JP2016021863A - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
JP2016021863A
JP2016021863A JP2015160625A JP2015160625A JP2016021863A JP 2016021863 A JP2016021863 A JP 2016021863A JP 2015160625 A JP2015160625 A JP 2015160625A JP 2015160625 A JP2015160625 A JP 2015160625A JP 2016021863 A JP2016021863 A JP 2016021863A
Authority
JP
Japan
Prior art keywords
power
supplied
voltage
power supply
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015160625A
Other languages
Japanese (ja)
Inventor
雅彦 宮川
Masahiko Miyagawa
雅彦 宮川
敬喜 藤田
Keiki Fujita
敬喜 藤田
利幸 葛山
Toshiyuki Katsurayama
利幸 葛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015160625A priority Critical patent/JP2016021863A/en
Publication of JP2016021863A publication Critical patent/JP2016021863A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply system capable of effectively utilizing electric power supplied from a dispersed power supply even when an AC voltage of a commercial system varies.SOLUTION: Assuming that an upper limit of a voltage to be applied to a DC common part 11 from a first power conversion part 5 of a solar battery 2 which is a dispersed power source is set to a first maximum voltage value V1, an upper limit of a voltage to be applied to the DC common part 11 from a second power conversion part 6 of a power storage part 4 is set to a predetermined second maximum voltage value V2 which is smaller than the first maximum voltage value V1, and a power to be applied to the DC common part 11 from a third power conversion part 7 supplied from a commercial system power supply 1 is set to a constant third control voltage value V3' which is smaller than the first maximum voltage value V1, the power to be supplied is switched from among the solar battery 2, the power storage part 4, and the commercial system power supply 1 depending on a first control voltage V1' which is an output voltage of the first power conversion part 5, a second control voltage V2' which is an output voltage of the second power conversion part 6, and a third control voltage V3' which is an output voltage of the third power conversion part 7.SELECTED DRAWING: Figure 1

Description

本発明は、電力供給システムに関する。   The present invention relates to a power supply system.

近年、太陽光発電や風力発電等の自然エネルギー電源や、燃料電池やバイオエタノール等を用いた次世代発電システム等の分散電源から供給される電力と、商用系統電源から供給される電力とを併用した電力供給システムの開発が進められている。このような電力供給システムとしては、例えば、分散電源から供給される電力を商用系統に連系する系統連系方式や、分散電源から供給される電力を商用系統に逆潮流させず、商用系統から供給される電力と分散電源から供給される電力とを切換スイッチにより切り換える系統切換方式等の電力供給システムがある。   In recent years, combined use of electric power supplied from natural power sources such as solar power generation and wind power generation, distributed power sources such as next-generation power generation systems using fuel cells and bioethanol, etc., and electric power supplied from commercial power sources The development of a power supply system is underway. As such a power supply system, for example, a grid connection method in which power supplied from a distributed power source is connected to a commercial system, or power supplied from a distributed power source does not flow backward to the commercial system, There is a power supply system such as a system switching system in which power supplied and power supplied from a distributed power source are switched by a changeover switch.

上述した系統連系方式の電力供給システムでは、系統連系規定に基づいた保護装置の設置が必要であることや、電力会社の認定が必要となる等の制約条件がある。また、上述した系統切換方式の電力供給システムでは、切り換えの際に瞬時停電や電圧変動を伴う等の欠点がある。このため、例えば、商用系統への逆潮流の発生を防止しつつ、自然エネルギー電源側の電圧を商用系統側の電圧より高く設定して連結させることにより、切換スイッチを用いることなく、自然エネルギー電源から供給される電力を商用系統から供給される電力よりも優先して利用する技術が開示されている(例えば、特許文献1)。   In the grid-connected power supply system described above, there are restrictions such as the need to install a protective device based on the grid-connection regulations and the need for certification from the power company. Further, the above-described system switching type power supply system has drawbacks such as instantaneous power failure and voltage fluctuation at the time of switching. For this reason, for example, a natural energy power source can be connected without using a changeover switch by setting the voltage on the natural energy power source side to be higher than the voltage on the commercial system side while preventing the occurrence of reverse power flow to the commercial system. Has been disclosed that uses power supplied from a higher priority than power supplied from a commercial system (for example, Patent Document 1).

特開2001−197751号公報JP 2001-197751 A

上記従来技術では、商用系統側の電圧を基準として、自然エネルギー電源側の電圧を商用系統側の電圧より高く設定するようにしている。しかしながら、商用系統の交流電圧が変動することにより、自然エネルギー電源側の電圧設定範囲が制限され、自然エネルギー電源の電力を有効活用することが困難となる、という問題があった。   In the above prior art, the voltage on the natural energy power supply side is set higher than the voltage on the commercial system side with reference to the voltage on the commercial system side. However, when the AC voltage of the commercial system fluctuates, there is a problem that the voltage setting range on the natural energy power supply side is limited and it is difficult to effectively use the power of the natural energy power supply.

本発明は、上記に鑑みてなされたものであって、商用系統の交流電圧が変動した場合でも、分散電源から供給される電力を有効活用することができる電力供給システムを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a power supply system capable of effectively utilizing the power supplied from the distributed power supply even when the AC voltage of the commercial system fluctuates. To do.

上述した課題を解決し、目的を達成するため、本発明にかかる電力供給システムは、分散電源から供給される電力と商用系統電源から供給される電力とを併用して負荷に供給する電力供給システムであって、直流共通部に直流電力を供給可能に構成され、前記分散電源から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記分散電源の出力電圧に基づいて、前記直流共通部に印加する電圧を、第1最大電圧値を上限とする第1制御電圧に制御する第1の電力変換部と、前記分散電源から供給される直流電力により充電される蓄電部と、前記直流共通部に直流電力を供給可能に構成され、前記蓄電部から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記蓄電部の出力電圧に基づいて、前記直流共通部に印加する電圧を、前記第1最大電圧値よりも小さい第2最大電圧値を上限とする第2制御電圧に制御する第2の電力変換部と、前記直流共通部に直流電力を供給可能に構成され、前記商用系統電源から供給される交流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記商用系統電源の電圧に基づいて、前記直流共通部に印加する電圧を、前記第1最大電圧値よりも小さい一定の第3制御電圧に制御する第3の電力変換部と、前記直流共通部から直流電力を供給可能に構成され、前記直流共通部から供給される直流電力を所定の交流電力に変換して前記負荷に出力する第4の電力変換部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a power supply system according to the present invention is a power supply system that supplies power to a load using both power supplied from a distributed power supply and power supplied from a commercial power supply. The DC power supply is configured to be capable of supplying DC power to the DC common unit, and when the DC power supplied from the distributed power source is converted into predetermined DC power and output to the DC common unit, the output of the distributed power source Based on the voltage, the voltage applied to the DC common unit is charged with a first power conversion unit that controls the first control voltage with the first maximum voltage value as an upper limit, and DC power supplied from the distributed power source. And when the DC power supplied from the power storage unit is converted into a predetermined DC power and output to the DC common unit, the power storage unit is configured to supply the DC power to the power storage unit. Output voltage A second power conversion unit that controls a voltage applied to the DC common unit to a second control voltage whose upper limit is a second maximum voltage value smaller than the first maximum voltage value; and the DC common unit Is configured to be capable of supplying DC power to the AC power supplied from the commercial system power supply, when converted into predetermined DC power and output to the DC common unit, based on the voltage of the commercial system power supply, A third power conversion unit that controls a voltage applied to the DC common unit to a constant third control voltage that is smaller than the first maximum voltage value; and DC power can be supplied from the DC common unit, And a fourth power conversion unit that converts DC power supplied from the DC common unit into predetermined AC power and outputs the same to the load.

本発明によれば、商用系統の交流電圧が変動した場合でも、分散電源から供給される電力を有効活用することができ、分散電源に自然エネルギー電源を含む場合には、CO排出量の削減に大きく寄与することができる、という効果を奏する。 According to the present invention, even when the AC voltage of the commercial system fluctuates, the power supplied from the distributed power source can be effectively used. When the distributed power source includes a natural energy power source, the CO 2 emission can be reduced. It is possible to greatly contribute to

図1は、実施の形態にかかる電力供給システムの一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a power supply system according to an embodiment. 図2は、実施の形態にかかる電力供給システムにおける動作モードの一例を示す図である。FIG. 2 is a diagram illustrating an example of an operation mode in the power supply system according to the embodiment. 図3は、実施の形態にかかる電力供給システムの各動作モードにおける電力供給経路の一例を示す図である。FIG. 3 is a diagram illustrating an example of a power supply path in each operation mode of the power supply system according to the embodiment.

以下に添付図面を参照し、本発明の実施の形態にかかる電力供給システムについて説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。   Hereinafter, a power supply system according to an embodiment of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited by embodiment shown below.

実施の形態.
図1は、実施の形態にかかる電力供給システムの一構成例を示す図である。図1に示す実施の形態にかかる電力供給システムは、分散電源として設置された太陽電池2から供給される電力と商用系統電源1から供給される電力とを併用して、負荷である電気設備3に供給する例を示している。
Embodiment.
FIG. 1 is a diagram illustrating a configuration example of a power supply system according to an embodiment. The electric power supply system according to the embodiment shown in FIG. 1 uses electric power supplied from a solar cell 2 installed as a distributed power supply and electric power supplied from a commercial power supply 1 to use an electric equipment 3 as a load. The example which supplies to is shown.

図1に示すように、実施の形態にかかる電力供給システムは、直流共通部11に直流電力を供給可能に構成され、太陽電池2から供給される直流電力を所定の直流電力に変換して直流共通部11に出力する際に、太陽電池2の出力電圧に基づいて、直流共通部11に印加する電圧を、第1最大電圧値V1を上限とする第1制御電圧V1’に制御する第1の電力変換部5と、太陽電池2から供給される直流電力により充電される蓄電部4と、直流共通部11に直流電力を供給可能に構成され、蓄電部4から供給される直流電力を所定の直流電力に変換して直流共通部11に出力する際に、蓄電部4の出力電圧に基づいて、直流共通部11に印加する電圧を、第1最大電圧値V1よりも小さい第2最大電圧値V2を上限とする第2制御電圧V2’に制御する第2の電力変換部6と、直流共通部11に直流電力を供給可能に構成され、商用系統電源1から供給される交流電力を所定の直流電力に変換する際に、商用系統電源1の電圧に基づいて、直流共通部11に印加する電圧を、第1最大電圧値V1よりも小さい一定の第3制御電圧V3’に制御する第3の電力変換部7と、直流共通部11から供給される直流電力を所定の交流電力に変換して電気設備3に供給する第4の電力変換部8とを備えている。   As shown in FIG. 1, the power supply system according to the embodiment is configured to be able to supply direct-current power to the direct-current common unit 11, and converts direct-current power supplied from the solar cell 2 into predetermined direct-current power. When outputting to the common part 11, based on the output voltage of the solar cell 2, the voltage applied to the direct current common part 11 is controlled to a first control voltage V1 ′ whose upper limit is the first maximum voltage value V1. Power converter 5, power storage unit 4 charged with DC power supplied from solar cell 2, and DC common unit 11 are configured to be able to supply DC power, and DC power supplied from power storage unit 4 is predetermined. The second maximum voltage smaller than the first maximum voltage value V <b> 1 is applied to the DC common unit 11 based on the output voltage of the power storage unit 4 when the DC power is converted to DC power and output to the DC common unit 11. The second control voltage V2 ′ with the value V2 as the upper limit The second power conversion unit 6 to be controlled and the DC common unit 11 are configured to be able to supply DC power, and when the AC power supplied from the commercial system power supply 1 is converted into predetermined DC power, the commercial system power supply 1 From the DC common unit 11, a third power conversion unit 7 that controls the voltage applied to the DC common unit 11 to a constant third control voltage V 3 ′ smaller than the first maximum voltage value V 1, based on the voltage of And a fourth power converter 8 that converts the supplied DC power into predetermined AC power and supplies the AC power to the electrical facility 3.

ここで、本実施の形態では、第1最大電圧値V1、第2最大電圧値V2、および第3制御電圧V3’の大小関係をV3’<V2<V1とする。なお、これら第1最大電圧値V1、第2最大電圧値V2、および第3制御電圧V3’の各値については、太陽電池2の発電能力、蓄電部4の蓄電容量、および商用系統電源1の電力供給量に応じて、太陽電池2の発電電力を効率よく利用可能な最適値とすればよい。また、第1制御電圧V1’および第2制御電圧V2’の各値は、太陽電池2の実際の発電電力量および蓄電部4の蓄電量に応じて、それぞれ第1最大電圧値V1および第2最大電圧値V2を上限とする所定の電圧範囲内で変動する値である。   Here, in the present embodiment, the magnitude relationship among the first maximum voltage value V1, the second maximum voltage value V2, and the third control voltage V3 'is V3' <V2 <V1. In addition, about each value of these 1st maximum voltage value V1, 2nd maximum voltage value V2, and 3rd control voltage V3 ', the electric power generation capacity of the solar cell 2, the storage capacity of the electrical storage part 4, and the commercial system power supply 1 What is necessary is just to set it as the optimal value which can use efficiently the electric power generated of the solar cell 2 according to electric power supply amount. Further, the values of the first control voltage V1 ′ and the second control voltage V2 ′ are the first maximum voltage value V1 and the second control voltage V2 ′, respectively, according to the actual amount of power generated by the solar battery 2 and the amount of power stored in the power storage unit 4. The value fluctuates within a predetermined voltage range with the maximum voltage value V2 as an upper limit.

つぎに、上述した構成における各構成部の動作について説明する。第1の電力変換部5は、太陽電池2を最大電力点で動作させるために、最大電力点追従制御(MPPT:Maximum Power Point Tracker)を行う。この最大電力点追従制御により、太陽電池2の出力電圧が最大電力点電圧に制御される。なお、最大電力点追従制御としては、公知の手法を用いればよい。   Next, the operation of each component in the above-described configuration will be described. The first power conversion unit 5 performs maximum power point tracking control (MPPT: Maximum Power Point Tracker) in order to operate the solar cell 2 at the maximum power point. By this maximum power point tracking control, the output voltage of the solar cell 2 is controlled to the maximum power point voltage. A known method may be used as the maximum power point tracking control.

また、最大電力点追従制御により太陽電池2の発電可能電力量が電気設備3の消費電力量を上回る場合には、そのときに生じる余剰電力は、第2の電力変換部6を介して蓄電部4に供給される。   Further, when the power generation possible amount of the solar cell 2 exceeds the power consumption amount of the electric facility 3 by the maximum power point tracking control, the surplus power generated at that time is stored in the power storage unit via the second power conversion unit 6. 4 is supplied.

第2の電力変換部6は、蓄電部4の充放電制御を行う。太陽電池2の発電電力量が電気設備3の消費電力量を下回っている場合には、蓄電部4を放電させることにより、太陽電池2から電気設備3に電力を供給する際の不足電力を蓄電部4から第4の電力変換部8を介して電気設備3に供給し、太陽電池2の発電可能電力量が電気設備3の消費電力量を上回っている場合には、蓄電部4を充電させるために、太陽電池2から電気設備3に電力を供給する際の余剰電力を蓄電部4に供給する。   The second power conversion unit 6 performs charge / discharge control of the power storage unit 4. When the amount of power generated by the solar cell 2 is less than the amount of power consumed by the electrical facility 3, the power storage unit 4 is discharged to store insufficient power when power is supplied from the solar cell 2 to the electrical facility 3. The electric power is supplied from the unit 4 to the electric facility 3 via the fourth power conversion unit 8, and the power storage unit 4 is charged when the power generation possible amount of the solar cell 2 exceeds the electric power consumption of the electric facility 3. Therefore, surplus power when power is supplied from the solar cell 2 to the electrical equipment 3 is supplied to the power storage unit 4.

第3の電力変換部7は、蓄電部4の蓄電量が所定範囲の下限値未満であるか、あるいは、蓄電部4に異常が生じている場合に、太陽電池2の発電電力量が電気設備3の消費電力量を下回っている場合には、太陽電池2から電気設備3に電力を供給する際の不足電力を商用系統電源1から第4の電力変換部8を介して電気設備3に供給する。なお、第3の電力変換部7は、太陽電池2から商用系統電源1への電力供給、つまり太陽電池2の発電電力の逆潮流は行わない。   The third power conversion unit 7 is configured so that the amount of power generated by the solar cell 2 is equal to that of the electrical equipment when the amount of power stored in the power storage unit 4 is less than the lower limit of the predetermined range or when there is an abnormality in the power storage unit 4. When the power consumption amount is less than 3, the power shortage when power is supplied from the solar cell 2 to the electrical equipment 3 is supplied from the commercial power source 1 to the electrical equipment 3 via the fourth power converter 8. To do. The third power conversion unit 7 does not supply power from the solar cell 2 to the commercial power supply 1, that is, does not reversely flow the generated power of the solar cell 2.

第4の電力変換部8の入力電圧Vi、つまり、直流共通部11の電圧は、太陽電池2の発電電力量、蓄電部4の蓄電量、および電気設備3の消費電力量に応じて、第1最大電圧値V1を上限として変動する。第4の電力変換部8は、この第4の電力変換部8の入力電圧Viの変動、つまり、第1制御電圧V1’および第2制御電圧V2’の変動に応じて、太陽電池2、蓄電部4、あるいは商用系統電源1から供給された電力を電気設備3に供給する所定の交流電力に変換する。これにより、電気設備3に供給される電力が太陽電池2から供給される電力と蓄電部4から供給される電力と商用系統電源1から供給される電力との間で切り替わる。   The input voltage Vi of the fourth power conversion unit 8, that is, the voltage of the DC common unit 11 depends on the amount of power generated by the solar cell 2, the amount of power stored in the power storage unit 4, and the amount of power consumed by the electrical equipment 3. 1 Fluctuates with the maximum voltage value V1 as the upper limit. The fourth power conversion unit 8 is connected to the solar cell 2, the power storage unit according to the variation of the input voltage Vi of the fourth power conversion unit 8, that is, the variation of the first control voltage V 1 ′ and the second control voltage V 2 ′. The power supplied from the unit 4 or the commercial power supply 1 is converted into predetermined AC power supplied to the electrical equipment 3. Thereby, the electric power supplied to the electric facility 3 is switched between the electric power supplied from the solar cell 2, the electric power supplied from the power storage unit 4, and the electric power supplied from the commercial system power supply 1.

なお、図1に示す例では、商用系統電源1から供給される電力により蓄電部4を充電させないようにダイオード10を配置した構成としているが、商用系統電源1から供給される電力により蓄電部4を充電可能とすべく、ダイオード10を具備しない構成としてもよい。このダイオード10の有無により本発明が限定されるものではない。   In the example shown in FIG. 1, the diode 10 is arranged so that the power storage unit 4 is not charged by the power supplied from the commercial power supply 1, but the power storage unit 4 is supplied by the power supplied from the commercial power supply 1. It is good also as a structure which does not comprise the diode 10 so that can be charged. The present invention is not limited by the presence or absence of the diode 10.

上述した構成のうち、第3の電力変換部7および第4の電力変換部8は、直流共通部11に所定の直流電力を供給することにより、無停電電源装置(UPS:Uninterruptible Power Supply)9として動作する。この無停電電源装置9としては、汎用の無停電電源装置を用いて構成することができる。なお、通常UPSは、商用系統電源からの電力供給が停止した場合に、蓄電部から電力を負荷に供給するように構成されているが、本実施の形態では、詳細は後述するが、太陽電池2の発電電力量が著しく低下し、さらに、蓄電部4の蓄電量が所定範囲の下限値未満であるか、あるいは、蓄電部4に異常が発生して蓄電部4からの電力供給が不可能である場合に、商用系統電源1から電力を供給するように構成している点が異なっている。   Among the configurations described above, the third power conversion unit 7 and the fourth power conversion unit 8 supply predetermined DC power to the DC common unit 11 to thereby provide an uninterruptible power supply (UPS: Uninterruptible Power Supply) 9. Works as. The uninterruptible power supply 9 can be configured using a general-purpose uninterruptible power supply. Note that the normal UPS is configured to supply power from the power storage unit to the load when the power supply from the commercial power supply is stopped. In this embodiment, the solar cell is described in detail later. 2 is remarkably reduced, and the power storage amount of the power storage unit 4 is less than the lower limit of the predetermined range, or an abnormality occurs in the power storage unit 4 and power supply from the power storage unit 4 is impossible. Is different from the commercial system power supply 1 in that power is supplied.

つぎに、実施の形態にかかる電力供給システムの動作について、図2および図3を参照して説明する。図2は、実施の形態にかかる電力供給システムにおける動作モードの一例を示す図である。また、図3は、実施の形態にかかる電力供給システムの各動作モードにおける電力供給経路の一例を示す図である。   Next, the operation of the power supply system according to the embodiment will be described with reference to FIGS. FIG. 2 is a diagram illustrating an example of an operation mode in the power supply system according to the embodiment. FIG. 3 is a diagram illustrating an example of a power supply path in each operation mode of the power supply system according to the embodiment.

図2に示すように、日射量が大きく、太陽電池2の発電可能電力量が電気設備3の消費電力量(+各電力変換部の変換ロス分、以下省略)以上である場合には、第4の電力変換部8の入力電圧Viは、第1制御電圧V1’と略等値となる(Vi≒V1’)。このときの電力供給経路は、図3(a)に示す経路となり、太陽電池2から電気設備3に電力が供給されると共に、太陽電池2の発電電力量から電気設備3の消費電力量を差し引いた余剰電力が蓄電部4に供給される(モード1,1’)。なお、このときの第1制御電圧V1’は、第2制御電圧V2’および第3制御電圧V3’よりも大きな値となり、第2制御電圧V2’は、第3制御電圧V3’よりも大きな値となる。   As shown in FIG. 2, when the amount of solar radiation is large and the amount of power that can be generated by the solar cell 2 is greater than or equal to the amount of power consumed by the electrical equipment 3 (+ the conversion loss of each power conversion unit, hereinafter omitted), 4, the input voltage Vi of the power converter 8 is substantially equal to the first control voltage V1 ′ (Vi≈V1 ′). The power supply path at this time is the path shown in FIG. 3A, and power is supplied from the solar cell 2 to the electrical facility 3, and the power consumption of the electrical facility 3 is subtracted from the generated power amount of the solar cell 2. The surplus power is supplied to power storage unit 4 (mode 1, 1 ′). At this time, the first control voltage V1 ′ has a value larger than the second control voltage V2 ′ and the third control voltage V3 ′, and the second control voltage V2 ′ has a value larger than the third control voltage V3 ′. It becomes.

ここで、蓄電部4の蓄電量が所定範囲の上限値未満(ここでは、例えば最大蓄電容量の90%未満)である場合には、蓄電部4の回復充電が行われ(モード1)、蓄電部4の蓄電量が所定範囲の上限値以上(ここでは、例えば最大蓄電容量の90%以上)である場合には、蓄電部4のフロート充電が行われる(モード1’)。なお、この蓄電部4の充電方式により本発明が限定されるものではない。また、蓄電部4の満充電時には、蓄電部4に供給される電力は略零となる。   Here, when the amount of power stored in power storage unit 4 is less than the upper limit of a predetermined range (here, for example, less than 90% of the maximum power storage capacity), recovery charging of power storage unit 4 is performed (mode 1), When the amount of power stored in unit 4 is equal to or greater than the upper limit of the predetermined range (here, for example, 90% or more of the maximum power storage capacity), float charging of power storage unit 4 is performed (mode 1 ′). The present invention is not limited by the charging method of the power storage unit 4. In addition, when the power storage unit 4 is fully charged, the power supplied to the power storage unit 4 is substantially zero.

日射量が減少し、太陽電池2の発電電力量が低下して、電気設備3の消費電力量を下回ると、第1制御電圧V1’が低下する。このとき、蓄電部4の蓄電量が所定範囲の下限値以上(ここでは、例えば最大蓄電容量の10%以上)である場合には、第1制御電圧V1’が第2制御電圧V2’を下回り、第4の電力変換部8の入力電圧Viは、第2制御電圧V2’と略等値となる(Vi≒V2’)。このときの電力供給経路は、図3(b)に示す経路となり、太陽電池2から電気設備3への供給電力量の不足分が蓄電部4から供給される(モード2)。なお、このときの第2制御電圧V2’は、第1制御電圧V1’以上、且つ第3制御電圧V3’よりも大きな値となり、第1制御電圧V1’は、第3制御電圧V3’よりも大きな値となる。   When the amount of solar radiation decreases and the amount of power generated by the solar cell 2 decreases and falls below the amount of power consumed by the electrical equipment 3, the first control voltage V1 'decreases. At this time, if the amount of electricity stored in the electricity storage unit 4 is equal to or greater than the lower limit value of the predetermined range (here, for example, 10% or more of the maximum energy storage capacity), the first control voltage V1 ′ is less than the second control voltage V2 ′. The input voltage Vi of the fourth power converter 8 is substantially equal to the second control voltage V2 ′ (Vi≈V2 ′). The power supply path at this time is the path shown in FIG. 3B, and a shortage of the amount of power supplied from the solar cell 2 to the electrical equipment 3 is supplied from the power storage unit 4 (mode 2). At this time, the second control voltage V2 ′ is equal to or higher than the first control voltage V1 ′ and larger than the third control voltage V3 ′, and the first control voltage V1 ′ is higher than the third control voltage V3 ′. Large value.

夜間、あるいは、悪天候等により日射量が極めて少なくなると、太陽電池2の発電電力量が略零となる。このとき、蓄電部4の蓄電量が所定範囲の下限値以上(ここでは、例えば最大蓄電容量の10%以上)である場合には、第4の電力変換部8の入力電圧Viは、第2制御電圧と略等値となる(Vi≒V2’)。このときの電力供給経路は、図3(c)に示す経路となり、蓄電部4から電気設備3に電力が供給される(モード3)。なお、このときの第1制御電圧V1’は略零となり、第2制御電圧V2’は、蓄電部4の蓄電量に応じた値となり、第3制御電圧V3’よりも大きい値となる。   When the amount of solar radiation becomes extremely small at night or due to bad weather, the generated power amount of the solar cell 2 becomes substantially zero. At this time, when the amount of power stored in the power storage unit 4 is equal to or greater than the lower limit value of the predetermined range (here, for example, 10% or more of the maximum power storage capacity), the input voltage Vi of the fourth power conversion unit 8 is the second It is substantially equal to the control voltage (Vi≈V2 ′). The power supply path at this time is a path shown in FIG. 3C, and power is supplied from the power storage unit 4 to the electrical equipment 3 (mode 3). At this time, the first control voltage V1 'is substantially zero, and the second control voltage V2' is a value corresponding to the amount of power stored in the power storage unit 4, and is larger than the third control voltage V3 '.

つぎに、蓄電部4からの電力供給が不可能である場合の各動作モードについて説明する。例えば、蓄電部4に異常が生じて蓄電部4からの電力供給が不可能である場合において、日射量が大きく、太陽電池2の発電可能電力量が電気設備3の消費電力量以上である場合、第4の電力変換部8の入力電圧Viは、第1制御電圧V1’と略等値となる(Vi≒V1’)。このときの電力供給経路は、図3(d)に示す経路となり、太陽電池2から電気設備3に電力が供給される(モード4)。なお、このときの第2制御電圧V2’は略零となり、第1制御電圧V1’は、太陽電池2の発電電力量に応じた値となり、第1制御電圧V1’は、第3制御電圧V3’よりも大きい値となる。   Next, each operation mode when power supply from the power storage unit 4 is impossible will be described. For example, when an abnormality occurs in the power storage unit 4 and power supply from the power storage unit 4 is impossible, the amount of solar radiation is large, and the amount of power that can be generated by the solar cell 2 is greater than or equal to the power consumption of the electrical equipment 3 The input voltage Vi of the fourth power converter 8 is substantially equal to the first control voltage V1 ′ (Vi≈V1 ′). The power supply path at this time is the path shown in FIG. 3D, and power is supplied from the solar cell 2 to the electrical equipment 3 (mode 4). At this time, the second control voltage V2 ′ is substantially zero, the first control voltage V1 ′ is a value corresponding to the amount of power generated by the solar cell 2, and the first control voltage V1 ′ is the third control voltage V3. A value greater than '.

日射量が減少し、太陽電池2の発電電力量が低下して、電気設備3の消費電力量を下回ると、第1制御電圧V1’が低下する。このとき、蓄電部4の蓄電量が所定範囲の下限値未満(ここでは、例えば最大蓄電容量の10%未満)であるか、あるいは、蓄電部4に異常が生じて蓄電部4からの電力供給が不可能である場合には、第1制御電圧V1’が第3制御電圧V3’を下回り、第4の電力変換部8の入力電圧Viは、第3制御電圧V3’と略等値となる(Vi≒V3’)。このときの電力供給経路は、図3(e)に示す経路となり、太陽電池2から電気設備3への供給電力量の不足分が商用系統電源1から供給される(モード5)。なお、このときの第2制御電圧V2’は略零となり、第1制御電圧V1’は、太陽電池2の発電電力量に応じた値となる。また、第3制御電圧V3’は、第1制御電圧V1’ 以上の値となる。   When the amount of solar radiation decreases and the amount of power generated by the solar cell 2 decreases and falls below the amount of power consumed by the electrical equipment 3, the first control voltage V1 'decreases. At this time, the amount of power stored in the power storage unit 4 is less than the lower limit of the predetermined range (here, for example, less than 10% of the maximum power storage capacity), or an abnormality occurs in the power storage unit 4 to supply power from the power storage unit 4 Is impossible, the first control voltage V1 ′ is lower than the third control voltage V3 ′, and the input voltage Vi of the fourth power converter 8 is substantially equal to the third control voltage V3 ′. (Vi≈V3 ′). The power supply path at this time is the path shown in FIG. 3 (e), and the shortage of the amount of power supplied from the solar cell 2 to the electrical equipment 3 is supplied from the commercial system power supply 1 (mode 5). Note that the second control voltage V <b> 2 ′ at this time is substantially zero, and the first control voltage V <b> 1 ′ has a value corresponding to the amount of power generated by the solar cell 2. Further, the third control voltage V3 'is a value equal to or higher than the first control voltage V1'.

夜間、あるいは、悪天候等により日射量が極めて少なくなると、太陽電池2の発電電力量が略零となる。このとき、蓄電部4の蓄電量が所定範囲の下限値未満(ここでは、例えば最大蓄電容量の10%未満)であるか、あるいは、蓄電部4に異常が生じて蓄電部4からの電力供給が不可能である場合には、第4の電力変換部8の入力電圧Viは、第3制御電圧と略等値となる(Vi≒V3’)。このときの電力供給経路は、図3(f)に示す経路となり、商用系統電源1から電気設備3に電力が供給される(モード6)。なお、このときの第1制御電圧V1’および第2制御電圧V2’は略零となる。   When the amount of solar radiation becomes extremely small at night or due to bad weather, the generated power amount of the solar cell 2 becomes substantially zero. At this time, the amount of power stored in power storage unit 4 is less than the lower limit of a predetermined range (here, for example, less than 10% of the maximum power storage capacity), or an abnormality occurs in power storage unit 4 and power is supplied from power storage unit 4 Is impossible, the input voltage Vi of the fourth power converter 8 is substantially equal to the third control voltage (Vi≈V3 ′). The power supply path at this time is a path shown in FIG. 3F, and power is supplied from the commercial power supply 1 to the electrical equipment 3 (mode 6). At this time, the first control voltage V1 'and the second control voltage V2' are substantially zero.

本実施の形態では、上述したように、太陽電池2の発電電力を所定の直流電力に変換する第1の電力変換部5の出力電圧の上限を第1最大電圧値V1とし、蓄電部4から供給される直流電力を所定の直流電力に変換する第2の電力変換部6の出力電圧の上限を第1最大電圧値V1よりも小さい第2最大電圧値V2とし、第1の電力変換部5の出力電圧である第1制御電圧V1’、第2の電力変換部6の出力電圧である第2制御電圧V2’、および商用系統電源1から供給される交流電力を所定の直流電力に変換する第3の電力変換部7の出力電圧である第3制御電圧V3’の大きさに応じて、太陽電池2から供給される電力と蓄電部4から供給される電力と商用系統電源1から供給される電力とが切り替わるようにしている。このため、商用系統電源1や蓄電部4の電圧変動の影響を受けることなく、太陽電池2の発電電力を有効活用することができる。   In the present embodiment, as described above, the upper limit of the output voltage of the first power conversion unit 5 that converts the generated power of the solar cell 2 into predetermined DC power is set to the first maximum voltage value V1, and from the power storage unit 4 The upper limit of the output voltage of the second power converter 6 that converts the supplied DC power into predetermined DC power is set to a second maximum voltage value V2 that is smaller than the first maximum voltage value V1, and the first power converter 5 The first control voltage V1 ′ that is the output voltage of the second power, the second control voltage V2 ′ that is the output voltage of the second power converter 6, and the AC power supplied from the commercial power supply 1 are converted into predetermined DC power. Depending on the magnitude of the third control voltage V 3 ′, which is the output voltage of the third power conversion unit 7, the power supplied from the solar cell 2, the power supplied from the power storage unit 4, and the commercial system power supply 1 are supplied. Power to be switched. For this reason, the generated power of the solar cell 2 can be used effectively without being affected by the voltage fluctuations of the commercial power supply 1 and the power storage unit 4.

また、本実施の形態では、第1最大電圧値V1、第2最大電圧値V2、および第3制御電圧V3’の大小関係をV3’<V2<V1としている。このように設定することにより、太陽電池2の発電電力を有効利用しつつ、日射量の変動に応じた太陽電池2の発電電力量の変動による電気設備3への供給電力量の不足分を蓄電部4により補い、さらに、蓄電部4の蓄電量が所定範囲の下限値未満となった場合、あるいは、蓄電部4に異常が生じて蓄電部4からの電力供給が不可能である場合には、太陽電池2の発電電力量の変動による電気設備3への供給電力量の不足分を商用系統電源1から供給される電力により補うことができる。   In the present embodiment, the magnitude relationship among the first maximum voltage value V1, the second maximum voltage value V2, and the third control voltage V3 'is V3' <V2 <V1. By setting in this way, while the power generated by the solar cell 2 is effectively used, the shortage of the amount of power supplied to the electrical equipment 3 due to the variation in the amount of power generated by the solar cell 2 according to the variation in solar radiation is stored. When the power storage amount of the power storage unit 4 is less than the lower limit of the predetermined range, or when the power storage unit 4 is abnormal and cannot be supplied with power from the power storage unit 4 The shortage of the amount of power supplied to the electrical equipment 3 due to the fluctuation in the amount of power generated by the solar cell 2 can be compensated by the power supplied from the commercial power supply 1.

なお、上述した各動作モードの他にも、第1乃至第3の電力変換部5,6,7のいずれか1つあるいは2つが故障した際の故障時動作モードも存在するが、ここでは説明を省略する。本実施の形態によれば、これらの故障時動作モードにおいても、いずれか正常な電力供給経路から電気設備3に電力を供給することができるので、より安定した電力供給システムを構築することができる。   In addition to the above-described operation modes, there is a failure-time operation mode when any one or two of the first to third power conversion units 5, 6, and 7 have failed. Is omitted. According to the present embodiment, since power can be supplied to the electrical equipment 3 from any normal power supply path even in these failure operation modes, a more stable power supply system can be constructed. .

以上説明したように、実施の形態の電力供給システムによれば、分散電源である太陽電池の発電電力を所定の直流電力に変換する第1の電力変換部の出力電圧の上限を第1最大電圧値V1とし、蓄電部から供給される直流電力を所定の直流電力に変換する第2の電力変換部の出力電圧の上限を第1最大電圧値V1よりも小さい第2最大電圧値V2とし、第1の電力変換部の出力電圧である第1制御電圧V1’、第2の電力変換部の出力電圧である第2制御電圧V2’、および商用系統電源から供給される交流電力を所定の直流電力に変換する第3の電力変換部の出力電圧である第3制御電圧V3’の大きさに応じて、太陽電池から供給される電力と蓄電部から供給される電力と商用系統電源から供給される電力とが切り替わるようにしたので、商用系統電源や蓄電部の電圧変動の影響を受けることなく、太陽電池の発電電力を有効活用することができる。   As described above, according to the power supply system of the embodiment, the upper limit of the output voltage of the first power conversion unit that converts the generated power of the solar battery that is a distributed power source into predetermined DC power is set to the first maximum voltage. The upper limit of the output voltage of the second power conversion unit that converts the DC power supplied from the power storage unit into predetermined DC power is a second maximum voltage value V2 smaller than the first maximum voltage value V1, The first control voltage V1 ′, which is the output voltage of the first power conversion unit, the second control voltage V2 ′, which is the output voltage of the second power conversion unit, and the AC power supplied from the commercial power supply are predetermined DC power. In accordance with the magnitude of the third control voltage V3 ′ that is the output voltage of the third power conversion unit that converts the power to the power, the power supplied from the solar cell, the power supplied from the power storage unit, and the commercial power supply Since it was switched to electric power Without being affected by the voltage fluctuation of the commercial power grid and the electric storage unit, it is possible to effectively utilize the power generated by the solar cell.

また、第1最大電圧値V1、第2最大電圧値V2、および第3制御電圧V3’の大小関係をV3’<V2<V1とすることにより、太陽電池の発電電力を有効利用しつつ、日射量の変動に応じた太陽電池の発電電力量の変動による電気設備への供給電力量の不足分を蓄電部により補い、さらに、蓄電部の蓄電量が所定範囲の下限値未満となった場合、あるいは、蓄電部に異常が生じて蓄電部からの電力供給が不可能である場合には、太陽電池の発電電力量の変動による電気設備への供給電力量の不足分を商用系統電源から供給される電力により補うことができ、安定した電力供給を実現することができる。   Further, by setting the magnitude relationship among the first maximum voltage value V1, the second maximum voltage value V2, and the third control voltage V3 ′ to be V3 ′ <V2 <V1, the solar power generation is effectively utilized and the solar radiation is increased. When the shortage of the amount of power supplied to the electrical equipment due to the variation in the amount of power generated by the solar cell according to the variation in the amount is compensated by the power storage unit, and the power storage amount of the power storage unit is less than the lower limit of the predetermined range, Alternatively, when an abnormality occurs in the power storage unit and power supply from the power storage unit is impossible, the shortage of the power supply to the electrical equipment due to fluctuations in the amount of power generated by the solar battery is supplied from the commercial power supply. Can be supplemented by the power to be supplied, and stable power supply can be realized.

また、これら第1最大電圧値V1、第2最大電圧値V2、および第3制御電圧V3’の各値は、太陽電池の発電能力、蓄電部の蓄電容量、および商用系統電源の電力供給量に応じて、太陽電池の発電電力を効率よく利用可能な最適値とすることができる。   The first maximum voltage value V1, the second maximum voltage value V2, and the third control voltage V3 ′ are determined by the power generation capacity of the solar cell, the storage capacity of the power storage unit, and the power supply amount of the commercial power supply. Accordingly, the generated power of the solar cell can be set to an optimum value that can be used efficiently.

なお、上述した実施の形態では、第1最大電圧値V1、第2最大電圧値V2、および第3制御電圧V3’の大小関係をV3’<V2<V1として太陽電池の発電電力を効率よく活用する例について説明したが、電力供給システムの規模や電力利用効率に応じて、任意の大小関係とすることも可能である。例えば、第2最大電圧値V2および第3制御電圧V3’の大小関係を入れ替えることにより、太陽電池の発電電力量の変動による電気設備への供給電力量の不足分を商用系統電源から供給される電力により補い、商用系統電源の停電時には、太陽電池の発電電力量の変動による電気設備への供給電力量の不足分を蓄電部により補うように構成することも可能である。   In the above-described embodiment, the generated power of the solar cell is efficiently utilized by setting the magnitude relationship among the first maximum voltage value V1, the second maximum voltage value V2, and the third control voltage V3 ′ as V3 ′ <V2 <V1. Although the example to do was demonstrated, it can also be set as arbitrary magnitude relationships according to the scale and electric power utilization efficiency of an electric power supply system. For example, by replacing the magnitude relationship between the second maximum voltage value V2 and the third control voltage V3 ′, the shortage of the amount of power supplied to the electrical equipment due to fluctuations in the amount of power generated by the solar cell is supplied from the commercial power supply. It is also possible to make up with power storage, and in the event of a power failure of the commercial system power supply, the power storage unit can compensate for the shortage of power supply to the electrical equipment due to fluctuations in the amount of power generated by the solar cell.

また、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。   The configurations described in the above embodiments are examples of the configurations of the present invention, and can be combined with other known techniques, and a part of the configurations is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

1 商用系統電源、2 太陽電池(分散電源)、3 電気設備(負荷)、4 蓄電部、5 第1の電力変換部、6 第2の電力変換部、7 第3の電力変換部、8 第4の電力変換部、9 無停電電源装置(UPS)、10 ダイオード、11 直流共通部。   DESCRIPTION OF SYMBOLS 1 Commercial system power supply, 2 Solar cell (distributed power supply), 3 Electric equipment (load), 4 Power storage part, 5 1st power conversion part, 6 2nd power conversion part, 7 3rd power conversion part, 8 1st 4 power converters, 9 uninterruptible power supply (UPS), 10 diodes, 11 DC common part.

上述した課題を解決し、目的を達成するため、本発明にかかる電力供給システムは、自然エネルギー電源から供給される電力と商用系統電源から供給される電力とを併用して負荷に供給する電力供給システムであって、直流共通部に直流電力を供給可能に構成され、前記自然エネルギー電源から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する第1の電力変換部と、前記直流共通部に接続されるとともに、前記直流共通部に直流電力を供給可能に構成され、前記自然エネルギー電源から供給される直流電力により充電される蓄電部から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する第2の電力変換部と、前記直流共通部に接続されるとともに、前記直流共通部に直流電力を供給可能に構成され、前記商用系統電源から供給される交流電力を所定の直流電力に変換して前記直流共通部に出力し、前記自然エネルギー電源から供給される直流電力を前記商用系統電源に逆潮流しない第3の電力変換部と、前記直流共通部から直流電力を供給可能に構成され、前記直流共通部から供給される直流電力を所定の交流電力に変換して前記負荷に出力する第4の電力変換部と、を備え、前記第1の電力変換部は、前記自然エネルギー電源から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記直流共通部に印加する電圧を、前記自然エネルギー電源の発電電力量にのみ応じた値で、かつ、第1最大電圧値を上限とする第1制御電圧に制御し、前記第2の電力変換部は、前記蓄電部から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記直流共通部に印加する電圧を、前記蓄電部の蓄電量にのみ応じた値で、かつ、前記第1最大電圧値よりも小さい第2最大電圧値を上限とする第2制御電圧に制御し、前記第3の電力変換部は、前記商用系統電源から供給される交流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記直流共通部に印加する電圧を、前記第2最大電圧値よりも小さい一定の第3制御電圧に制御するとともに、前記蓄電部から電力を前記負荷に供給する際においても、停止することなく、前記直流共通部に印加する電圧を、零でない一定の前記第3制御電圧に制御し、前記第1の電力変換部、前記第2の電力変換部および前記第3の電力変換部は、前記負荷への電力供給の優先順位が、前記商用系統電源からの電力供給よりも前記蓄電部の電力供給の方が高く、かつ、前記蓄電部の電力供給よりも前記自然エネルギー電源からの電力供給の方が高くなるように、第1制御電圧、第2制御電圧および第3制御電圧の大きさに応じて前記自然エネルギー電源から供給される電力と前記蓄電部から供給される電力と前記商用系統電源から供給される電力とが切り替わるように動作モードを切り替えるとともに、前記第3の電力変換部、前記第4の電力変換部および前記直流共通部は、前記自然エネルギー電源の発電電力量が低下し、さらに蓄電部の蓄電量が所定範囲の下限値未満であるか、あるいは、蓄電部に異常が発生して蓄電部からの電力供給が不可能である場合に、商用系統電源から電力を供給する無停電電源装置を用いて構成されることを特徴とする。 In order to solve the above-described problems and achieve the object, a power supply system according to the present invention is a power supply that supplies power to a load using both power supplied from a natural energy power supply and power supplied from a commercial power supply. the system, direct-current common section DC power is configured to be supplied to said first power DC power supplied from the natural energy power source into a predetermined DC power that be output to the DC common unit conversion And DC power supplied from a power storage unit connected to the DC common unit and configured to be capable of supplying DC power to the DC common unit and charged by DC power supplied from the natural energy power source. a second power conversion unit that be output to the DC common section into a predetermined DC power, is connected to the DC common unit, configured to be capable of supplying DC power to the DC common section Is, the commercial AC power supplied from the system power supply is converted into a predetermined DC power output to the DC common portion, a third not backward flow of the DC power supplied to the commercial system power source from the natural energy power And a fourth power conversion unit configured to be capable of supplying DC power from the DC common unit, converting DC power supplied from the DC common unit into predetermined AC power and outputting the predetermined AC power to the load And the first power conversion unit applies the DC power supplied from the natural energy power source to the DC common unit when converting the DC power to predetermined DC power and outputting the DC power to the DC common unit. The voltage is controlled to a first control voltage having a value corresponding only to the amount of power generated by the natural energy power source and having the first maximum voltage value as an upper limit, and the second power conversion unit is connected to the power storage unit. DC power supplied When the voltage is applied to the DC common unit when converted into predetermined DC power and output to the DC common unit, the voltage applied to the DC common unit is a value corresponding only to the amount of power stored in the power storage unit, and from the first maximum voltage value. The second maximum voltage value is set to the second control voltage with the upper limit being the upper limit, and the third power converter converts the AC power supplied from the commercial system power source to a predetermined DC power to share the DC When the voltage applied to the DC common unit is output to a constant third control voltage smaller than the second maximum voltage value and the power is supplied from the power storage unit to the load. Without stopping, the voltage applied to the DC common unit is controlled to the third control voltage that is not zero, and the first power converter, the second power converter, and the third The power conversion unit is configured to prioritize power supply to the load. The power supply of the power storage unit is higher than the power supply from the commercial power supply, and the power supply from the natural energy power supply is higher than the power supply of the power storage unit, The electric power supplied from the natural energy power supply, the electric power supplied from the power storage unit, and the electric power supplied from the commercial system power supply according to the magnitudes of the first control voltage, the second control voltage, and the third control voltage. The operation mode is switched so as to be switched, and the third power conversion unit, the fourth power conversion unit, and the direct-current common unit reduce the amount of power generated by the natural energy power supply, and further the amount of power stored in the power storage unit Use an uninterruptible power supply that supplies power from a commercial power supply when the power storage unit is below the lower limit of the specified range or when the power storage unit is abnormal and cannot be supplied with power. Wherein the configured Te.

Claims (10)

分散電源から供給される電力と商用系統電源から供給される電力とを併用して負荷に供給する電力供給システムであって、
直流共通部に直流電力を供給可能に構成され、前記分散電源から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記分散電源の出力電圧に基づいて、前記直流共通部に印加する電圧を、第1最大電圧値を上限とする第1制御電圧に制御する第1の電力変換部と、
前記分散電源から供給される直流電力により充電される蓄電部と、
前記直流共通部に直流電力を供給可能に構成され、前記蓄電部から供給される直流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記蓄電部の出力電圧に基づいて、前記直流共通部に印加する電圧を、前記第1最大電圧値よりも小さい第2最大電圧値を上限とする第2制御電圧に制御する第2の電力変換部と、
前記直流共通部に直流電力を供給可能に構成され、前記商用系統電源から供給される交流電力を所定の直流電力に変換して前記直流共通部に出力する際に、前記商用系統電源の電圧に基づいて、前記直流共通部に印加する電圧を、前記第1最大電圧値よりも小さい一定の第3制御電圧に制御する第3の電力変換部と、
前記直流共通部から直流電力を供給可能に構成され、前記直流共通部から供給される直流電力を所定の交流電力に変換して前記負荷に出力する第4の電力変換部と、
を備えることを特徴とする電力供給システム。
A power supply system that supplies power to a load using both power supplied from a distributed power supply and power supplied from a commercial power supply,
DC power can be supplied to the DC common unit, and when the DC power supplied from the distributed power source is converted into predetermined DC power and output to the DC common unit, based on the output voltage of the distributed power source A first power conversion unit that controls the voltage applied to the DC common unit to a first control voltage with an upper limit of the first maximum voltage value;
A power storage unit that is charged by DC power supplied from the distributed power source,
DC power can be supplied to the DC common unit, and the DC power supplied from the power storage unit is converted into predetermined DC power and output to the DC common unit based on the output voltage of the power storage unit. A second power converter that controls the voltage applied to the DC common unit to a second control voltage having an upper limit of a second maximum voltage value smaller than the first maximum voltage value;
DC power can be supplied to the DC common unit, and the AC power supplied from the commercial grid power is converted into predetermined DC power and output to the DC common unit. A third power converter that controls a voltage applied to the DC common unit to a constant third control voltage that is smaller than the first maximum voltage value;
A fourth power conversion unit configured to be able to supply DC power from the DC common unit, converting DC power supplied from the DC common unit into predetermined AC power, and outputting the predetermined AC power to the load;
A power supply system comprising:
前記第3制御電圧は、前記第2最大電圧値よりもさらに小さいことを特徴とする請求項1に記載の電力供給システム。   The power supply system according to claim 1, wherein the third control voltage is further smaller than the second maximum voltage value. 前記第3の電力変換部および前記第4の電力変換部は、前記直流共通部に所定の直流電圧が印加されることにより無停電電源装置として動作することを特徴とする請求項1または2に記載の電力供給システム。   3. The third power conversion unit and the fourth power conversion unit operate as an uninterruptible power supply when a predetermined DC voltage is applied to the DC common unit. The power supply system described. 前記分散電源の発電可能電力量が前記負荷の消費電力量以上である場合に、前記直流共通部の電圧が前記第1制御電圧と略等値となり、前記分散電源から前記負荷に電力が供給されることを特徴とする請求項1から3のいずれか一項に記載の電力供給システム。   When the amount of power that can be generated by the distributed power source is greater than or equal to the amount of power consumed by the load, the voltage of the DC common unit becomes substantially equal to the first control voltage, and power is supplied from the distributed power source to the load. The power supply system according to claim 1, wherein the power supply system is a power supply system. 前記蓄電部は、前記分散電源の発電電力量から前記負荷の消費電力量を差し引いた余剰電力により充電されることを特徴とする請求項4に記載の電力供給システム。   5. The power supply system according to claim 4, wherein the power storage unit is charged with surplus power obtained by subtracting a power consumption amount of the load from a power generation amount of the distributed power source. 前記分散電源の発電電力量が前記負荷の消費電力量を下回り、且つ、前記蓄電部の蓄電量が所定範囲の下限値以上である場合に、前記直流共通部の電圧が前記第2制御電圧と略等値となり、前記分散電源から前記負荷への供給電力量の不足分が前記蓄電部から供給されることを特徴とする請求項1から5のいずれか一項に記載の電力供給システム。   When the amount of power generated by the distributed power source is less than the amount of power consumed by the load and the amount of electricity stored in the electricity storage unit is equal to or greater than a lower limit value of a predetermined range, the voltage of the DC common unit is the second control voltage. 6. The power supply system according to claim 1, wherein the power supply system is substantially equal, and an insufficient amount of power supplied from the distributed power source to the load is supplied from the power storage unit. 前記分散電源の発電電力量が略零であり、且つ、前記蓄電部の蓄電量が所定範囲の下限値以上である場合に、前記直流共通部の電圧が前記第2制御電圧と略等値となり、前記蓄電部から前記負荷に電力が供給されることを特徴とする請求項1から6のいずれか一項に記載の電力供給システム。   When the power generation amount of the distributed power source is substantially zero and the power storage amount of the power storage unit is equal to or greater than a lower limit value of a predetermined range, the voltage of the DC common unit becomes substantially equal to the second control voltage. The power supply system according to claim 1, wherein power is supplied from the power storage unit to the load. 前記分散電源の発電可能電力量が前記負荷の消費電力量以上となり、且つ、前記蓄電部に異常が生じて当該蓄電部からの電力供給が不可能である場合に、前記直流共通部の電圧が前記第1制御電圧と略等値となり、前記分散電源から前記負荷に電力が供給されることを特徴とする請求項1から7のいずれか一項に記載の電力供給システム。   When the amount of power that can be generated by the distributed power source is equal to or greater than the amount of power consumed by the load, and when an abnormality occurs in the power storage unit and power cannot be supplied from the power storage unit, the voltage of the DC common unit is The power supply system according to any one of claims 1 to 7, wherein the power supply system is substantially equal to the first control voltage, and power is supplied from the distributed power source to the load. 前記分散電源の発電電力量が前記負荷の消費電力量を下回り、且つ、前記蓄電部の蓄電量が所定範囲の下限値未満であるか、あるいは、前記蓄電部に異常が生じて当該蓄電部からの電力供給が不可能である場合に、前記直流共通部の電圧が前記第3制御電圧と略等値となり、前記分散電源から前記負荷への供給電力量の不足分が前記商用系統電源から供給されることを特徴とする請求項1から8のいずれか一項に記載の電力供給システム。   The amount of power generated by the distributed power source is less than the amount of power consumed by the load, and the amount of power stored in the power storage unit is less than a lower limit of a predetermined range, or an abnormality occurs in the power storage unit and the power storage unit When the power supply is not possible, the voltage of the DC common part becomes substantially equal to the third control voltage, and the shortage of the power supplied from the distributed power source to the load is supplied from the commercial system power source. The power supply system according to any one of claims 1 to 8, wherein: 前記分散電源の発電電力量が略零であり、且つ、前記蓄電部の蓄電量が所定範囲の下限値未満であるか、あるいは、前記蓄電部に異常が生じて当該蓄電部からの電力供給が不可能である場合に、前記直流共通部の電圧が前記第3制御電圧と略等値となり、前記商用系統電源から前記負荷に電力が供給されることを特徴とする請求項1から9のいずれか一項に記載の電力供給システム。   The amount of power generated by the distributed power source is substantially zero and the amount of power stored in the power storage unit is less than a lower limit of a predetermined range, or an abnormality occurs in the power storage unit and power is supplied from the power storage unit. The voltage of the DC common part becomes substantially equal to the third control voltage when it is impossible, and power is supplied from the commercial power supply to the load. The power supply system according to claim 1.
JP2015160625A 2013-06-19 2015-08-17 Power supply system Pending JP2016021863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160625A JP2016021863A (en) 2013-06-19 2015-08-17 Power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013128495A JP5897501B2 (en) 2013-06-19 2013-06-19 Power supply system
JP2015160625A JP2016021863A (en) 2013-06-19 2015-08-17 Power supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013128495A Division JP5897501B2 (en) 2013-06-19 2013-06-19 Power supply system

Publications (1)

Publication Number Publication Date
JP2016021863A true JP2016021863A (en) 2016-02-04

Family

ID=50197711

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013128495A Active JP5897501B2 (en) 2013-06-19 2013-06-19 Power supply system
JP2015160625A Pending JP2016021863A (en) 2013-06-19 2015-08-17 Power supply system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013128495A Active JP5897501B2 (en) 2013-06-19 2013-06-19 Power supply system

Country Status (1)

Country Link
JP (2) JP5897501B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634383A (en) * 2016-03-14 2016-06-01 深圳市华星光电技术有限公司 Wearable equipment power supply system and method and wearable equipment
CN110365198A (en) * 2019-08-13 2019-10-22 阳光电源股份有限公司 The power of alterating and direct current handover control system and method for inverter
KR20200079136A (en) * 2018-12-24 2020-07-02 성창 주식회사 Control system for dispersion supply of electric power provided by DC Uninterruptible Power System
KR20210095800A (en) * 2020-01-24 2021-08-03 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Uninterruptible power supply
WO2023080414A1 (en) * 2021-11-03 2023-05-11 삼성전자주식회사 Electronic device comprising plurality of batteries, and operating method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017642A1 (en) * 2014-07-30 2016-02-04 日本電気株式会社 Control device, power-feeding system, control method, and program
JP6479516B2 (en) * 2015-03-17 2019-03-06 Fdk株式会社 Input control power storage system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064814A (en) * 2002-07-25 2004-02-26 Kawasaki Heavy Ind Ltd Method and system for power supply
JP2007252146A (en) * 2006-03-17 2007-09-27 Sharp Corp Power supply system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910725B2 (en) * 1998-05-14 2007-04-25 株式会社Nttファシリティーズ Power system
JP2001197751A (en) * 2000-01-12 2001-07-19 Hokoku Kogyo Co Ltd Power supply using natural energy
JP2003348768A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Unieterruptible power supply unit
JP5081596B2 (en) * 2007-12-04 2012-11-28 シャープ株式会社 Power supply system
JP2011250608A (en) * 2010-05-27 2011-12-08 Sanyo Electric Co Ltd Solar cell system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064814A (en) * 2002-07-25 2004-02-26 Kawasaki Heavy Ind Ltd Method and system for power supply
JP2007252146A (en) * 2006-03-17 2007-09-27 Sharp Corp Power supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634383A (en) * 2016-03-14 2016-06-01 深圳市华星光电技术有限公司 Wearable equipment power supply system and method and wearable equipment
KR20200079136A (en) * 2018-12-24 2020-07-02 성창 주식회사 Control system for dispersion supply of electric power provided by DC Uninterruptible Power System
KR102199384B1 (en) 2018-12-24 2021-01-06 성창 주식회사 Control system for dispersion supply of electric power provided by DC Uninterruptible Power System
CN110365198A (en) * 2019-08-13 2019-10-22 阳光电源股份有限公司 The power of alterating and direct current handover control system and method for inverter
KR20210095800A (en) * 2020-01-24 2021-08-03 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Uninterruptible power supply
KR102554512B1 (en) * 2020-01-24 2023-07-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Uninterruptible power supply
WO2023080414A1 (en) * 2021-11-03 2023-05-11 삼성전자주식회사 Electronic device comprising plurality of batteries, and operating method therefor

Also Published As

Publication number Publication date
JP5897501B2 (en) 2016-03-30
JP2014023425A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5897501B2 (en) Power supply system
US8941263B2 (en) Energy storage system and method of controlling the same
US10756544B2 (en) Energy storage system and management method thereof
KR101135284B1 (en) Multi-functional power conversion apparatus and method with a rechargeable battery device and reactive power control function
US6949843B2 (en) Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
US7923965B2 (en) Methods for coupling an energy storage system to a variable energy supply system
US20170093187A1 (en) Energy storage system
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
US8253271B2 (en) Home power supply system
JP2013123355A (en) Power management apparatus and method of controlling the same
JP2012100504A (en) Power supply system
JP2014230455A (en) Power generator
JP2017121171A (en) Storage battery charge-discharge system, and interconnection system
JP2013055874A (en) Solar power generation system with electrical energy adaptive control function and control method thereof
JP2018098953A (en) Power supply system
KR20150106694A (en) Energy storage system and method for driving the same
JP2015220889A (en) Power supply system
KR20150085227A (en) The control device and method for Energy Storage System
WO2016084400A1 (en) Storage battery system and electricity storage method
TWI685179B (en) power supply system
KR101850426B1 (en) Electric power supply system using renewable energy and the method using hybrid
KR20140013553A (en) Hybrid photovoltaic system
KR102257906B1 (en) An energy storage system
JP2012227999A (en) Photovoltaic power storage and generation system
JP2014230366A (en) Power generation device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129