JP2019126824A - Weld joined body - Google Patents

Weld joined body Download PDF

Info

Publication number
JP2019126824A
JP2019126824A JP2018009968A JP2018009968A JP2019126824A JP 2019126824 A JP2019126824 A JP 2019126824A JP 2018009968 A JP2018009968 A JP 2018009968A JP 2018009968 A JP2018009968 A JP 2018009968A JP 2019126824 A JP2019126824 A JP 2019126824A
Authority
JP
Japan
Prior art keywords
based metal
metal member
intermetallic compound
iron
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018009968A
Other languages
Japanese (ja)
Inventor
れおな ▲高▼岸
れおな ▲高▼岸
Reona Takagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018009968A priority Critical patent/JP2019126824A/en
Publication of JP2019126824A publication Critical patent/JP2019126824A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Resistance Welding (AREA)

Abstract

To provide a weld joined body which requires no additional member, such as a filler material, and which is capable of ensuring weld strength between an iron-based metal member and an aluminum-based metal member.SOLUTION: A weld joined body 1 is one in which an iron-based metal member 2 and an aluminum-based metal member 3 are joined together by interposing therebetween a molten layer between dissimilar materials 4. The molten layer between dissimilar materials 4 has an intermetallic compound 5. The intermetallic compound 5 in the molten layer between dissimilar materials 4 has a volume ratio of 50% or less. The weld joined body satisfies an inequality: 2d>L, where L is a maximum length of the intermetallic compound 5, and d is a thickness of the molten layer between dissimilar materials 4.SELECTED DRAWING: Figure 1

Description

本開示は、鉄系金属部材とアルミニウム系金属部材とを溶接した溶接接合体に関する。   The present disclosure relates to a welded joint in which an iron-based metal member and an aluminum-based metal member are welded.

従来から金属部材の溶接技術に関し、特に、鉄系金属部材とアルミニウム系金属部材とを健全に溶接した接合体(溶接接合体、溶接継手)および該接合体の製造方法に関する発明が知られている(下記特許文献1を参照)。   BACKGROUND OF THE INVENTION Conventionally, the invention relates to a welding technology of metal members, and in particular, a joined body (welded joint, welded joint) in which an iron-based metal member and an aluminum-based metal member are soundly welded and a method of manufacturing the joined body (See Patent Document 1 below).

特許文献1には、鉄系金属部材とアルミニウム系金属部材とが溶接部を介して接合された溶接接合体が記載されている(同文献、請求項1等を参照)。その溶接部は、溶加材の溶融率が100%で、低次アルミニウム化合物相を含む。また、上記溶接部の金属成分組成は、25質量%以上70質量%以下の鉄と、20質量%以上40質量%以下のアルミニウムと、5質量%以上25質量%以下のニッケルと、2質量%以上40質量%以下の他の金属元素とからなる。   Patent Document 1 describes a welded joint in which an iron-based metal member and an aluminum-based metal member are joined via a welding portion (see the same document, claim 1 and the like). The weld has a melt percentage of the filler metal of 100% and contains a lower aluminum compound phase. Moreover, the metal component composition of the said weld part is 25 mass% or more and 70 mass% or less iron, 20 mass% or more and 40 mass% or less aluminum, 5 mass% or more and 25 mass% or less nickel, and 2 mass%. More than 40% by mass or less of other metal elements.

特許文献1に記載された発明によれば、Fe系金属部材とAl系金属部材との溶接接合体において、溶接部における脆性金属間化合物の生成を抑制して溶接強度を確保することができる。また、溶接温度の自由度を高めて従来よりも製造歩留まりの高い(すなわち低コストの)Fe系金属/Al系金属の溶接接合体、および該接合体の製造方法を提供することができる(同文献、第0016段落等を参照)。   According to the invention described in Patent Document 1, in the weld joint of the Fe-based metal member and the Al-based metal member, the formation of the brittle intermetallic compound in the weld can be suppressed to secure the welding strength. In addition, it is possible to provide a weld joint of Fe-based metal / Al-based metal having a higher manufacturing yield (that is, lower cost) than before by increasing the degree of freedom of welding temperature, and a method of manufacturing the joint See the literature, paragraph 0016, etc.).

特開2017‐080791号公報Unexamined-Japanese-Patent No. 2017-080791

前記特許文献1に記載された発明では、鉄系金属部材とアルミニウム系金属部材とを溶接した接合体において、溶加材を必要とするという課題がある。   In the invention described in the patent document 1, there is a problem that a weld metal is required in a joined body in which an iron-based metal member and an aluminum-based metal member are welded.

本開示は、溶加材等の追加部材が不要であり、鉄系金属部材とアルミニウム系金属部材との溶接強度を担保することができる溶接接合体を提供する。   The present disclosure provides a welded joint that does not require an additional member such as a filler metal and can secure the welding strength between an iron-based metal member and an aluminum-based metal member.

本開示の一態様に係る溶接接合体は、鉄系金属部材とアルミニウム系金属部材とが異種材料間溶融層を介して接合された溶接接合体であって、前記異種材料間溶融層は金属間化合物を有しており、前記異種材料間溶融層における前記金属間化合物の体積率は50%以下であり、金属間化合物の最大長さをL、前記異種材料間溶融層の厚みをdとすると、不等式:2d>Lを満たすことを特徴とする。   A weld joint according to an aspect of the present disclosure is a weld joint in which an iron-based metal member and an aluminum-based metal member are joined via a melt layer between dissimilar materials, and the melt layer between dissimilar materials is an intermetallic It has a compound, the volume ratio of the intermetallic compound in the dissimilar material melting layer is 50% or less, the maximum length of the intermetallic compound is L, and the thickness of the dissimilar material melting layer is d. Inequalities: 2d> L is satisfied.

上記態様の溶接接合体は、鉄系金属部材とアルミニウム系金属部材との間に生成される異種材料間溶融層における金属間化合物の割合および配置(不連続である)を規定することにより、溶加材等の追加部材を用いることなく接合強度を担保できる。   The weld joint according to the above aspect of the present invention can be melted by defining the ratio and arrangement (discontinuously) of the intermetallic compound in the molten layer between dissimilar materials formed between the iron-based metal member and the aluminum-based metal member. Bonding strength can be secured without using additional members such as additives.

本開示によれば、溶加材等の追加部材が不要であり、鉄系金属部材とアルミニウム系金属部材との溶接強度を担保することができる溶接接合体を提供することができる。   According to the present disclosure, an additional member such as a filler material is unnecessary, and a welded joint that can ensure the welding strength between the iron-based metal member and the aluminum-based metal member can be provided.

本開示の一実施形態に係る溶接接合体の模式的な断面図。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view of a welded joint according to an embodiment of the present disclosure. 比較形態の溶接接合体の模式的な断面図。Typical sectional drawing of the weld joint of a comparison form. 実施例および比較例の溶接接合体のスポット溶接の条件を示すグラフ。The graph which shows the conditions of spot welding of the welded joint body of an Example and a comparative example.

以下、図面を参照して本開示の一態様に係る溶接接合体の実施形態を説明する。   Hereinafter, an embodiment of a welded joint according to an aspect of the present disclosure will be described with reference to the drawings.

図1は、本開示の一実施形態に係る溶接接合体1の模式的な断面図である。本実施形態の溶接接合体1は、異種金属間化合物の冶金的接合時に、接合溶接部における金属間化合物5の形状、サイズを規定することで、強度発現を可能にすることを特徴としている。以下、本実施形態の溶接接合体1についてより詳細に説明する。   FIG. 1 is a schematic cross-sectional view of a welded joint 1 according to an embodiment of the present disclosure. The weld joint 1 of the present embodiment is characterized in that strength expression is made possible by defining the shape and size of the intermetallic compound 5 in the joint weld at the metallurgical joining of the different intermetallic compounds. Hereinafter, the welded joint 1 of the present embodiment will be described in more detail.

溶接接合体1は、たとえば、鉄系金属部材2とアルミニウム系金属部材3とが、異種材料間溶融層4を介して冶金的接合されることによって構成されている。鉄系金属部材2はたとえば鉄であり、アルミニウム系金属部材3はたとえばアルミニウムである。また、異種材料間溶融層4は、たとえば亜鉛含有層である。また、鉄系金属部材2は、たとえば、自動車材料として汎用的に使用される亜鉛めっき鋼板である。   The weld joint 1 is configured, for example, by metallurgically joining the iron-based metal member 2 and the aluminum-based metal member 3 via the dissimilar-material melting layer 4. Iron-based metal member 2 is, for example, iron, and aluminum-based metal member 3 is, for example, aluminum. Moreover, the dissimilar material fusion layer 4 is, for example, a zinc-containing layer. The iron-based metal member 2 is, for example, a galvanized steel plate that is generally used as an automobile material.

溶接接合体1は、たとえば、鉄系金属部材2とアルミニウム系金属部材3との溶接時に、加圧力、電流、および時間を一定範囲に制御することで、溶融接合部すなわち異種材料間溶融層4を形成する。また、このように溶接時の加圧力、電流、および時間を一定範囲に制御することで、異種材料間溶融層4すなわち溶接部の亜鉛含有層が大きく外に排出させることを低減する。   The welded joined body 1 is, for example, a welded joint, that is, a molten layer 4 between different materials, by controlling the applied pressure, current, and time within a certain range during welding of the iron-based metal member 2 and the aluminum-based metal member 3. Form Further, by controlling the applied pressure, current, and time during welding to a certain range in this way, it is possible to reduce that the molten layer 4 between different materials, that is, the zinc-containing layer of the welded portion, is largely discharged to the outside.

異種材料間溶融層4すなわち亜鉛含有層は、たとえば、層内に析出した金属間化合物5を含んでいる。異種材料間溶融層4の厚みdに垂直な横方向における金属間化合物5の最大長さLは、異種材料間溶融層4の厚みdの2倍以下(2d≧L)である。また、異種材料間溶融層4における金属間化合物5の面積率は、50%以下である。金属間化合物5は、その周囲の組織と比較して脆弱であり、その周囲の組織と比較して亀裂が進展しやすい。   The inter-differential material molten layer 4, ie, the zinc-containing layer, contains, for example, the intermetallic compound 5 deposited in the layer. The maximum length L of the intermetallic compound 5 in the transverse direction perpendicular to the thickness d of the intermetallic material molten layer 4 is not more than twice the thickness d of the intermetallic material molten layer 4 (2d ≧ L). Moreover, the area ratio of the intermetallic compound 5 in the dissimilar-material fusion layer 4 is 50% or less. The intermetallic compound 5 is fragile as compared with the surrounding tissue, and the crack is easily developed as compared with the surrounding tissue.

以下、本実施形態の溶接接合体1の作用について、比較形態の溶接接合体Xとの対比に基づいて説明する。図2は、比較形態の溶接接合体Xの模式的な断面図である。比較形態の溶接接合体Xは、図1に示す本実施形態の溶接接合体1と同様に、鉄系金属部材2とアルミニウム系金属部材3とが、異種材料間溶融層4を介して冶金的接合されることによって構成され、異種材料間溶融層4は、金属間化合物5を含んでいる。   Hereinafter, the operation of the welded joint 1 of the present embodiment will be described based on the comparison with the welded joint X of the comparative embodiment. FIG. 2 is a schematic cross-sectional view of a welded joint X according to a comparative embodiment. In the welded joint X of the comparative form, as in the welded joint 1 of the present embodiment shown in FIG. 1, the iron-based metal member 2 and the aluminum-based metal member 3 are metallurgical through a molten layer 4 between different materials. The inter-differential-material melting layer 4 contains the intermetallic compound 5, which is constituted by being joined.

比較形態の溶接接合体Xは、異種材料間溶融層4の厚みdに垂直な横方向における金属間化合物5の最大長さLが、異種材料間溶融層4の厚みdの2倍より大である。また、異種材料間溶融層4における金属間化合物5の面積率は、50%より大である。このように、脆弱な金属間化合物5が不連続でないと、亀裂Cが横方向に進展し、破断につながってしまう。   In the weld joint X of the comparative embodiment, the maximum length L of the intermetallic compound 5 in the lateral direction perpendicular to the thickness d of the dissimilar material melting layer 4 is larger than twice the thickness d of the dissimilar material melting layer 4 is there. Moreover, the area ratio of the intermetallic compound 5 in the dissimilar material fusion layer 4 is greater than 50%. Thus, unless the fragile intermetallic compound 5 is discontinuous, the crack C propagates in the lateral direction, leading to breakage.

これに対し、本実施形態の溶接接合体1は、鉄系金属部材2とアルミニウム系金属部材3とが異種材料間溶融層4を介して接合され、異種材料間溶融層4が金属間化合物5を有し、異種材料間溶融層4における金属間化合物5の体積率は50%以下である。さらに、本実施形態の溶接接合体1は、金属間化合物5の最大長さをL、異種材料間溶融層4の厚みをdとすると、不等式:2d>Lを満たす。   On the other hand, in the welded joined body 1 of the present embodiment, the iron-based metal member 2 and the aluminum-based metal member 3 are joined via the dissimilar material molten layer 4, and the dissimilar material molten layer 4 is intermetallic compound 5. The volume fraction of the intermetallic compound 5 in the dissimilar-material fusion layer 4 is 50% or less. Furthermore, the welded joint 1 of the present embodiment satisfies the inequality: 2d> L, where L is the maximum length of the intermetallic compound 5 and d is the thickness of the molten layer 4 between different materials.

これにより、図1に示すように、脆弱な金属間化合物5を不連続にすることができ、亀裂の進展を防止し、溶接部強度を担保することができる。したがって、本実施形態によれば、溶加材等の追加部材が不要であり、鉄系金属部材2とアルミニウム系金属部材3との溶接強度を担保することができる溶接接合体1を提供することができる。   Thereby, as shown in FIG. 1, the weak intermetallic compound 5 can be made discontinuous, the progress of cracks can be prevented, and the weld strength can be ensured. Therefore, according to this embodiment, an additional member such as a filler metal is unnecessary, and a welded joint 1 that can ensure the welding strength between the iron-based metal member 2 and the aluminum-based metal member 3 is provided. Can.

従来技術は、金属間化合物5の生成を避けるための一般的でない第3材料(Cu、フッ化物、Niなど)が必要であり、コスト、調達性の観点から現実的でない。また、たとえば、スポット溶接が前提である場合、厚さのある材料の接合時は入熱量を増やす必要があり、金属間化合物5の生成が懸念される。さらに、従来技術は、非溶接材および溶加材形状が溶接部の金属間化合物5の生成有無に影響を及ぼすため、汎用的でない。   The prior art requires an uncommon third material (Cu, fluoride, Ni, etc.) for avoiding the formation of the intermetallic compound 5, and is not practical from the viewpoint of cost and procurement. Also, for example, in the case where spot welding is premised, it is necessary to increase the amount of heat input at the time of joining of a material having a thickness, and there is a concern about the formation of the intermetallic compound 5. Furthermore, the prior art is not universal because the non-welding material and the shape of the filler material affect the formation of the intermetallic compound 5 in the welding portion.

従来技術において上記のような問題点が発生する原因は、従来技術が金属間化合物5の生成の抑制自体を主目的とするためである。これに対し、本実施形態の溶接接合体1では、金属間化合物5の生成を是とし、その形状について制御、規定することで溶接強度発現を可能にしている。   The reason why the above-mentioned problems occur in the prior art is that the prior art mainly aims to suppress the formation of the intermetallic compound 5 itself. On the other hand, in the welded joint 1 according to the present embodiment, the generation of the intermetallic compound 5 is controlled, and the shape is controlled and defined to enable the development of welding strength.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

[実施例]
鉄系材料とアルミ系材料に対し、図3に示すように、電流および加圧力を付与してスポット溶接を行った。次に、材料引張試験機でせん断方向に力がかかるように引張試験を実施した。結果を以下の表1および表2に示す。接合、特に溶融接合では、入熱量が大きく影響し、材料により加圧力、電流、時間はそれぞれ異なる。
[Example]
As shown in FIG. 3, spot welding was performed by applying current and pressure to the iron-based material and the aluminum-based material. Next, a tensile test was performed to apply a force in the shear direction with a material tensile tester. The results are shown in Tables 1 and 2 below. In bonding, particularly in melt bonding, the heat input largely affects, and the pressing force, the current, and the time are different depending on the material.

Figure 2019126824
Figure 2019126824

Figure 2019126824
Figure 2019126824

表1および表2に示す実施例1および実施例2は、異種材料間溶融層における金属間化合物の横方向最大長さが溶融層厚みの2倍以下であった。一方、比較例1は、異種材料間溶融層における金属間化合物の横方向最大長さが溶融層厚みの2倍以上であった。   In Example 1 and Example 2 shown in Table 1 and Table 2, the lateral maximum length of the intermetallic compound in the dissimilar material melting layer was not more than twice the thickness of the melting layer. On the other hand, in Comparative Example 1, the maximum length in the lateral direction of the intermetallic compound in the dissimilar material melting layer was at least twice the thickness of the melting layer.

1 溶接接合体
2 鉄系金属部材
3 アルミニウム系金属部材
4 異種材料間溶融層
5 金属間化合物
d 異種材料間溶融層の厚み
L 最大長さ
Reference Signs List 1 welded joint 2 iron-based metal member 3 aluminum-based metal member 4 molten layer between dissimilar materials 5 intermetallic compound d thickness of molten layer between dissimilar materials L maximum length

Claims (1)

鉄系金属部材とアルミニウム系金属部材とが異種材料間溶融層を介して接合された溶接接合体であって、
前記異種材料間溶融層は金属間化合物を有しており、
前記異種材料間溶融層における前記金属間化合物の体積率は50%以下であり、前記金属間化合物の最大長さをL、前記異種材料間溶融層の厚みをdとすると、不等式:2d>Lを満たすことを特徴とする、溶接接合体。
A welded joint in which an iron-based metal member and an aluminum-based metal member are joined via a dissimilar material fusion layer,
The molten layer between dissimilar materials contains an intermetallic compound,
The volume ratio of the intermetallic compound in the molten layer between different materials is 50% or less, where L is the maximum length of the intermetallic compound and d is the thickness of the molten layer between different materials, and the inequality: 2d> L A welded joint characterized in that
JP2018009968A 2018-01-24 2018-01-24 Weld joined body Pending JP2019126824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009968A JP2019126824A (en) 2018-01-24 2018-01-24 Weld joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009968A JP2019126824A (en) 2018-01-24 2018-01-24 Weld joined body

Publications (1)

Publication Number Publication Date
JP2019126824A true JP2019126824A (en) 2019-08-01

Family

ID=67471660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009968A Pending JP2019126824A (en) 2018-01-24 2018-01-24 Weld joined body

Country Status (1)

Country Link
JP (1) JP2019126824A (en)

Similar Documents

Publication Publication Date Title
JP7224871B2 (en) UAM transitions for fusion welding dissimilar metal parts
WO2010026892A1 (en) Dissimilar metal joining method for magnesium alloy and steel
JP2008105087A (en) Joining method of iron member with aluminum member, and iron-aluminum joined structure
WO2014148348A1 (en) Welding filler material for bonding different kind materials, and method for producing different kind material welded structure
TWI783095B (en) Multistage joining process with thermal sprayed layers
CN110202245B (en) Mechanical property improvement of aluminum-steel welding seam by limiting deformation of steel plate
JP2016083694A (en) Metal junction body and method for manufacturing metal junction body
JP2008284570A (en) Method and apparatus for joining different kinds of metal
JP2008207245A (en) Joined product of dissimilar materials of steel and aluminum material
JP6984646B2 (en) Laser brazing method and lap joint member manufacturing method
JP2012152789A (en) Method for joining dissimilar metal plates by overlapping and electric resistance brazing, and brazing joint formed by the same
US20190329348A1 (en) Welding methods for joining light metal and high-strength steel using solid state and resistance spot welding processes
JP2006224146A (en) Method for joining different kinds of material
JP6996547B2 (en) MIG brazing method, lap joint member manufacturing method, and lap joint member
JP6153744B2 (en) Manufacturing method of welded joint
JP2008036704A (en) Welding joint for aluminum product and steel product, and welding method using the same
JP7255652B2 (en) Weld bond joint manufacturing method
JP2018069289A (en) Joint method for dissimilar metal plates
JP2019126824A (en) Weld joined body
JP2008246558A (en) Butt-weld joint of dissimilar material of plated steel plate and aluminum alloy plate, and its joining method
JP4177684B2 (en) Method of joining metal members
KR102375236B1 (en) Friction stir welding method of high strength material
MIAO et al. Characteristic of titanium/steel dissimilar metals joint brazed by bypass-current arc welding
SK8488Y1 (en) Soldered joint of different metal or metal/ non-metallic materials and resistance heating soldering method
JP2004344898A (en) Joint for joining ferrous base material and aluminum base material