing cage according to (1) or (2), wherein the resin reservoir is disposed at a circumferential intermediate position between the adjacent resin injection gates.
(4) The two resin reservoirs are respectively disposed between the resin injection gate having a large cross-sectional area and the resin injection gate adjacent on both sides in the circumferential direction from the resin injection gate having a large cross-sectional area. The method for manufacturing a bearing retainer according to any one of (1) to (3).

本発明によれば、複数の樹脂射出ゲートのうち、ある1個の樹脂射出ゲートとこのある1個の樹脂射出ゲートから周方向両側に向かって最も遠い2つの樹脂射出ゲートとの間に、キャビティから溶融樹脂が流入して溶融樹脂を貯留可能な樹脂溜りがそれぞれ設けられ、2つの樹脂溜りの連通路の断面積に相対差が設けられるため、樹脂射出ゲートの大きさの影響を受けることなく、ウェルドにおける溶融樹脂の流動を起こして、ウェルドの強度を向上することができる。   According to the present invention, a cavity is formed between one resin injection gate and the two resin injection gates farthest from the one resin injection gate in the circumferential direction among the plurality of resin injection gates. The molten resin flows in from there and resin reservoirs capable of storing the molten resin are respectively provided, and a relative difference is provided between the cross-sectional areas of the communication paths of the two resin reservoirs, so the resin injection gate size is not affected. The strength of the weld can be improved by causing the molten resin to flow in the weld.

本発明に係る製造方法の一実施形態によって製造された軸受用保持器の斜視図である。It is a perspective view of the cage for bearings manufactured by one embodiment of the manufacturing method concerning the present invention. 図1に示す軸受用保持器を柱部側から見た平面図である。It is the top view which looked at the cage for bearings shown in Drawing 1 from the pillar side. 図2の樹脂流入領域Bにおいて第1樹脂溜り側に溶融樹脂が多く流動する状態を説明する模式図である。It is a schematic diagram explaining the state which a large amount of molten resin flows on the 1st resin reservoir side in resin inflow area | region B of FIG. 図2の樹脂流入領域Cにおいて第1樹脂溜り側に溶融樹脂が多く流動する状態を説明する模式図である。FIG. 3 is a schematic view illustrating a state in which a large amount of molten resin flows on a first resin reservoir side in a resin inflow region C of FIG. 2; 図2のウェルド形成領域Aにおいて第1樹脂溜りに向かって溶融樹脂が流動する状態を説明する模式図である。It is a schematic diagram explaining the state which molten resin flows toward a 1st resin reservoir in weld formation area A of FIG. 図2の樹脂流入領域Bにおいて第2樹脂溜り側に溶融樹脂が多く流動する状態を説明する模式図である。FIG. 3 is a schematic view for explaining a state in which a large amount of molten resin flows on a second resin reservoir side in a resin inflow region B of FIG. 2; 図2の樹脂流入領域Cにおいて第2樹脂溜り側に溶融樹脂が多く流動する状態を説明する模式図である。FIG. 3 is a schematic view illustrating a state in which a large amount of molten resin flows on a second resin reservoir side in a resin inflow region C of FIG. 2; 図2のウェルド形成領域Aにおいて第2樹脂溜りに向かって溶融樹脂が流動する状態を説明する模式図である。It is a schematic diagram explaining the state which molten resin flows toward a 2nd resin reservoir in weld formation area A of FIG. (a)はウェルド形成領域Aにおける第1樹脂溜りに向かって溶融樹脂が流動する際の溶融樹脂の固化状態を説明する模式図であり、(b)はウェルド形成領域Aにおける第2樹脂溜りに向かって溶融樹脂が流動する際の溶融樹脂の固化状態を説明する模式図である。(A) is a schematic diagram explaining the solidification state of molten resin when molten resin flows toward the 1st resin accumulation in weld formation area A, (b) is shown in the 2nd resin accumulation in weld formation area A. It is a schematic diagram explaining the solidified state of molten resin when molten resin flows toward it. 本発明に係る製造方法の一実施形態の変形例によって製造された軸受用保持器の平面図である。It is a top view of the holder for bearings manufactured by the modification of one embodiment of the manufacturing method concerning the present invention. 本発明とは異なる位置に樹脂溜りが配置された比較例を説明するための軸受用保持器の平面図である。It is a top view of the holder for bearings for explaining the comparative example where the resin reservoir is arranged in the position different from the present invention.

以下、本発明に係る軸受用保持器の製造方法の一実施形態について、図面に基づいて詳細に説明する。   Hereinafter, one embodiment of a manufacturing method of a holder for bearings concerning the present invention is described in detail based on a drawing.

図1及び図2には、本実施形態の軸受用保持器(以後、単に保持器とも呼ぶ。)1が、後述するランナー53、スプルー55、及び第1及び第2樹脂溜り41,42が付いた状態で示されている。保持器1は、いわゆる冠形保持器であり、略円環状の基部10と、基部10の軸方向一端側面12から、周方向に所定間隔で軸方向に突出する複数且つ偶数個(本実施形態では14個)の柱部20と、隣り合う一対の柱部20,20の互いに対向する面22,22と基部10の軸方向一端側面12とによって形成され、軸受の転動体(不図示)を保持する複数且つ偶数個(本実施形態では14個)のポケット30と、を有している。すなわち、柱部20とポケット30は同数であると共に何れも複数且つ偶数個形成されており、柱部20はそれぞれのポケット30の周方向両側に設けられる。   In FIG. 1 and FIG. 2, the cage for bearings of the present embodiment (hereinafter, also simply referred to as a cage) 1 is provided with runners 53, sprues 55, and first and second resin reservoirs 41 and 42 described later. It is shown in the The cage 1 is a so-called crown-shaped cage, and a plurality and even number axially projecting from the substantially annular base 10 and one end side 12 of the base 10 in the axial direction at predetermined intervals in the circumferential direction (this embodiment And the opposed surfaces 22, 22 of a pair of adjacent pillars 20, 20 and one axial end side 12 of the base 10, and the rolling elements (not shown) of the bearing And a plurality (even in this embodiment) of pockets 30 to be held. That is, the number of the column parts 20 and the pockets 30 is the same, and a plurality of and even numbers are formed, and the column parts 20 are provided on both sides in the circumferential direction of the respective pockets 30.

このような保持器1の製造方法では、多点ゲート方式の射出成形を採用している。具体的には、保持器1は、成形金型60(図3参照)内に形成した円環状のキャビティCa(図3参照)の内周側周縁部に設けられた複数の樹脂射出ゲート(以下、単にゲートと呼ぶ。)51から、補強繊維材を添加した溶融樹脂をキャビティCa内に射出し、冷却固化することによって成形される。樹脂材料としては、例えば、46ナイロンや66ナイロンなどのポリアミド系樹脂、ポリブチレンテレフタレート、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルニトリル(PEN)等の樹脂に、10〜50wt%の補強繊維材(例えば、ガラス繊維や炭素繊維。)を添加した樹脂組成物が用いられる。なお、図1及び図2では、キャビティCaは不図示であるが、その内部構造は保持器1の構造と略同一とされている。   In such a manufacturing method of the cage 1, multipoint gate type injection molding is employed. Specifically, the cage 1 includes a plurality of resin injection gates (described below) provided on the inner peripheral edge of an annular cavity Ca (see FIG. 3) formed in the molding die 60 (see FIG. 3). , Simply referred to as a gate.) From 51, the molten resin to which the reinforcing fiber material is added is injected into the cavity Ca and molded by cooling and solidifying. The resin material is, for example, a polyamide resin such as 46 nylon or 66 nylon, a resin such as polybutylene terephthalate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether nitrile (PEN), etc. % Of a reinforcing fiber material (for example, glass fiber or carbon fiber) is used. In FIG. 1 and FIG. 2, the cavity Ca is not shown, but its internal structure is substantially the same as the structure of the cage 1.

各ゲート51には、それぞれ径方向に延びる略円筒状のランナー53を介して、略円筒状のスプルー55から溶融樹脂が供給される。スプルー55は、保持器1(キャビティ)の略中心において軸方向に延びており、ランナー53と接続される。したがって、スプルー55から供給された溶融樹脂は、各ランナー53を介して各ゲート51に到達し、各ゲート51から同時にキャビティ内に流入する。   The molten resin is supplied from the substantially cylindrical sprue 55 to the respective gates 51 via the substantially cylindrical runners 53 extending in the radial direction. The sprue 55 extends in the axial direction substantially at the center of the holder 1 (cavity) and is connected to the runner 53. Therefore, the molten resin supplied from the sprue 55 reaches the gates 51 via the runners 53, and flows from the gates 51 simultaneously into the cavity.

複数の柱部20のうち、半数(本実施形態では7個)の柱部20には、それぞれゲート51が設けられる。各ゲート51は柱部20(キャビティ)の内周面の周方向中央部に連通している。ゲート51が設けられる柱部20と、ゲート51から周方向に離間している柱部20と、は周方向に交互に配置される。このように、多数のゲート51を等間隔に配置することにより、保持器1の真円度崩れを抑制し、軸受の高精度な回転を実現することが可能となる。ここで、複数(7個)のゲート51のうち、1個のゲート51(以下、大径ゲート51aと表すことがある。)の断面積が、他のゲート51(以下、小径ゲート51bと表すことがある。)の断面積よりも大きく設定される。なお、本実施形態では、大径ゲート51aが請求項1に記載の「ある1個の樹脂射出ゲート」である。   A gate 51 is provided in each half (7 in the present embodiment) of the plurality of pillars 20. Each gate 51 communicates with the central portion in the circumferential direction of the inner peripheral surface of the column portion 20 (cavity). The pillars 20 on which the gate 51 is provided and the pillars 20 spaced from the gate 51 in the circumferential direction are alternately arranged in the circumferential direction. Thus, by arranging a large number of gates 51 at equal intervals, it is possible to suppress the collapse of the roundness of the cage 1 and realize high-accuracy rotation of the bearing. Here, among the plurality (seven) of gates 51, the cross-sectional area of one gate 51 (hereinafter may be referred to as a large diameter gate 51a) is referred to as another gate 51 (hereinafter referred to as a small diameter gate 51b). In some cases). In the present embodiment, the large diameter gate 51 a is the “one resin injection gate” according to claim 1.

ゲート51から周方向に離間している複数の柱部20のうち、2つの柱部20には、キェビティCaから溶融樹脂が流入して溶融樹脂を貯留可能な第1樹脂溜り41と第2樹脂溜り42が設けられている。そして、第1樹脂溜り41と第2樹脂溜り42は、断面積を大きくした大径ゲート51aとこの大径ゲート51aから周方向両側に向かって最も遠い2つの小径ゲート51bとの間にそれぞれ離隔して設けられている。つまり、第1樹脂溜り41と第2樹脂溜り42は、大径ゲート51aから周方向両側に向かって最も遠い2つの小径ゲート51bまでの角度θ(図2参照)の範囲にそれぞれ配置されている。なお、本実施形態では、第1樹脂溜り41と第2樹脂溜り42は、最も遠い2つの小径ゲート51bに隣接する柱部20に配置されている。   The first resin reservoir 41 and the second resin, in which the molten resin flows from the cavity Ca into the two pillars 20 among the plurality of pillars 20 circumferentially spaced from the gate 51, can store the molten resin. A reservoir 42 is provided. The first resin reservoir 41 and the second resin reservoir 42 are respectively separated between the large diameter gate 51a having a large cross sectional area and the two small diameter gates 51b farthest from the large diameter gate 51a in the circumferential direction. Provided. That is, the first resin reservoir 41 and the second resin reservoir 42 are respectively disposed in the range of the angle θ (see FIG. 2) from the large diameter gate 51a to the two small diameter gates 51b farthest from the large diameter gate 51a in the circumferential direction. . In the present embodiment, the first resin reservoir 41 and the second resin reservoir 42 are disposed on the column portion 20 adjacent to the two farthest small-diameter gates 51b.

第1樹脂溜り41と第2樹脂溜り42は、柱部20(キャビティCa)と連通する連通路41aと連通路42aを有し、この連通路41a,42aの断面積には相対差が設けられている。本実施形態では、連通路41aの断面積の方が連通路42aの断面積よりも大きく形成されている。また、連通路41a,42aの断面積の相対差は、相当円直径で0.5mm以上が好ましい。   The first resin reservoir 41 and the second resin reservoir 42 have a communication passage 41a and a communication passage 42a communicating with the column portion 20 (cavity Ca), and the cross-sectional areas of the communication passages 41a and 42a have a relative difference. ing. In the present embodiment, the cross sectional area of the communication passage 41a is formed larger than the cross sectional area of the communication passage 42a. The relative difference in cross-sectional area between the communication passages 41a and 42a is preferably 0.5 mm or more in terms of the equivalent circular diameter.

また、第1樹脂溜り41と第2樹脂溜り42は、断面積を大きくした大径ゲート51aに対して周方向で対称に配置されている。また、第1樹脂溜り41と第2樹脂溜り42は、隣り合うゲート51間の周方向中間位置に配置されている。つまり、第1樹脂溜り41及び第2樹脂溜り42は、ゲート51から周方向に離間している柱部20の周方向中間位置に配置されている。   Further, the first resin reservoir 41 and the second resin reservoir 42 are disposed symmetrically in the circumferential direction with respect to the large diameter gate 51a having a large cross sectional area. The first resin reservoir 41 and the second resin reservoir 42 are disposed at circumferentially intermediate positions between the adjacent gates 51. That is, the first resin reservoir 41 and the second resin reservoir 42 are disposed at the intermediate position in the circumferential direction of the column portion 20 that is separated from the gate 51 in the circumferential direction.

このように構成された成形金型60において、各ゲート51からキャビティCa内に射出された溶融樹脂は、各ゲート51の周方向両側に流動し、隣り合うゲート51の間において合流する。具体的に、小径ゲート51b同士の間においては、当該小径ゲート51b同士の周方向中間位置で溶融樹脂が合流し、柱部20の周方向中間部にウェルドWが形成される。一方、大径ゲート51aと小径ゲート51bとの間においては、これらの周方向中間位置よりも小径ゲート51b側にずれた位置で溶融樹脂が合流し、柱部20の周方向中間部よりも小径ゲート51b側にずれた位置にウェルドWが形成される。これは、溶融樹脂の大径ゲート51aからの流入量が、小径ゲート51bからの流入量よりも多いからである。   In the molding die 60 configured in this manner, the molten resin injected from each gate 51 into the cavity Ca flows on both sides in the circumferential direction of each gate 51 and merges between the adjacent gates 51. Specifically, between the small diameter gates 51b, the molten resin merges at a circumferentially intermediate position between the small diameter gates 51b, and a weld W is formed at a circumferentially intermediate portion of the pillar portion 20. On the other hand, between the large diameter gate 51a and the small diameter gate 51b, the molten resin merges at a position shifted to the small diameter gate 51b side from the circumferential direction middle position of these, and the diameter is smaller than the circumferential direction middle portion of the column 20 A weld W is formed at a position shifted to the gate 51b side. This is because the inflow of molten resin from the large diameter gate 51a is larger than the inflow of the small diameter gate 51b.

次に、大径ゲート51aと径方向に対向する位置に形成されるウェルドWの周辺のウェルド形成領域A(図2参照)、ウェルド形成領域Aと断面積が小さい連通路42aを有する第2樹脂溜り42との間の柱部20の周辺の樹脂流入領域B(図2参照)、及びウェルド形成領域Aと断面積の大きい連通路41aを有する第1樹脂溜り41との間の柱部20の周辺の樹脂流入領域C(図2参照)における、ゲート51からキャビティ内に注入された溶融樹脂が合流した後の溶融樹脂の流動について説明する。   Next, a second resin having a weld forming area A (see FIG. 2) around weld W formed at a position radially opposed to large diameter gate 51a, and a communication passage 42a having a small cross section with weld forming area A The resin inflow region B (see FIG. 2) around the pillar portion 20 between the reservoir 42 and the pillar portion 20 between the weld formation region A and the first resin reservoir 41 having the communication passage 41a having a large cross-sectional area The flow of the molten resin after the molten resin injected from the gate 51 into the cavity merges in the peripheral resin inflow region C (see FIG. 2) will be described.

まず、樹脂流入領域Bでは、図3に示すように、小径ゲート51bからキャビティCa内に流入(f1)した溶融樹脂は、キャビティCa内で周方向両側に分岐して、第1樹脂溜り41側に流れる分岐流f2と第2樹脂溜り42側に流れる分岐流f3となる。そして、断面積の大きい連通路41aを有する第1樹脂溜り41から先に溶融樹脂が充填されるため、分岐流f2の流速が分岐流f3の流速よりも大きくなる(流速:f2>f3)。   First, in the resin inflow area B, as shown in FIG. 3, the molten resin which has flowed (f1) from the small diameter gate 51b into the cavity Ca branches to both sides in the circumferential direction in the cavity Ca, and the first resin reservoir 41 side And a branch flow f3 flowing to the second resin reservoir 42 side. Then, since the molten resin is first filled from the first resin reservoir 41 having the communication passage 41a having a large cross-sectional area, the flow velocity of the branch flow f2 becomes larger than the flow velocity of the branch flow f3 (flow velocity: f2> f3).

次に、樹脂流入領域Cでは、図4に示すように、小径ゲート51bからキャビティCa内に流入(f1)した溶融樹脂は、キャビティCa内で周方向両側に分岐して、第1樹脂溜り41側に流れる分岐流f4と第2樹脂溜り42側に流れる分岐流f5となる。そして、断面積の大きい連通路41aを有する第1樹脂溜り41から先に溶融樹脂が充填されるため、分岐流f4の流速が分岐流f5の流速よりも大きくなる(流速:f4>f5)。   Next, in the resin inflow area C, as shown in FIG. 4, the molten resin that has flowed into the cavity Ca (f 1) from the small diameter gate 51 b is branched to both sides in the circumferential direction in the cavity Ca, and the first resin reservoir 41 A branch flow f4 flowing to the side and a branch flow f5 flowing to the second resin reservoir 42 side. Then, since the molten resin is first filled from the first resin reservoir 41 having the communication passage 41a having a large cross-sectional area, the flow velocity of the branch flow f4 becomes larger than the flow velocity of the branch flow f5 (flow velocity: f4> f5).

この結果、図5に示すように、流速が大きい分岐流f2と流速が小さい分岐流f5がウェルド形成領域Aで合流して、溶融樹脂が第1樹脂溜り41に向かって流動するため、ウェルドWは、第1樹脂溜り41側に略V字状に突出するような形状に形成される。このウェルドWの略V字状に突出するような形状は、キャビティ内面と溶融樹脂との間の摩擦力により、キャビティ内面の近辺を流れる溶融樹脂の流速がキャビティ中央部を流れる溶融樹脂の流速よりも遅いためである。   As a result, as shown in FIG. 5, the branch flow f2 having a high flow velocity and the branch flow f5 having a low flow velocity join in the weld forming region A, and the molten resin flows toward the first resin reservoir 41. Is formed in a shape protruding in a substantially V shape on the first resin reservoir 41 side. The shape of the weld W projecting in a substantially V shape is such that the flow velocity of the molten resin flowing in the vicinity of the inner surface of the cavity is greater than the flow velocity of the molten resin flowing in the central portion of the cavity. Because it is too late.

次に、第1樹脂溜り41に溶融樹脂がある程度充填された後、第2樹脂溜り42に溶融樹脂が充填され始めるため、樹脂流入領域Bでは、図6に示すように、分岐流f3の流速が分岐流f2の流速よりも大きくなり(流速:f3>f2)、樹脂流入領域Cでは、図7に示すように、分岐流f5の流速が分岐流f4の流速よりも大きくなる(流速:f5>f4)。   Next, after the first resin reservoir 41 is filled with the molten resin to some extent, the second resin reservoir 42 starts to be filled with the molten resin. Therefore, in the resin inflow region B, as shown in FIG. Becomes larger than the flow velocity of the branch flow f2 (flow velocity: f3> f2), and as shown in FIG. 7, the flow velocity of the branch flow f5 becomes larger than the flow velocity of the branch flow f4 in the resin inflow region C (flow velocity: f5 > F4).

この結果、図8に示すように、ウェルド形成領域Aにおいて、第2樹脂溜り42側に流れる分岐流f5の流速が徐々に大きくなり、第1樹脂溜り41側に流れる分岐流f2の流速が徐々に小さくなり、溶融樹脂が第2樹脂溜り42に向かって流動するため、図5の段階において第1樹脂溜り41側に略V字状に突出するような形状に形成されたウェルドWのキャビティ中央部が、第2樹脂溜り42側に略V字状に突出するような形状に形成される。つまり、ウェルドWは、略W字状に形成される。これにより、ウェルドWの形状が複雑になるため、溶融樹脂の合流時にいったん流動方向(周方向)に対し垂直(径方向)に配向していた補強繊維材の配向が制御され、ウェルドWの強度を向上することができる。   As a result, as shown in FIG. 8, in the weld formation region A, the flow velocity of the branched flow f5 flowing toward the second resin reservoir 42 gradually increases, and the flow velocity of the branched flow f2 flowing toward the first resin reservoir 41 gradually And the molten resin flows toward the second resin reservoir 42, so that the center of the cavity of the weld W formed in such a shape as to project substantially V-shaped toward the first resin reservoir 41 in the stage of FIG. The portion is formed in a shape that protrudes in a substantially V shape on the second resin reservoir 42 side. That is, the weld W is formed in a substantially W shape. Thereby, since the shape of the weld W becomes complicated, the orientation of the reinforcing fiber material, which was once oriented perpendicular (radial direction) to the flow direction (circumferential direction) at the time of joining the molten resins, is controlled, and the strength of the weld W is Can be improved.

続いて、ウェルドWの形成について更に説明すると、図9(a)及び図9(b)に示すように、断面積の大きい連通路41aを有する第1樹脂溜り41に溶融樹脂が充満した後、溶融樹脂の流れCが反対方向に変化し、溶融樹脂が第2樹脂溜り42に向かって流動する。このとき、時間が経つにつれキャビティCaの壁面にて溶融樹脂が固化する(図9中の符号Fp)ので、キャビティCaの空間が小さくなる。このため、第1樹脂溜り41に溶融樹脂が充満した後、溶融樹脂の流速が大きくなる。これにより、図9(b)に示すように、流速が大きくなった第1樹脂溜り41側の溶融樹脂が第2樹脂溜り42側の溶融樹脂に深く食い込むため、ウェルドWの強度が向上する。   Subsequently, the formation of the weld W will be further described. As shown in FIGS. 9A and 9B, after the first resin reservoir 41 having the communication passage 41a having a large cross-sectional area is filled with the molten resin, The molten resin flow C changes in the opposite direction, and the molten resin flows toward the second resin reservoir 42. At this time, since the molten resin is solidified on the wall surface of the cavity Ca as time passes (symbol Fp in FIG. 9), the space of the cavity Ca becomes smaller. For this reason, after the first resin reservoir 41 is filled with the molten resin, the flow velocity of the molten resin is increased. As a result, as shown in FIG. 9B, the molten resin on the first resin reservoir 41 side where the flow velocity is increased bites deeply into the molten resin on the second resin reservoir 42 side, so the strength of the weld W is improved.

以上、図2に示すウェルド形成領域AのウェルドWの形成について説明したが、他の位置のウェルドWにおいても同様な溶融樹脂の流動が起き、全てのウェルドWが略W字状に形成される。従って、全てのウェルドWの強度が向上するため、保持器1の強度を向上することができる。   As described above, the formation of the weld W in the weld formation region A shown in FIG. 2 has been described, but the same flow of molten resin occurs in the weld W at other positions, and all the welds W are formed in a substantially W shape. . Accordingly, since the strength of all the welds W is improved, the strength of the cage 1 can be improved.

以上説明したように、本実施形態の軸受用保持器の製造方法によれば、ある1個の樹脂射出ゲート51aとこのある1個の樹脂射出ゲート51aから周方向両側に向かって最も遠い2つの樹脂射出ゲート51bとの間に、キャビティCaから溶融樹脂が流入して溶融樹脂を貯留可能な樹脂溜り41,42がそれぞれ設けられ、2つの樹脂溜り41,42の連通路41a,42aの断面積に相対差が設けられるため、樹脂射出ゲート51の大きさの影響を受けることなく、ウェルドWにおける溶融樹脂の流動を起こして、ウェルドWの強度を向上することができる。従って、保持器1の強度を向上することができる。また、連通路41a,42aの断面積が、樹脂射出ゲート51の大きさの影響を受けることなく設定されるため、樹脂射出ゲートの断面積が小さい場合(小径の保持器を成形する場合など)においても、ウェルドWにおける溶融樹脂の流動を起こして、ウェルドWの強度を向上することができる。また、樹脂溜りの容量を小さくすることができるので、溶融樹脂の材料コストを抑制することができる。   As described above, according to the manufacturing method of the bearing cage of the present embodiment, one resin injection gate 51a and the two resin injection gates 51a farthest from the one resin injection gate 51a in the circumferential direction Between the resin injection gate 51b and the resin injection gate 51b, molten resin flows from the cavity Ca and resin reservoirs 41 and 42 capable of storing the molten resin are respectively provided, and the cross-sectional areas of the communication paths 41a and 42a of the two resin reservoirs 41 and 42 are provided. Therefore, the strength of the weld W can be improved by causing the molten resin to flow in the weld W without being affected by the size of the resin injection gate 51. Therefore, the strength of the cage 1 can be improved. In addition, since the cross-sectional areas of the communication paths 41a and 42a are set without being affected by the size of the resin injection gate 51, the cross-sectional area of the resin injection gate is small (for example, when forming a small diameter cage) In this case, the molten resin can flow in the weld W, and the strength of the weld W can be improved. In addition, since the capacity of the resin reservoir can be reduced, the material cost of the molten resin can be suppressed.

また、本実施形態の軸受用保持器の製造方法によれば、断面積の大きい連通路41aを有する第1樹脂溜り41に溶融樹脂が充満した後、溶融樹脂の流れCが反対方向に変化し、溶融樹脂が第2樹脂溜り42に向かって流動する。このとき、時間が経つにつれキャビティCaの壁面にて溶融樹脂が固化するので、キャビティCaの空間が小さくなる。このため、第1樹脂溜り41に溶融樹脂が充満した後、溶融樹脂の流速が大きくなる。これにより、流速が大きくなった第1樹脂溜り41側の溶融樹脂が第2樹脂溜り42側の溶融樹脂に深く食い込むため、ウェルドWの強度を向上することができる。   Further, according to the manufacturing method of the bearing cage of the present embodiment, after the first resin reservoir 41 having the communication passage 41a having a large cross-sectional area is filled with the molten resin, the flow C of the molten resin changes in the opposite direction The molten resin flows toward the second resin reservoir 42. At this time, since the molten resin is solidified on the wall surface of the cavity Ca as time passes, the space of the cavity Ca becomes smaller. For this reason, after the first resin reservoir 41 is filled with the molten resin, the flow velocity of the molten resin is increased. As a result, the molten resin on the first resin reservoir 41 side where the flow velocity has increased deeply penetrates into the molten resin on the second resin reservoir 42 side, so that the strength of the weld W can be improved.

また、本実施形態の軸受用保持器の製造方法によれば、2つの樹脂溜り41,42が、ある1個の樹脂射出ゲート51aに対して周方向で対称に配置されるため、各ウェルドWの強度を均一にすることができる。   Further, according to the manufacturing method of the bearing cage of the present embodiment, since the two resin reservoirs 41 and 42 are arranged symmetrically in the circumferential direction with respect to one certain resin injection gate 51a, each weld W Can be made uniform.

また、本実施形態の軸受用保持器の製造方法によれば、第1樹脂溜り41及び第2樹脂溜り42が、隣り合うゲート51間の周方向の中間位置に配置されるため、各ウェルドWの強度を均一にすることができる。   Further, according to the manufacturing method of the bearing cage of the present embodiment, since the first resin reservoir 41 and the second resin reservoir 42 are disposed at the circumferential intermediate position between the adjacent gates 51, each weld W Can be made uniform.

次に、本実施形態の変形例として、図10に示すように、第1樹脂溜り41と第2樹脂溜り42は、断面積を大きくした大径ゲート51aとこの大径ゲート51aから周方向両側に隣り合う小径ゲート51bとの間にそれぞれ配置されていてもよい。本変形例によれば、溶融樹脂の流速の調整が制御しやすく、各ウェルドWの形状(上記略W字状)が均等になり、各ウェルドWの強度を均一にすることができる。   Next, as a modified example of the present embodiment, as shown in FIG. 10, the first resin reservoir 41 and the second resin reservoir 42 are large diameter gates 51a having a large cross sectional area and both sides in the circumferential direction from the large diameter gates 51a. May be disposed between the adjacent small-diameter gates 51b. According to this modified example, the adjustment of the flow rate of the molten resin can be easily controlled, the shape of each weld W (the substantially W shape) is uniform, and the strength of each weld W can be made uniform.

次に、図11を参照して、第1樹脂溜り41と第2樹脂溜り42の配置を変えた比較例について説明する。この比較例では、第1樹脂溜り41と第2樹脂溜り42は、大径ゲート51aから周方向両側に向かって最も遠い2つの小径ゲート51bの間に配置されている。この場合、図5及び図8に示すような溶融樹脂の流動が起こらないため、ウェルドWの強度向上効果は得られない。   Next, with reference to FIG. 11, a comparative example in which the arrangement of the first resin reservoir 41 and the second resin reservoir 42 is changed will be described. In this comparative example, the first resin reservoir 41 and the second resin reservoir 42 are disposed between the two small diameter gates 51b farthest from the large diameter gate 51a toward both sides in the circumferential direction. In this case, since the flow of the molten resin as shown in FIGS. 5 and 8 does not occur, the strength improvement effect of the weld W can not be obtained.

なお、本発明は上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、本発明は、上記した冠形保持器に限定されず、くし形保持器等、様々な種類の保持器に適用可能である。
また、複数の樹脂射出ゲートは、全て同じ断面積に設定されていてもよい。
The present invention is not limited to the ones exemplified in the above embodiments, and can be appropriately modified without departing from the scope of the present invention.
For example, the present invention is not limited to the above-described coronary cage, but is applicable to various types of cages such as a comb cage.
The plurality of resin injection gates may all be set to the same cross-sectional area.

また、本発明の軸受用保持器は、強度が高く耐久性に優れるため、転がり軸受に適用することが好適である。すなわち、このような転がり軸受は、内輪と、外輪と、内輪と外輪との間に設けられる複数の転動体と、複数の転動体をポケットに転動自在に保持し、耐久性に優れる軸受用保持器と、を備えるので、高速回転や高負荷等の要求を満たすことが可能である。   Moreover, since the cage for bearings of the present invention is high in strength and excellent in durability, it is suitable to be applied to a rolling bearing. That is, such a rolling bearing holds the inner ring, the outer ring, the plurality of rolling elements provided between the inner ring and the outer ring, and the plurality of rolling elements in the pocket in a freely rolling manner, and is excellent in durability. And the cage, it is possible to satisfy requirements such as high-speed rotation and high load.

1 軸受用保持器
10 基部
12 基部の軸方向一端側面
20 柱部
22 柱部の対向する面
30 ポケット
41 第1樹脂溜り
41a 連通路
42 第2樹脂溜り
42a 連通路
51 樹脂射出ゲート
51a 大径ゲート(樹脂射出ゲート、ある1個の樹脂射出ゲート)
51b 小径ゲート(樹脂射出ゲート)
53 ランナー
55 スプルー
60 成形金型
Ca キャビティ
W ウェルド
DESCRIPTION OF SYMBOLS 1 Bearing cage 10 Base 12 One axial end side of base 12 Side of column 22 Column 22 opposite surface 30 Pocket 41 First resin reservoir 41a Communication passage 42 Second resin reservoir 42a Communication passage 51 Resin injection gate 51a Large diameter gate (Resin injection gate, one resin injection gate)
51b Small-diameter gate (resin injection gate)
53 Runner
55 Sprue 60 Mold Mold Ca Cavity W Weld

Claims (4)

成形金型内に形成した円環状のキャビティの周縁部に設けられた複数の樹脂射出ゲートから、溶融樹脂を前記キャビティ内に射出することによって成形される軸受用保持器の製造方法であって、
前記軸受用保持器は、
略円環状の基部と、
前記基部の軸方向一端側面から、周方向に所定の間隔で軸方向に突出する複数且つ偶数個の柱部と、
隣り合う一対の前記柱部の互いに対向する面と前記基部の軸方向一端側面とによって形成された、前記柱部と同数のポケットと、
を有し、
複数の前記柱部のうち、半数の前記柱部には、それぞれ前記樹脂射出ゲートが設けられ、
前記樹脂射出ゲートが設けられる前記柱部と、前記樹脂射出ゲートから周方向に離間している前記柱部と、が周方向に交互に配置され、
複数の前記樹脂射出ゲートのうち、ある1個の前記樹脂射出ゲートとこのある1個の前記樹脂射出ゲートから周方向両側に向かって最も遠い2つの前記樹脂射出ゲートとの間に、前記キャビティから溶融樹脂が流入して溶融樹脂を貯留可能な樹脂溜りがそれぞれ設けられ、
前記2つの樹脂溜りは、前記キャビティと連通する連通路をそれぞれ有し、
前記2つの樹脂溜りの前記連通路の断面積に相対差が設けられる
ことを特徴とする軸受用保持器の製造方法。
A manufacturing method of a bearing cage formed by injecting a molten resin into the cavity from a plurality of resin injection gates provided on the peripheral portion of an annular cavity formed in a molding die,
The bearing cage is
A substantially annular base;
A plurality of and even number of pillars projecting in the axial direction at predetermined intervals in the circumferential direction from one axial side surface of the base; and
The same number of pockets as the pillars formed by the mutually opposing surfaces of a pair of adjacent pillars and the axial one end side surface of the base;
Have
Of the plurality of column portions, half of the column portions are each provided with the resin injection gate,
The column portions provided with the resin injection gate and the column portions spaced apart from the resin injection gate in the circumferential direction are alternately arranged in the circumferential direction,
From a plurality of the resin injection gates, between the one resin injection gate and the two resin injection gates farthest from the one resin injection gate in the circumferential direction, from the cavity Each of the resin reservoirs capable of storing molten resin flowing in and storing molten resin is provided,
Each of the two resin reservoirs has a communication path communicating with the cavity,
A manufacturing method of a bearing cage, wherein a relative difference is provided in a cross-sectional area of the communication path of the two resin reservoirs.
2つの前記樹脂溜りは、断面積を大きくした前記樹脂射出ゲートに対して周方向で対称に配置される
ことを特徴とする請求項1に記載の軸受用保持器の製造方法。
The method for manufacturing a bearing cage according to claim 1, wherein the two resin reservoirs are arranged symmetrically in the circumferential direction with respect to the resin injection gate having a large cross-sectional area.
前記樹脂溜りは、隣り合う前記樹脂射出ゲート間の周方向中間位置に配置される
ことを特徴とする請求項1又は2に記載の軸受用保持器の製造方法。
The method for manufacturing a bearing cage according to claim 1 or 2, wherein the resin reservoir is disposed at a circumferential intermediate position between the adjacent resin injection gates.
2つの前記樹脂溜りは、断面積を大きくした前記樹脂射出ゲートとこの断面積を大きくした前記樹脂射出ゲートから周方向両側に隣り合う前記樹脂射出ゲートとの間にそれぞれ配置される
ことを特徴とする請求項1〜3のいずれか1項に記載の軸受用保持器の製造方法。
The two resin reservoirs are respectively disposed between the resin injection gate having a large cross-sectional area and the resin injection gate adjacent on both sides in the circumferential direction from the resin injection gate having a large cross-sectional area. The manufacturing method of the cage for bearings of any one of Claims 1-3 to do.
JP2018009562A 2018-01-24 2018-01-24 Manufacturing method of bearing cage Active JP6988509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009562A JP6988509B2 (en) 2018-01-24 2018-01-24 Manufacturing method of bearing cage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009562A JP6988509B2 (en) 2018-01-24 2018-01-24 Manufacturing method of bearing cage

Publications (2)

Publication Number Publication Date
JP2019126959A true JP2019126959A (en) 2019-08-01
JP6988509B2 JP6988509B2 (en) 2022-01-05

Family

ID=67471025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009562A Active JP6988509B2 (en) 2018-01-24 2018-01-24 Manufacturing method of bearing cage

Country Status (1)

Country Link
JP (1) JP6988509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195373A1 (en) * 2022-04-06 2023-10-12 Thk株式会社 Molding method for rolling-element housing band, and manufacturing mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266064A (en) * 2009-04-17 2010-11-25 Nsk Ltd Synthetic resin retainer, manufacturing method thereof, and rolling bearing
JP2012236363A (en) * 2011-05-12 2012-12-06 Nsk Ltd Resin-made cage for bearing and method of manufacturing the same
JP2016114099A (en) * 2014-12-11 2016-06-23 日本精工株式会社 Manufacturing method for bearing cage
JP2018003872A (en) * 2016-06-28 2018-01-11 日本精工株式会社 Manufacturing method of synthetic resin-made cage and synthetic resin-made cage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266064A (en) * 2009-04-17 2010-11-25 Nsk Ltd Synthetic resin retainer, manufacturing method thereof, and rolling bearing
JP2012236363A (en) * 2011-05-12 2012-12-06 Nsk Ltd Resin-made cage for bearing and method of manufacturing the same
JP2016114099A (en) * 2014-12-11 2016-06-23 日本精工株式会社 Manufacturing method for bearing cage
JP2018003872A (en) * 2016-06-28 2018-01-11 日本精工株式会社 Manufacturing method of synthetic resin-made cage and synthetic resin-made cage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195373A1 (en) * 2022-04-06 2023-10-12 Thk株式会社 Molding method for rolling-element housing band, and manufacturing mold

Also Published As

Publication number Publication date
JP6988509B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP5768486B2 (en) Resin cage for bearing and method for manufacturing the same
JP6222146B2 (en) Manufacturing method of bearing cage
EP3421827B1 (en) Method for manufacturing bearing cage
JP6772587B2 (en) Manufacturing method of synthetic resin cage and synthetic resin cage
JP6405973B2 (en) Manufacturing method of bearing cage
JP6413728B2 (en) Manufacturing method of bearing cage
JP2019126959A (en) Manufacturing method of bearing retainer
US20220388209A1 (en) Bearing cage and manufacturing method therefor
JP6299529B2 (en) Bearing cage and manufacturing method thereof
JP6413729B2 (en) Manufacturing method of bearing cage
JP6405974B2 (en) Manufacturing method of bearing cage
JP6578827B2 (en) Manufacturing method of bearing cage
JP6451190B2 (en) Manufacturing method of bearing cage
JP6413730B2 (en) Manufacturing method of bearing cage
JP6658839B2 (en) Bearing cage
JP6658841B2 (en) Bearing cage
JP6658840B2 (en) Bearing cage
JP6702384B2 (en) Bearing cage
JP6699698B2 (en) Bearing cage
JP6658053B2 (en) Synthetic resin cage for rolling bearings
JP2015075201A (en) Resin-made cage for bearing and manufacturing method thereof
JP2020076506A (en) Synthetic resin cage for rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150