JP2019126160A - Vibration type motor and lens driving device using vibration type motor - Google Patents

Vibration type motor and lens driving device using vibration type motor Download PDF

Info

Publication number
JP2019126160A
JP2019126160A JP2018004689A JP2018004689A JP2019126160A JP 2019126160 A JP2019126160 A JP 2019126160A JP 2018004689 A JP2018004689 A JP 2018004689A JP 2018004689 A JP2018004689 A JP 2018004689A JP 2019126160 A JP2019126160 A JP 2019126160A
Authority
JP
Japan
Prior art keywords
friction member
type motor
vibration type
force
motor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018004689A
Other languages
Japanese (ja)
Inventor
一治 大澤
Kazuharu Osawa
一治 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018004689A priority Critical patent/JP2019126160A/en
Publication of JP2019126160A publication Critical patent/JP2019126160A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide a vibration type motor, the dimension of which is made compact in the driving direction.SOLUTION: A vibration type motor 10 has a transducer 11 vibrating upon application of a driver voltage, a friction member 12 friction sliding on the transducer 11, compression means 13 generating a compression force F1 for compressing the transducer 11 against the friction member 12, a holding member 14 for holding the friction member 12, an elastomer 15 energized by the friction member 12, and energization means for energizing the elastomer 15 to the friction member 12. A position regulation part 14a regulates the position of the friction member 12 for the holding member 14, and the friction member 12 is held when it is energized by the position regulation part 14a with the energization force F2 by the energization means.SELECTED DRAWING: Figure 1

Description

本発明は、振動型モータ及び振動型モータを用いたレンズ駆動装置に関する。   The present invention relates to a vibration type motor and a lens drive device using the vibration type motor.

超音波モータは、比較的小型でありながら高出力、静粛性という特徴を併せ持ち、例えば一眼レフカメラの交換レンズ内でのレンズ駆動に用いられている。特許文献1には、振動片型振動子を用いたリニア駆動式の超音波モータが開示されており、当該超音波モータでは、スライダーの駆動方向両端に被固定部を設け、被固定部をビス締結により固定している。   The ultrasonic motor has characteristics of high power and quietness while being relatively small, and is used, for example, to drive a lens in an interchangeable lens of a single-lens reflex camera. Patent Document 1 discloses a linear drive type ultrasonic motor using a vibrating reed-type vibrator, and in the ultrasonic motor, a fixed portion is provided at both ends in the driving direction of the slider, and the fixed portion is screwed. It is fixed by fastening.

特開2016−82802号公報JP, 2016-82802, A

従来の超音波モータでは、被固定部の固定のためのビス自体の体積や、ビスに対する雌ネジ部の体積が必要となり、駆動方向の寸法が大型化していた。また、上記の一眼レフカメラの交換レンズ等のレンズ駆動において、超音波モータが駆動方向に長いためにレンズ駆動装置が光軸方向に大型化していた。   In the conventional ultrasonic motor, the volume of the screw itself for fixing the fixed portion and the volume of the female screw portion with respect to the screw are required, and the dimension in the driving direction is enlarged. In addition, in the lens drive of the interchangeable lens of the single-lens reflex camera described above, the lens drive device has been enlarged in the optical axis direction because the ultrasonic motor is long in the drive direction.

そこで本発明では、駆動方向の寸法を小型化した振動型モータを提供することを目的とする。   Therefore, it is an object of the present invention to provide a vibration type motor whose dimensions in the drive direction are reduced.

上記課題を解決するために、本発明の振動型モータは、駆動電圧の印加により振動する振動子と、振動子と摩擦摺動する摩擦部材と、振動子を摩擦部材に加圧する加圧力を生じる加圧手段と、摩擦部材を保持する保持部材と、摩擦部材に付勢される弾性体と、弾性体を摩擦部材に付勢する付勢手段とを有し、保持部材に対して摩擦部材の位置を規制する位置規制部を有し、付勢手段による付勢力で摩擦部材が位置規制部に付勢されることにより、摩擦部材が保持されることを特徴とする。   In order to solve the above problems, the vibration type motor of the present invention generates a vibrator that vibrates by the application of a drive voltage, a friction member that frictionally slides with the vibrator, and a pressure that presses the vibrator against the friction member. A pressing means, a holding member for holding the friction member, an elastic body biased to the friction member, and a biasing means to bias the elastic body to the friction member The friction member is characterized in that the friction member is held by having a position restricting portion which restricts the position, and the friction member is urged against the position restricting portion by the urging force of the urging means.

駆動方向の寸法を小型化した振動型モータを提供できる。   It is possible to provide a vibration type motor whose dimensions in the drive direction are reduced.

(A)〜(D)本発明の第一の実施形態である振動型モータ10を示す図である。(A)-(D) It is a figure which shows the vibration type motor 10 which is 1st embodiment of this invention. 本発明の第一の実施形態である振動型モータ10の断面図である。FIG. 1 is a cross-sectional view of a vibration type motor 10 according to a first embodiment of the present invention. (A)、(B)本発明の第一の実施形態における摩擦部材12に及ぼす力の関係を示す図である。(A), (B) is a figure which shows the relationship of the force which acts on the friction member 12 in 1st embodiment of this invention. (A)〜(D)本発明の第二の実施形態である振動型モータ20を示す図である。(A)-(D) It is a figure which shows the vibration type motor 20 which is 2nd embodiment of this invention. (A)、(B)本発明の第二の実施形態における摩擦部材22に及ぼす力の関係を示す図である。(A), (B) It is a figure which shows the relationship of the force which acts on the friction member 22 in 2nd embodiment of this invention. (A)、(B)本発明を適用したレンズ駆動装置を示す図である。(A), (B) is a figure which shows the lens drive device to which this invention is applied.

(第一の実施形態)
以下、本発明の第一の実施形態である振動型モータ10(超音波モータ)の構成について説明する。図1(A)、(B)は、それぞれ振動型モータ10を異なる角度から見た斜視図であり、振動型モータ10の駆動方向をX方向で表している。図1(C)、(D)は、それぞれ図1(A)、(B)と同じ方向から見た振動型モータ10の分解斜視図である。図2は、図1(A)における平面II−IIで切断した振動型モータ10の断面図である。
(First embodiment)
The configuration of the vibration type motor 10 (ultrasonic motor) according to the first embodiment of the present invention will be described below. FIGS. 1A and 1B are perspective views of the vibration type motor 10 as viewed from different angles, and the driving direction of the vibration type motor 10 is represented by the X direction. FIGS. 1C and 1D are exploded perspective views of the vibration type motor 10 as viewed from the same direction as FIGS. 1A and 1B, respectively. FIG. 2 is a cross-sectional view of the vibration type motor 10 cut along a plane II-II in FIG.

振動型モータ10は、主に振動子11と、摩擦部材12と、加圧手段13と、保持部材14と、減衰体15、振動子11の保持案内機構17によって構成される。加圧手段13は、加圧バネ131、加圧板132、フェルト133によって構成される。保持案内機構17は、保持枠171、可動体172、転動ボール173、案内板174によって構成される。   The vibration type motor 10 mainly includes a vibrator 11, a friction member 12, a pressure unit 13, a holding member 14, a damping body 15, and a holding guide mechanism 17 of the vibrator 11. The pressure means 13 is constituted by a pressure spring 131, a pressure plate 132 and a felt 133. The holding and guiding mechanism 17 includes a holding frame 171, a movable body 172, rolling balls 173, and a guide plate 174.

振動子11は、例えば板状の圧電素子111と、2つの突起部112aと被保持部112bを有する弾性部材112から構成されており、圧電素子111が弾性部材112に貼付されている。圧電素子111は例えばPZT(チタン酸ジルコン酸鉛)であり、弾性部材112は例えばステンレス等の板金である。圧電素子111に適切な駆動電圧を印加すると、振動子11が振動(超音波領域の周波数の高周波振動)し、突起部112aの先端に楕円運動を発生させることができる。振動子11には保持枠171が接着されるとともに、保持枠171によって保持される。   The vibrator 11 includes, for example, a plate-like piezoelectric element 111, and an elastic member 112 having two projections 112a and a held part 112b. The piezoelectric element 111 is attached to the elastic member 112. The piezoelectric element 111 is, for example, PZT (lead zirconate titanate), and the elastic member 112 is, for example, a sheet metal such as stainless steel. When an appropriate drive voltage is applied to the piezoelectric element 111, the vibrator 11 vibrates (high frequency vibration of the frequency of the ultrasonic region), and an elliptical motion can be generated at the tip of the projection 112a. The holding frame 171 is adhered to the vibrator 11 and is held by the holding frame 171.

摩擦部材12は、例えば金属板であり、加圧手段13が生じる加圧力F1により振動子11の突起部112aが摩擦部材12に圧接され、突起部112aが摩擦部材12の面12bに摩擦摺動する。摩擦部材12の面12bの反対側の面には、後述の位置規制部を構成する凹形状部が設けられている。この凹形状部は、V溝12aとして駆動方向に沿って2つ、駆動方向に直行する方向に沿って1つの3箇所に設けられている。   The friction member 12 is, for example, a metal plate, and the projection 112a of the vibrator 11 is brought into pressure contact with the friction member 12 by the pressure F1 generated by the pressure means 13, and the projection 112a frictionally slides on the surface 12b of the friction member 12. Do. On the surface on the opposite side of the surface 12 b of the friction member 12, a concave portion forming a position restricting portion described later is provided. The concave portion is provided as two V-grooves 12 a along the drive direction and at three places along one direction orthogonal to the drive direction.

加圧バネ131は、圧縮コイルバネであり、加圧力F1を生じる。加圧力F1は加圧板132とフェルト133を介して振動子11へ伝達され、振動子11を摩擦部材12に対して加圧する。フェルト133を介することで振動子11の振動を阻害することなく振動子11へ加圧力F1を伝達している。   The pressure spring 131 is a compression coil spring and generates a pressure force F1. The pressure F1 is transmitted to the vibrator 11 via the pressure plate 132 and the felt 133 to press the vibrator 11 against the friction member 12. By means of the felt 133, the pressing force F1 is transmitted to the vibrator 11 without inhibiting the vibration of the vibrator 11.

保持部材14は、例えば樹脂製の枠体であり、摩擦部材12の3箇所のV溝12aの対応する位置に、摩擦部材12の位置を規制する位置規制部を構成する凸形状部が設けられている。この凸形状部は、球突起14aとして3箇所に設けられている。そして、それぞれの球突起14aは、摩擦部材12のV溝12aにそれぞれ当接し、摩擦部材12は保持部材14に保持される。   The holding member 14 is, for example, a frame made of resin, and a convex shape portion constituting a position restricting portion for restricting the position of the friction member 12 is provided at corresponding positions of the three V grooves 12 a of the friction member 12. ing. The convex shaped portions are provided at three locations as spherical protrusions 14a. The respective spherical projections 14 a abut on the V-grooves 12 a of the friction member 12, and the friction member 12 is held by the holding member 14.

弾性体である減衰体15は、例えば振動型モータ10の駆動方向に延在する断面形状が凸形状(円柱形状、円筒形状、突起形状)の減衰ゴムである。または、その断面形状は、駆動方向に段差の連続した段差形状でもよい。減衰体15は摩擦部材12と減衰体固定板16により挟持され、弾性変形した状態で振動型モータ10へ組み込まれる。この時、減衰体固定板16は図示のビス締結により保持部材14へ固定される。減衰体15の弾性変形が復元する際の反力を、減衰体15を摩擦部材12へ付勢する付勢力F2として用いる。減衰ゴムである減衰体15が摩擦部材12に付勢されることにより、摩擦部材12の振動を抑制することができる。本発明の第一の実施形態の振動型モータ10では、2つの減衰体15を弾性変形させるように減衰体固定板16により組み込み、減衰体15自身が付勢力F2を生じる構成となっており、減衰体15自身が付勢手段を兼ねている。また、減衰体15と摩擦部材12の接触点が摩擦部材12の共振の腹の近傍となるようにしてもよい。このように接触点を摩擦部材12の共振の腹の近傍とすることで、摩擦部材12の共振を防止できるという効果がある。   The damping body 15 which is an elastic body is, for example, damping rubber having a convex shape (a cylindrical shape, a cylindrical shape, a protrusion shape) in cross section extending in the driving direction of the vibration type motor 10. Alternatively, the cross-sectional shape may be a step shape in which steps are continuous in the drive direction. The damping body 15 is sandwiched between the friction member 12 and the damping body fixing plate 16 and is incorporated into the vibration type motor 10 in a state of being elastically deformed. At this time, the damping body fixing plate 16 is fixed to the holding member 14 by screw fastening as shown. A reaction force when elastic deformation of the damping body 15 is restored is used as a biasing force F2 for biasing the damping body 15 to the friction member 12. The vibration of the friction member 12 can be suppressed by urging the damping member 15 which is a damping rubber against the friction member 12. In the vibration type motor 10 according to the first embodiment of the present invention, the two damping bodies 15 are incorporated by the damping body fixing plate 16 so as to be elastically deformed, and the damping body 15 itself generates the biasing force F2. The damping body 15 itself also serves as a biasing means. Further, the contact point between the damping body 15 and the friction member 12 may be in the vicinity of the antinode of the resonance of the friction member 12. By setting the contact point in the vicinity of the antinode of the resonance of the friction member 12 as described above, the resonance of the friction member 12 can be prevented.

図3(A)に示すように、振動子11を摩擦部材12に加圧する加圧力F1と減衰体15を摩擦部材12に付勢する付勢力F2の合力F3により、摩擦部材12は保持部材14に付勢される。この時、摩擦部材12のV溝12aと保持部材14の球突起14aが圧接されることにより、摩擦部材12は保持部材14に自由度無く保持される。   As shown in FIG. 3A, the friction member 12 is held by the combined force F3 of the pressing force F1 for pressing the vibrator 11 against the friction member 12 and the biasing force F2 for biasing the damping body 15 against the friction member 12. It is urged to. At this time, the V-groove 12a of the friction member 12 and the ball protrusion 14a of the holding member 14 are brought into pressure contact, so that the friction member 12 is held by the holding member 14 with no freedom.

図2において、振動子11に接着固定された保持枠171は、可動体172に設けられた一対の壁部172aに遊嵌されることによって、振動型モータ10の駆動方向に拘束されている。可動体172と保持枠171は、加圧バネ131が生じる加圧力F1の方向には移動可能に保持される。これにより、加圧バネ131が生じる加圧力F1を阻害せずに、可動体172を介して振動子11が生じる駆動力を外部へ取り出すことができる。振動子11と可動体172を駆動方向にガタなく連結したい場合には、可動体172の壁部172aと保持枠171の間に不図示のバネを配置し、ガタよせを行うことも可能である。また、可動体172の壁部172aと保持枠171の摩擦力による加圧力F1への影響を低減したい場合には、可動体172の壁部172aと保持枠171の間に不図示の転動コロを配置し、摩擦力の低減を行うことも可能である。   In FIG. 2, the holding frame 171 adhesively fixed to the vibrator 11 is loosely fitted to the pair of wall portions 172 a provided on the movable body 172, and is thus restrained in the driving direction of the vibration motor 10. The movable body 172 and the holding frame 171 are movably held in the direction of the pressing force F1 generated by the pressing spring 131. Thus, the driving force generated by the vibrator 11 can be extracted to the outside via the movable body 172 without inhibiting the pressure force F1 generated by the pressure spring 131. When it is desired to couple the vibrator 11 and the movable body 172 in the driving direction without rattling, a spring (not shown) may be disposed between the wall portion 172a of the movable body 172 and the holding frame 171 to perform rattling. . When it is desired to reduce the influence of the frictional force between the wall portion 172a of the movable body 172 and the holding frame 171 on the pressing force F1, a rolling roller (not shown) is provided between the wall portion 172a of the movable body 172 and the holding frame 171. To reduce the frictional force.

次に、図3(A)、(B)を参照して、摩擦部材12の保持について詳細に述べる。図3(A)は、摩擦部材12の正面図、図3(B)は底面図であって、振動子11の加圧力F1、2つの減衰体15による付勢力F2、及び加圧力F1と付勢力F2の合力F3が示されている。また、図3(B)において、加圧力F1、付勢力F2、合力F3が作用する点は、それぞれ作用点P1、P2、P3として示されている。なお、2つの減衰体15による付勢力F2は、実際は駆動方向に分散して作用しているが、理解しやすいように、まとめて作用点P2に作用しているとする。付勢力F2を生じる付勢手段(減衰体15自体)は摩擦部材12に固定されているため、付勢力F2の作用点P2は移動しない。これに対して、加圧力F1を生じる加圧手段13は、振動子11と共に移動するため、加圧力F1の作用点P1は摩擦部材12上において移動する。図3(B)は、振動子11が駆動ストローク端まで移動した時の加圧力F1の作用点P1の位置を示している。点P4、P5、P6は、保持部材14の球突起14aの位置であり、摩擦部材12は点P4、P5、P6の3点で当接され保持されている。   Next, the holding of the friction member 12 will be described in detail with reference to FIGS. 3 (A) and 3 (B). FIG. 3A is a front view of the friction member 12 and FIG. 3B is a bottom view, with a pressing force F1 of the vibrator 11, a biasing force F2 by two damping members 15, and a pressing force F1. The resultant F3 of the force F2 is shown. Further, in FIG. 3B, points at which the pressing force F1, the biasing force F2, and the resultant force F3 act are shown as action points P1, P2, and P3, respectively. In addition, although the urging | biasing force F2 by two damping bodies 15 is disperse | distributed and acted in the drive direction in fact, suppose that it is acting on the action point P2 collectively for easy understanding. Since the biasing means (damping body 15 itself) for producing the biasing force F2 is fixed to the friction member 12, the point of action P2 of the biasing force F2 does not move. On the other hand, the pressing means 13 for generating the pressing force F 1 moves with the vibrator 11, so the point of action P 1 of the pressing force F 1 moves on the friction member 12. FIG. 3B shows the position of the application point P1 of the pressure F1 when the vibrator 11 has moved to the end of the drive stroke. Points P4, P5, and P6 are the positions of the spherical projections 14a of the holding member 14, and the friction member 12 is held in contact at three points P4, P5, and P6.

点P4、P5、P6の全てにおいて、摩擦部材12が球突起14aから離れないためには、加圧力F1と付勢力F2の合力F3が摩擦部材12を球突起14aに圧接する向きである必要がある。また作用点P3は、図3(B)に示すように点P4、P5、P6の3点で形成される破線で示された三角形Tの内側に位置する必要がある。なお、振動子11が駆動ストローク端まで移動した時は、加圧力F1の作用点P1が最も三角形Tから遠く離れるため、合力F3が最も三角形Tの内側から外れ易い条件である。本発明の第一の実施形態のように付勢力F2が加圧力F1と向きが同じ場合は、付勢力F2の大きさが加圧力F1の大きさの1倍以上であると、図3(B)に示すように、合力F3の作用点P3が点P4、P5、P6で形成される三角形Tの内側に配置される。   In order to prevent the friction member 12 from separating from the ball protrusion 14a at all of the points P4, P5 and P6, it is necessary that the resultant F3 of the pressure F1 and the biasing force F2 be such that the friction member 12 is in pressure contact with the ball protrusion 14a. is there. The action point P3 needs to be located inside a triangle T indicated by a broken line formed by three points P4, P5 and P6 as shown in FIG. 3B. When the vibrator 11 has moved to the end of the drive stroke, the point of action P1 of the pressure F1 is farthest from the triangle T, so the resultant force F3 is most likely to be out of the inside of the triangle T. When the biasing force F2 has the same direction as the pressing force F1 as in the first embodiment of the present invention, it is assumed that the magnitude of the biasing force F2 is 1 or more times the magnitude of the pressing force F1, as shown in FIG. As shown in), the action point P3 of the resultant force F3 is disposed inside the triangle T formed by the points P4, P5 and P6.

図1(C)、(D)を参照すると、可動体172には案内溝172bが駆動方向に延在するように2箇所に設けられている。また、案内部材である案内板174は、保持部材14にビス締結されており、駆動方向に延在する案内部174a(案内溝)を2箇所備えている。可動体172の案内溝172bと案内板174の案内部174aの間には、転動部材である転動ボール173が3つ配置され、摩擦部材12や保持部材14に対し、可動体172や振動子11が駆動方向に移動可能に保持される。上記の構成において、振動子11を振動させ突起部112aに楕円運動が発生すると、突起部112aと摩擦部材12の間でX方向に駆動力が生じ、振動子11や可動体172を駆動方向に駆動することができる。以上が振動型モータ10の構成である。   Referring to FIGS. 1C and 1D, the movable body 172 is provided with guide grooves 172b at two positions so as to extend in the driving direction. Further, a guide plate 174 which is a guide member is screwed to the holding member 14 and includes two guide portions 174a (guide grooves) extending in the driving direction. Three rolling balls 173, which are rolling members, are disposed between the guide groove 172b of the movable body 172 and the guide portion 174a of the guide plate 174, and the movable body 172 and vibration of the friction member 12 and the holding member 14 are arranged. The child 11 is held movably in the drive direction. In the above configuration, when the vibrator 11 is vibrated and an elliptical motion occurs in the projection 112a, a driving force is generated in the X direction between the projection 112a and the friction member 12, and the vibrator 11 and the movable body 172 are driven in the driving direction. It can be driven. The above is the configuration of the vibration type motor 10.

次に、振動型モータ10の特徴について従来例と比較しながら説明する。特許文献1に開示されている従来の超音波モータは、本発明の振動型モータ10とは異なり、スライダーがベース部材の駆動方向の端部にネジにより固定されており、このネジの体積と雌ネジ部の体積が必要となり、装置が駆動方向に大型化していた。   Next, the features of the vibration type motor 10 will be described in comparison with the conventional example. The conventional ultrasonic motor disclosed in Patent Document 1 differs from the vibration type motor 10 of the present invention in that the slider is fixed to the end of the base member in the driving direction by a screw. The volume of the screw part was required, and the device was enlarged in the driving direction.

上記の従来例に対し、本発明の第一の実施形態の振動型モータ10は以下の2つの特徴を有している。第一の特徴は、摩擦部材12が付勢力F2により保持部材14の球突起14aに付勢されることで、保持部材14が摩擦部材12を保持する点である。第二の特徴は、保持部材14へ摩擦部材12を付勢するために減衰体15の付勢力F2を用いている点である。   The vibration type motor 10 according to the first embodiment of the present invention has the following two features, as compared with the conventional example described above. The first feature is that the holding member 14 holds the friction member 12 by urging the friction member 12 against the ball projections 14 a of the holding member 14 by the urging force F2. The second feature is that the biasing force F2 of the damping body 15 is used to bias the friction member 12 to the holding member 14.

次に、本発明の第一の実施形態の振動型モータ10の作用と効果について、図2及び図3(B)を参照して説明する。本発明の振動型モータ10の摩擦部材12は、保持部材14の球突起14aが当接するV溝12aのみ備えていれば十分であり、また摩擦部材12を保持部材14へ当接する力は減衰体15の付勢力F2を利用しているため、ビス等の固定部材は不要である。この構成により、摩擦部材12の保持に必要な締結部材は不用であるので、部品点数を削減できるとともに、振動型モータ10を小型化することができる。すなわち、従来例に対して、本発明の第一の実施形態の振動型モータ10の駆動方向の長さL1を短縮することができる。   Next, the operation and effects of the vibration type motor 10 according to the first embodiment of the present invention will be described with reference to FIGS. 2 and 3B. The friction member 12 of the vibration type motor 10 of the present invention is sufficient if it comprises only the V groove 12a with which the ball protrusion 14a of the holding member 14 abuts, and the force to abut the friction member 12 against the holding member 14 Since the biasing force F2 of 15 is used, a fixing member such as a screw is unnecessary. With this configuration, since the fastening member necessary for holding the friction member 12 is unnecessary, the number of parts can be reduced, and the vibration type motor 10 can be miniaturized. That is, the length L1 in the drive direction of the vibration type motor 10 according to the first embodiment of the present invention can be shortened compared to the conventional example.

なお、本発明の第一の実施形態の振動型モータ10では、保持部材14の位置規制部である球突起14aが3点設けられ、また、付勢力F2は加圧力F1と向きが同じであり、大きさが1倍以上である。振動型モータ10のように、摩擦部材12が3点で支持され、また付勢力F2と加圧力F1の向きが同じ場合は、前述のように付勢力F2の大きさが加圧力F1の大きさの1倍以上であれば摩擦部材12が3点で確実に支持され、駆動特性が安定し易い。上記の理由により、保持部材14の位置規制部は少なくとも3点設けられ、付勢力F2は加圧力F1と向きが同じであり、大きさが1倍以上であることが好ましい。   In the vibration type motor 10 according to the first embodiment of the present invention, three spherical protrusions 14a which are position regulating portions of the holding member 14 are provided, and the biasing force F2 has the same direction as the pressing force F1. , The size is more than 1 time. When the friction member 12 is supported at three points as in the vibration type motor 10 and the directions of the biasing force F2 and the pressing force F1 are the same, the magnitude of the biasing force F2 is the magnitude of the pressing force F1 as described above. The friction member 12 is reliably supported at three points, and the drive characteristics are easily stabilized. For the above reason, at least three position regulating portions of the holding member 14 are provided, and the biasing force F2 preferably has the same direction as the pressing force F1 and the size is 1 or more.

なお、本発明の第一の実施形態の振動型モータ10では、減衰体15は弾性変形された状態で固定され、弾性変形の反力により付勢力F2を生じ、摩擦部材12に付勢されることで減衰体15自体が付勢手段を兼ねている。また、振動子11が可動し、摩擦部材12が固定する構造を説明したが、振動子11を固定し、摩擦部材12を可動とした構造においても同様の効果が得られる。   In the vibration type motor 10 according to the first embodiment of the present invention, the damping body 15 is fixed in an elastically deformed state, generates a biasing force F2 by a reaction force of the elastic deformation, and is biased by the friction member 12 Thus, the damping body 15 itself also serves as a biasing means. Although the structure in which the vibrator 11 is movable and the friction member 12 is fixed has been described, the same effect can be obtained in a structure in which the vibrator 11 is fixed and the friction member 12 is movable.

(第二の実施形態)
以下、本発明の第二の実施形態である振動型モータ20の構成について説明する。図4(A)、(B)は、それぞれ振動型モータ20を異なる角度から見た斜視図であり、振動型モータ20の駆動方向をX方向で表している。図4(C)、(D)は、それぞれ図4(A)、(B)と同じ方向から見た振動型モータ20の分解斜視図である。
Second Embodiment
The configuration of the vibration type motor 20 according to the second embodiment of the present invention will be described below. FIGS. 4A and 4B are perspective views of the vibration type motor 20 viewed from different angles, and the driving direction of the vibration type motor 20 is represented by the X direction. FIGS. 4C and 4D are exploded perspective views of the vibration type motor 20 as viewed from the same direction as FIGS. 4A and 4B, respectively.

振動型モータ20は、主に振動子21と、摩擦部材22と、加圧手段23と、保持部材24と、減衰体25、振動子21の保持案内機構27によって構成される。加圧手段23は、加圧バネ231、加圧板232、フェルト233によって構成される。保持案内機構27は、保持枠271、可動体272、転動ボール273、案内板274によって構成される。振動子21については、振動型モータ10の振動子11と同様であるため説明を省略する。   The vibration type motor 20 mainly includes a vibrator 21, a friction member 22, a pressure means 23, a holding member 24, a damping body 25, and a holding guide mechanism 27 of the vibrator 21. The pressure means 23 is constituted by a pressure spring 231, a pressure plate 232 and a felt 233. The holding and guiding mechanism 27 includes a holding frame 271, a movable body 272, rolling balls 273, and a guide plate 274. The vibrator 21 is the same as the vibrator 11 of the vibration type motor 10, and thus the description thereof is omitted.

摩擦部材22は、例えば金属板であり、振動型モータ10と同様に、加圧手段23が生じる加圧力F1により振動子21が摩擦部材22に圧接され、摩擦部材22の面22bに摩擦摺動する。摩擦部材22の面22bには、位置規制部を構成する凹形状部が設けられている。この凹形状部は、V溝22aとして駆動方向に沿って2つ、駆動方向に直行する方向に沿って1つの3箇所に設けられている。   The friction member 22 is, for example, a metal plate, and like the vibration type motor 10, the vibrator 21 is brought into pressure contact with the friction member 22 by the pressure F1 generated by the pressure means 23, and friction sliding on the surface 22b of the friction member 22 Do. The surface 22 b of the friction member 22 is provided with a concave portion that constitutes a position restricting portion. The concave portions are provided as two V-grooves 22 a along the driving direction and at three places along one direction orthogonal to the driving direction.

加圧バネ231は、4つの引張コイルバネであり、加圧板232と可動体272を引き寄せる向きの加圧力F1を生じる。加圧力F1はフェルト233を介して振動子21へ伝達され、振動子21を摩擦部材22に対して加圧することは振動型モータ10と同様である。   The pressure spring 231 is a four tension coil spring, and generates a pressure force F1 in a direction to draw the pressure plate 232 and the movable body 272 together. The pressure F1 is transmitted to the vibrator 21 through the felt 233, and pressing the vibrator 21 against the friction member 22 is the same as the vibration type motor 10.

保持部材24は、2つの樹脂製の部材から構成された、枠形状をしており、摩擦部材22の3箇所のV溝22aの対応する位置に、摩擦部材22の位置を規制する位置規制部を構成する凸形状部が設けられている。この凸形状部は、球突起24aとして3箇所に設けられている。そして、それぞれの球突起24aは、摩擦部材22のV溝22aにそれぞれ当接し、摩擦部材22は、保持部材24に保持される。   The holding member 24 is in the form of a frame made of two resin members, and is a position restricting portion that restricts the position of the friction member 22 at the corresponding position of the three V grooves 22 a of the friction member 22. The convex-shaped part which comprises these is provided. The convex shaped portions are provided at three locations as spherical protrusions 24a. Each spherical projection 24 a abuts on the V groove 22 a of the friction member 22, and the friction member 22 is held by the holding member 24.

弾性体である減衰体25は、例えば振動型モータ20の駆動方向に延在するシート状の減衰ゴムである。または駆動方向に延在する断面形状が凸形状(円柱形状、円筒形状、突起形状)の減衰ゴムである。または、その断面形状は、駆動方向に段差の連続した段差形状でもよい。減衰体25は摩擦部材22と案内部材である案内板274に挟持され、固定される。案内板274には梁状のバネ部274bが形成されており、案内板274を保持部材24にビス固定した際には、バネ部274bが弾性変形する。振動型モータ20では、案内板274のバネ部274bの弾性変形の反力を、減衰体25を摩擦部材22へ付勢する付勢力F2として用いる。減衰体25が摩擦部材22に付勢されることで、振動型モータ10と同様に摩擦部材22の振動を抑制することができる。本発明の第二の実施形態の振動型モータ20では、案内板274のバネ部274bが弾性変形し、付勢力F2を生じる構成となっており、案内板274が付勢手段を兼ねている。また、減衰体25と摩擦部材22の接触点が摩擦部材22の共振の腹の近傍となるようにしてもよい。このように接触点を摩擦部材22の共振の腹の近傍とすることで、摩擦部材22の共振を防止できるという効果がある。   The damping body 25 which is an elastic body is, for example, a sheet-like damping rubber extending in the driving direction of the vibration motor 20. Alternatively, the cross-sectional shape extending in the driving direction is a damping rubber having a convex shape (a cylindrical shape, a cylindrical shape, a protrusion shape). Alternatively, the cross-sectional shape may be a step shape in which steps are continuous in the drive direction. The damping body 25 is sandwiched and fixed by the friction member 22 and a guide plate 274 which is a guide member. A beam-like spring portion 274 b is formed on the guide plate 274, and when the guide plate 274 is screwed to the holding member 24, the spring portion 274 b is elastically deformed. In the vibration type motor 20, the reaction force of the elastic deformation of the spring portion 274b of the guide plate 274 is used as a biasing force F2 for biasing the damping body 25 to the friction member 22. As the damping body 25 is biased by the friction member 22, the vibration of the friction member 22 can be suppressed as in the vibration type motor 10. In the vibration type motor 20 according to the second embodiment of the present invention, the spring portion 274b of the guide plate 274 is elastically deformed to generate the biasing force F2, and the guide plate 274 doubles as biasing means. Further, the contact point between the damping body 25 and the friction member 22 may be in the vicinity of the antinode of the resonance of the friction member 22. By setting the contact point in the vicinity of the antinode of the resonance of the friction member 22 as described above, the resonance of the friction member 22 can be prevented.

図5(B)に示すように、振動子21を摩擦部材22に加圧する加圧力F1と減衰体25を摩擦部材22に付勢する付勢力F2の合力F3により、摩擦部材22は保持部材24に付勢される。この時、摩擦部材22のV溝22aと保持部材24の球突起24aが圧接されることにより、摩擦部材22は保持部材24に自由度無く保持される。   As shown in FIG. 5B, the friction member 22 is held by the combined force F3 of the pressing force F1 for pressing the vibrator 21 against the friction member 22 and the biasing force F2 for biasing the damping body 25 against the friction member 22. It is urged to. At this time, the V-shaped groove 22a of the friction member 22 and the ball protrusion 24a of the holding member 24 are brought into pressure contact, so that the friction member 22 is held by the holding member 24 with no freedom.

次に、図5(A)、(B)を参照して、摩擦部材22の保持について詳細に述べる。図5(A)は、摩擦部材22の平面図、図5(B)は正面図であって、振動子21の加圧力F1、減衰体25を摩擦部材22に付勢する付勢力F2、及び加圧力F1と付勢力F2の合力F3が示されている。また、図5(B)において、加圧力F1、付勢力F2、合力F3が作用する点は、それぞれ作用点P1、P2、P3として示されている。なお、減衰体25を摩擦部材22に付勢する付勢力F2は、実際は駆動方向に分散して作用しているが、理解しやすいように、まとめて作用点P2に作用しているとする。摩擦部材22において、振動子21と接触する面は、図5(B)の面22bである。付勢力F2の作用点P2は移動せず、これに対して、加圧力F1を生じる加圧手段23は、振動子21と共に移動するため、加圧力F1の作用点P1は摩擦部材22上において移動する。図5(A)は、振動子21が駆動ストローク端まで移動した時の加圧力F1の作用点P1の位置を示している。点P4、P5、P6は、保持部材24の球突起24aの位置であり、摩擦部材22は点P4、P5、P6の3点で当接され支持されている。   Next, the holding of the friction member 22 will be described in detail with reference to FIGS. 5 (A) and 5 (B). 5A is a plan view of the friction member 22, and FIG. 5B is a front view, and a pressing force F1 of the vibrator 21, a biasing force F2 for biasing the damping member 25 to the friction member 22, and The resultant force F3 of the pressure F1 and the biasing force F2 is shown. Further, in FIG. 5B, points at which the pressing force F1, the biasing force F2, and the resultant force F3 act are shown as action points P1, P2, and P3, respectively. Although the urging force F2 urging the damping body 25 to the friction member 22 is actually dispersed in the driving direction, it is assumed that they act on the action point P2 collectively for easy understanding. The surface of the friction member 22 in contact with the vibrator 21 is the surface 22 b of FIG. 5 (B). The application point P2 of the biasing force F2 does not move, while the pressing means 23 for generating the pressing force F1 moves with the vibrator 21, so the action point P1 of the pressing force F1 moves on the friction member 22. Do. FIG. 5A shows the position of the application point P1 of the pressing force F1 when the vibrator 21 has moved to the end of the drive stroke. Points P4, P5, and P6 are positions of the spherical projections 24a of the holding member 24, and the friction member 22 is supported by being in contact at three points P4, P5, and P6.

振動型モータ10と同様に、点P4、P5、P6の全てにおいて、摩擦部材22が球突起24aから離れないためには、加圧力F1と付勢力F2の合力F3が摩擦部材22を球突起24aに圧接する向きである必要がある。また作用点P3は、図5(A)に示すように点P4、P5、P6の3点で形成される破線で示された三角形Tの内側に位置する必要がある。図5(A)に示すように、付勢力F2の向きが加圧力F1の向きと逆である場合は、付勢力F2の大きさが加圧力F1の大きさの3倍以上であると、合力F3の作用点P3が三角形Tの内側に配置される。以上の理由から本発明の第二の実施形態では、付勢力F2の大きさが加圧力F1の大きさの3倍以上となっている。   Similar to the vibration type motor 10, at all of the points P4, P5 and P6, the combined force F3 of the pressing force F1 and the biasing force F2 causes the friction member 22 to be the ball protrusion 24a so that the friction member 22 does not separate from the ball protrusion 24a It needs to be in the direction of pressing. Further, the action point P3 needs to be located inside a triangle T indicated by a broken line formed by three points P4, P5 and P6 as shown in FIG. 5 (A). As shown in FIG. 5A, when the direction of the biasing force F2 is opposite to the direction of the pressing force F1, if the magnitude of the biasing force F2 is three times or more the magnitude of the pressing force F1, the resultant force The action point P3 of F3 is disposed inside the triangle T. From the above reasons, in the second embodiment of the present invention, the magnitude of the biasing force F2 is three or more times the magnitude of the pressing force F1.

図4(C)、(D)を参照すると、振動子21の保持案内機構27について、壁部271aを有する保持枠271と、案内溝272bを有する可動体272の2部材をビス締結することによって可動部が構成されている。また、保持部材24は案内部材である案内板274にビス締結されており、案内板274は駆動方向に延在する案内部274a(案内溝)を2箇所備えている。可動体272の案内溝272bと案内板274の案内部274aの間には、転動部材である転動ボール273が3つ配置され、摩擦部材22や保持部材24に対し、可動体272や振動子21が駆動方向に移動可能に保持される。上記以外の構成は振動型モータ10と同様である。以上が振動型モータ20の構成の説明である。   Referring to FIGS. 4C and 4D, in the holding and guiding mechanism 27 of the vibrator 21, two members of a holding frame 271 having a wall 271a and a movable member 272 having a guide groove 272b are screwed together. A movable portion is configured. The holding member 24 is screwed to a guide plate 274 which is a guide member, and the guide plate 274 is provided with two guide portions 274a (guide grooves) extending in the driving direction. Three rolling balls 273 as rolling members are disposed between the guide groove 272b of the movable body 272 and the guide portion 274a of the guide plate 274, and the movable body 272 and the vibration with respect to the friction member 22 and the holding member 24 The child 21 is held movably in the drive direction. The configuration other than the above is the same as that of the vibration type motor 10. The above is the description of the configuration of the vibration type motor 20.

次に、振動型モータ20の特徴について説明する。振動型モータ20は振動型モータ10と同様に以下の2つの特徴を有している。第一の特徴は、摩擦部材22が付勢力F2により保持部材24の球突起24aに付勢されることで、保持部材24が摩擦部材22を保持する点である。第二の特徴は、保持部材24へ摩擦部材22を付勢するために減衰体25を摩擦部材22に付勢する付勢力F2を用いている点である。   Next, features of the vibration type motor 20 will be described. Like the vibration motor 10, the vibration motor 20 has the following two features. The first feature is that the holding member 24 holds the friction member 22 by urging the friction member 22 against the ball projections 24 a of the holding member 24 by the urging force F2. The second feature is that in order to bias the friction member 22 to the holding member 24, a biasing force F2 is used to bias the damping body 25 to the friction member 22.

次に、本発明の第二の実施形態の振動型モータ20の作用と効果について説明する。本発明の摩擦部材22は、保持部材24の球突起24aが当接するV溝22aのみ備えていれば十分であり、また摩擦部材22を保持部材24へ当接する力は減衰体25を摩擦部材22に付勢する付勢力F2を利用しているため、ビス等の固定部材は不要である。この構成により、摩擦部材22の保持に必要な締結部材は不用であるので、部品点数を削減できるとともに、振動型モータ20を小型化することができる。すなわち、従来例に対して、本発明の第二の実施形態の振動型モータ20の駆動方向の長さを短縮することができる。   Next, the operation and effects of the vibration type motor 20 according to the second embodiment of the present invention will be described. The friction member 22 of the present invention is sufficient if it has only the V groove 22a with which the ball protrusion 24a of the holding member 24 abuts, and the force for abut the friction member 22 against the holding member 24 reduces the damping member 25 to the friction member 22 Since a biasing force F2 is used to bias the fixing member, a fixing member such as a screw is not necessary. With this configuration, since the fastening member necessary to hold the friction member 22 is unnecessary, the number of parts can be reduced, and the vibration motor 20 can be miniaturized. That is, the length in the driving direction of the vibration type motor 20 according to the second embodiment of the present invention can be shortened compared to the conventional example.

なお、本発明の第二の実施形態の振動型モータ20では、保持部材24の位置規制部である球突起24aが3点設けられ、また、付勢力F2は加圧力F1と向きが逆であり、大きさが3倍以上である。振動型モータ20のように、摩擦部材22が3点で支持され、また付勢力F2と加圧力F1の向きが逆の場合は、前述のように付勢力F2の大きさが加圧力F1の大きさの3倍以上であれば摩擦部材22が3点で確実に支持され、駆動特性が安定し易い。上記の理由により、保持部材24の位置規制部は少なくとも3点設けられ、付勢力F2は加圧力F1と向きが逆であり、大きさが3倍以上であることが好ましい。   In the vibration type motor 20 according to the second embodiment of the present invention, three spherical projections 24a which are position regulating portions of the holding member 24 are provided, and the biasing force F2 is opposite in direction to the pressing force F1. , The size is more than three times. When the friction member 22 is supported at three points as in the vibration type motor 20 and the directions of the biasing force F2 and the pressing force F1 are opposite to each other, the magnitude of the biasing force F2 is the magnitude of the pressing force F1 as described above. If the length is three times or more, the friction member 22 is reliably supported at three points, and the drive characteristics are easily stabilized. For the above reason, at least three position regulating portions of the holding member 24 are provided, and the biasing force F2 is preferably opposite in direction to the pressing force F1 and three times or more in size.

なお、本発明の第二の実施形態の振動型モータ20では、案内板274のバネ部274bが弾性変形してその反力により付勢力F2を生じ、案内板274が付勢手段を兼ねている。または、弾性体を板バネとして、減衰ゴムを介して摩擦部材22を付勢する構成としてもよい。また、振動子21を固定し、摩擦部材22を可動とした構造においても本発明の効果が得られることは振動型モータ10と同様である。   In the vibration type motor 20 according to the second embodiment of the present invention, the spring portion 274b of the guide plate 274 is elastically deformed to generate the biasing force F2 by the reaction force thereof, and the guide plate 274 doubles as biasing means. . Alternatively, the elastic member may be a plate spring, and the friction member 22 may be biased via the damping rubber. Further, even in a structure in which the vibrator 21 is fixed and the friction member 22 is movable, the effect of the present invention can be obtained as in the vibration type motor 10.

(適用例)
本発明を適用したレンズ駆動装置の構造について説明する。図6(A)は、本発明の振動型モータ10を組込んだレンズ駆動装置であるレンズ鏡筒1を示す断面図である。撮像装置としてのカメラ本体2にはレンズ鏡筒1が着脱自在に取り付けられ、カメラ本体2内には撮像素子2aが設けられている。カメラ本体2のマウント9は、レンズ鏡筒1をカメラ本体2に取り付けるためのバヨネット部を有している。レンズ鏡筒1は固定筒3を有しており、マウント9のフランジ部と当接している。そして、固定筒3とマウント9は不図示のビスに固定されている。固定筒3には更に、レンズG1を保持する前鏡筒4とレンズG3を保持する後鏡筒5が固定される。レンズ鏡筒1は、フォーカスレンズ保持枠6を備え、レンズG2を保持している。フォーカスレンズ保持枠6は、前鏡筒4と後鏡筒5に保持されたガイドバー7によって直進移動可能に保持されている。振動型モータ10は後鏡筒5に不図示のビス等で固定されている。
(Example of application)
The structure of a lens drive device to which the present invention is applied will be described. FIG. 6A is a cross-sectional view showing a lens barrel 1 which is a lens driving device incorporating the vibration type motor 10 of the present invention. A lens barrel 1 is detachably attached to a camera body 2 as an imaging device, and an imaging element 2 a is provided in the camera body 2. The mount 9 of the camera body 2 has a bayonet portion for attaching the lens barrel 1 to the camera body 2. The lens barrel 1 has a fixed barrel 3 and is in contact with the flange portion of the mount 9. The fixed barrel 3 and the mount 9 are fixed to screws (not shown). The front barrel 4 holding the lens G1 and the rear barrel 5 holding the lens G3 are further fixed to the fixed barrel 3. The lens barrel 1 includes a focus lens holding frame 6 and holds a lens G2. The focus lens holding frame 6 is held by the front barrel 4 and the guide bar 7 held by the rear barrel 5 so as to be able to move in a straight line. The vibration type motor 10 is fixed to the rear barrel 5 with a screw or the like (not shown).

図6(B)は、振動型モータ10と、レンズG2と、フォーカスレンズ保持枠6と、ガイドバー7の斜視図である。振動型モータ10の可動体172には駆動力を外部に伝達する軸172cが設けられており、フォーカスレンズ保持枠6の係合部6aと係合する。上記のような構成で、振動型モータ10の振動子11が駆動すると、振動型モータ10の駆動力は、可動体172を介してフォーカスレンズ保持枠6に伝達される。フォーカスレンズ保持枠6は、ガイドバー7によって案内されて直線移動する。以上がレンズ鏡筒1の構成の説明である。   FIG. 6B is a perspective view of the vibration type motor 10, the lens G2, the focus lens holding frame 6, and the guide bar 7. As shown in FIG. The movable body 172 of the vibration type motor 10 is provided with a shaft 172 c for transmitting the driving force to the outside, and engages with the engagement portion 6 a of the focus lens holding frame 6. With the above configuration, when the vibrator 11 of the vibration type motor 10 is driven, the driving force of the vibration type motor 10 is transmitted to the focus lens holding frame 6 via the movable body 172. The focus lens holding frame 6 is guided by the guide bar 7 to move linearly. The above is the description of the configuration of the lens barrel 1.

次に、レンズ鏡筒1の特徴と作用、効果について説明する。レンズ鏡筒1の特徴は本発明の振動型モータ10をレンズG2の駆動に用いている点である。この作用としては、振動型モータ10が駆動方向に小型化されているため、レンズG2の駆動アクチュエータである振動型モータ10が光軸(図中C)方向に占める長さL1が短いことが挙げられる。以上の理由により、本発明により、光軸方向の長さL2を小型化したレンズ鏡筒1を提供することができる。また、本適用例のレンズ鏡筒1では、第一の実施形態である振動型モータ10を用いた例を示したが、第二の実施形態である振動型モータ20など、本発明で提案するいずれの形態のモータを用いても同様の効果を得ることができる。   Next, features, functions, and effects of the lens barrel 1 will be described. The feature of the lens barrel 1 is that the vibration type motor 10 of the present invention is used to drive the lens G2. As this action, since the vibration type motor 10 is miniaturized in the drive direction, it is mentioned that the length L1 occupied by the vibration type motor 10 which is a drive actuator of the lens G2 in the direction of the optical axis (C in the figure) is short. Be From the above reasons, according to the present invention, it is possible to provide the lens barrel 1 in which the length L2 in the optical axis direction is miniaturized. Further, in the lens barrel 1 of this application example, although an example using the vibration type motor 10 according to the first embodiment is shown, the vibration type motor 20 according to the second embodiment or the like is proposed in the present invention Similar effects can be obtained using any form of motor.

1 レンズ鏡筒(レンズ駆動装置)
10、20 振動型モータ
11、21 振動子
12、22 摩擦部材
12a、22a V溝(位置規制部)
13、23 加圧手段
14、24 保持部材
14a、24a 球突起(位置規制部)
15、25 減衰体(弾性体)
173、273 転動ボール(転動部材)
174、274 案内板(案内部材)
174a、274a 案内部
274b バネ部
F1 加圧力
F2 付勢力
G2 レンズ
1 Lens barrel (lens drive unit)
10, 20 vibration type motor 11, 21 vibrator 12, 22 friction member 12a, 22a V groove (position regulating portion)
13, 23 Pressing means 14, 24 Holding members 14a, 24a Spheres (position regulating portion)
15, 25 Damping body (elastic body)
173, 273 Rolling ball (rolling member)
174, 274 Guide plate (guide member)
174a, 274a Guide 274b Spring F1 Force F2 Force G2 Lens

Claims (14)

駆動電圧の印加により振動する振動子と、
前記振動子と摩擦摺動する摩擦部材と、
前記振動子を前記摩擦部材に加圧する加圧力を生じる加圧手段と、
前記摩擦部材を保持する保持部材と、
前記摩擦部材に付勢される弾性体と、
前記弾性体を前記摩擦部材に付勢する付勢手段と、を有し、
前記保持部材に対して前記摩擦部材の位置を規制する位置規制部を有し、
前記付勢手段による付勢力で前記摩擦部材が前記位置規制部に付勢されることにより、前記摩擦部材が保持されることを特徴とする振動型モータ。
A vibrator that vibrates by application of a drive voltage;
A friction member frictionally sliding on the vibrator;
Pressure means for generating a pressure force for pressing the vibrator against the friction member;
A holding member for holding the friction member;
An elastic body biased by the friction member;
Biasing means for biasing the elastic body against the friction member;
A position restricting portion that restricts the position of the friction member with respect to the holding member;
A vibration type motor characterized in that the friction member is held by urging the friction member against the position restricting portion by the urging force of the urging means.
前記位置規制部は、前記摩擦部材に凹形状部、前記保持部材に凸形状部で構成されることを特徴とする、請求項1に記載の振動型モータ。   The vibration type motor according to claim 1, wherein the position restricting portion is configured by a concave portion in the friction member and a convex portion in the holding member. 前記位置規制部は、前記摩擦部材にV溝の形状、前記保持部材に球突起の形状で構成されることを特徴とする、請求項1又は2に記載の振動型モータ。   The vibration type motor according to claim 1, wherein the position restricting portion is formed in a shape of a V groove in the friction member and in a shape of a ball protrusion in the holding member. 前記位置規制部は少なくとも3点設けられ、前記付勢力は、前記加圧力と向きが同じであり、前記加圧力に対して大きさが1倍以上であることを特徴とする、請求項1乃至3のいずれか1項に記載の振動型モータ。   The position restricting portion is provided at at least three points, and the biasing force has the same direction as the pressing force, and the magnitude is one or more times the pressing force. The vibration type motor according to any one of 3. 前記弾性体は、弾性変形した状態で固定され、前記弾性変形の反力により前記付勢力を生じ、前記付勢手段を兼ねることを特徴とする、請求項1乃至4のいずれか1項に記載の振動型モータ。   5. The elastic body according to claim 1, wherein the elastic body is fixed in a state of being elastically deformed, generates the biasing force by a reaction force of the elastic deformation, and doubles as the biasing unit. Vibration type motor. 前記弾性体は、減衰体であり、前記減衰体が前記摩擦部材を付勢することを特徴とする、請求項1乃至5のいずれか1項に記載の振動型モータ。   The vibration type motor according to any one of claims 1 to 5, wherein the elastic body is a damping body, and the damping body biases the friction member. 前記位置規制部は少なくとも3点設けられ、前記付勢力は、前記加圧力と向きが逆であり、前記加圧力に対して大きさが3倍以上であることを特徴とする、請求項1乃至3のいずれか1項に記載の振動型モータ。   The position restricting portion is provided at at least three points, and the biasing force is reverse in direction to the pressing force, and has a size three or more times greater than the pressing force. The vibration type motor according to any one of 3. 転動部材と、該転動部材の案内部と弾性変形するバネ部を有する案内部材とを更に有し、
該案内部材は、前記バネ部の変形の反力により前記付勢力を生じ、前記付勢手段を兼ねることを特徴とする、請求項7に記載の振動型モータ。
A rolling member, and a guiding member having a guiding portion of the rolling member and a spring portion which elastically deforms,
The vibration type motor according to claim 7, wherein the guide member generates the biasing force by a reaction force of deformation of the spring portion, and also serves as the biasing unit.
前記弾性体は、前記摩擦部材と前記案内部材とにより挟持されることを特徴とする、請求項8に記載の振動型モータ。   The vibration type motor according to claim 8, wherein the elastic body is sandwiched by the friction member and the guide member. 前記弾性体は、板バネであり、減衰体を介して前記摩擦部材を付勢することを特徴とする、請求項7に記載の振動型モータ。   The vibration type motor according to claim 7, wherein the elastic body is a leaf spring and biases the friction member through a damping body. 前記減衰体は、減衰ゴムであり、駆動方向に延在し、断面が凸形状であることを特徴とする、請求項6又は10に記載の振動型モータ。   11. The vibration type motor according to claim 6, wherein the damping body is damping rubber, extends in a driving direction, and has a convex cross section. 前記弾性体と前記摩擦部材との接触点は、前記摩擦部材の共振の腹の近傍であることを特徴とする、請求項1乃至11のいずれか1項に記載の振動型モータ。   The vibration motor according to any one of claims 1 to 11, wherein a contact point between the elastic body and the friction member is in the vicinity of an antinode of resonance of the friction member. 前記振動は、超音波領域の周波数の高周波振動であり、前記振動型モータは超音波モータであることを特徴とする、請求項1乃至12のいずれか1項に記載の振動型モータ。   The vibration type motor according to any one of claims 1 to 12, wherein the vibration is a high frequency vibration of a frequency in an ultrasonic region, and the vibration type motor is an ultrasonic motor. 請求項1乃至13のいずれか1項に記載の振動型モータをレンズの駆動に用いることを特徴とする、レンズ駆動装置。   A lens driving device using the vibration type motor according to any one of claims 1 to 13 for driving a lens.
JP2018004689A 2018-01-16 2018-01-16 Vibration type motor and lens driving device using vibration type motor Pending JP2019126160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004689A JP2019126160A (en) 2018-01-16 2018-01-16 Vibration type motor and lens driving device using vibration type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004689A JP2019126160A (en) 2018-01-16 2018-01-16 Vibration type motor and lens driving device using vibration type motor

Publications (1)

Publication Number Publication Date
JP2019126160A true JP2019126160A (en) 2019-07-25

Family

ID=67399177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004689A Pending JP2019126160A (en) 2018-01-16 2018-01-16 Vibration type motor and lens driving device using vibration type motor

Country Status (1)

Country Link
JP (1) JP2019126160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024606A1 (en) * 2020-07-31 2022-02-03 ミツミ電機株式会社 Lens driving device, camera module, and camera-equipped device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024606A1 (en) * 2020-07-31 2022-02-03 ミツミ電機株式会社 Lens driving device, camera module, and camera-equipped device

Similar Documents

Publication Publication Date Title
JP5955347B2 (en) Linear ultrasonic motor and optical apparatus using the same
US10379313B2 (en) Vibration wave motor and lens driving apparatus
CN110112953B (en) Motor and electronic apparatus including the same
US20180088298A1 (en) Linear driving apparatus using vibration wave motor and optical apparatus
US10924037B2 (en) Vibration motor that prevents resonance of contact member, and electronic apparatus
JP7007943B2 (en) Lens drive device with vibration wave motor and vibration wave motor
US11381177B2 (en) Vibration wave motor and drive device
JP2019126160A (en) Vibration type motor and lens driving device using vibration type motor
JP6594175B2 (en) Vibration wave motor, linear drive device and optical device using the vibration wave motor
US11533002B2 (en) Vibration type motor, optical apparatus, and driving apparatus using damper to suppress noise
JP2019126161A (en) Vibration wave motor and lens driving device using vibration wave motor
JP6708472B2 (en) Vibration wave motor and optical device equipped with the vibration wave motor
JP7094799B2 (en) Vibration type motor and drive
US11502625B2 (en) Vibration wave motor, and driving apparatus having the same
JP2022134925A (en) Vibration type motor and optical member driving device
CN112468015B (en) Vibration motor and driving apparatus
US11843279B2 (en) Vibration wave driving apparatus and image pickup apparatus
JP6537482B2 (en) Vibration wave motor and electronic equipment
JP2018174618A (en) Linear drive device employing vibration wave motor, and optical device
JP2017200355A (en) Vibration wave motor and electronic apparatus mounting vibration wave motor
JP2023048574A (en) Vibration type actuator, optical apparatus, and drive device
JP2019083664A (en) Vibration wave motor, lens device, and imaging apparatus
JP2023047785A (en) Vibration type actuator, optical device, and driving device
JP2019154145A (en) Vibration wave motor and lens device
JP2019201465A (en) Vibration wave motor and drive device