JP2019126110A - Power control unit and control method of the same - Google Patents

Power control unit and control method of the same Download PDF

Info

Publication number
JP2019126110A
JP2019126110A JP2018003236A JP2018003236A JP2019126110A JP 2019126110 A JP2019126110 A JP 2019126110A JP 2018003236 A JP2018003236 A JP 2018003236A JP 2018003236 A JP2018003236 A JP 2018003236A JP 2019126110 A JP2019126110 A JP 2019126110A
Authority
JP
Japan
Prior art keywords
power
inverter circuit
receiving point
flow
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003236A
Other languages
Japanese (ja)
Other versions
JP7040029B2 (en
Inventor
浩輝 遠藤
Hiroki Endo
浩輝 遠藤
昌克 栗坂
Masakatsu Kurisaka
昌克 栗坂
佑介 吉岡
Yusuke Yoshioka
佑介 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2018003236A priority Critical patent/JP7040029B2/en
Publication of JP2019126110A publication Critical patent/JP2019126110A/en
Application granted granted Critical
Publication of JP7040029B2 publication Critical patent/JP7040029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

To improve use efficiency of power generated by a dispersed power supply while a rise of system voltage during a reverse power flow is suppressed.SOLUTION: A power control unit 20 for dispersed power supply, which is interconnected to a power system 1, comprises: an inverter circuit 25 for converting power supplied from the dispersed power supply 10 from DC into AC and outputting it; and a controller 50. The controller 50 calculates received power Pgrid of a power receiving point 3 of the power system 1 on the basis of power consumption Pload of a load L which is branch-connected to a power line 5 connecting the power system 1 and the power control unit 20, and output power Pinv of the inverter circuit 25, controls an operation power factor COSφ of the inverter circuit 25 to a setting value smaller than 1 when the power receiving point 3 is a reverse power flow, and controls the operation power factor COSφ of the inverter circuit 25 to a value larger than the setting value when the power receiving point 3 is a forward power flow.SELECTED DRAWING: Figure 3

Description

本発明は、電力系統と連系する分散型電源の電力制御装置において、インバータ回路のの運転力率を制御する技術に関する。   The present invention relates to a technology for controlling an operating power factor of an inverter circuit in a power control device of a distributed power supply connected to a power system.

近年、化石燃料に対する依存の低減や環境問題の観点から、太陽光発電(PV:Photo Voltaic)システムに代表される分散型電源の導入が進められている。PVシステムは太陽光発電パネルで発電された電力を、パワーコンディショナ等の電力制御装置で、インバータ回路を用いて直流から交流に変換して出力している。また、接続された負荷の消費電力を発電量が上回る場合には、余剰電力として、系統電源側に逆潮流することで売電している。こうした電力制御装置に関する先行文献として、下記特許文献1に記載のものがある。   BACKGROUND ART In recent years, the introduction of distributed power sources represented by a photovoltaic (PV) system has been promoted from the viewpoint of reducing dependence on fossil fuels and environmental issues. The PV system is a power control device such as a power conditioner, and converts an electric power generated by a solar panel into a direct current to an alternating current using an inverter circuit and outputs the power. Moreover, when the amount of power generation exceeds the power consumption of the connected load, the power is sold by flowing back current to the grid power supply side as surplus power. As a prior art document regarding such a power control apparatus, there exists a thing of following patent document 1. FIG.

特開2017−127047号公報JP, 2017-127047, A

太陽光発電等の分散型電源により発電した電力の利用効率を高めるには、インバータ回路の運転力率を1に近くすることが望ましい。しかしながら、売電時、分散型電源の出力が系統電源側に逆潮流して系統電圧が上昇する場合があることから、逆潮流となる売電時に、インバータ回路の運転力率を設定値(1よりも小さな値)に抑えることが電気事業者から要請されている。
本発明は上記のような事情に基づいて完成されたものであって、逆潮流時における系統電圧の上昇を抑えつつ、太陽光発電など分散型電源により発電した電力の利用効率を高めることを目的とする。
In order to enhance the utilization efficiency of the electric power generated by the distributed power source such as solar power generation, it is desirable to make the operating power factor of the inverter circuit close to 1. However, when selling power, the output of the distributed power supply reversely flows to the system power supply side and the system voltage may rise, so the operating power factor of the inverter circuit is set to It is requested by the electric power companies to keep the value smaller than
The present invention has been completed based on the above circumstances, and it is an object of the present invention to improve utilization efficiency of power generated by distributed power sources such as solar power generation while suppressing an increase in grid voltage during reverse flow. I assume.

電力系統と連系する分散型電源用の電力制御装置であって、分散型電源から供給される電力を直流から交流に変換して出力するインバータ回路と、制御装置と、を含み、前記制御装置は、前記電力系統と前記電力制御装置とを接続する電力線に分岐接続された負荷の消費電力と前記インバータ回路の出力電力とに基づいて、前記電力系統の受電点の受電電力を算出し、前記受電点が逆潮流である場合、前記インバータ回路の運転力率を、1より小さい設定値に制御し、前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する。   An electric power control apparatus for distributed power supply linked to a power system, the control apparatus comprising: an inverter circuit that converts electric power supplied from the distributed power supply from direct current to alternating current and outputting the same; The received power of the power receiving point of the power system is calculated based on the power consumption of the load branch-connected to the power line connecting the power system and the power control apparatus and the output power of the inverter circuit, When the power receiving point is reverse power flow, the operating power factor of the inverter circuit is controlled to a set value smaller than 1, and when the power receiving point is forward power, the operating power factor of the inverter circuit is higher than the set value. Also control to a large value.

電力系統と連系する分散型電源用の電力制御装置の制御方法であって、前記電力系統と前記電力制御装置とを接続する電力線に分岐接続された前記負荷の消費電力と前記インバータ回路の出力電力とに基づいて、前記電力系統の受電点の受電電力を算出し、前記受電点が逆潮流である場合、前記分散型電源から供給される電力を直流から交流に変換して出力するインバータ回路の運転力率を、1より小さい設定値に制御し、前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する。   A control method of a power control apparatus for distributed power supply linked to a power system, which includes power consumption of the load and branch circuit connected to a power line connecting the power system and the power control apparatus, and an output of the inverter circuit An inverter circuit that calculates the received power of the power receiving point of the power system based on the power, and converts the power supplied from the distributed power source from direct current to alternating current when the power receiving point is reverse power flow The driving power factor of is controlled to a set value smaller than 1, and when the power receiving point is forward power, the driving power factor of the inverter circuit is controlled to a value larger than the set value.

本構成では、逆潮流時における系統電圧の上昇を抑えつつ、分散型電源により発電した電力の利用効率を高めることが出来る。   In this configuration, it is possible to improve the utilization efficiency of the power generated by the distributed power supply while suppressing the increase of the system voltage during reverse flow.

実施形態1における太陽光発電システムのブロック図Block diagram of the solar power generation system according to the first embodiment 電力計の電気的構成を示すブロック図Block diagram showing the electrical configuration of the power meter 電力潮流の説明図Explanation of power flow 制御装置の詳細構造を示すブロック図Block diagram showing the detailed structure of the control device 運転力率の制御の流れを示すフローチャート図Flow chart showing the flow of control of driving power factor 受電電力と運転力率の変化を示すグラフGraph showing changes in received power and driving power factor 順潮流時の負荷に対する電力の流れを示すブロック図Block diagram showing the flow of power to the load during forward flow 逆潮流時の負荷に対する電力の流れを示すブロック図Block diagram showing the flow of power to the load during reverse flow 実施形態2における太陽光発電システムの他の実施形態を示すブロック図Block diagram showing another embodiment of the solar power generation system in the second embodiment 蓄電装置について放電、放電停止の移行条件を示す図Diagram showing transition conditions of discharge and discharge stop for power storage device 受電電力と運転力率の変化を示すグラフGraph showing changes in received power and driving power factor

電力系統と連系する分散型電源用の電力制御装置であって、分散型電源から供給される電力を直流から交流に変換して出力するインバータ回路と、制御装置と、を含み、前記制御装置は、前記電力系統と前記電力制御装置とを接続する電力線に分岐接続された負荷の消費電力と前記インバータ回路の出力電力とに基づいて、前記電力系統の受電点の受電電力を算出し、前記受電点が逆潮流である場合、前記インバータ回路の運転力率を、1より小さい設定値に制御し、前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する。   An electric power control apparatus for distributed power supply linked to a power system, the control apparatus comprising: an inverter circuit that converts electric power supplied from the distributed power supply from direct current to alternating current and outputting the same; The received power of the power receiving point of the power system is calculated based on the power consumption of the load branch-connected to the power line connecting the power system and the power control apparatus and the output power of the inverter circuit, When the power receiving point is reverse power flow, the operating power factor of the inverter circuit is controlled to a set value smaller than 1, and when the power receiving point is forward power, the operating power factor of the inverter circuit is higher than the set value. Also control to a large value.

本構成では、逆潮流時、インバータ回路の運転力率を1よりも小さい設定値に制御するため、電力系統の系統電圧が上昇することを抑制できる。順潮流時は、インバータ回路の運転力率を設定値よりも大きな値に制御するため、運転力率を設定値に維持する場合と比べて、分散型電源により発電した電力の利用効率を高めることが出来る。受電電力を負荷の消費電力とインバータ回路の出力電力から求めるため、受電電力の計測用として専用の計器類を設ける必要がない。   In this configuration, since the operating power factor of the inverter circuit is controlled to a set value smaller than 1 during reverse power flow, it is possible to suppress an increase in system voltage of the electric power system. In order to control the operating power factor of the inverter circuit to a value larger than the set value during forward flow, increase the utilization efficiency of the power generated by the distributed power supply compared to the case where the operating power factor is maintained at the set value. Can do. In order to obtain the received power from the power consumption of the load and the output power of the inverter circuit, it is not necessary to provide dedicated instruments for measuring the received power.

前記制御装置は、順潮流時に前記受電点の受電電力が第1閾値よりも低下した場合、前記インバータ回路の運転力率を、減少させることが望ましい。本構成によれば、受電点の潮流が順潮流から逆潮流に切り換わる前に、インバータ回路の運転力率が下がるので、逆潮流時に、電力系統の系統電圧が上昇することを抑制できる。   It is desirable that the control device decreases the operating power factor of the inverter circuit when the received power at the power receiving point decreases below a first threshold during forward flow. According to this configuration, since the operating power factor of the inverter circuit is lowered before the power flow at the power receiving point is switched from the forward power flow to the reverse power flow, it is possible to suppress an increase in the system voltage of the power system at the time of the reverse power flow.

前記受電点における受電電力が第1閾値より大きい第2閾値よりも大きい場合、前記インバータ回路の運転力率を増加させることが好ましい。本構成によれば、受電電力が第2閾値より大きい場合、インバータ回路の運転力率を増加調整することから、受電点の受電電力を抑えることが出来る。また、第1閾値と第2閾値の間の範囲は、運転力率の調整が実行されない制御不感帯である。このような制御不感帯を設けることで、電力制御装置の制御ハンチングを抑制することが出来る。   When the received power at the power receiving point is larger than a second threshold larger than the first threshold, it is preferable to increase the driving power factor of the inverter circuit. According to this configuration, when the received power is larger than the second threshold, the operating power factor of the inverter circuit is adjusted to be increased, so that the received power at the power receiving point can be suppressed. Further, the range between the first threshold and the second threshold is a control dead zone in which the adjustment of the driving power factor is not performed. By providing such a control dead zone, control hunting of the power control device can be suppressed.

前記分散型電源と並列に蓄電装置を有する構成において、前記制御装置は、順潮流時に前記蓄電装置を放電し、逆潮流時は、前記蓄電装置の放電を停止することが好ましい。本構成によれば、順潮流時に、蓄電装置を放電することで、受電電力を抑えることが可能となり、蓄電装置に貯められたエネルギーを有効利用することが出来る。また、逆潮流の場合は、放電を停止することで、蓄電装置に貯められたエネルギーの売電を抑制できる。   In the configuration having the power storage device in parallel with the dispersed power source, it is preferable that the control device discharges the power storage device at the time of forward flow, and stop the discharge of the power storage device at the time of reverse power flow. According to this configuration, by discharging the power storage device at the time of forward flow, received power can be suppressed, and energy stored in the power storage device can be effectively used. In addition, in the case of reverse power flow, selling the energy stored in the power storage device can be suppressed by stopping the discharge.

前記制御装置は、前記受電点の受電電力が前記第2閾値以上である場合に、前記蓄電装置の放電を開始し、前記インバータ回路の運転力率が上限値であり、かつ前記受電点の受電電力が前記第2閾値未満の場合、前記蓄電装置の放電を停止することが好ましい。この構成では、逆潮流から順潮流への移行時は、順潮流への移行後、蓄電装置の放電を早期に開始することが出来る。そのため、蓄電装置に貯められたエネルギーを有効利用することが出来る。また、順潮流から逆潮流への移行時は、逆潮流前に、蓄電装置の放電を停止することが出来る。   The control device starts discharging the power storage device when the received power at the power receiving point is equal to or higher than the second threshold, the operating power factor of the inverter circuit is an upper limit value, and the power receiving at the power receiving point When the power is less than the second threshold, it is preferable to stop the discharge of the power storage device. In this configuration, at the time of transition from reverse flow to forward flow, discharge of the power storage device can be started early after transition to forward flow. Therefore, energy stored in the power storage device can be effectively used. In addition, at the time of transition from forward flow to reverse flow, discharge of the power storage device can be stopped before reverse flow.

<実施形態1>
1.太陽光発電システムSの説明
図1は太陽光発電システムSのブロック図である。
太陽光発電(PV:Photo Voltaic)システムSは、太陽光発電パネル10と、パワーコンディショナ20と、から構成されている。太陽光発電パネル10は、本発明の「分散型電源」の一例、パワーコンディショナ20は、本発明の「電力制御装置」の一例である。
First Embodiment
1. Description of Solar Power Generation System S FIG. 1 is a block diagram of a solar power generation system S.
A photovoltaic power generation (PV: Photo Voltaic) system S includes a photovoltaic power generation panel 10 and a power conditioner 20. The solar panel 10 is an example of the “distributed power supply” of the present invention, and the power conditioner 20 is an example of the “power control device” of the present invention.

パワーコンディショナ20は、コンバータ回路21と、電解コンデンサC1と、インバータ回路25と、フィルタ回路27と、リレー29と、制御装置50と、直流電圧検出部31と、出力電流検出部33と、出力電圧検出部35と、系統電圧検出部36と、を備えている。   The power conditioner 20 includes a converter circuit 21, an electrolytic capacitor C1, an inverter circuit 25, a filter circuit 27, a relay 29, a control device 50, a DC voltage detection unit 31, an output current detection unit 33, and an output. A voltage detection unit 35 and a system voltage detection unit 36 are provided.

コンバータ回路21は、太陽光発電パネル10に対して接続されている。コンバータ回路21は、太陽光発電パネル10の出力電圧(直流)を昇圧して出力する。電解コンデンサC1は、コンバータ回路21とインバータ回路25の中間に位置するリンク部23に配置されている。電解コンデンサC1は、リンク部23の電圧を安定させるために設けられている。   The converter circuit 21 is connected to the photovoltaic panel 10. The converter circuit 21 boosts the output voltage (direct current) of the photovoltaic power generation panel 10 and outputs it. The electrolytic capacitor C <b> 1 is disposed in the link portion 23 located between the converter circuit 21 and the inverter circuit 25. The electrolytic capacitor C1 is provided to stabilize the voltage of the link unit 23.

太陽光発電パネル10により発電された電力は、コンバータ回路21を介してリンク部23に入力され、その結果として、リンク部23の電圧Vdcが上昇する。   The electric power generated by the photovoltaic panel 10 is input to the link unit 23 via the converter circuit 21. As a result, the voltage Vdc of the link unit 23 is increased.

インバータ回路25は、コンバータ回路21の出力側に接続されており、入力される直流電力を交流電力に変換して出力する。より詳細には、インバータ回路25には、太陽光発電パネル10の発電によりリンク部23において基準値より増加した電圧分に相当する電力が入力される。従って、基準値より増加した電圧分に相当する電力が、直流から交流に変換され、インバータ回路25から出力される。   The inverter circuit 25 is connected to the output side of the converter circuit 21, converts the input DC power into AC power, and outputs it. More specifically, power corresponding to a voltage increased at the link unit 23 by the power generation of the solar panel 10 is input to the inverter circuit 25. Therefore, the power corresponding to the voltage increased from the reference value is converted from direct current to alternating current and output from the inverter circuit 25.

インバータ回路25は、リレー29を介して、系統電源2を交流電源とする電力系統1に接続されている。電力系統は電力事業者のものでもよいし、大型パワーコンディショナの自立運転出力で成り立っている独立した電力系統でもよい。インバータ回路25と電力系統1とを接続する電力線5には、分岐線4を介して、負荷Lが接続されている。そのため、パワーコンディショナ20から、需要設備である負荷Lに対して交流電力を供給することが出来る。また、インバータ回路25の出力電力Pinvと負荷Lの消費電力Ploadとのバランス(Pinv>Ploadの場合)により、負荷Lだけでなく、電力系統1に対しても、交流電力を供給することが出来る。受電点3は、電力系統1による電力の供給地点であり、図1に示すように、電力系統1と需要設備である負荷Lが設けられた構内との境界部分である。   The inverter circuit 25 is connected via the relay 29 to the power system 1 using the system power supply 2 as an AC power supply. The electric power system may be that of the electric power company, or may be an independent electric power system made up of the independent operation output of the large-sized power conditioner. A load L is connected to a power line 5 connecting the inverter circuit 25 and the power system 1 via a branch line 4. Therefore, AC power can be supplied from the power conditioner 20 to the load L, which is a demand facility. Further, due to the balance between the output power Pinv of the inverter circuit 25 and the power consumption Pload of the load L (when Pinv> Pload), AC power can be supplied not only to the load L but also to the power system 1. . The power receiving point 3 is a supply point of power by the power system 1, and as shown in FIG. 1, is a boundary portion between the power system 1 and a premises provided with a load L which is a demand facility.

負荷Lが接続される分岐線4には、電力計40が設置されている。電力計40は例えば、スマートメータである。電力計40は、図2に示すように、負荷Lの電流Iloadを計測する電流計測部41と、分岐線4の電圧Vloadを計測する電圧計測部43と、演算処理部45と、通信部47、記憶部49とを備える。   A power meter 40 is installed at the branch line 4 to which the load L is connected. The power meter 40 is, for example, a smart meter. As illustrated in FIG. 2, the power meter 40 includes a current measurement unit 41 that measures the current Iload of the load L, a voltage measurement unit 43 that measures the voltage Vload of the branch line 4, an arithmetic processing unit 45, and a communication unit 47. , Storage unit 49.

演算処理部45は、電流Iloadと電圧Vloadとに基づいて、負荷Lの消費電力(有効電力)Ploadを算出する。例えば、負荷Lの電流Iloadの瞬時値と、分岐線4の電圧Vloadの瞬時値の積の平均値から、負荷Lの消費電力(有効電力)Ploadを求めることが出来る。電力計40は、通信部47により、ネットワークNWに接続されている。パワーコンディショナ20の制御装置50は、通信部51を有しており、ネットワークNWを介して、負荷Lの消費電力Ploadのデータを電力計40から受信することが出来る。   The arithmetic processing unit 45 calculates the power consumption (active power) Pload of the load L based on the current Iload and the voltage Vload. For example, the power consumption (active power) Pload of the load L can be obtained from the average value of the product of the instantaneous value of the current Iload of the load L and the instantaneous value of the voltage Vload of the branch line 4. The power meter 40 is connected to the network NW by the communication unit 47. The control device 50 of the power conditioner 20 includes the communication unit 51, and can receive data of the power consumption Pload of the load L from the power meter 40 via the network NW.

リレー29は、電力系統1との連系用として設置されている。リレー29を閉じることで、太陽光発電システムSを電力系統1に連系させることが出来る。フィルタ回路27は、インバータ回路25とリレー29との間に配置されている。フィルタ回路27は、リアクトルL1とコンデンサC2から構成されており、インバータ回路25の出力から高調波成分を除去する。   The relay 29 is installed for interconnection with the power system 1. By closing the relay 29, the photovoltaic power generation system S can be connected to the power system 1. The filter circuit 27 is disposed between the inverter circuit 25 and the relay 29. The filter circuit 27 is composed of a reactor L1 and a capacitor C2, and removes harmonic components from the output of the inverter circuit 25.

直流電圧検出部31は、リンク部23の電圧Vdcを検出する。直流電圧検出部31により検出されたリンク部23の電圧Vdcは、制御装置50に対して入力される。   The DC voltage detection unit 31 detects the voltage Vdc of the link unit 23. The voltage Vdc of the link unit 23 detected by the DC voltage detection unit 31 is input to the control device 50.

出力電流検出部33は、インバータ回路25の出力電流Iinvを検出する。具体的には、出力電流検出部33は、図1に示すように、フィルタ回路27のリアクトルL1とコンデンサC2の間に位置しており、リアクトルL1の電流を検出する。出力電流検出部33により検出されたインバータ回路25の出力電流Iinvは、制御装置50に対して入力される。   The output current detection unit 33 detects an output current Iinv of the inverter circuit 25. Specifically, as shown in FIG. 1, the output current detection unit 33 is located between the reactor L1 and the capacitor C2 of the filter circuit 27, and detects the current of the reactor L1. The output current Iinv of the inverter circuit 25 detected by the output current detection unit 33 is input to the control device 50.

出力電圧検出部35は、フィルタ回路27の出力側に接続されており、高調波成分除去後のインバータ回路25の出力電圧Vinvを検出する。出力電流検出部33により検出されたインバータ回路25の出力電流Iinvと、出力電圧検出部35により検出されたインバータ回路25の出力電圧Vinvは、制御装置50に対して入力される。   The output voltage detection unit 35 is connected to the output side of the filter circuit 27 and detects the output voltage Vinv of the inverter circuit 25 after removing the harmonic component. The output current Iinv of the inverter circuit 25 detected by the output current detection unit 33 and the output voltage Vinv of the inverter circuit 25 detected by the output voltage detection unit 35 are input to the control device 50.

系統電圧検出部36は、リレー29の電力系統1側に配置されており、電力系統1の系統電圧Vgridを検出する。系統電圧検出部36により検出された系統電圧Vgridは、制御装置50に対して入力される。   The grid voltage detection unit 36 is disposed on the power grid 1 side of the relay 29 and detects a grid voltage Vgrid of the power grid 1. The grid voltage Vgrid detected by the grid voltage detection unit 36 is input to the control device 50.

制御装置50は、インバータ回路25の出力電力Pinv[W]と、負荷Lの消費電力Pload[W]とに基づいて、以下の(1)式より、電力系統1の受電点3における受電電力Pgrid[W]を算出する(図3参照)。
Pgrid=Pload−Pinv・・・・・(1)
Based on output power Pinv [W] of inverter circuit 25 and power consumption Pload [W] of load L, control device 50 receives received power Pgrid at power receiving point 3 of power system 1 according to the following equation (1). Calculate [W] (see FIG. 3).
Pgrid = Pload-Pinv (1)

制御装置50は、受電電力Pgridから、電力潮流(以下、単に潮流とする)の状態を判定し、インバータ回路25の運転力率COSφを制御する。   Control device 50 determines the state of power flow (hereinafter simply referred to as power flow) from received power Pgrid, and controls operation power factor COSφ of inverter circuit 25.

Pgrid>0の場合、系統電源2から受電点3に向かう潮流(順潮流)であり、Pgrid<0の場合、受電点3から系統電源2に向かう潮流(逆潮流)である。図1、図3では、順潮流をA1で示し、逆潮流をA2で示す。   In the case of Pgrid> 0, it is a power flow (forward power flow) from the system power supply 2 to the power receiving point 3, and in the case of Pgrid <0, it is a power flow (reverse power flow) from the power receiving point 3 to the system power supply 2. In FIG. 1 and FIG. 3, forward flow is indicated by A1, and reverse flow is indicated by A2.

運転力率COSφは、インバータ回路25の出力する皮相電力Sinv[VA]に対する有効電力Pinv[W]の比率である。位相角φは、インバータ回路25の出力電圧Vinvに対する出力電流Iinvの角度である。   The operating power factor COSφ is a ratio of the active power Pinv [W] to the apparent power Sinv [VA] output from the inverter circuit 25. The phase angle φ is an angle of the output current Iinv with respect to the output voltage Vinv of the inverter circuit 25.

COSφ=Pinv/Sinv・・・・・(2)   COS φ = Pinv / Sinv (2)

図4は、制御装置50のうち運転力率COSφの制御に関する制御ブロックを示した図である。制御装置50は、出力電力演算部53、PLL回路55、運転力率指令部57、無効電流指令部59、無効電力制御部61、直流電圧制御部63、出力電流制御部65、インバータ電流制御部67、PWM制御部69を備えている。   FIG. 4 is a diagram showing a control block related to control of the driving power factor COSφ in the control device 50. Control device 50 includes output power calculation unit 53, PLL circuit 55, operating power factor command unit 57, reactive current command unit 59, reactive power control unit 61, DC voltage control unit 63, output current control unit 65, inverter current control unit 67, a PWM control unit 69 is provided.

出力電力演算部53は、出力電流検出部33及び出力電圧検出部35により検出されるインバータ回路25の出力電流Iinvと出力電圧Vinvより、インバータ回路25の出力電力(有効電力)Pinvと無効電力Qinvを算出する。   The output power calculation unit 53 calculates the output power (active power) Pinv and the reactive power Qinv of the inverter circuit 25 from the output current Iinv and the output voltage Vinv of the inverter circuit 25 detected by the output current detector 33 and the output voltage detector 35. Calculate

PLL回路55は、系統電圧検出部36により検出される系統電圧Vgridの検出値から系統電圧Vgridの位相角θを算出する。位相角は、0≦θ<360°である。   The PLL circuit 55 calculates the phase angle θ of the system voltage Vgrid from the detection value of the system voltage Vgrid detected by the system voltage detection unit 36. The phase angle is 0 ≦ θ <360 °.

運転力率指令部57は、外部計測器40により検出された受電電力Pgridに基づいて、インバータ回路25の運転力率COSφの指令値PFinv*を決定する。具体的には、受電電力Pgridについて、2つの閾値X1、X2を設定している。   Driving power factor command unit 57 determines a command value PFinv * of driving power factor COSφ of inverter circuit 25 based on received power Pgrid detected by external measuring instrument 40. Specifically, two thresholds X1 and X2 are set for the received power Pgrid.

そして、運転力率指令部57は、受電電力Pgridが第1閾値X1より小さい場合、力率指令値PFinv*を減少させる。また、受電電力Pgridが第2閾値X2以上の場合、力率指令値PFinv*を増加する。第2閾値X2は、第1閾値X1より大きく(X2>X1)、第2閾値X2は一例として500W、第1閾値X1は一例として250Wである。   Then, when received power Pgrid is smaller than first threshold value X1, driving power factor command unit 57 decreases power factor command value PFinv *. When received power Pgrid is equal to or greater than second threshold value X2, power factor command value PFinv * is increased. The second threshold X2 is larger than the first threshold X1 (X2> X1), the second threshold X2 is 500 W as an example, and the first threshold X1 is 250 W as an example.

無効電力指令部59は、力率指令値PFinv*と、現在出力しているインバータ回路25の有効電力Pinvに応じて、出力しなければならないインバータ回路25の無効電力指令値Qinv*を計算する。具体的には、力率指令値PFinv*と有効電力Pinvの積が、無効電力指令値Qinv*として生成される。   The reactive power command unit 59 calculates the reactive power command value Qinv * of the inverter circuit 25 that should be output, according to the power factor command value PFinv * and the active power Pinv of the inverter circuit 25 currently being output. Specifically, the product of power factor command value PFinv * and active power Pinv is generated as reactive power command value Qinv *.

無効電力制御部61は、インバータ回路25の無効電力Qinvが無効電力指令値Qinv*に収束するように制御量をPI(Proportional-Integral)演算する。そして、PI演算して求めた制御量からインバータ回路25の無効電流目標値Iqinv*を算出して出力する。   Reactive power control unit 61 calculates a control amount PI (Proportional-Integral) so that reactive power Qinv of inverter circuit 25 converges on reactive power command value Qinv *. Then, the reactive current target value Iqinv * of the inverter circuit 25 is calculated and output from the control amount obtained by PI calculation.

直流電圧制御部63は、リンク部23の直流電圧Vdcが、直流電圧指令値Vdc*に収束するように制御量をPI演算する。そして、PI演算して求めた制御量からインバータ回路25の有効電流目標値Ipinv*を算出して出力する。直流電圧指令値Vdc*は、予め定められた固定値である。   The DC voltage control unit 63 performs PI calculation of the control amount so that the DC voltage Vdc of the link unit 23 converges to the DC voltage command value Vdc *. Then, the effective current target value Ipinv * of the inverter circuit 25 is calculated and output from the control amount obtained by PI calculation. The DC voltage command value Vdc * is a predetermined fixed value.

出力電流制御部65は、インバータ回路25の出力電流Iinvが定格を超えないように、電流指令値の上限を算出する。具体的には、インバータ回路25の定格電流及び力率指令値PFinv*に基づいて、有効電流上限値Iplimおよび無効電流上限値Iqlimを算出する。   The output current control unit 65 calculates the upper limit of the current command value so that the output current Iinv of the inverter circuit 25 does not exceed the rating. Specifically, based on the rated current of inverter circuit 25 and power factor command value PFinv *, effective current upper limit value Iplim and reactive current upper limit value Iqlim are calculated.

インバータ電流制御部67は、インバータ回路25の出力電流Iinvが、下記の(3)式で示す電流指令値Iinv*に収束するように制御量をPI演算し、PWM制御部69に対してインバータ回路25をPWM制御するためのデューティ比Dyを出力する。   The inverter current control unit 67 performs PI operation on the control amount so that the output current Iinv of the inverter circuit 25 converges to the current command value Iinv * shown by the following equation (3), and outputs the inverter circuit to the PWM control unit 69 A duty ratio Dy for performing PWM control of 25 is output.

Iinv*=Ipinv*×sinθ+Iqinv*×cosθ・・・・・(3)   Iinv * = Ipinv * × sin θ + Iqinv * × cos θ (3)

PWM制御部69は、インバータ電流制御部67より入力されるデューティ比Dyに基づいて、インバータ回路25をPWM制御する。具体的には、インバータ回路25を構成する各半導体スイッチ(図略)をPWM制御する。これにより、インバータ回路25の出力電流Iinvが電流指令値Iinv*に調整される。以上のことから、インバータ回路25の運転力率COSφを、運転力率指令部57にて算出した力率指令値PFinv*に制御することが出来る。   The PWM control unit 69 performs PWM control of the inverter circuit 25 based on the duty ratio Dy input from the inverter current control unit 67. Specifically, each semiconductor switch (not shown) constituting the inverter circuit 25 is subjected to PWM control. Thus, the output current Iinv of the inverter circuit 25 is adjusted to the current command value Iinv *. From the above, it is possible to control the driving power factor COSφ of the inverter circuit 25 to the power factor command value PFinv * calculated by the driving power factor command unit 57.

また、制御部50には、メモリ53が設けられている。メモリ53には、インバータ回路25の運転力率COSφの制御するためのプログラムや、蓄電装置100の充放電を制御するためのプログラムが記憶されている。   Further, the control unit 50 is provided with a memory 53. The memory 53 stores a program for controlling the operating power factor COSφ of the inverter circuit 25 and a program for controlling charging and discharging of the power storage device 100.

2.運転力率COSφの制御
図5はインバータ回路25の運転力率COSφの制御(以下、力率制御)の流れを示すフローチャート図(S10〜S70)である。
2. Control of Driving Power Factor COSφ FIG. 5 is a flowchart (S10 to S70) showing a flow of control (hereinafter, power factor control) of the driving power factor COSφ of the inverter circuit 25.

制御装置50は、まず、インバータ回路25の出力電力Pinv[W]と、電力計40により計測される負荷Lの消費電力Pload[W]とに基づいて、受電点3の受電電力Pgrid[W]を算出する(S10)。   Control device 50 first receives received power Pgrid [W] of power receiving point 3 based on output power Pinv [W] of inverter circuit 25 and consumed power Pload [W] of load L measured by power meter 40. Is calculated (S10).

次に、制御装置50の運転力率指令部57は、S10にて算出した受電電力Pgridを、第2閾値X2と比較する(S20)。第2閾値X2は、例えば500Wである。   Next, the driving power factor command unit 57 of the control device 50 compares the received power Pgrid calculated in S10 with the second threshold X2 (S20). The second threshold X2 is, for example, 500 W.

運転力率指令部57は、受電点3の受電電力Pgridが第2閾値X2以上の場合(S20:YES)、運転力率COSφの現在値が1.00より小さいか、判定する(S30)。   If received power Pgrid at power reception point 3 is equal to or greater than second threshold X2 (S20: YES), driving power factor command unit 57 determines whether the current value of driving power factor COSφ is smaller than 1.00 (S30).

運転力率指令部57は、運転力率COSφの現在値が1.00より小さい場合、運転力率COSφを所定量Zだけ増加させる力率指令値PFinv*を生成する。所定量Zは、例えば0.01である(S40)。   When the current value of driving power factor COSφ is smaller than 1.00, driving power factor command unit 57 generates power factor command value PFinv * that increases driving power factor COSφ by a predetermined amount Z. The predetermined amount Z is, for example, 0.01 (S40).

力率指令値PFinv*が生成されると、インバータ回路25の出力電流Iinvは、インバータ電流制御部67、PWM制御部69により、力率指令値PFinv*に対応した電流指令値Iinv*に調整されることから、インバータ回路25の運転力率COSφは目標値、すなわち現在値よりも所定量Zだけ増加した値に調整される。   When power factor command value PFinv * is generated, output current Iinv of inverter circuit 25 is adjusted to current command value Iinv * corresponding to power factor command value PFinv * by inverter current control unit 67 and PWM control unit 69. Thus, the operating power factor COSφ of the inverter circuit 25 is adjusted to a target value, that is, a value increased by a predetermined amount Z from the current value.

一方、運転力率指令部57は、受電点3の受電電力Pgridが第2閾値X2よりも小さい場合(S20:NO)、受電電力Pgridを第1閾値X1と比較する(S50)。第1閾値X1は、例えば250Wである。   On the other hand, if the received power Pgrid at the power receiving point 3 is smaller than the second threshold X2 (S20: NO), the driving power factor command unit 57 compares the received power Pgrid with the first threshold X1 (S50). The first threshold X1 is, for example, 250 W.

運転力率指令部57は、受電点3の受電電力Pgridが第1閾値X1より小さい場合(S50:YES)、現在の運転力率COSφが設定値Yより小さいか、判定する(S60)。設定値Yは、例えば0.80である。   If received power Pgrid at power reception point 3 is smaller than first threshold X1 (S50: YES), driving power factor command unit 57 determines whether current driving power factor COSφ is smaller than set value Y (S60). The set value Y is, for example, 0.80.

運転力率指令部57は、現在の運転力率COSφが設定値Yより大きい場合、運転力率COSφを所定量Zだけ減少させる力率指令値PFinv*を生成する。所定量Zは、一例として0.01である。   If the current driving power factor COSφ is larger than the set value Y, the driving power factor command unit 57 generates a power factor command value PFinv * that reduces the driving power factor COSφ by a predetermined amount Z. The predetermined amount Z is 0.01 as an example.

力率指令値PFinv*を生成されると、インバータ回路25の出力電流Iinvは、インバータ電流制御部67、PWM制御部69により、力率指令値PFinv*に対応した電流指令値Iinv*に調整されることから、インバータ回路25の運転力率COSφは目標値、すなわち現在値よりも所定量Zだけ減少した値に調整される。   When power factor command value PFinv * is generated, output current Iinv of inverter circuit 25 is adjusted by inverter current control unit 67 and PWM control unit 69 to current command value Iinv * corresponding to power factor command value PFinv *. Thus, the operating power factor COSφ of the inverter circuit 25 is adjusted to a target value, that is, a value reduced by a predetermined amount Z from the current value.

また、受電電力Pgridが第1閾値X1より大きい場合(S50:NO)、または、運転力率COSφが設定値(Y=0.80)以下である場合(S60:NO)、インバータ回路25の運転力率COSφは現在値に維持される。   In addition, when received power Pgrid is greater than first threshold X1 (S50: NO), or when operating power factor COSφ is less than or equal to the set value (Y = 0.80) (S60: NO), operating power factor of inverter circuit 25. COSφ is maintained at the current value.

上記した力率制御(S10〜S70)は、パワーコンディショナ20の出力中、所定の周期で繰り返し実行される。S10の受電電力Pgridを算出する処理は、パワーコンディショナ20の出力中に限らず、パワーコンディショナ20の停止中に行うことも可能であり、停止中も受電電力Pgridを算出して、受電点3の潮流を監視することが出来る。   The above-described power factor control (S10 to S70) is repeatedly performed in a predetermined cycle during the output of the power conditioner 20. The process of calculating the received power Pgrid in S10 can be performed not only during the output of the power conditioner 20 but also while the power conditioner 20 is stopped. It is possible to monitor the current of 3.

次に、インバータ回路25の運転力率COSφの制御例を説明する。図6は負荷変動に伴う、インバータ回路25の出力電力Pinv、受電点3の受電電力Pgrid及び運転力率COSφの時間的変化を示すグラフである。図6中の「破線で示すB1」は負荷Lの消費電力Ploadを示し、「太線で示すB2」はインバータ回路25の出力電力Pinv、「一点鎖線で示すB3」は受電点3の受電電力Pgridを示している。   Next, a control example of the driving power factor COSφ of the inverter circuit 25 will be described. FIG. 6 is a graph showing temporal changes of the output power Pinv of the inverter circuit 25, the received power Pgrid of the power receiving point 3 and the operating power factor COSφ with load fluctuation. “B1 indicated by a broken line” in FIG. 6 indicates the power consumption Pload of the load L, “B2 indicated by a thick line” indicates the output power Pinv of the inverter circuit 25, “B3 indicated by an alternate long and short dash line” indicates the received power Pgrid of the power receiving point 3 Is shown.

図6では、時刻t1で負荷Lが重負荷から軽負荷へ減少を開始している。重負荷の場合、図7に示すように、受電点3の潮流は順潮流(Pgrid>0)であり、太陽光発電システムSと電力系統1の双方から、負荷Lに対して電力が供給される。   In FIG. 6, the load L starts to decrease from heavy load to light load at time t1. In the case of heavy load, as shown in FIG. 7, the power flow of the power receiving point 3 is forward power (Pgrid> 0), and power is supplied to the load L from both the photovoltaic system S and the power system 1. Ru.

受電点3の受電電力Pgridが500W以上であれば、インバータ回路25の運転力率COSφは、図5に示す力率制御(S10〜S70)が1回実行されるごとに、現在値から0.01ずつ増加して上限値1.00に連続的に調整される。そのため、負荷Lが重負荷の期間(開始〜t1までの期間)、インバータ回路25の運転力率COSφは、上限値1.00に維持される。   If the received power Pgrid of the power receiving point 3 is 500 W or more, the operating power factor COSφ of the inverter circuit 25 is 0.01 from the present value each time the power factor control (S10 to S70) shown in FIG. It is increased and continuously adjusted to the upper limit 1.00. Therefore, the operating power factor COSφ of the inverter circuit 25 is maintained at the upper limit value 1.00 during a heavy load period (period from start to t1) of the load L.

負荷Lが重負荷から軽負荷に減少を開始する時刻t1以降、受電点3の受電電力Pgridは減少してゆく。そして、太陽光発電システムSの出力だけで、負荷Lの消費電力Ploadを全て供給できるようになると、図8に示すように、受電点3の潮流は逆潮流(Pgrid<0)となり、太陽光発電システムSから負荷Lだけでなく、電力系統1側に電力が供給される。   From time t1 when the load L starts to decrease from a heavy load to a light load, the received power Pgrid of the power receiving point 3 decreases. Then, when all the power consumption Pload of the load L can be supplied only by the output of the solar power generation system S, the power flow of the power receiving point 3 becomes reverse power flow (Pgrid <0) as shown in FIG. Power is supplied from the power generation system S to the power system 1 as well as the load L.

一方、受電点3の受電電力Pgridが低下して第1閾値(X1=250W)よりも小さくなる時刻t2以降、インバータ回路25の運転力率COSφは、図5に示す力率制御(S10〜S70)が1回実行されるごとに、0.01ずつ連続的に減少し、設定値(Y=0.80)に調整される。   On the other hand, after time t2 when received power Pgrid at power receiving point 3 decreases and becomes smaller than the first threshold (X1 = 250 W), operating power factor COSφ of inverter circuit 25 is power factor control (S10 to S70 shown in FIG. 5). The value is continuously decreased by 0.01 and adjusted to the set value (Y = 0.80) each time the.

そのため、受電点3の潮流が順潮流から逆潮流に切り換わる時刻t3以降、インバータ回路25の運転力率COSφは、設定値0.80に維持される。そして、負荷Lの消費電力Ploadがゼロになると、インバータ回路25の出力電力Pinvは、全て逆潮流して、電力系統1に供給される状態となる。   Therefore, after time t3 when the power flow at power reception point 3 switches from forward power flow to reverse power flow, operating power factor COSφ of inverter circuit 25 is maintained at set value 0.80. Then, when the power consumption Pload of the load L becomes zero, all the output power Pinv of the inverter circuit 25 reversely flows and is supplied to the power system 1.

以上のように、逆潮流(Pgrid<0)時に、インバータ回路25の運転力率COSφを、1よりも小さい設定値0.80に制御することから、電力系統1の系統電圧Vgridが上昇することを抑制できる。   As described above, since the operating power factor COSφ of the inverter circuit 25 is controlled to the set value 0.80 smaller than 1 at the time of reverse power flow (Pgrid <0), the system voltage Vgrid of the power system 1 is suppressed from rising. it can.

また更に、負荷Lが軽負荷から重負荷に増加すると、受電点3の受電電力Pgridは増加して、受電点3の潮流は、逆潮流から順潮流に切り換わる。図6の例では、時間を逆に辿るような変化(t4⇒t5)として考えることが出来る。   Furthermore, when the load L increases from light load to heavy load, the received power Pgrid at the power receiving point 3 increases, and the power flow at the power receiving point 3 switches from reverse power flow to forward power flow. In the example of FIG. 6, it can be considered as a change (t4⇒t5) which traces time in reverse.

受電電力Pgridが第2閾値(X2=500W)よりも大きくなる時刻t5以降、インバータ回路25の運転力率COSφは、制御装置50により、0.01刻みで連続的に増加調整され、設定値0.80から上限値1.00まで変化する。そして、受電点3が順潮流であって、受電電力Pgridが第2閾値X2よりも大きい期間、インバータ回路25の運転力率COSφは、上限値1.00に維持される。   After time t5 when received power Pgrid becomes larger than the second threshold (X2 = 500 W), driving power factor COSφ of inverter circuit 25 is continuously increased and adjusted by 0.01 by control device 50, and the upper limit is set value 0.80 It changes to the value 1.00. Then, the operating power factor COSφ of the inverter circuit 25 is maintained at the upper limit value 1.00 while the power receiving point 3 is a forward flow and the period during which the received power Pgrid is larger than the second threshold value X2.

順潮流時に、運転力率COSφを増加させることで、インバータ回路25の出力する有効電力Pinvが増加するため、電力系統1から受電点3に供給される受電電力Pgridを抑えることが可能となる。   Since the active power Pinv output from the inverter circuit 25 is increased by increasing the operating power factor COSφ at the time of forward flow, received power Pgrid supplied from the power system 1 to the receiving point 3 can be suppressed.

また、制御装置50は、受電点3の受電電力Pgridを第2閾値(X2>X1)と比較して、インバータ回路25の運転力率COSφを増加させている。   Further, the control device 50 compares the received power Pgrid of the power receiving point 3 with the second threshold (X2> X1) to increase the operating power factor COSφ of the inverter circuit 25.

このように、インバータ回路25の運転力率COSφを調整する閾値Xとして、2つの閾値X1、X2を設けている。2つの閾値X1、X2の間の範囲(250W〜500W)は、運転力率COSφの調整が実行されない制御不感帯である。制御不感帯を設けることで、インバータ回路25の制御ハンチングを抑制することが出来る。   As described above, two thresholds X1 and X2 are provided as the threshold X for adjusting the operating power factor COSφ of the inverter circuit 25. A range (250 W to 500 W) between the two threshold values X1 and X2 is a control dead zone in which the adjustment of the driving power factor COSφ is not performed. The control hunting of the inverter circuit 25 can be suppressed by providing the control dead zone.

5.効果説明
本構成では、逆潮流時、インバータ回路25の運転力率COSφを1よりも小さい設定値Yに制御するため、電力系統1の系統電圧Vgridが上昇することを抑制できる。また、順潮流時は、インバータ回路25の運転力率COSφを設定値Yよりも大きな値に制御するため、運転力率COSφを設定値Yに維持する場合と比べて、太陽光発電パネル10により発電した電力の利用効率を高めることが出来る。また、本構成では、受電電力Pgridを負荷Lの消費電力Ploadとインバータ回路25の出力電力Pinvから求めるため、受電電力Pgridの計測用として専用の計器類を設ける必要がない。
5. Description of Effects In the present configuration, at the time of reverse power flow, the operating power factor COSφ of the inverter circuit 25 is controlled to the set value Y smaller than 1, so that the system voltage Vgrid of the power system 1 can be suppressed from rising. Further, during forward flow, the photovoltaic power generation panel 10 is compared to the case where the operating power factor COSφ is maintained at the set value Y in order to control the operating power factor COSφ of the inverter circuit 25 to a value larger than the set value Y. It is possible to improve the utilization efficiency of the generated power. Further, in the present configuration, since the received power Pgrid is obtained from the power consumption Pload of the load L and the output power Pinv of the inverter circuit 25, it is not necessary to provide dedicated instruments for measuring the received power Pgrid.

<実施形態2>
実施形態1の太陽光発電システムSは、太陽光発電パネル10と、パワーコンディショナ20とを備えた構成であった。
Second Embodiment
The photovoltaic power generation system S of Embodiment 1 has a configuration including the photovoltaic power generation panel 10 and the power conditioner 20.

実施形態2の太陽光発電システムS1は、実施形態1の太陽光発電システムSに対して、蓄電装置100が追加されている。太陽光発電システムS1は、図9に示すように、太陽光発電パネル10と、蓄電装置100と、パワーコンディショナ200とから構成されている。   The solar power generation system S1 of the second embodiment has a storage device 100 added to the solar power generation system S of the first embodiment. As shown in FIG. 9, the solar power generation system S1 includes a solar power generation panel 10, a power storage device 100, and a power conditioner 200.

パワーコンディショナ200は、実施形態1のパワーコンディショナ20と比べて、コンバータ回路21の数が相違しており、太陽光発電パネル用のコンバータ回路21Aと、蓄電装置100用のコンバータ回路21Bをリンク部23に対して並列に設けている。   Power conditioner 200 differs in the number of converter circuits 21 from power conditioner 20 of the first embodiment, and links converter circuit 21A for a photovoltaic power generation panel and converter circuit 21B for power storage device 100. It is provided in parallel to the unit 23.

太陽光発電パネル10と蓄電装置100は、図9に示すようにコンバータ回路21A、21Bを介して、パワーコンディショナ200のリンク23に対して並列に接続されている。   The photovoltaic panel 10 and the storage device 100 are connected in parallel to the link 23 of the power conditioner 200 via the converter circuits 21A and 21B as shown in FIG.

蓄電装置100は、例えば、二次電池やキャパシタである。蓄電装置100は、太陽光発電パネル10の余剰電力を蓄電する装置である。   Power storage device 100 is, for example, a secondary battery or a capacitor. Power storage device 100 is a device for storing surplus power of photovoltaic power generation panel 10.

太陽光発電システムS1の制御部50は、図10に示すように、受電電力Pgridが第2閾値X2の500W以上の場合、蓄電装置100の放電を開始する。そして、運転力率COSφが1.0であり、かつ、受電電力Pgridが第2閾値X2の500W未満の場合、蓄電装置100の放電を停止する。   As shown in FIG. 10, control unit 50 of solar power generation system S1 starts discharging of power storage device 100 when received power Pgrid is 500 W or more of second threshold X2. Then, if the driving power factor COSφ is 1.0 and the received power Pgrid is less than 500 W of the second threshold X2, the discharge of the power storage device 100 is stopped.

図11は、パワーコンディショナ200の運転制御例であり、日中など太陽光発電パネル10の発電時について、受電電力Pgridと運転力率COSφの変化を示したグラフである。図11中の「破線で示すB1」は負荷Lの消費電力Ploadを示し、「太線で示すB2」はインバータ回路25の出力電力Pinv、「一点鎖線で示すB3」は受電点3の受電電力Pgridを示している。また、図11にてPVは太陽光発電パネル出力であり、BTは蓄電装置出力である。   FIG. 11 is an operation control example of the power conditioner 200, and is a graph showing changes in the received power Pgrid and the driving power factor COSφ at the time of power generation of the photovoltaic panel 10 such as during the daytime. “B1 indicated by a broken line” in FIG. 11 indicates the power consumption Pload of the load L, “B2 indicated by a thick line” indicates the output power Pinv of the inverter circuit 25, “B3 indicated by an alternate long and short dash line” indicates the received power Pgrid of the power receiving point 3 Is shown. Moreover, in FIG. 11, PV is a solar power generation panel output, and BT is an electrical storage apparatus output.

開始〜時刻t1まで期間は、重負荷で順潮流していることから、インバータ回路25の運転力率COSφは、制御装置50により、上限値である1に制御されている。また、時刻t1まで期間、受電電力Pgridは500Wよりも大きいため、制御装置50は、コンバータ回路21Bを介して蓄電装置100を出力状態に制御する(放電)。従って、開始〜時刻t1まで期間、パワーコンディショナ200は、太陽光発電パネル10と蓄電装置100を併用した出力状態となる。太陽光発電パネル10と蓄電装置100とも出力は2.5kWで、合計出力は5kWである。   Since the period from start to time t1 is forward flow with heavy load, the driving power factor COSφ of the inverter circuit 25 is controlled by the control device 50 to 1 which is the upper limit value. In addition, since received power Pgrid is larger than 500 W during a period until time t1, control device 50 controls power storage device 100 in the output state via converter circuit 21B (discharge). Therefore, power conditioner 200 is in an output state in which solar power generation panel 10 and power storage device 100 are used in combination during a period from start to time t1. The output of both the photovoltaic panel 10 and the storage device 100 is 2.5 kW, and the total output is 5 kW.

負荷変動により、時刻t1以降、受電電力Pgridが減少し始める。受電電力Pgridが第2閾値X2の500Wを下回る時刻taにて、制御装置50はコンバータ回路21Bに対して放電を停止する指令を送る。   Due to the load fluctuation, the received power Pgrid starts to decrease after time t1. At time ta when received power Pgrid falls below 500 W of second threshold X2, control device 50 sends a command to converter circuit 21B to stop the discharge.

蓄電装置100の出力は、時刻ta以降、減少してゆき、時刻tbにてゼロになる。従って、時刻tb以降、パワーコンディショナ200は、太陽光発電パネル10による単独の出力状態に移行して、初期出力の半分の2.5kWの出力となる。一方、受電電力Pgridは、蓄電装置100が出力停止した時刻tb以降、500Wから更に減少していく。   The output of power storage device 100 decreases after time ta and becomes zero at time tb. Therefore, after time tb, the power conditioner 200 shifts to a single output state by the photovoltaic panel 10, and has an output of 2.5 kW, which is half of the initial output. On the other hand, received power Pgrid further decreases from 500 W after time tb when output of power storage device 100 is stopped.

制御装置50は、受電電力Pgridが第1閾値X1の250Wを下回る時刻tcにて、インバータ回路25に対して運転力率COSφを減少する指令を送る。   Control device 50 sends a command to inverter circuit 25 to reduce operating power factor COSφ at time tc when received power Pgrid falls below 250 W of first threshold value X1.

これにより、インバータ回路25の運転力率COSφは、上限値である「1」から減少調整される。そして、受電点の潮流が順方向から逆潮流に転じる時刻td以降、インバータ回路25の運転力率COSφは、設定値(Y=0.80)に調整される。   Thus, the driving power factor COSφ of the inverter circuit 25 is adjusted to decrease from the upper limit value “1”. Then, after time td when the power flow at the power receiving point changes from the forward direction to the reverse power flow, the driving power factor COSφ of the inverter circuit 25 is adjusted to the set value (Y = 0.80).

その後、負荷Lが軽負荷から重負荷に増加すると、受電電力Pgridは増加して、受電点3の潮流は、逆潮流から順潮流に切り換わる。図11の例では、時間を逆に辿るような変化(te⇒tf)として考えることが出来る。   Thereafter, when the load L increases from light load to heavy load, the received power Pgrid increases, and the power flow at the power receiving point 3 switches from reverse power flow to forward power flow. In the example of FIG. 11, it can be considered as a change (te⇒tf) in which time is traced in reverse.

制御装置50は、受電電力Pgridが500W以上となる時刻tfにて、コンバータ回路21Bに対して放電を開始する指令を送る。そのため、逆潮流から順潮流への移行後、受電電力Pgridが500W以上となる時刻tf以降は、パワーコンディショナ200は、太陽光発電パネル10と蓄電装置100を併用した出力状態となる。   Control device 50 sends a command to start discharging to converter circuit 21B at time tf when received power Pgrid is 500 W or more. Therefore, after time tf when received power Pgrid reaches 500 W or more after transition from reverse power flow to forward power flow, power conditioner 200 is in an output state in which photovoltaic power generation panel 10 and power storage device 100 are used in combination.

また、制御装置50は、受電電力Pgridが500W以上となる時刻tf以降、インバータ回路25の運転力率COSφを、0.01刻みで連続的に増加調整する。これにより、逆潮流から順潮流への移行後、インバータ回路25の運転力率COSφは、設定値0.80から上限値1.00まで変化し、上限値1.00に維持される。   In addition, after time tf when the received power Pgrid is 500 W or more, the control device 50 continuously adjusts the operating power factor COSφ of the inverter circuit 25 in increments of 0.01. As a result, after the shift from the reverse flow to the forward flow, the operating power factor COSφ of the inverter circuit 25 changes from the set value 0.80 to the upper limit 1.00, and is maintained at the upper limit 1.00.

以上のように、制御装置50は、受電電力Pgridが500W以上になると、蓄電装置100の放電を開始する。また、制御装置50は、運転力率COSφが上限値である「1」に制御されている状態において、受電電力Pgridが500W未満になると、蓄電装置100の放電を停止する。このようにすることで、順潮流(Pgrid>0)の場合のみ、蓄電装置100を放電でき、逆潮流(Pgrid<0)の場合は、放電を停止することができる。   As described above, when received power Pgrid reaches 500 W or more, control device 50 starts discharging of power storage device 100. Further, control device 50 stops the discharge of power storage device 100 when received power Pgrid is less than 500 W in a state where driving power factor COSφ is controlled to “1” which is the upper limit value. By doing this, it is possible to discharge power storage device 100 only in the case of forward power flow (Pgrid> 0), and in the case of reverse power flow (Pgrid <0), it is possible to stop the discharge.

また、蓄電装置100が放電を開始する時の受電電力Pgridは500Wであり、これは、運転力率COSφを設定値0.8から増加させる第2閾値X2である。そのため、逆潮流から順潮流への移行後、運転力率COSφを設定値0.8から増加する制御を開始するのと同時に、蓄電装置100は放電を開始する。以上のことから、運転力率COSφが上限値である「1」に調整されるのを待って放電を開始する場合(時刻tgで放電を開始する場合)に比べて、蓄電装置100の放電を早期に開始することが出来る。そのため、受電電力Pgridを抑えることが可能となり、蓄電装置100に貯められたエネルギーを有効利用することが出来る。   Further, received power Pgrid when power storage device 100 starts discharging is 500 W, which is second threshold value X2 for increasing operating power factor COSφ from set value 0.8. Therefore, after the transition from the reverse flow to the forward flow, power storage device 100 starts discharging at the same time as control for increasing operating power factor COSφ from set value 0.8 is started. From the above, compared to the case where discharge is started after waiting for adjustment of operating power factor COSφ to the upper limit value “1” (when discharge is started at time tg), discharge of power storage device 100 is performed. You can start early. Therefore, received power Pgrid can be suppressed, and energy stored in power storage device 100 can be effectively used.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
Other Embodiments
The present invention is not limited to the embodiments described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)実施形態1、2では、分散型電源の一例として、太陽光発電パネル10を示した。分散型電源は、需要地に隣接して分散配置される小規模な発電設備全般の総称であり、例えば、太陽光発電装置10以外にも、風力発電装置、バイオマス発電装置などが含まれる。風力発電装置やバイオマス発電装置等の交流発電装置の場合、発電装置の出力を整流器で整流して直流に変換してからリンク部23に接続し、リンク部23の直流電力をインバータ回路25で交流電力に変換するシステムにするとよい。   (1) In the first and second embodiments, the photovoltaic power generation panel 10 is shown as an example of the distributed power supply. The distributed power source is a general term for small-scale power generation equipment generally distributed and disposed adjacent to a demand place, and includes, for example, a wind power generator, a biomass power generator and the like in addition to the solar power generator 10. In the case of an AC power generator such as a wind power generator or a biomass power generator, the output of the power generator is rectified by a rectifier and converted to direct current, and then connected to the link unit 23. It is good to make it the system which converts to electric power.

(2)実施形態1、2では、電力制御装置の一例として、PV用のパワーコンディショナ20を示した。電力制御装置は、少なくとも、インバータ回路25と、制御装置50を備えた構成であればよく、コンバータ回路21、電解コンデンサC1、リンク部23、フィルタ回路27、リレー29等は、無くてもよい。系統電圧Vgridのデータを外部計測器などから取得可能な場合、系統電圧検出部36を廃止することも出来る。   (2) In the first and second embodiments, the power conditioner 20 for PV is shown as an example of the power control apparatus. The power control device may have at least a configuration including the inverter circuit 25 and the control device 50, and the converter circuit 21, the electrolytic capacitor C1, the link unit 23, the filter circuit 27, the relay 29, and the like may be omitted. When the data of the grid voltage Vgrid can be obtained from an external measuring instrument or the like, the grid voltage detection unit 36 can be eliminated.

(3)実施形態1、2では、逆潮流時における運転力率COSφの設定値Yを0.80とした。設定値Yは1よりも小さな値であればよく、0.80以外の数値でもよい。また、運転力率COSφの増減は0.01刻みで行う場合に限らず、例えば、0.02刻みなど、他の調整幅としてもよい。   (3) In the first and second embodiments, the set value Y of the driving power factor COSφ at the time of reverse power flow is set to 0.80. The set value Y may be a value smaller than 1 and may be a numerical value other than 0.80. In addition, the increase or decrease of the driving power factor COSφ is not limited to 0.01 increments, but may be another adjustment range such as 0.02 increments.

(4)実施形態1、2では、受電点3の受電電力Pgridについて、2つの閾値X1、X2を設定し、受電電力Pgridが第1閾値X1よりも小さい場合、力率指令値PFinv*を減少させることにより、逆潮流時(Pgrid<0)の運転力率COSφを下げて、設定値(Y=0.80)とした。また、受電電力Pgridが第2閾値X2よりも大きい場合、力率指令値PFinv*を増加させることにより、順潮流時(Pgrid>0)の運転力率COSφを設定値(Y=0.80)よりも大きな値とした。   (4) In the first and second embodiments, two threshold values X1 and X2 are set for received power Pgrid of power receiving point 3, and when received power Pgrid is smaller than first threshold X1, power factor command value PFinv * is decreased. By doing this, the driving power factor COSφ at the time of reverse power flow (Pgrid <0) is lowered to a set value (Y = 0.80). In addition, when received power Pgrid is larger than second threshold value X2, operating power factor COSφ at forward power flow (Pgrid> 0) is higher than the set value (Y = 0.80) by increasing power factor command value PFinv *. It was a big value.

上記以外にも、以下の方法で、運転力率COSφを調整しもよい。受電点3における受電電力Pgridの正負に基づいて、受電点3の潮流が順潮流か逆潮流か、を判別する。逆潮流時(Pgrid<0)には、運転力率COSφを設定値(Y=0.80)に制御する。一方、順潮流時(Pgrid>0)には、順潮流時(Pgrid>0)の運転力率COSφを設定値(Y=0.80)よりも大きな値に制御する。また、同様に受電点3の潮流の状態(順潮流or逆潮流)に応じて、蓄電装置100の放電、放電停止を制御することも出来る。   In addition to the above, the driving power factor COSφ may be adjusted by the following method. Based on whether the received power Pgrid at the power receiving point 3 is positive or negative, it is determined whether the power flow at the power receiving point 3 is a forward power flow or a reverse power flow. At the time of reverse power flow (Pgrid <0), the driving power factor COSφ is controlled to the set value (Y = 0.80). On the other hand, at the time of forward power flow (Pgrid> 0), the driving power factor COSφ at forward power flow (Pgrid> 0) is controlled to a value larger than the set value (Y = 0.80). In addition, similarly, it is also possible to control discharge and stop of discharge of power storage device 100 according to the state of the power flow at power reception point 3 (forward power flow or reverse power flow).

(5)実施形態1、2では、電力線5に分岐接続された負荷Lが単数である例を示したが、負荷Lは複数でもよい。負荷Lが複数の場合、複数負荷Lのトータル消費電力Pload[W]と、インバータ回路25の出力電力Pinv[W]とから、受電点3の受電電力Pgrid[W]を算出すればよい。また、電力線5に対して負荷Lと共に別のパワーコンディショナが接続されていてもよい。負荷Lと共に別のパワーコンディショナが接続されている場合、別のパワーコンディショナをマイナス負荷として、以下の(a)式により、受電点の受電電力Pgridが可能である。   (5) In the first and second embodiments, although an example in which the load L branched and connected to the power line 5 is single is shown, the load L may be plural. When there are a plurality of loads L, the received power Pgrid [W] of the power receiving point 3 may be calculated from the total power consumption Pload [W] of the multiple loads L and the output power Pinv [W] of the inverter circuit 25. Also, another power conditioner may be connected to the power line 5 together with the load L. When another power conditioner is connected together with the load L, the received power Pgrid of the power receiving point can be set by using the other power conditioner as a negative load according to the following equation (a).

Pgrid=(Pload−Pinv2)−Pinv1・・・・・(a)
Pinv1は制御対象であるパワーコンディショナ20のインバータ回路25の出力電力、Pinv2は、電力線5に接続された別のパワーコンディショナのインバータ回路の出力電力である。
Pgrid = (Pload-Pinv2) -Pinv1 (a)
Pinv1 is the output power of the inverter circuit 25 of the power conditioner 20 to be controlled, Pinv2 is the output power of the inverter circuit of another power conditioner connected to the power line 5.

1...電力系統
2...系統電源
3...受電点
10...太陽光発電パネル(本発明の「分散型電源」の一例)
20...パワーコンディショナ(本発明の「電力制御装置」の一例)
21...コンバータ回路
25...インバータ回路
27...フィルタ回路
29...リレー
40...電力計
50...制御装置
100...蓄電装置
X1、X2...第1閾値、第2閾値
DESCRIPTION OF SYMBOLS 1 ... Power system 2 ... System power supply 3 ... Receiving point 10 ... Photovoltaic panel (an example of "distributed power supply" of this invention)
20 ... Power conditioner (an example of the "power control device" of the present invention)
21 ... converter circuit 25 ... inverter circuit 27 ... filter circuit 29 ... relay 40 ... power meter 50 ... control device 100 ... storage device X1, X2 ... first threshold , Second threshold

Claims (6)

電力系統と連系する分散型電源用の電力制御装置であって、
分散型電源から供給される電力を直流から交流に変換して出力するインバータ回路と、
制御装置と、を含み、
前記制御装置は、
前記電力系統と前記電力制御装置とを接続する電力線に分岐接続された負荷の消費電力と前記インバータ回路の出力電力とに基づいて、前記電力系統の受電点の受電電力を算出し、
前記受電点が逆潮流である場合、前記インバータ回路の運転力率を、1より小さい設定値に制御し、
前記受電点が順潮流である場合、前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する、電力制御装置。
A power control apparatus for distributed power supply interconnected with a power system, comprising:
An inverter circuit that converts power supplied from a distributed power source from direct current to alternating current and outputs the converted power;
A controller, and
The controller is
Based on the power consumption of a load branch-connected to a power line connecting the power system and the power control apparatus and the output power of the inverter circuit, the received power of the power receiving point of the power system is calculated.
If the power receiving point is reverse power flow, control the operating power factor of the inverter circuit to a set value smaller than 1;
The power control device controls the operating power factor of the inverter circuit to a value larger than the set value when the power reception point is forward flow.
請求項1に記載の電力制御装置であって、
前記制御装置は、
順潮流時に前記受電点の受電電力が第1閾値よりも低下した場合、前記インバータ回路の運転力率を減少させる、電力制御装置。
The power control apparatus according to claim 1,
The controller is
A power control apparatus, which reduces the operating power factor of the inverter circuit when the received power at the power receiving point falls below a first threshold during forward flow.
請求項2に記載の電力制御装置であって、
前記受電点における受電電力が第1閾値より大きい第2閾値よりも大きい場合、前記インバータ回路の運転力率を増加させる、電力制御装置。
The power control apparatus according to claim 2,
The power control device, wherein the operating power factor of the inverter circuit is increased when the received power at the power receiving point is greater than a second threshold that is greater than the first threshold.
請求項1〜請求3のうちいずれか一項に記載の電力制御装置であって、
前記分散型電源と並列に蓄電装置を有する構成において、
前記制御装置は、
順潮流時に前記蓄電装置を放電し、逆潮流時は、前記蓄電装置の放電を停止する、電力制御装置。
The power control apparatus according to any one of claims 1 to 3, wherein
In a configuration having a power storage device in parallel with the distributed power supply,
The controller is
A power control apparatus, which discharges the power storage device at the time of forward flow, and stops the discharge of the power storage device at the time of reverse power flow.
請求項4に記載の電力制御装置であって、
前記制御装置は、
前記受電点の受電電力が前記インバータ回路の運転力率を増加させる第2閾値以上である場合に、前記蓄電装置の放電を開始し、
前記インバータ回路の運転力率が上限値であり、かつ前記受電点の受電電力が前記第2閾値未満の場合、前記蓄電装置の放電を停止する、電力制御装置。
The power control apparatus according to claim 4,
The controller is
When the received power at the power receiving point is equal to or greater than a second threshold that increases the operating power factor of the inverter circuit, discharging of the power storage device is started,
The electric power control apparatus which stops discharge of the said electrical storage apparatus, when the driving power factor of the said inverter circuit is upper limit, and the received electric power of the said receiving point is less than the said 2nd threshold value.
電力系統と連系する分散型電源用の電力制御装置の制御方法であって、
前記電力系統と前記電力制御装置とを接続する電力線に分岐接続された負荷の消費電力と前記電力制御装置のインバータ回路の出力電力とに基づいて、前記電力系統の受電点の受電電力を算出し、
前記受電点が逆潮流である場合、
前記分散型電源から供給される電力を直流から交流に変換してインバータ回路の運転力率を、1より小さい設定値に制御し、
前記受電点が順潮流である場合、
前記インバータ回路の運転力率を、前記設定値よりも大きな値に制御する、電力制御装置の制御方法。
A control method of a power control apparatus for distributed power supply interconnected with a power system, comprising:
Based on the power consumption of the load branch-connected to the power line connecting the power system and the power control device and the output power of the inverter circuit of the power control device, the received power of the power receiving point of the power system is calculated ,
When the power receiving point is reverse power flow,
Converting the power supplied from the distributed power source from direct current to alternating current to control the operating power factor of the inverter circuit to a set value smaller than 1;
When the power receiving point is forward flow,
The control method of the electric power control apparatus which controls the driving power factor of the said inverter circuit to a bigger value than the said setting value.
JP2018003236A 2018-01-12 2018-01-12 Power control device, control method of power control device Active JP7040029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003236A JP7040029B2 (en) 2018-01-12 2018-01-12 Power control device, control method of power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003236A JP7040029B2 (en) 2018-01-12 2018-01-12 Power control device, control method of power control device

Publications (2)

Publication Number Publication Date
JP2019126110A true JP2019126110A (en) 2019-07-25
JP7040029B2 JP7040029B2 (en) 2022-03-23

Family

ID=67399202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003236A Active JP7040029B2 (en) 2018-01-12 2018-01-12 Power control device, control method of power control device

Country Status (1)

Country Link
JP (1) JP7040029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378390B1 (en) * 2021-05-14 2022-03-24 세방전기 주식회사 3-Phase 4-wire grid-connected power conditioning system with active/reactive power control of each phase individually based on the 4-leg hardware

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153404A (en) * 1992-06-26 1994-05-31 Canon Inc Battery power system
JP2017121140A (en) * 2015-12-28 2017-07-06 田淵電機株式会社 Distributed power supply system, power conversion device, and power factor control method
JP2017163795A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Operation controller of power generation facility, operation control method and operation control system thereof
JP2017192283A (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Power management system
JP2019047598A (en) * 2017-08-31 2019-03-22 株式会社Gsユアサ Power control device and method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153404A (en) * 1992-06-26 1994-05-31 Canon Inc Battery power system
JP2017121140A (en) * 2015-12-28 2017-07-06 田淵電機株式会社 Distributed power supply system, power conversion device, and power factor control method
JP2017163795A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Operation controller of power generation facility, operation control method and operation control system thereof
JP2017192283A (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Power management system
JP2019047598A (en) * 2017-08-31 2019-03-22 株式会社Gsユアサ Power control device and method for controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378390B1 (en) * 2021-05-14 2022-03-24 세방전기 주식회사 3-Phase 4-wire grid-connected power conditioning system with active/reactive power control of each phase individually based on the 4-leg hardware

Also Published As

Publication number Publication date
JP7040029B2 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
Bharatee et al. A power management scheme for grid-connected PV integrated with hybrid energy storage system
KR102293959B1 (en) Uninterruptible Power Systems and Uninterruptible Power Supplies
US20170093187A1 (en) Energy storage system
US9608447B2 (en) Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
Urtasun et al. Energy management strategy for a battery-diesel stand-alone system with distributed PV generation based on grid frequency modulation
JP5995041B2 (en) Charge control device, solar power generation system, and charge control method
AU2016208284A1 (en) DC/AC converter apparatus comprising means for controlling the reactive power and power conversion and generation system comprising such DC/AC converter apparatus
US20160181809A1 (en) Grid system conducive to enhancement of power supply performance
WO2015025712A1 (en) Distributed power supply facility system
JP2010178495A (en) Power conversion apparatus and power conversion system
Sorte et al. Current reference control based MPPT and investigation of power management algorithm for grid-tied solar PV-battery system
JP2016021863A (en) Power supply system
Jiang et al. Power management strategy for microgrid with energy storage system
JP2015233403A (en) Power charging and feeding apparatus
CN108336743B (en) local voltage control method based on distributed power supply grid-connected inverter
Tan et al. Control of parallel inverter-interfaced distributed generation systems in microgrid for islanded operation
CN112544025A (en) Microgrid controller with one or more sources
JP2017099235A (en) Power conversion system and controller
TWI505597B (en) Micro-grid operation system with smart energy management
JP7040029B2 (en) Power control device, control method of power control device
JP7209165B2 (en) POWER CONTROL DEVICE, CONTROL METHOD OF POWER CONTROL DEVICE
JP7312968B2 (en) ENERGY SYSTEM AND OPERATION METHOD THEREOF AND VIRTUAL POWER PLANT SYSTEM
JP6722295B2 (en) Power conversion system, power supply system, and power conversion device
Assem et al. Limits control and energy saturation management for DC bus regulation in photovoltaic systems with battery storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150