JP2019125537A - Fuel cell system and operation method therefor - Google Patents

Fuel cell system and operation method therefor Download PDF

Info

Publication number
JP2019125537A
JP2019125537A JP2018006835A JP2018006835A JP2019125537A JP 2019125537 A JP2019125537 A JP 2019125537A JP 2018006835 A JP2018006835 A JP 2018006835A JP 2018006835 A JP2018006835 A JP 2018006835A JP 2019125537 A JP2019125537 A JP 2019125537A
Authority
JP
Japan
Prior art keywords
fuel
power generation
fuel cell
fuel gas
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018006835A
Other languages
Japanese (ja)
Inventor
山内 将樹
Masaki Yamauchi
将樹 山内
安本 栄一
Eiichi Yasumoto
栄一 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018006835A priority Critical patent/JP2019125537A/en
Publication of JP2019125537A publication Critical patent/JP2019125537A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

To inhibit power generation efficiency from reducing in a fuel cell system constituted by a plurality of fuel cells.SOLUTION: A fuel cell system comprises: fuel gas discharge paths 4-1 to 4-3 for discharging fuel gas in fuel gas circulation paths 3-1 to 3-3; a shared fuel gas discharge path 5 having one end communicating with downstream ends of the fuel gas discharge paths 4-1 to 4-3 and the other end exposed to the atmosphere; opening/closing valves 7-1 to 7-3 that open/close the fuel gas discharge paths 4-1 to 4-3 and are normally closed; a discharge valve 6 that opens/closes the shared fuel gas discharge path 5 and is normally opened; and a controller 8. The controller 8 makes the discharge valve 6 be in a closed state before making opening/closing valves 7-1, 7-2 for fuel cells 1-1, 1-2 during power generation operation and an opening/closing valve 7-3 for a fuel cell 1-3 during power generation stop be into an opened state; after the elapse of a predetermined time, makes the opening/closing valve 7-3 for the fuel cell 1-3 during the power generation stop return into a closed state and make the discharge valve 6 be into an opened state; and, after that, makes the opening/closing valves 7-1, 7-2 for the fuel cells 1-1, 1-2 during the power generation operation be into a closed state.SELECTED DRAWING: Figure 1

Description

本発明は、燃料ガス循環経路を備えた複数の燃料電池から構成される燃料電池システム及びその運転方法に関するものである。   The present invention relates to a fuel cell system including a plurality of fuel cells provided with a fuel gas circulation path and a method of operating the same.

近年、高効率でクリーンなエネルギー源の開発が求められており、それに対する一つの候補として燃料電池が注目されている。燃料電池(例えば固体高分子形燃料電池)は、燃料電池のアノードに供給された水素を含有する燃料ガス(水素リッチなガス)と、燃料電池のカソードに供給された酸素を含有する空気等の酸化剤ガスとを電気化学反応(発電反応)させることにより、電力を発生させる装置である。   In recent years, development of a highly efficient and clean energy source is required, and a fuel cell is attracting attention as a candidate therefor. A fuel cell (for example, a polymer electrolyte fuel cell) includes a fuel gas containing hydrogen supplied to the anode of the fuel cell (hydrogen-rich gas), an air containing oxygen supplied to the cathode of the fuel cell, etc. It is a device that generates electric power by causing an electrochemical reaction (power generation reaction) with an oxidant gas.

この燃料電池を備えた燃料電池システムでは、発電を停止するときに、空気ブロアを停止してカソードへの酸化剤ガス供給を停止し、燃料ガス供給器を閉じてアノードへの燃料ガス供給を停止するのが一般的である。   In a fuel cell system equipped with this fuel cell, when power generation is stopped, the air blower is stopped to stop the oxidant gas supply to the cathode, and the fuel gas supply is closed to stop the fuel gas supply to the anode. It is common to do.

このとき、特に、固体高分子形燃料電池の場合は、燃料電池のアノードへの燃料ガス供給を停止したまま放置していると、アノードの水素が電解質膜を介してカソードに拡散移動して、アノードの水素が大幅に減少してしまう。その結果、アノードに空気が侵入しやすくなる。   At this time, particularly in the case of a polymer electrolyte fuel cell, when the fuel gas supply to the anode of the fuel cell is stopped while being left, hydrogen of the anode diffuses to the cathode through the electrolyte membrane, The hydrogen of the anode will be greatly reduced. As a result, air can easily enter the anode.

そして、アノードに空気が侵入して、アノードの触媒層に空気中の酸素が接触すると、触媒金属が酸化劣化して、燃料電池の性能低下を引き起こしていた。   Then, when air intrudes into the anode and oxygen in the air comes in contact with the catalyst layer of the anode, the catalyst metal is oxidatively degraded to cause the performance deterioration of the fuel cell.

そこで、燃料電池停止期間中に水素タンクと燃料電池間の一次遮断弁を閉じた状態で二次遮断弁を開いて高圧配管からアノードに燃料ガスを再供給して、停止期間中もアノードに水素が存在する状態を保持して、アノードの触媒層に酸素が吸着しないようにする燃料電池システムが提案されてた(例えば、特許文献1参照)。   Therefore, while the primary shutoff valve between the hydrogen tank and the fuel cell is closed during the fuel cell shutdown period, the secondary shutoff valve is opened to re-supply the fuel gas from the high pressure piping to the anode. A fuel cell system has been proposed in which oxygen is prevented from being adsorbed to the catalyst layer of the anode while maintaining the state of the presence of hydrogen (see Patent Document 1, for example).

特開2008−4564号公報JP 2008-4564 A

しかしながら、特許文献1で提案された従来の構成では、発電停止期間中に高圧配管からアノードに燃料ガスを再供給するため、発電に使用できない余分な燃料ガス(水素)が必要となり、発電効率が低下するという課題を有していた。   However, in the conventional configuration proposed in Patent Document 1, since the fuel gas is resupplied from the high-pressure pipe to the anode during the power generation stop period, extra fuel gas (hydrogen) which can not be used for power generation is required. It had the problem of falling.

本発明は、前記従来の課題を解決するもので、燃料ガスを有効に利用することにより発電効率を向上できる燃料電池システムを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a fuel cell system capable of improving power generation efficiency by effectively using a fuel gas.

前記従来の課題を解決するために本発明の燃料電池システムは、複数の燃料電池のそれぞれに個別に設けられ燃料電池のアノードから排出される未使用の燃料ガスを燃料ガスとしてアノードに供給するように構成された燃料ガス循環経路と、複数の燃料ガス循環経路からそれぞれ分岐し燃料ガス循環経路の燃料ガスを排出するための燃料ガス排出経路と、一端が複数の燃料ガス排出経路の下流端と連通し他端が大気開放した共用燃料ガス排出経
路と、複数の燃料ガス排出経路にそれぞれに個別に設けられ燃料ガス排出経路を開閉する常閉の開閉弁と、共用燃料ガス排出経路に設けられ共用燃料ガス排出経路を開閉する常開の排出弁と、制御器と、を備え、制御器は、少なくとも1台の燃料電池の発電停止中に少なくとも1台の発電動作中の燃料電池に対応する開閉弁を開状態にする場合は、排出弁を閉状態にしてから少なくとも1台の発電動作中の燃料電池に対応する開閉弁と少なくとも1台の発電停止中の燃料電池に対応する開閉弁とを開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を開状態にしてから所定時間経過後に、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻すと共に、排出弁を開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻した後に、少なくとも1台の発電動作中の燃料電池に対応する開閉弁を閉状態にする制御を行うように構成したものである。
In order to solve the above-mentioned conventional problems, the fuel cell system of the present invention is provided separately for each of a plurality of fuel cells, and supplies unused fuel gas discharged from the anode of the fuel cell to the anode as fuel gas. And a fuel gas discharge path for discharging the fuel gas in the fuel gas circulation path branched from the plurality of fuel gas circulation paths, and a downstream end of the plurality of fuel gas discharge paths at one end A common fuel gas discharge path communicating with the other end open to the atmosphere, a normally closed on / off valve individually provided for each of the plurality of fuel gas discharge paths to open and close the fuel gas discharge path, and The fuel cell system includes a normally open discharge valve for opening and closing the shared fuel gas discharge path, and a controller, wherein the controller is configured to perform at least one fuel operation during power generation operation while power generation is stopped for at least one fuel cell. When the on-off valve corresponding to the battery is opened, the on-off valve corresponding to at least one fuel cell in power generation operation after closing the discharge valve and at least one fuel cell in power generation suspension are supported The open / close valve is opened, and the open / close valve corresponding to the at least one fuel cell under power generation stop is opened, and the open / close valve corresponding to the at least one fuel cell under power generation stop To the closed state, the exhaust valve to the open state, and the on-off valve corresponding to the at least one fuel cell in the cessation of power generation to the closed state, and then to the at least one fuel cell in power generation operation Control is performed to close the on-off valve.

これによって、発電動作中の燃料電池と発電停止中の燃料電池が共存する場合は、従来であれば、発電動作中の燃料電池から大気中に排出していた水素濃度が低い燃料オフガスを、発電停止中の燃料電池のアノードに供給して、発電停止中の燃料電池のアノード内のガス圧を高めて、発電停止中の燃料電池のアノードに空気が侵入するのを抑制することが可能となり、燃料ガスを有効に利用でき、発電効率を向上できる。   By this, when the fuel cell in the power generation operation and the fuel cell in the power generation suspension coexist, conventionally, the fuel off gas having a low concentration of hydrogen discharged from the fuel cell in the power generation operation to the atmosphere is generated It is possible to supply to the anode of the fuel cell in suspension, increase the gas pressure in the anode of the fuel cell in suspension of power generation, and prevent air from invading the anode of the fuel cell in suspension of power generation. Fuel gas can be used effectively and power generation efficiency can be improved.

本発明の燃料電池システムは、発電動作中の燃料電池と発電停止中の燃料電池が共存する場合は、従来であれば、発電動作中の燃料電池から大気中に排出していた水素濃度が低い燃料オフガスを、発電停止中の燃料電池のアノードに供給して、発電停止中の燃料電池のアノード内のガス圧を高めることで、アノードの触媒層の酸化劣化を防止しつつ、燃料電池システム全体の発電効率低下を抑制することができる。   In the fuel cell system of the present invention, when the fuel cell in the power generation operation and the fuel cell in the power generation stop coexistence, conventionally, the concentration of hydrogen discharged from the fuel cell in the power generation operation into the atmosphere is low. The fuel off gas is supplied to the anode of the fuel cell during power generation stoppage, and the gas pressure in the fuel cell anode during power generation stoppage is increased to prevent the oxidation deterioration of the catalyst layer of the anode while preventing the whole fuel cell system. Can be suppressed.

これにより、同じ発電出力を得る場合、燃料電池システムの燃料ガス使用量を削減することが出来る。したがって、燃料ガスを有効に利用でき、発電効率を向上できる。   As a result, when the same power generation output is obtained, the amount of fuel gas used in the fuel cell system can be reduced. Therefore, the fuel gas can be effectively used, and the power generation efficiency can be improved.

本発明の実施の形態1における燃料電池システムの概略構成を示すブロック図Block diagram showing a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention 本発明の実施の形態1における燃料電池システムの運転方法を示すフローチャートFlowchart showing operation method of fuel cell system according to Embodiment 1 of the present invention 本発明の実施の形態2における燃料電池システムの概略構成を示すブロック図Block diagram showing a schematic configuration of a fuel cell system according to Embodiment 2 of the present invention 本発明の実施の形態2における燃料電池システムの運転方法を示すフローチャートFlow chart showing operation method of fuel cell system in Embodiment 2 of the present invention 本発明の実施の形態3における燃料電池システムの概略構成を示すブロック図Block diagram showing a schematic configuration of a fuel cell system according to Embodiment 3 of the present invention 本発明の実施の形態3における燃料電池システムの運転方法を示すフローチャートFlowchart showing operation method of fuel cell system according to Embodiment 3 of the present invention

第1の発明は、複数の燃料電池と、複数の燃料電池のそれぞれに個別に設けられ燃料電池のアノードに燃料ガスを供給するための燃料ガス供給路と、複数の燃料電池のそれぞれに個別に設けられ燃料電池のアノードから排出される未使用の燃料ガスを燃料ガスとして燃料ガス供給路に戻す燃料ガス循環経路と、複数の燃料ガス循環経路からそれぞれ分岐し燃料ガス循環経路の燃料ガスを排出するための燃料ガス排出経路と、一端が複数の燃料ガス排出経路の下流端と連通し他端が大気開放した共用燃料ガス排出経路と、複数の燃料ガス排出経路にそれぞれに個別に設けられ燃料ガス排出経路を開閉する常閉の開閉弁と、共
用燃料ガス排出経路に設けられ共用燃料ガス排出経路を開閉する常開の排出弁と、制御器と、を備えた燃料電池システムである。
According to a first aspect of the present invention, there are provided a plurality of fuel cells, a fuel gas supply path individually provided for each of the plurality of fuel cells, for supplying fuel gas to the anode of the fuel cells, and a plurality of fuel cells individually. Fuel gas circulation path is provided to return unused fuel gas discharged from the anode of the fuel cell as fuel gas back to the fuel gas supply path, and from a plurality of fuel gas circulation paths to discharge fuel gas in the fuel gas circulation path For each fuel gas discharge path, one end of the common fuel gas discharge path communicating with the downstream end of the plurality of fuel gas discharge paths and the other end opened to the atmosphere, and the plurality of fuel gas discharge paths A fuel cell system comprising: a normally closed on-off valve for opening and closing a gas discharge path; a normally open exhaust valve for opening and closing a common fuel gas exhaust path provided in the common fuel gas discharge path; and a controller A.

そして、制御器は、少なくとも1台の燃料電池の発電停止中に少なくとも1台の発電動作中の燃料電池に対応する開閉弁を開状態にする場合は、排出弁を閉状態にしてから少なくとも1台の発電動作中の燃料電池に対応する開閉弁と少なくとも1台の発電停止中の燃料電池に対応する開閉弁とを開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を開状態にしてから所定時間経過後に、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻すと共に、排出弁を開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻した後に、少なくとも1台の発電動作中の燃料電池に対応する開閉弁を閉状態にする制御を行う、燃料電池システムである。   When the controller opens the on-off valve corresponding to the at least one fuel cell in power generation operation while the power generation of at least one fuel cell is stopped, the controller closes the discharge valve and then performs at least one operation. The on-off valve corresponding to the fuel cell in the power generation operation of the stand and the on-off valve corresponding to the fuel cell in the power generation stoppage are opened, and the on-off valve corresponding to the fuel cell in the power generation stoppage After a predetermined time elapses from opening the valve, return the on-off valve corresponding to at least one fuel cell whose power generation is stopped to the closed state and open the discharge valve, and at least one fuel cell whose power is stopped The fuel cell system performs control to close the on-off valve corresponding to at least one fuel cell in power generation operation after returning the on-off valve corresponding to the closed state.

一般に、燃料電池は、アノードに供給された燃料ガスを100%反応させることはできないので、アノードには必要量よりも多い燃料ガスが供給される。そして、アノードから排出される未使用の燃料ガス(燃料オフガス)は、燃料ガス循環経路によって燃料ガス供給路に戻されて、燃料ガスとして再利用される。   Generally, the fuel cell can not react 100% of the fuel gas supplied to the anode, so the anode is supplied with more fuel gas than necessary. Then, the unused fuel gas (fuel off gas) discharged from the anode is returned to the fuel gas supply path by the fuel gas circulation path, and is reused as the fuel gas.

特に、固体高分子形燃料電池の場合は、カソードの空気が電解質膜を透過してアノードに移動しやすく、運転時間の経過と共に、燃料ガス循環経路を循環する燃料ガスに含まれる不純物の濃度が高くなって発電性能が低下するので、燃料ガス循環経路を循環する燃料ガスに含まれる不純物の濃度が過度に高くならないように、周期的に燃料ガス循環経路を循環する燃料ガスを不純物と共に燃料ガス循環経路から排出する。   In particular, in the case of a polymer electrolyte fuel cell, the air of the cathode is likely to permeate the electrolyte membrane and move to the anode, and the concentration of impurities contained in the fuel gas circulating in the fuel gas circulation path increases with the passage of operation time. Since the power generation performance is lowered due to the increase, the fuel gas circulating cyclically through the fuel gas circulation path along with the impurities is mixed with the fuel gas so that the concentration of the impurities contained in the fuel gas circulating through the fuel gas circulation path is not excessively high. Exhaust from circulation.

第1の発明の燃料電池システムにおける制御器は、少なくとも1台の燃料電池の発電停止中に少なくとも1台の発電動作中の燃料電池に対応する開閉弁を開状態にする場合は、排出弁を閉状態にしてから少なくとも1台の発電動作中の燃料電池に対応する開閉弁と少なくとも1台の発電停止中の燃料電池に対応する開閉弁とを開状態にするので、発電動作中の燃料電池の燃料ガス循環経路を循環していた燃料ガスが、開閉弁の開動作と圧力差によって、発電動作中の燃料電池の燃料ガス排出経路と、発電停止中の燃料電池の燃料ガス排出経路と、発電停止中の燃料電池の燃料ガス循環経路とを介して、発電停止中の燃料電池のアノードに流入し、発電停止中の燃料電池のアノード内のガス圧が大気圧程度に上昇し、発電停止中の燃料電池のアノードに空気が侵入し難くなる。   When the controller in the fuel cell system according to the first aspect of the invention opens the on-off valve corresponding to at least one fuel cell in power generation operation while the power generation of at least one fuel cell is stopped, the discharge valve Since the on / off valve corresponding to at least one fuel cell in power generation operation after being closed and the on / off valve corresponding to at least one fuel cell in power generation suspension state are opened, the fuel cell in power generation operation The fuel gas circulating in the fuel gas circulation path of the fuel gas discharge path of the fuel cell during power generation operation and the fuel gas discharge path of the fuel cell during power generation stoppage by the opening operation of the on-off valve and the pressure difference. The gas flows into the anode of the fuel cell under power generation stop via the fuel gas circulation path of the fuel cell under power generation stop, and the gas pressure in the anode of the fuel cell during power generation stop rises to about atmospheric pressure, and power generation is stopped Of the fuel cell inside Air is less likely to invade over de.

発電動作中の燃料電池と発電停止中の燃料電池のアノード同士が連通した状態が所定時間に達すると、発電動作中の燃料電池と発電停止中の燃料電池のアノード同士の圧力差が小さくなり過ぎて、発電停止中の燃料電池のアノードへの燃料ガスの流入がほとんど無くなるために、制御器によって発電停止中の燃料電池の開閉弁が閉じられる。   When the fuel cells in power generation operation and the anodes of the fuel cells in power generation suspension communicate with each other for a predetermined time, the pressure difference between the fuel cells in power generation operation and the anodes of the fuel cells in power generation suspension becomes too small. Since the fuel gas hardly flows into the fuel cell anode during power generation stop, the controller closes the fuel cell on / off valve during power generation stop.

制御器は、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を開状態にしてから所定時間経過後に、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻すと共に、排出弁を開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻した後に、少なくとも1台の発電動作中の燃料電池に対応する開閉弁を閉状態にするので、発電停止中の燃料電池のアノード内のガス圧を充分に高めた後は、残りの水素濃度が低い(不純物濃度が高い)燃料オフガス(燃料ガス)の流出先を、発電停止中の燃料電池から共用燃料ガス排出経路(大気中)に切り替えて、残りの水素濃度が低い(不純物濃度が高い)燃料オフガスを共用燃料ガス排出経路から大気に放出させることにより、開閉弁を開けて発電動作中の燃料電池の燃料ガス循環経路を循環する燃料ガスの水素濃度が高い(不純物濃度が低い)状態に戻すことができる。   The controller returns the open / close valve corresponding to the at least one fuel cell in the cessation of power generation to the closed state after a predetermined time has elapsed since the gate valve corresponding to the fuel cell in the cessation of power generation is opened. At the same time, after the release valve is opened and the on-off valve corresponding to the at least one fuel cell in the power generation stop state is closed, the on-off valve corresponding to the at least one fuel cell in power generation operation is closed Therefore, after sufficiently increasing the gas pressure in the anode of the fuel cell during power generation stop, the remaining destination of the fuel off gas (fuel gas) with low residual hydrogen concentration (high impurity concentration) is during power generation stop. By switching the fuel cell from the fuel cell to the common fuel gas discharge path (in the atmosphere) and discharging the fuel off gas with a low residual hydrogen concentration (high impurity concentration) from the common fuel gas discharge path to the atmosphere, Power generation The hydrogen concentration in the fuel gas circulating in the fuel gas circulation path of the fuel cell Sakuchu can be returned to a high (low impurity concentration) state.

したがって、発電動作中の燃料電池と発電停止中の燃料電池が共存する場合は、従来で
あれば、発電動作中の燃料電池から大気中に排出していた水素濃度が低い(不純物濃度が高い)燃料オフガス(燃料ガス)を、発電停止中の燃料電池のアノードに供給して、発電停止からの時間経過に伴う水素の減少で圧力が低下していた発電停止中の燃料電池のアノードの圧力を高めて、発電停止中の燃料電池のアノードに空気が侵入するのを抑制することが可能となり、発電停止中の燃料電池のアノードの触媒層の酸化劣化を防止しつつ、燃料電池システム全体の発電効率低下を抑制することができる。
Therefore, when the fuel cell in the power generation operation and the fuel cell in the power generation stop coexist, conventionally, the hydrogen concentration discharged from the fuel cell in the power generation operation to the atmosphere is low (the impurity concentration is high) The fuel off gas (fuel gas) is supplied to the anode of the fuel cell during power generation suspension, and the pressure of the fuel cell anode during power generation suspension is reduced due to the decrease of hydrogen with the lapse of time from the power generation suspension. It becomes possible to suppress the entry of air into the anode of the fuel cell during power generation stop, and prevent the oxidation deterioration of the catalyst layer of the anode of the fuel cell during power generation stop while the power generation of the entire fuel cell system It is possible to suppress the decrease in efficiency.

また、発電停止中の燃料電池において、燃料ガスを流入させるとき以外は、開閉弁を閉状態に保持しているので、発電停止中の複数の燃料電池の燃料ガス消費量が異なる場合には、燃料ガスの消費量が小さい燃料電池から燃料ガスの消費量が大きい燃料電池に向かって燃料ガスが移動することを防ぎ、燃料ガスの消費量が小さい燃料電池のアノード側触媒層の酸化劣化を防ぐことができる。   In addition, since the on-off valve is kept in the closed state except when the fuel gas is introduced into the fuel cell under power generation stop, when the fuel gas consumption amount of the plurality of fuel cells under power generation stop is different, It prevents the fuel gas from moving from the fuel cell with low fuel gas consumption toward the fuel cell with high fuel gas consumption, and prevents the oxidation degradation of the anode side catalyst layer of the fuel cell with low fuel gas consumption. be able to.

第2の発明は、特に、第1の発明の燃料電池システムにおける制御器が、少なくとも1台の燃料電池の発電動作中に少なくとも2台の燃料電池が発電停止中であり、発電停止中の複数台の燃料電池同士で発電停止中の燃料ガスの消費量が異なる場合には、発電停止中の複数台の燃料電池のうちで、燃料ガスの消費量が大きい燃料電池のアノードに、燃料ガスがより多く流入するように、発電停止中の複数台の燃料電池の開閉弁を制御するものである。   In the fuel cell system according to the second aspect of the present invention, in particular, the controller in the fuel cell system according to the first aspect may be configured to stop the generation of at least two fuel cells during the generation operation of at least one fuel cell. When the consumption of fuel gas during power generation suspension differs among the fuel cells of the two fuel cells, the fuel gas is supplied to the anode of the fuel cell with the largest consumption of fuel gas among the plurality of fuel cells during power generation suspension. The on-off valves of a plurality of fuel cells being stopped during power generation are controlled so as to flow more in.

これにより、発電停止している複数台の燃料電池のうちで、停止中の燃料ガスの消費量が大きい燃料電池に燃料ガスをより多く供給することが可能となるので、停止中の燃料ガスの消費量が大きい燃料電池のアノードの触媒層の酸化劣化の進行を防いで、発電停止中の燃料電池全体の劣化の進行を均一化することができる。   This makes it possible to supply more fuel gas to the fuel cell that consumes a large amount of fuel gas during stoppage among the plurality of fuel cells that are under power generation stoppage, so It is possible to prevent the progress of the oxidative deterioration of the catalyst layer of the anode of the fuel cell that consumes a large amount, and make the progress of the deterioration of the entire fuel cell during power generation stoppage uniform.

第3の発明は、特に、第1の発明の燃料電池システムにおける制御器が、少なくとも1台の燃料電池の発電動作中に少なくとも2台の燃料電池が発電停止中であり、発電停止中の複数台の燃料電池同士で発電動作終了直後の開回路電圧が異なる場合には、発電停止中の複数台の燃料電池のうちで、発電動作終了直後の開回路電圧が低い燃料電池のアノードに、燃料ガスがより多く流入するように、発電停止中の複数台の燃料電池の開閉弁を制御するものである。   In the fuel cell system according to the third aspect of the present invention, in particular, the controller in the fuel cell system according to the first aspect may be configured to stop the generation of at least two fuel cells during power generation operation of at least one fuel cell. When the open circuit voltage immediately after the end of the power generation operation is different among the fuel cells of the stand, the fuel of the fuel cell whose open circuit voltage is low immediately after the end of the power generation operation is the fuel. The on-off valves of the plurality of fuel cells during power generation stop are controlled so that more gas flows in.

これにより、発電停止している複数台の燃料電池のうちで、発電動作終了直後の開回路電圧が低い燃料電池に燃料ガスをより多く供給することが可能となるので、発電動作終了直後の開回路電圧が低い燃料電池のアノードの触媒層の酸化劣化の進行を防いで、発電停止中の燃料電池全体の劣化の進行を均一化することができる。   As a result, it is possible to supply more fuel gas to the fuel cell having a low open circuit voltage immediately after the end of the power generation operation among the plurality of fuel cells whose power generation is stopped. It is possible to prevent the progress of the oxidative deterioration of the catalyst layer of the anode of the fuel cell having a low circuit voltage, and to equalize the progress of the deterioration of the entire fuel cell while the power generation is stopped.

第4の発明は、特に、第1の発明の燃料電池システムにおける制御器が、少なくとも1台の燃料電池の発電動作中に少なくとも2台の燃料電池が発電停止中であり、発電停止中の複数台の燃料電池同士で発電停止してからの経過時間が異なる場合には、発電停止中の複数台の燃料電池のうちで、発電停止してからの経過時間が長い燃料電池のアノードに、燃料ガスがより多く流入するように、発電停止中の複数台の燃料電池の開閉弁を制御するものである。   In the fuel cell system according to the first aspect of the present invention, in particular, the controller in the fuel cell system according to the first aspect may be configured to stop the generation of at least two fuel cells during the generation operation of at least one fuel cell. In the case where the elapsed time from the power generation stop between the two fuel cells is different, among the plurality of fuel cells in the power generation stop, the fuel cell has a long elapsed time since the power generation stop. The on-off valves of the plurality of fuel cells during power generation stop are controlled so that more gas flows in.

これにより、発電停止している複数台の燃料電池のうちで、発電停止してからの経過時間が長い燃料電池に、燃料ガスをより多く供給することが可能となるので、発電停止してからの経過時間が長い燃料電池のアノードの触媒層の酸化劣化の進行を防いで、発電停止中の燃料電池全体の劣化の進行を均一化することができる。   As a result, it is possible to supply more fuel gas to the fuel cell having a long elapsed time after the power generation is stopped among the plurality of fuel cells whose power generation is stopped. It is possible to prevent the progress of the oxidation deterioration of the catalyst layer of the anode of the fuel cell which has a long elapsed time, and to equalize the progress of the deterioration of the whole fuel cell during the power generation stop.

第5の発明は、特に、第2から第4のいずれか一つの発明の燃料電池システムにおける
制御器が、発電動作中の燃料電池の開閉弁が開状態である回数に対して、発電停止中の燃料電池の開閉弁が開状態である回数を制御するものである。
According to the fifth aspect of the present invention, in particular, the controller in the fuel cell system according to any one of the second to fourth aspects of the present invention is in the process of stopping power generation with respect to the number of times the on / off valve of the fuel cell is in an open state. The number of times the on-off valve of the fuel cell is open is controlled.

これにより、発電停止している複数台の燃料電池のそれぞれに対して、供給する燃料ガスの量を変えることが可能となる。   This makes it possible to change the amount of fuel gas supplied to each of the plurality of fuel cells whose power generation is stopped.

第6の発明は、複数の燃料電池と、複数の燃料電池のそれぞれに個別に設けられ燃料電池のアノードに燃料ガスを供給するための燃料ガス供給路と、複数の燃料電池のそれぞれに個別に設けられ燃料電池のアノードから排出される未使用の燃料ガスを燃料ガスとして燃料ガス供給路に戻す燃料ガス循環経路と、複数の燃料ガス循環経路からそれぞれ分岐し燃料ガス循環経路の燃料ガスを排出するための燃料ガス排出経路と、一端が複数の燃料ガス排出経路の下流端と連通し他端が大気開放した共用燃料ガス排出経路と、複数の燃料ガス排出経路にそれぞれに個別に設けられ燃料ガス排出経路を開閉する常閉の開閉弁と、共用燃料ガス排出経路に設けられ共用燃料ガス排出経路を開閉する常開の排出弁と、を備えた燃料電池システムの運転方法である。   In a sixth aspect of the present invention, there are provided a plurality of fuel cells, a fuel gas supply path individually provided for each of the plurality of fuel cells, for supplying fuel gas to the anode of the fuel cells, and a plurality of fuel cells individually. Fuel gas circulation path is provided to return unused fuel gas discharged from the anode of the fuel cell as fuel gas back to the fuel gas supply path, and from a plurality of fuel gas circulation paths to discharge fuel gas in the fuel gas circulation path For each fuel gas discharge path, one end of the common fuel gas discharge path communicating with the downstream end of the plurality of fuel gas discharge paths and the other end opened to the atmosphere, and the plurality of fuel gas discharge paths Method of operating a fuel cell system comprising: a normally closed on / off valve for opening and closing a gas discharge path; and a normally open exhaust valve for opening and closing a shared fuel gas discharge path provided in the shared fuel gas discharge path A.

そして、少なくとも1台の燃料電池の発電停止中に少なくとも1台の発電動作中の燃料電池に対応する開閉弁を開状態にする場合は、排出弁を閉状態にしてから少なくとも1台の発電動作中の燃料電池に対応する開閉弁と少なくとも1台の発電停止中の燃料電池に対応する開閉弁とを開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を開状態にしてから所定時間経過後に、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻すと共に、排出弁を開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻した後に、少なくとも1台の発電動作中の燃料電池に対応する開閉弁を閉状態にする、燃料電池システムの運転方法である。   When the on-off valve corresponding to at least one fuel cell in power generation operation is opened while the power generation of at least one fuel cell is stopped, the discharge valve is closed and then at least one power generation operation is performed. Open the open / close valve corresponding to the fuel cell in the middle and the open / close valve corresponding to the fuel cell in the power generation stop state, and open the open / close valve corresponding to the fuel cell in the power generation stop state. After an elapse of a predetermined time, the on-off valve corresponding to at least one fuel cell whose power generation is stopped is returned to the closed state, and the discharge valve is opened, and the power valve corresponding to at least one fuel cell whose power is stopped It is an operation method of a fuel cell system which closes an on-off valve corresponding to a fuel cell in operation of at least one set of power generation after returning the valve to the closed state.

一般に、燃料電池は、アノードに供給された燃料ガスを100%反応させることはできないので、アノードには必要量よりも多い燃料ガスが供給される。アノードから排出される未使用の燃料ガス(燃料オフガス)は、燃料ガス循環経路によって燃料ガス供給路に戻されて、燃料ガスとして再利用される。   Generally, the fuel cell can not react 100% of the fuel gas supplied to the anode, so the anode is supplied with more fuel gas than necessary. Unused fuel gas (fuel off gas) discharged from the anode is returned to the fuel gas supply path by the fuel gas circulation path and reused as fuel gas.

特に、固体高分子形燃料電池の場合は、カソードの空気が電解質膜を透過してアノードに移動しやすく、運転時間の経過と共に、燃料ガス循環経路を循環する燃料ガスに含まれる不純物の濃度が高くなって発電性能が低下するので、燃料ガス循環経路を循環する燃料ガスに含まれる不純物の濃度が過度に高くならないように、周期的に燃料ガス循環経路を循環する燃料ガスを不純物と共に燃料ガス循環経路から排出する。   In particular, in the case of a polymer electrolyte fuel cell, the air of the cathode is likely to permeate the electrolyte membrane and move to the anode, and the concentration of impurities contained in the fuel gas circulating in the fuel gas circulation path increases with the passage of operation time. Since the power generation performance is lowered due to the increase, the fuel gas circulating cyclically through the fuel gas circulation path along with the impurities is mixed with the fuel gas so that the concentration of the impurities contained in the fuel gas circulating through the fuel gas circulation path is not excessively high. Exhaust from circulation.

第6の発明の燃料電池システムの運転方法は、少なくとも1台の燃料電池の発電停止中に少なくとも1台の発電動作中の燃料電池に対応する開閉弁を開状態にする場合は、排出弁を閉状態にしてから少なくとも1台の発電動作中の燃料電池に対応する開閉弁と少なくとも1台の発電停止中の燃料電池に対応する開閉弁とを開状態にするので、発電動作中の燃料電池の燃料ガス循環経路を循環していた燃料ガスが、開閉弁の開動作と圧力差によって、発電動作中の燃料電池の燃料ガス排出経路と、発電停止中の燃料電池の燃料ガス排出経路と、発電停止中の燃料電池の燃料ガス循環経路とを介して、発電停止中の燃料電池のアノードに流入し、発電停止中の燃料電池のアノード内のガス圧が大気圧程度に上昇し、発電停止中の燃料電池のアノードに空気が侵入し難くなる。   In the method of operating a fuel cell system according to the sixth aspect of the present invention, the exhaust valve is opened when the on-off valve corresponding to the fuel cell in operation of at least one power generation is opened while the power generation of at least one fuel cell is stopped. Since the on / off valve corresponding to at least one fuel cell in power generation operation after being closed and the on / off valve corresponding to at least one fuel cell in power generation suspension state are opened, the fuel cell in power generation operation The fuel gas circulating in the fuel gas circulation path of the fuel gas discharge path of the fuel cell during power generation operation and the fuel gas discharge path of the fuel cell during power generation stoppage by the opening operation of the on-off valve and the pressure difference. The gas flows into the anode of the fuel cell under power generation stop via the fuel gas circulation path of the fuel cell under power generation stop, and the gas pressure in the anode of the fuel cell during power generation stop rises to about atmospheric pressure, and power generation is stopped Anoh of fuel cell inside Air is less likely to invade.

発電動作中の燃料電池と発電停止中の燃料電池のアノード同士が連通した状態が所定時間に達すると、発電動作中の燃料電池と発電停止中の燃料電池のアノード同士の圧力差が小さくなり過ぎて、発電停止中の燃料電池のアノードへの燃料ガスの流入がほとんど無くなるために、発電停止中の燃料電池の開閉弁が閉じられる。   When the fuel cells in power generation operation and the anodes of the fuel cells in power generation suspension communicate with each other for a predetermined time, the pressure difference between the fuel cells in power generation operation and the anodes of the fuel cells in power generation suspension becomes too small. Since the inflow of fuel gas to the anode of the fuel cell during power generation stop is almost eliminated, the on-off valve of the fuel cell during power generation stop is closed.

また、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を開状態にしてから所定時間経過後に、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻すと共に、排出弁を開状態にし、少なくとも1台の発電停止中の燃料電池に対応する開閉弁を閉状態に戻した後に、少なくとも1台の発電動作中の燃料電池に対応する開閉弁を閉状態にするので、発電停止中の燃料電池のアノード内のガス圧を充分に高めた後は、残りの水素濃度が低い(不純物濃度が高い)燃料オフガス(燃料ガス)の流出先を、発電停止中の燃料電池から共用燃料ガス排出経路(大気中)に切り替えて、残りの水素濃度が低い(不純物濃度が高い)燃料オフガスを共用燃料ガス排出経路から大気に放出させることにより、開閉弁を開けて発電動作中の燃料電池の燃料ガス循環経路を循環する燃料ガスの水素濃度が高い(不純物濃度が低い)状態に戻すことができる。   In addition, after a predetermined time has elapsed since the on-off valve corresponding to at least one fuel cell in power generation suspension is opened, the on-off valve corresponding to at least one fuel cell in suspension of power generation is closed. After opening the discharge valve and returning the on-off valve corresponding to at least one fuel cell in power generation stop to the closed state, close the on-off valve corresponding to at least one fuel cell in power generation operation Therefore, after sufficiently increasing the gas pressure in the anode of the fuel cell during power generation stop, the remaining destination of the fuel off gas (fuel gas) with low residual hydrogen concentration (high impurity concentration) is the fuel during power generation stop. By switching from the battery to the common fuel gas discharge path (in the atmosphere) and releasing the fuel off gas with a low residual hydrogen concentration (high impurity concentration) from the common fuel gas discharge path to the atmosphere, the on-off valve is opened to generate electricity. The hydrogen concentration in the fuel gas circulating in the fuel gas circulation path of the fuel cell can be returned to a high (low impurity concentration) state.

したがって、発電動作中の燃料電池と発電停止中の燃料電池が共存する場合は、従来であれば、発電動作中の燃料電池から大気中に排出していた水素濃度が低い(不純物濃度が高い)燃料オフガス(燃料ガス)を、発電停止中の燃料電池のアノードに供給して、発電停止からの時間経過に伴う水素の減少で圧力が低下していた発電停止中の燃料電池のアノードの圧力を高めて、発電停止中の燃料電池のアノードに空気が侵入するのを抑制することが可能となり、発電停止中の燃料電池のアノードの触媒層の酸化劣化を防止しつつ、燃料電池システム全体の発電効率低下を抑制することができる。   Therefore, when the fuel cell in the power generation operation and the fuel cell in the power generation stop coexist, conventionally, the hydrogen concentration discharged from the fuel cell in the power generation operation to the atmosphere is low (the impurity concentration is high) The fuel off gas (fuel gas) is supplied to the anode of the fuel cell during power generation suspension, and the pressure of the fuel cell anode during power generation suspension is reduced due to the decrease of hydrogen with the lapse of time from the power generation suspension. It becomes possible to suppress the entry of air into the anode of the fuel cell during power generation stop, and prevent the oxidation deterioration of the catalyst layer of the anode of the fuel cell during power generation stop while the power generation of the entire fuel cell system It is possible to suppress the decrease in efficiency.

また、発電停止中の燃料電池において、燃料ガスを流入させるとき以外は、開閉弁を閉状態に保持しているので、発電停止中の複数の燃料電池の燃料ガス消費量が異なる場合には、燃料ガスの消費量が小さい燃料電池から燃料ガスの消費量が大きい燃料電池に向かって燃料ガスが移動することを防ぎ、燃料ガスの消費量が小さい燃料電池のアノード側触媒層の酸化劣化を防ぐことができる。   In addition, since the on-off valve is kept in the closed state except when the fuel gas is introduced into the fuel cell under power generation stop, when the fuel gas consumption amount of the plurality of fuel cells under power generation stop is different, It prevents the fuel gas from moving from the fuel cell with low fuel gas consumption toward the fuel cell with high fuel gas consumption, and prevents the oxidation degradation of the anode side catalyst layer of the fuel cell with low fuel gas consumption. be able to.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。なお、以下の全ての図において、同一又は相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the present embodiment. In all of the following drawings, the same or corresponding parts will be denoted by the same reference numerals, and overlapping descriptions will be omitted.

(実施の形態1)
図1は、本発明の実施の形態1における燃料電池システムの概略構成を示すブロック図である。図2は、本発明の実施の形態1における燃料電池システムの運転方法を示すフローチャートである。
Embodiment 1
FIG. 1 is a block diagram showing a schematic configuration of a fuel cell system according to Embodiment 1 of the present invention. FIG. 2 is a flowchart showing a method of operating a fuel cell system according to Embodiment 1 of the present invention.

図1に示すように、実施の形態1の燃料電池システム100は、並列に接続された3台の燃料電池1−1,1−2,1−3を有している。   As shown in FIG. 1, the fuel cell system 100 of Embodiment 1 has three fuel cells 1-1, 1-2, and 1-3 connected in parallel.

3台の燃料電池1−1,1−2,1−3は、それぞれ水素イオン伝導性を有する固体高分子電解質(アイオノマー)を成膜した電解質膜と、電解質膜を挟むように設けられたカソード(触媒層)およびアノード(触媒層)を、燃料ガスとして水素を供給する燃料ガス流路、および、酸化剤ガスとして空気を供給する酸化剤ガス流路が形成された一対のカーボン製平板状セパレータで挟持して構成された燃料電池セルを、複数積層して締結した燃料電池セル積層体で構成されている。   The three fuel cells 1-1, 1-2, and 1-3 each have an electrolyte membrane formed by depositing a solid polymer electrolyte (ionomer) having hydrogen ion conductivity, and a cathode provided so as to sandwich the electrolyte membrane. (Catalyst layer) and anode (catalyst layer), fuel gas flow path for supplying hydrogen as fuel gas, and a pair of flat plates made of carbon in which an oxidant gas flow path for supplying air as an oxidant gas is formed The fuel cell stack is configured of a plurality of fuel cell stacks formed by stacking a plurality of fuel cells stacked and fastened.

本実施の形態では、水素中に含有する不純物ガスは窒素とする。アノードは、電解質膜の一方の面に、カソードと対向するように形成され、白金粒子が担持されたカーボンと水素イオン伝導性を有する固体高分子電解質からなる。   In this embodiment mode, the impurity gas contained in hydrogen is nitrogen. The anode is formed on one surface of the electrolyte membrane so as to face the cathode, and is composed of carbon on which platinum particles are supported and a solid polymer electrolyte having hydrogen ion conductivity.

燃料電池1−1,1−2,1−3のそれぞれに個別に水素を供給するための燃料ガス給
路2−1,2−2,2−3が設けられている。この燃料ガス供給路2−1,2−2,2−3は、ガス配管で構成されている。また燃料ガス供給路2−1,2−2,2−3は、燃料電池1−1,1−2,1−3を構成する各燃料電池セルに配置されたアノード側セパレータの燃料ガス流路と接続されている。
Fuel gas supply paths 2-1, 2-2, 2-3 for individually supplying hydrogen to the fuel cells 1-1, 1-2, 1-3 are provided. The fuel gas supply paths 2-1, 2-2, and 2-3 are configured by gas pipes. The fuel gas supply passages 2-1, 2-2, 2-3 are fuel gas passages of the anode side separator disposed in each of the fuel cells constituting the fuel cells 1-1, 1-2, 1-3. And connected.

このようにして、燃料ガス供給路2−1,2−2,2−3から供給される水素は、燃料電池1−1,1−2,1−3の各アノードに到達するように構成されている。   In this manner, hydrogen supplied from the fuel gas supply channels 2-1, 2-2, and 2-3 is configured to reach each anode of the fuel cells 1-1, 1-2, and 1-3. ing.

また、燃料電池1−1,1−2,1−3のそれぞれに個別に燃料電池1−1,1−2,1−3から排出される未使用の燃料ガス(燃料オフガス)を燃料ガス供給路2−1,2−2,2−3に戻す燃料ガス循環経路3−1,3−2,3−3が設けられている。燃料ガス循環経路3−1,3−2,3−3は、ガス配管により構成されている。   In addition, fuel gas is supplied to the fuel cells 1-1, 1-2 and 1-3 separately from unused fuel gas (fuel off gas) discharged from the fuel cells 1-1, 1-2 and 1-3. Fuel gas circulation paths 3-1, 3-2, and 3-3 are provided to return to the paths 2-1, 2-2, and 2-3. The fuel gas circulation paths 3-1, 3-2 and 3-3 are constituted by gas pipes.

また3台の燃料電池1−1,1−2,1−3のそれぞれに個別に燃料ガス循環経路3−1,3−2,3−3から分岐し燃料ガス循環経路3−1,3−2,3−3を循環する燃料ガスを排出するための燃料ガス排出経路4−1,4−2,4−3が設けられている。   Further, the three fuel cells 1-1, 1-2, and 1-3 are individually branched from the fuel gas circulation paths 3-1, 3-2, and 3-3, and the fuel gas circulation paths 3-1, 3 and 3 are branched. Fuel gas discharge paths 4-1, 4-2, and 4-3 are provided to discharge the fuel gas circulating through 2-3.

燃料ガス排出経路4−1,4−2,4−3は、燃料ガス循環経路3−1,3−2,3−3を循環する燃料ガスに含まれる窒素の濃度が所定濃度以上にならないように、燃料ガス循環経路3−1,3−2,3−3を循環する燃料ガスを、燃料ガス循環経路3−1,3−2,3−3の系外に排出する経路である。   In the fuel gas discharge paths 4-1, 4-2, 3-4, the concentration of nitrogen contained in the fuel gas circulating in the fuel gas circulation paths 3-1, 3-2, 3-3 does not become equal to or higher than a predetermined concentration. The fuel gas circulation paths 3-1, 3-2, and 3-3 are paths for discharging the fuel gas out of the system of the fuel gas circulation paths 3-1, 3-2, and 3-3.

また燃料電池システム100内に、一端が複数の燃料ガス排出経路4−1,4−2,4−3の下流端と連通し他端が大気開放した共用燃料ガス排出経路5が設けられている。また共用燃料ガス排出経路5には、共用燃料ガス排出経路5を開閉するための常開(通常は開状態)の排出弁6が設けられている。排出弁6は、通電と非通電により開度を全開または全閉に切替えることが可能な電磁弁により構成されている。   In the fuel cell system 100, a common fuel gas discharge path 5 is provided, one end of which is in communication with the downstream end of the plurality of fuel gas discharge paths 4-1, 4-2 and 4-3 and the other end is open to the atmosphere. . Further, the common fuel gas discharge passage 5 is provided with a normally open (usually in an open state) discharge valve 6 for opening and closing the common fuel gas discharge passage 5. The discharge valve 6 is constituted by a solenoid valve which can switch the degree of opening to full open or full close by energization and non-energization.

また燃料ガス排出経路4−1,4−2,4−3にそれぞれに個別に燃料ガス排出経路4−1,4−2,4−3を開閉するための常閉(通常は閉状態)の開閉弁7−1,7−2,7−3が設けられている。   In addition, normally closed (usually in a closed state) for opening and closing the fuel gas discharge paths 4-1, 4-2, and 3-4 individually in the fuel gas discharge paths 4-1, 4-2, and 3-4, respectively. On-off valves 7-1, 7-2, 7-3 are provided.

開閉弁7−1,7−2,7−3は、通電と非通電により開度を全開または全閉に切替えることが可能な電磁弁により構成され、発電動作中の燃料電池1−1,1−2,1−3において、燃料ガス中の窒素の濃度が所定濃度以上になったときに開状態にして、燃料ガス排出経路4−1,4−2,4−3から共用燃料ガス排出経路5に燃料ガスを排出し、燃料ガス循環経路3−1,3−2,3−3を循環する燃料ガスに含まれる窒素の濃度が所定濃度以上にならないように調節する機能を有する。   The on-off valves 7-1, 7-2, 7-3 are constituted by solenoid valves capable of switching the degree of opening to full open or full close by energization and deenergization, and the fuel cell 1-1, 1 during power generation operation In -2, 1-3, when the concentration of nitrogen in the fuel gas becomes equal to or higher than the predetermined concentration, the fuel gas discharge passage is opened from the fuel gas discharge passage 4-1, 4-2 and 4-3 and the common fuel gas discharge passage is opened. 5 has a function of discharging the fuel gas and adjusting the concentration of nitrogen contained in the fuel gas circulating through the fuel gas circulation paths 3-1, 3-2 and 3-3 so as not to exceed a predetermined concentration.

ここで、燃料電池1−1,1−2,1−3のそれぞれのアノードから排出される未利用の燃料ガス(燃料オフガス)は、燃料ガス循環経路3−1,3−2,3−3を循環する構成となるため、燃料電池1−1,1−2,1−3の電解質膜を通してカソード側からアノード側に、空気中の窒素が透過して濃縮され、燃料電池1−1,1−2,1−3の発電を阻害し、発電電圧が低下して、燃料電池1−1,1−2,1−3の発電効率が大きく低下する。   Here, the unused fuel gas (fuel off gas) discharged from the anode of each of the fuel cells 1-1, 1-2, and 1-3 has a fuel gas circulation path 3-1, 3-2, 3-3. The nitrogen in the air permeates from the cathode side to the anode side through the electrolyte membranes of the fuel cells 1-1, 1-2, and 1-3 and is concentrated. In this case, the power generation of the fuel cells 1-1, 1-2, and 1-3 is significantly reduced.

そこで周期的に、窒素を未使用の水素と共に大気中に排出する。またこのような動作を行うため、排出弁6と開閉弁7−1,7−2,7−3とを制御するための制御器8が設けられている。   Therefore, periodically, nitrogen is discharged into the atmosphere together with unused hydrogen. Moreover, in order to perform such operation | movement, the controller 8 for controlling the discharge valve 6 and on-off valve 7-1, 7-2, 7-3 is provided.

以上のように構成された本実施の形態の燃料電池システム100について、以下その動作、作用を図1と図2を参照しながら説明する。   The operation and action of the fuel cell system 100 according to the present embodiment configured as described above will be described below with reference to FIGS. 1 and 2.

図1に示した本実施の形態の燃料電池システム100は、制御器8の制御によって図2のフローチャートの動作を実行する。本実施の形態1においては、燃料電池1−1と燃料電池1−2が発電動作中で、燃料電池1−3が発電停止しているものとする。   The fuel cell system 100 of the present embodiment shown in FIG. 1 executes the operation of the flow chart of FIG. 2 under the control of the controller 8. In the first embodiment, it is assumed that the fuel cell 1-1 and the fuel cell 1-2 are generating power and the fuel cell 1-3 is not generating power.

まず、共用燃料ガス排出経路5の排出弁6を閉状態にする(S101)。次に、発電動作中の燃料電池1−1,1−2の開閉弁7−1,7−2と、発電停止中の燃料電池1−3の開閉弁7−3を開状態にして、90秒間保持する(S102)。次に、発電停止中の燃料電池1−3の開閉弁7−3を閉状態にし、排出弁6を開状態にして、30秒間保持する(S103)。   First, the discharge valve 6 of the common fuel gas discharge passage 5 is closed (S101). Next, open the on-off valves 7-1 and 7-2 of the fuel cells 1-1 and 1-2 in the power generation operation and the on-off valve 7-3 of the fuel cell 1-3 in the power generation suspension state. Hold for a second (S102). Next, the on-off valve 7-3 of the fuel cell 1-3 in which the power generation is stopped is closed, and the discharge valve 6 is opened for 30 seconds (S103).

次に、発電動作中の燃料電池1−1,1−2の開閉弁7−1,7−2を閉状態にし、10分間保持して(S104)、S101に戻る。各ステップは一つ前のステップを実施完了後、待機時間を設けずにすみやかに移行するようにする。   Next, the on-off valves 7-1 and 7-2 of the fuel cells 1-1 and 1-2 during power generation operation are closed, held for 10 minutes (S104), and the process returns to S101. In each step, immediately after the completion of the previous step, transition is made promptly without providing a waiting time.

以上のように、本実施の形態の燃料電池システム100は、図1に示すように、複数(3台)の燃料電池1−1,1−2,1−3と、複数(3台)の燃料電池1−1,1−2,1−3のそれぞれに個別に設けられ燃料電池1−1,1−2,1−3のアノードに燃料ガスを供給するための燃料ガス供給路2−1,2−2,2−3と、複数(3台)の燃料電池1−1,1−2,1−3のそれぞれに個別に設けられ燃料電池1−1,1−2,1−3のアノードから排出される未使用の燃料ガスを燃料ガスとして燃料ガス供給路2−1,2−2,2−3に戻す燃料ガス循環経路3−1,3−2,3−3と、複数(3つ)の燃料ガス循環経路3−1,3−2,3−3からそれぞれ分岐し燃料ガス循環経路3−1,3−2,3−3の燃料ガスを排出するための燃料ガス排出経路4−1,4−2,4−3と、一端が複数(3つ)の燃料ガス排出経路4−1,4−2,4−3の下流端と連通し他端が大気開放した共用燃料ガス排出経路5と、複数(3つ)の燃料ガス排出経路4−1,4−2,4−3にそれぞれに個別に設けられ燃料ガス排出経路4−1,4−2,4−3を開閉する常閉(通常は閉状態)の開閉弁7−1,7−2,7−3と、共用燃料ガス排出経路5に設けられ共用燃料ガス排出経路5を開閉する常開(通常は開状態)の排出弁6と、制御器8とを備えた構成である。   As described above, as shown in FIG. 1, the fuel cell system 100 according to the present embodiment includes a plurality of (three) fuel cells 1-1, 1-2, and 1-3 and a plurality of (three) fuel cells. A fuel gas supply path 2-1 provided separately for each of the fuel cells 1-1, 1-2, and 1-3 for supplying fuel gas to the anodes of the fuel cells 1-1, 1-2, and 1-3. , 2-2, 2-3, and a plurality of (three) fuel cells 1-1, 1-2, 1-3 individually provided for the fuel cells 1-1, 1-2, 1-3. A plurality of fuel gas circulation paths 3-1, 3-2, 3-3, which return unused fuel gas discharged from the anode to the fuel gas supply path 2-1, 2-2, 2-3 as fuel gas, The fuel gas circulation paths 3-1, 3-2, and 3-3 are discharged from the fuel gas circulation paths 3-1, 3-2, and 3-3, respectively. Of the fuel gas discharge path 4-1, 4-2 and 4-3, and one end thereof is in communication with the downstream end of the plurality (three) of fuel gas discharge paths 4-1, 4 and 2-4 and the other end is The shared fuel gas discharge passage 5 open to the atmosphere and the plurality (three) of the fuel gas discharge passages 4-1, 4-2 are individually provided in the fuel gas discharge passage 4-1, 4-2 respectively. , 4-3, and the normally closed (normally closed) on / off valves 7-1, 7-2, 7-3, and the shared fuel gas discharge path 5 which normally opens and closes the shared fuel gas discharge path 5 It is configured to include an open (usually in an open state) discharge valve 6 and a controller 8.

そして、本実施の形態の燃料電池システム100の制御器8は、1台の燃料電池1−3の発電停止中に2台の発電動作中の燃料電池1−1,1−2に対応する開閉弁7−1,7−2を開状態にする場合は、排出弁6を閉状態にして(図2のS101)から2台の発電動作中の燃料電池1−1,1−2に対応する開閉弁7−1,7−2と1台の発電停止中の燃料電池1−3に対応する開閉弁7−3とを開状態にし(図2のS102)、1台の発電停止中の燃料電池1−3に対応する開閉弁7−3を開状態にしてから所定時間(90秒間)経過後に、1台の発電停止中の燃料電池1−3に対応する開閉弁7−3を閉状態に戻すと共に、排出弁6を開状態にし(図2のS103)、1台の発電停止中の燃料電池1−3に対応する開閉弁7−3を閉状態に戻した30秒後に(図2のS103の後で)、2台の発電動作中の燃料電池1−1,1−2に対応する開閉弁7−1,7−2を閉状態にする(図2のS104)制御を行うように構成されている。   Then, the controller 8 of the fuel cell system 100 according to the present embodiment opens and closes corresponding to the fuel cells 1-1 and 1-2 during two power generation operations while the power generation of one fuel cell 1-3 is stopped. When the valves 7-1 and 7-2 are opened, the exhaust valve 6 is closed (S101 in FIG. 2) to correspond to the two fuel cells 1-1 and 1-2 in power generation operation. Open the on-off valves 7-1 and 7-2 and the on-off valve 7-3 corresponding to the one fuel cell 1-3 in the power generation stop state (S102 in FIG. 2), and the fuel in the one power generation stop state After a predetermined time (90 seconds) has elapsed since the on-off valve 7-3 corresponding to the battery 1-3 is opened, the on-off valve 7-3 corresponding to one fuel cell 1-3 whose power generation is stopped is closed , And the discharge valve 6 is opened (S103 in FIG. 2), and the on-off valve 7-3 corresponding to the fuel cell 1-3 in power generation suspension is closed. 30 seconds after returning to (the step after S103 in FIG. 2), the on-off valves 7-1 and 7-2 corresponding to the fuel cells 1-1 and 1-2 in power generation operation are closed ( It is comprised so that control of S104 of FIG. 2 may be performed.

燃料電池1−1,1−2,1−3は、アノードに供給された燃料ガスを100%反応させることはできないので、アノードには燃料ガス供給路2−1,2−2,2−3から必要量よりも多い燃料ガスが供給される。そして、アノードから排出される未使用の燃料ガス(燃料オフガス)は、燃料ガス循環経路3−1,3−2,3−3によって燃料ガス供給路2−1,2−2,2−3に戻されて、燃料ガスとして再利用される。   Since the fuel cells 1-1, 1-2, and 1-3 can not react 100% of the fuel gas supplied to the anode, the fuel gas supply paths 2-1, 2-2, and 2-3 are connected to the anode. Supplies more fuel gas than is necessary. Then, unused fuel gas (fuel off gas) discharged from the anode is supplied to the fuel gas supply channels 2-1, 2-2, 2-3 by the fuel gas circulation channels 3-1, 3-2, 3-3. It is returned and reused as fuel gas.

燃料電池1−1,1−2,1−3は、固体高分子形燃料電池であるので、カソードの空気が固体高分子電解質膜を透過してアノードに移動しやすく、運転時間の経過と共に、燃料ガス循環経路3−1,3−2,3−3を循環する燃料ガスに含まれる不純物の濃度が高くなって発電性能が低下するので、燃料ガス循環経路3−1,3−2,3−3を循環する燃料ガスに含まれる不純物の濃度が過度に高くならないように、周期的に開閉弁7−1,7−2,7−3を開状態にして燃料ガス循環経路3−1,3−2,3−3を循環する燃料ガスを不純物と共に燃料ガス循環経路3−1,3−2,3−3から燃料ガス排出経路4−1,4−2,4−3を介して排出する。   Since the fuel cells 1-1, 1-2, and 1-3 are solid polymer fuel cells, the air of the cathode easily permeates through the solid polymer electrolyte membrane and moves to the anode, and with the passage of the operation time, Since the concentration of the impurities contained in the fuel gas circulating through the fuel gas circulation route 3-1, 3-2, and 3-3 increases and the power generation performance decreases, the fuel gas circulation route 3-1, 3-2, and 3-3. The on-off valves 7-1, 7-2, 7-3 are periodically opened to prevent the concentration of the impurities contained in the fuel gas circulating through the fuel cell 3. Exhaust the fuel gas circulating through 3-2 and 3-3 together with the impurities from the fuel gas circulation passage 3-1, 2-3, 3-3 via the fuel gas discharge passage 4-1, 4-2, 3-4 Do.

本実施の形態の燃料電池システム100の制御器8は、1台の燃料電池1−3の発電停止中に2台の発電動作中の燃料電池1−1,1−2に対応する開閉弁7−1,7−2を開状態にする場合は、排出弁6を閉状態にして(図2のS101)から2台の発電動作中の燃料電池1−1,1−2に対応する開閉弁7−1,7−2と1台の発電停止中の燃料電池1−3に対応する開閉弁7−3とを開状態にする(図2のS102)ので、発電動作中の燃料電池1−1,1−2の燃料ガス循環経路3−1,3−2を循環していた燃料ガスが、開閉弁7−1,7−2の開動作と圧力差によって、発電動作中の燃料電池1−1,1−2の燃料ガス排出経路4−1,4−2と、発電停止中の燃料電池1−3の燃料ガス排出経路4−3と、発電停止中の燃料電池1−3の燃料ガス循環経路3−3とを介して、発電停止中の燃料電池1−3のアノードに流入し、発電停止中の燃料電池1−3のアノード内のガス圧が大気圧程度に上昇し、発電停止中の燃料電池1−3のアノードに空気が侵入し難くなる。   The controller 8 of the fuel cell system 100 according to the present embodiment has the on-off valve 7 corresponding to the fuel cells 1-1 and 1-2 during two power generation operations while the power generation of one fuel cell 1-3 is stopped. In the case where the fuel cell -1 and 7-2 are opened, the discharge valve 6 is closed and the on / off valve corresponding to the fuel cells 1-1 and 1-2 during two power generation operations from the state (S101 in FIG. 2) 7-1 and 7-2 and the on-off valve 7-3 corresponding to the one fuel cell 1-3 in suspension of power generation are opened (S102 in FIG. 2). The fuel gas circulating in the fuel gas circulation paths 3-1 and 3-2 of 1, 1-2 is subjected to the pressure difference by the opening operation of the on-off valves 7-1 and 7-2 and the fuel cell 1 in the power generation operation. -1, 1-2 fuel gas discharge path 4-1, 4-2, fuel gas discharge path 4-3 of the fuel cell 1-3 during power generation stop, and fuel discharge during power generation stop The gas pressure in the anode of the fuel cell 1-3 flowing into the anode of the fuel cell 1-3 which is in the cessation of power generation is about atmospheric pressure while flowing into the anode of the fuel cell 1-3 in the cessation of power generation As a result, the air is less likely to intrude into the anode of the fuel cell 1-3 during power generation stoppage.

発電動作中の燃料電池1−1.1−2と発電停止中の燃料電池1−3のアノード同士が連通した状態が所定時間(90秒)に達すると、発電動作中の燃料電池1−1,1−2と発電停止中の燃料電池1−3のアノード同士の圧力差が小さくなり過ぎて、発電停止中の燃料電池1−3のアノードへの燃料ガスの流入がほとんど無くなるために、制御器8によって発電停止中の燃料電池1−3の開閉弁7−3が閉じられる。   When the state in which the fuel cell 1-1.1-2 in the power generation operation and the anode of the fuel cell 1-3 in the power generation stop communicate with each other reaches a predetermined time (90 seconds), the fuel cell 1-1 in the power generation operation , 1-2 and the pressure difference between the anodes of the fuel cell 1-3 during power generation stop is too small, and the flow of the fuel gas to the anode of the fuel cell 1-3 during power generation stop is almost eliminated. The on-off valve 7-3 of the fuel cell 1-3 during power generation stoppage is closed by the fuel cell 8.

制御器8は、発電停止中の燃料電池1−3に対応する開閉弁7−3を開状態にしてから所定時間(90秒)経過後に、発電停止中の燃料電池1−1,1−2に対応する開閉弁7−1,7−2を閉状態に戻すと共に、排出弁6を開状態にし(図2のS103)、発電停止中の燃料電池1−3に対応する開閉弁7−3を閉状態に戻した30秒後に、発電動作中の燃料電池1−1,1−2に対応する開閉弁7−1,7−2を閉状態にする(図2のS104)ので、発電停止中の燃料電池1−3のアノード内のガス圧を充分に高めた後は、残りの水素濃度が低い(不純物濃度が高い)燃料オフガス(燃料ガス)の流出先を、発電停止中の燃料電池1−3から共用燃料ガス排出経路5(大気中)に切り替えて、残りの水素濃度が低い(不純物濃度が高い)燃料オフガスを共用燃料ガス排出経路5から大気に放出させることにより、開閉弁7−1,7−2を開けて発電動作中の燃料電池1−1,1−2の燃料ガス循環経路3−1,3−2を循環する燃料ガスの水素濃度が高い(不純物濃度が低い)状態に戻すことができる。   The controller 8 opens the on-off valve 7-3 corresponding to the fuel cell 1-3 in the power generation stop state, and after a predetermined time (90 seconds) elapses, the fuel cells 1-1, 1-2 in the power generation stop state And the exhaust valve 6 is opened (S103 in FIG. 2), and the on-off valve 7-3 corresponding to the fuel cell 1-3 during power generation stoppage 30 seconds after returning to the closed state, the on-off valves 7-1 and 7-2 corresponding to the fuel cells 1-1 and 1-2 in the power generation operation are closed (S104 in FIG. 2), so power generation is stopped. After sufficiently increasing the gas pressure in the anode of the fuel cell 1-3, the remaining hydrogen concentration (high impurity concentration) of the fuel off gas (fuel gas) is the destination of the fuel Switch from 1 to 3 to shared fuel gas discharge path 5 (in air), and the remaining hydrogen concentration is low (impurity concentration is high By releasing the fuel off gas from the common fuel gas discharge path 5 to the atmosphere, the on-off valves 7-1 and 7-2 are opened to generate the fuel gas circulation path 3-1 of the fuel cells 1-1 and 1-2 during power generation operation. , 3-2 can be returned to the state of high hydrogen concentration (low impurity concentration) of the fuel gas.

したがって、発電動作中の燃料電池1−1,1−2と発電停止中の燃料電池1−3が共存する場合は、従来であれば、発電動作中の燃料電池1−1,1−2から大気中に排出していた水素濃度が低い(不純物濃度が高い)燃料オフガス(燃料ガス)を、発電停止中の燃料電池1−3のアノードに供給して、発電停止からの時間経過に伴う水素の減少で圧力が低下していた発電停止中の燃料電池1−3のアノードの圧力を高めて、発電停止中の燃料電池1−3のアノードに空気が侵入するのを抑制することが可能となり、発電停止中の燃料電池1−3のアノードの触媒層の酸化劣化を防止しつつ、燃料電池システム100全体の発電効率低下を抑制することができる。   Therefore, when the fuel cells 1-1 and 1-2 in the power generation operation coexist with the fuel cells 1-3 in the power generation stop state, conventionally, from the fuel cells 1-1 and 1-2 in the power generation operation Fuel off gas (fuel gas) with a low concentration of hydrogen (high impurity concentration) discharged to the atmosphere is supplied to the anode of the fuel cell 1-3 during power generation suspension, and hydrogen accompanying the time lapse from the power generation suspension By reducing the pressure, it is possible to increase the pressure of the anode of the fuel cell 1-3 during power generation stoppage, and suppress air from invading the anode of the fuel cell 1-3 during power generation stoppage. It is possible to suppress the decrease in the power generation efficiency of the entire fuel cell system 100 while preventing the oxidation deterioration of the catalyst layer of the anode of the fuel cell 1-3 during the power generation stop.

また、本実施の形態では、発電停止中の燃料電池1−3において、燃料ガスを流入させるとき以外は、開閉弁7−3を閉状態に保持している。   Further, in the present embodiment, the on-off valve 7-3 is held in the closed state except when the fuel gas is caused to flow into the fuel cell 1-3 during power generation stoppage.

もし、燃料電池1−2と燃料電池1−3が発電停止中で、燃料電池1−2が燃料電池1−3よりも燃料ガスの消費量が大きい場合には、燃料ガスの消費量が小さい燃料電池1−3から燃料ガスの消費量が大きい燃料電池1−2に向かって燃料ガスが移動することを防ぎ、燃料ガスの消費量が小さい燃料電池1−3のアノード側触媒層の酸化劣化を防ぐことができる。   If the fuel cell 1-2 and the fuel cell 1-3 are not generating power and the fuel cell 1-2 consumes more fuel gas than the fuel cell 1-3, the fuel gas consumed is small Oxidative deterioration of the anode side catalyst layer of the fuel cell 1-3 which prevents the fuel gas from moving from the fuel cell 1-3 to the fuel cell 1-2 having a large consumption of fuel gas and has a small consumption of the fuel gas You can prevent.

なお、本実施の形態においては、燃料電池システム100内に3台の燃料電池1−1,1−2,1−3を配置したが、複数台であれば3台でなくても構わない。すなわち、燃料電池システム100内に2台以上の燃料電池を配置していて、そのうち少なくとも1台以上の燃料電池が発電停止していて、少なくとも1台以上の燃料電池が発電動作している場合に、本発明は効果を発揮する。   In the present embodiment, the three fuel cells 1-1, 1-2, and 1-3 are disposed in the fuel cell system 100. However, three or more fuel cells may be used instead of three. That is, when two or more fuel cells are disposed in the fuel cell system 100, and at least one of the fuel cells is not generating power, and at least one or more fuel cells are generating power. The present invention is effective.

なお、発電動作中の燃料電池1−1,1−2から燃料オフガスを排出する時間間隔、発電停止中の燃料電池1−3への燃料オフガスの供給時間、および大気中への排出時間の設定は、燃料電池1−1,1−2,1−3を構成する材料や運転条件(電流値、発電電圧、要求発電出力、供給ガス量)、水素供給連結部材の体積、ガス配管の体積、セパレータの水素流路の体積などの燃料電池構造設計に応じて、適宜設定することが可能である。   Note that the time interval for discharging the fuel off gas from the fuel cell 1-1, 1-2 during power generation operation, the supply time of the fuel off gas to the fuel cell 1-3 during power generation stop, and the setting time for discharge to the atmosphere Are the materials and operating conditions (current value, generated voltage, required power generation output, amount of supplied gas) constituting the fuel cell 1-1, 1-2, 1-3, the volume of the hydrogen supply connection member, the volume of the gas pipe, It is possible to set appropriately according to fuel cell structure design, such as the volume of the hydrogen channel of a separator.

もし、燃料電池1−1の発電動作中に2台の燃料電池1−2,1−3が発電停止中であり、燃料電池1−2の発電停止中の燃料ガスの消費量が燃料電池1−3の発電停止中の燃料ガスの消費量よりも大きい場合は、発電停止中の燃料電池1−2,1−3のうちで、燃料ガスの消費量が大きい燃料電池1−2のアノードに、発電動作中の燃料電池1−1の燃料オフガスがより多く流入するように、発電停止中燃料電池1−2,1−3の開閉弁7−2,7−3を制御するように、制御器8を構成しても構わない。   If the fuel cells 1-2 and 1-2 are not generating electricity while the fuel cell 1-1 is generating electricity, the amount of fuel gas consumed during the generation of fuel cell 1-2 is the fuel cell 1. If the fuel gas consumption during the power generation suspension is larger than the fuel cell consumption during the power generation suspension, the anode of the fuel cell 1-2 with the largest fuel gas consumption is selected. Control is performed to control the on-off valves 7-2 and 7-3 of the fuel cells 1-2 and 1-3 during power generation stoppage so that the fuel off gas of the fuel cell 1-1 during the power generation operation flows in more The unit 8 may be configured.

その場合は、発電停止している複数台(2台)の燃料電池1−2,1−3のうちで、停止中の燃料ガスの消費量が大きい燃料電池1−2に燃料ガスをより多く供給することが可能となるので、停止中の燃料ガスの消費量が大きい燃料電池1−2のアノードの触媒層の酸化劣化の進行を防いで、発電停止中の燃料電池全体の劣化の進行を均一化することができる。   In that case, among the plurality (two) of fuel cells 1-2 and 1-3 whose power generation is stopped, the fuel cell 1-2 which consumes a large amount of fuel gas during stoppage has more fuel gas Since it becomes possible to supply, the progress of the oxidation deterioration of the catalyst layer of the anode of the fuel cell 1-2 where the consumption of the fuel gas during the stop is large is prevented, and the progress of the deterioration of the entire fuel cell during the power generation stop is It can be made uniform.

(実施の形態2)
図3は、本発明の実施の形態2における燃料電池システムの概略構成を示すブロック図である。図4は、本発明の実施の形態2における燃料電池システムの運転方法を示すフローチャートである。
Second Embodiment
FIG. 3 is a block diagram showing a schematic configuration of a fuel cell system according to Embodiment 2 of the present invention. FIG. 4 is a flow chart showing a method of operating a fuel cell system according to Embodiment 2 of the present invention.

図3に示す実施の形態2の燃料電池システム200は、図1に示す実施の形態1の燃料電池システム100の制御器8を制御器9に置き換えたものである。実施の形態2の燃料電池システム200において、実施の形態1の燃料電池システム100と同一構成については、同一符号を付して、重複する説明を省略する場合がある。   The fuel cell system 200 of Embodiment 2 shown in FIG. 3 is obtained by replacing the controller 8 of the fuel cell system 100 of Embodiment 1 shown in FIG. In the fuel cell system 200 according to the second embodiment, the same components as those of the fuel cell system 100 according to the first embodiment may be assigned the same reference numerals and redundant description may be omitted.

実施の形態2の燃料電池システム200の制御器9は、実施の形態1の燃料電池システム100の制御器8と同様の制御に加えて、例えば、少なくとも1台の燃料電池1−1の発電動作中に少なくとも2台の燃料電池1−2,1−3が発電停止中であり、燃料電池1−2の開回路電圧が燃料電池1−3の開回路電圧よりも低い場合には、発電停止中の複数台(2台)の燃料電池1−2,1−3のうちで、開回路電圧が最も低い方の燃料電池1−
2のアノードに、発電動作中の燃料電池1−1の燃料オフガスが、より多く流入するように、発電停止中の複数台(2台)燃料電池1−2,1−3の開閉弁7−2,7−3を制御するように構成されている。
In addition to the control similar to the controller 8 of the fuel cell system 100 of Embodiment 1, the controller 9 of the fuel cell system 200 of Embodiment 2 includes, for example, the power generation operation of at least one fuel cell 1-1. When at least two fuel cells 1-2 and 1-3 are in the process of stopping power generation and the open circuit voltage of the fuel cell 1-2 is lower than the open circuit voltage of the fuel cell 1-3, the power generation is stopped Among the plurality of (two) fuel cells 1-2, 1-3, the fuel cell 1- having the lowest open circuit voltage is selected.
A plurality of (two) fuel cells 1-2, 1-3 on-off valves 7-2 are stopped so that the fuel off gas of the fuel cell 1-1 during power generation flows into the anode of No. 2 more. 2, 7-3 are configured to be controlled.

以上のように構成された本実施の形態の燃料電池システム200について、以下その動作、作用を図3と図4を参照しながら説明する。図3に示す燃料電池システム200は、制御器9の制御によって図4のフローチャートの動作を実行する。   The operation and action of the fuel cell system 200 of the present embodiment configured as described above will be described below with reference to FIGS. 3 and 4. The fuel cell system 200 shown in FIG. 3 executes the operation of the flowchart of FIG. 4 under the control of the controller 9.

本実施の形態においては、燃料電池1−1が発電動作中で、燃料電池1−2,1−3が発電停止しているものとする。また、本実施の形態においては、燃料電池1−2の開回路電圧が、燃料電池1−3の開回路電圧よりも低いものとする。   In the present embodiment, it is assumed that the fuel cell 1-1 is in the power generation operation, and the fuel cells 1-2 and 1-3 are in the power generation stop state. In the present embodiment, the open circuit voltage of the fuel cell 1-2 is lower than the open circuit voltage of the fuel cell 1-3.

まず、共用燃料ガス排出経路5の排出弁6を閉状態にする(S201)。次に、発電動作中の燃料電池1−1の開閉弁7−1と、発電停止中の2台の燃料電池1−2,1−3の開閉弁7−2,7−3を開状態にして、90秒間保持する(S202)。次に、発電停止中の2台の燃料電池1−2,1−3の開閉弁7−2,7−3を閉状態にし、排出弁6を開状態にして、30秒間保持する(S203)。   First, the discharge valve 6 of the common fuel gas discharge passage 5 is closed (S201). Next, open / close the on-off valve 7-1 of the fuel cell 1-1 during power generation operation and the on-off valves 7-2 and 7-3 of the two fuel cells 1-2 and 1-3 during power generation stoppage. And hold for 90 seconds (S202). Next, the on-off valves 7-2 and 7-3 of the two fuel cells 1-2 and 1-3 during power generation stop are closed, and the discharge valve 6 is opened for 30 seconds (S203). .

次に、発電動作中の燃料電池1−1の開閉弁7−1を閉状態にし、10分間保持する(S204)。次に、共用燃料ガス排出経路5の排出弁6を閉状態にする(S205)。   Next, the on-off valve 7-1 of the fuel cell 1-1 during the power generation operation is closed and held for 10 minutes (S204). Next, the discharge valve 6 of the common fuel gas discharge passage 5 is closed (S205).

次に、発電動作中の燃料電池1−1の開閉弁7−1を開状態にして、発電停止中の2台の燃料電池1−2,1−3のうちで、開回路電圧が低い方の燃料電池1−2の開閉弁7−2を開状態にして、90秒間保持する(S206)。   Next, open the on-off valve 7-1 of the fuel cell 1-1 during the power generation operation, and the one with the lower open circuit voltage among the two fuel cells 1-2 and 1-3 during power generation stoppage The open / close valve 7-2 of the fuel cell 1-2 is opened and held for 90 seconds (S206).

次に、発電停止中で相対的に開回路電圧が低い方の燃料電池1−2の開閉弁7−2を閉状態にし、排出弁6を開状態にして、30秒間保持する(S207)。次に、発電動作中の燃料電池1−1の開閉弁7−1を閉状態にし、10分間保持して(S208)、S201に戻る。各ステップは一つ前のステップを実施完了後、待機時間を設けずにすみやかに移行するようにする。   Next, the on-off valve 7-2 of the fuel cell 1-2 having a relatively low open circuit voltage during power generation stoppage is closed, and the discharge valve 6 is opened for 30 seconds (S207). Next, the on-off valve 7-1 of the fuel cell 1-1 during the power generation operation is closed, held for 10 minutes (S208), and the process returns to S201. In each step, immediately after the completion of the previous step, transition is made promptly without providing a waiting time.

以上のように、本実施の形態の燃料電池システム200においては、発電停止中の燃料電池1−2,1−3の発電動作終了直後の開回路電圧に基づいて、発電停止中の複数台の燃料電池1−2,1−3のうちで、開回路電圧が相対的に低い燃料電池1−2に燃料オフガスがより多く流入するように、発電動作中の燃料電池1−1の開閉弁7が開状態である回数に対して、発電停止中の複数台の燃料電池1−2,1−3の開閉弁7−2,7−3が開状態である回数を制御している。   As described above, in the fuel cell system 200 according to the present embodiment, a plurality of fuel cell systems under power generation stop is performed based on the open circuit voltage immediately after the end of the power generation operation of the fuel cells 1-2 and 1-3 during power generation stop. Among the fuel cells 1-2 and 1-3, the on-off valve 7 of the fuel cell 1-1 during power generation operation so that the fuel off gas flows more into the fuel cell 1-2 having a relatively low open circuit voltage. The number of open / close valves 7-2 and 7-3 of the plurality of fuel cells 1-2 and 1-3 during power generation stoppage is controlled with respect to the number of times the open state is open.

そのため、発電停止中の水素の消費量が大きい燃料電池1−2のアノード側触媒層の酸化劣化の進行を防ぐことができ、発電停止中の燃料電池全体の劣化の進行を均一化することができる。   Therefore, it is possible to prevent the progress of the oxidation deterioration of the anode side catalyst layer of the fuel cell 1-2 having a large consumption of hydrogen during the power generation stop, and equalize the progress of the deterioration of the entire fuel cell during the power generation stop it can.

なお、本実施の形態においては、燃料電池システム200内に3台の燃料電池1−1,1−2,1−3を配置したが、複数台であれば3台でなくても構わない。すなわち、燃料電池システム200内に3台以上の燃料電池を配置していて、そのうち少なくとも2台以上の燃料電池が発電停止していて、少なくとも1台以上の燃料電池が発電動作している場合に、本発明は効果を発揮する。   In the present embodiment, the three fuel cells 1-1, 1-2, and 1-3 are disposed in the fuel cell system 200. However, three or more fuel cells may be used instead of three. That is, when three or more fuel cells are disposed in the fuel cell system 200, and at least two of the fuel cells are not generating power, and at least one or more fuel cells are generating power. The present invention is effective.

なお、発電動作中の燃料電池1−1の開閉弁7−1が一回当たりに開状態または閉状態となっている保持時間、発電停止中の燃料電池1−2,1−3の開閉弁7−2,7−3が
一回当たりに開状態または閉状態となっている保持時間、および排出弁6が一回当たりに開状態または閉状態となっている保持時間、発電動作中の燃料電池1−1の開閉弁7−1が開状態である回数に対する発電停止中の燃料電池1−2,1−3の開閉弁7−2,7−3が開状態である回数の設定は、燃料電池を構成する材料や、運転条件(電流値、発電電圧、要求発電出力、供給ガス量)、発電動作終了直後の開回路電圧と発電停止中の水素消費量との関係、水素供給連結部材の体積、ガス配管の体積、セパレータの水素流路の体積などの燃料電池構造設計に応じて、適宜設定することが可能である。
The holding time during which the on-off valve 7-1 of the fuel cell 1-1 is in the open state or the closed state at one time, the on-off valve of the fuel cell 1-2, 1-3 during the power generation stoppage The holding time in which the open / close state of 7-2, 7-3 is in the open state or the close state, and the hold time in which the discharge valve 6 is in the open state or the close state per time, fuel during power generation operation The setting of the number of times that the on-off valves 7-2 and 7-3 of the fuel cell 1-2 and 1-3 are open during the power generation stop with respect to the number of times that the on-off valve 7-1 of the cell 1-1 is open is Materials that make up the fuel cell, operating conditions (current value, generated voltage, required power generation output, supply gas amount), relationship between open circuit voltage immediately after the end of power generation operation and hydrogen consumption during power generation stop, hydrogen supply connection member Depending on the fuel cell structure design, such as the volume of the gas, the volume of the gas piping, the volume of the hydrogen channel of the separator, etc. It can be set as appropriate.

(実施の形態3)
図5は、本発明の実施の形態3における燃料電池システムの概略構成を示すブロック図である。図6は、本発明の実施の形態3における燃料電池システムの運転方法を示すフローチャートである。
Third Embodiment
FIG. 5 is a block diagram showing a schematic configuration of a fuel cell system according to Embodiment 3 of the present invention. FIG. 6 is a flow chart showing a method of operating a fuel cell system according to Embodiment 3 of the present invention.

図5に示す実施の形態3の燃料電池システム300は、図1に示す実施の形態1の燃料電池システム100の制御器8を制御器10に置き換えたものである。実施の形態3の燃料電池システム300において、実施の形態1の燃料電池システム100と同一構成については、同一符号を付して、重複する説明を省略する場合がある。   The fuel cell system 300 of the third embodiment shown in FIG. 5 is obtained by replacing the controller 8 of the fuel cell system 100 of the first embodiment shown in FIG. In the fuel cell system 300 according to the third embodiment, the same components as those of the fuel cell system 100 according to the first embodiment may be denoted by the same reference numerals and redundant description may be omitted.

実施の形態3の燃料電池システム300の制御器10は、実施の形態1の燃料電池システム100の制御器8と同様の制御に加えて、例えば、少なくとも1台の燃料電池1−2の発電動作中に少なくとも2台の燃料電池1−1,1−3が発電停止中であり、燃料電池1−1の発電停止してからの経過時間が燃料電池1−3の発電停止してからの経過時間よりも長い場合には、発電停止中の複数台(2台)の燃料電池1−1,1−3のうちで、発電停止してからの経過時間が最も長い方の燃料電池1−1のアノードに、発電動作中の燃料電池1−2の燃料オフガスが、より多く流入するように、発電停止中の複数台(2台)の燃料電池1−1,1−3の開閉弁7−1,7−3を制御するように構成されている。   In addition to the control similar to the controller 8 of the fuel cell system 100 of Embodiment 1, the controller 10 of the fuel cell system 300 of Embodiment 3 includes, for example, the power generation operation of at least one fuel cell 1-2. During that time, at least two fuel cells 1-1 and 1-3 are stopping power generation, and the time elapsed since the fuel cell 1-1 stopped power generation is the time elapsed since the fuel cell 1-3 stopped power generation If it is longer than the time, of the plurality (two) of fuel cells 1-1 and 1-3 during power generation suspension, the fuel cell 1-1 having the longest elapsed time since the power generation is stopped So that more fuel off-gas from the fuel cell 1-2 during power generation flows into the anode of the plurality of (two) fuel cells 1-1 and 1-3 during power generation stop. It is configured to control 1, 7-3.

以上のように構成された本実施の形態の燃料電池システム300について、以下その動作、作用を図5と図6を参照しながら説明する。図5に示す燃料電池システム300は、制御器10の制御によって図6のフローチャートの動作を実行する。   The operation and action of the fuel cell system 300 of the present embodiment configured as described above will be described below with reference to FIGS. 5 and 6. The fuel cell system 300 shown in FIG. 5 executes the operation of the flowchart of FIG. 6 under the control of the controller 10.

本実施の形態においては、燃料電池1−2が発電動作中で、燃料電池1−1,1−3が発電停止しているものとする。また、本実施の形態においては、燃料電池1−1の発電停止してからの経過時間が、燃料電池1−3の発電停止してからの経過時間よりも長いものとする。   In the present embodiment, it is assumed that the fuel cell 1-2 is in the power generation operation and the fuel cells 1-1 and 1-3 are in the power generation stop state. Further, in the present embodiment, it is assumed that the elapsed time after the fuel cell 1-1 stops generating power is longer than the elapsed time after the fuel cell 1-3 stops generating power.

まず、共用燃料ガス排出経路5の排出弁6を閉状態にする(S301)。次に、発電動作中の燃料電池1−2の開閉弁7−2と、発電停止中の2台の燃料電池1−1,1−3の開閉弁7−1,7−3を開状態にして、90秒間保持する(S302)。次に、発電停止中の2台の燃料電池1−1,1−3の開閉弁7−1,7−3を閉状態にし、排出弁6を開状態にして、30秒間保持する(S303)。   First, the discharge valve 6 of the common fuel gas discharge passage 5 is closed (S301). Next, open / close the on-off valve 7-2 of the fuel cell 1-2 in the power generation operation and the on-off valves 7-1 and 7-3 of the two fuel cells 1-1 and 1-3 in the power generation stop state. And hold for 90 seconds (S302). Next, the on-off valves 7-1 and 7-3 of the two fuel cells 1-1 and 1-3 during power generation stop are closed, and the discharge valve 6 is opened for 30 seconds (S303) .

次に、発電動作中の燃料電池1−2の開閉弁7−2を閉状態にし、10分間保持する(S304)。次に、共用燃料ガス排出経路5の排出弁6を閉状態にする(S305)。次に、発電動作中の燃料電池1−2の開閉弁7−2を開状態にして、発電停止中で発電停止してからの経過時間が相対的に長い方の燃料電池1−1の開閉弁7−1を開状態にして、90秒間保持する(S306)。   Next, the on-off valve 7-2 of the fuel cell 1-2 in the power generation operation is closed, and held for 10 minutes (S304). Next, the discharge valve 6 of the common fuel gas discharge passage 5 is closed (S305). Next, the on-off valve 7-2 of the fuel cell 1-2 in the power generation operation is opened, and the power generation is stopped while the power generation is stopped. The valve 7-1 is opened and held for 90 seconds (S306).

次に、発電停止中で発電停止してからの経過時間が相対的に長い方の燃料電池1−1の開閉弁7−1を閉状態にし、排出弁6を開状態にして、30秒間保持する(S307)。
次に、発電動作中の燃料電池1−2の開閉弁7−2を閉状態にし、10分間保持して(S308)、S301に戻る。各ステップは一つ前のステップを実施完了後、待機時間を設けずにすみやかに移行するようにする。
Next, the on-off valve 7-1 of the fuel cell 1-1 having a relatively longer elapsed time after the generation stoppage during the generation stoppage is closed and the discharge valve 6 is opened for 30 seconds. (S307).
Next, the on-off valve 7-2 of the fuel cell 1-2 in the power generation operation is closed, held for 10 minutes (S308), and the process returns to S301. In each step, immediately after the completion of the previous step, transition is made promptly without providing a waiting time.

以上のように、本実施の形態の燃料電池システム300においては、発電停止中の燃料電池1−1,1−3の発電停止してからの経過時間の長さに基づいて、発電停止中の複数台の燃料電池1−1,1−3のうちで、発電停止してからの経過時間が相対的に長い方の燃料電池1−1に燃料オフガスがより多く流入するように、発電動作中の燃料電池1−2の開閉弁7が開状態である回数に対して、発電停止中の複数台の燃料電池1−1,1−3の開閉弁7−1,7−3が開状態である回数を制御している。   As described above, in the fuel cell system 300 according to the present embodiment, power generation is stopped based on the length of time elapsed from the power generation stop of the fuel cells 1-1 and 1-3 during power generation stop. Of the plurality of fuel cells 1-1 and 1-3, the power generation operation is being performed so that more fuel off gas flows into the fuel cell 1-1 having a relatively longer elapsed time since power generation is stopped. The on-off valves 7-1 and 7-3 of the plurality of fuel cells 1-1 and 1-3 being stopped during the generation of electricity are open with respect to the number of times the on-off valve 7 of the fuel cell 1-2 is open. Control the number of times.

そのため、発電停止中の水素の消費量が大きい燃料電池1−1のアノード側触媒層の酸化劣化の進行を防ぐことができ、発電停止中の燃料電池全体の劣化の進行を均一化することができる。   Therefore, it is possible to prevent the progress of the oxidation deterioration of the anode catalyst layer of the fuel cell 1-1 having a large consumption of hydrogen during the power generation stop, and make uniform the progress of the deterioration of the entire fuel cell during the power generation stop. it can.

なお、本実施の形態においては、燃料電池システム300内に3台の燃料電池1−1,1−2,1−3を配置したが、複数台であれば3台でなくても構わない。すなわち、燃料電池システム300内に3台以上の燃料電池を配置していて、そのうち少なくとも2台以上の燃料電池が発電停止していて、少なくとも1台以上の燃料電池が発電動作している場合に、本発明は効果を発揮する。   In the present embodiment, the three fuel cells 1-1, 1-2, and 1-3 are disposed in the fuel cell system 300. However, three or more fuel cells may be used instead of three. That is, when three or more fuel cells are disposed in the fuel cell system 300 and at least two or more of the fuel cells are not generating power, and at least one or more fuel cells are generating power. The present invention is effective.

なお、発電動作中の燃料電池1−2の開閉弁7−2が一回当たりに開状態または閉状態となっている保持時間、発電停止中の燃料電池1−1,1−3の開閉弁7−1,7−3が一回当たりに開状態または閉状態となっている保持時間、および排出弁6が一回当たりに開状態または閉状態となっている保持時間、発電動作中の燃料電池1−2の開閉弁7−2が開状態である回数に対する発電停止中の燃料電池1−1,1−3の開閉弁7−1,7−3が開状態である回数の設定は、燃料電池を構成する材料や、運転条件(電流値、発電電圧、要求発電出力、供給ガス量)、発電動作終了直後の開回路電圧と発電停止中の水素消費量との関係、水素供給連結部材の体積、ガス配管の体積、セパレータの水素流路の体積などの燃料電池構造設計に応じて、適宜設定することが可能である。   The holding time during which the on-off valve 7-2 of the fuel cell 1-2 is in the open state or the closed state at one time, the on-off valve of the fuel cell 1-1, 1-3 during the power generation stoppage 7-1 and 7-3 hold the open time or closed state at one time, and hold time the discharge valve 6 open and close state at one time, fuel during power generation operation The setting of the number of times that the on-off valves 7-1 and 7-3 of the fuel cell 1-1 and 1-3 are open during power generation stop with respect to the number of times that the on-off valve 7-2 of the battery 1-2 is open is Materials that make up the fuel cell, operating conditions (current value, generated voltage, required power generation output, supply gas amount), relationship between open circuit voltage immediately after the end of power generation operation and hydrogen consumption during power generation stop, hydrogen supply connection member Depending on the fuel cell structure design, such as the volume of the gas, the volume of the gas piping, the volume of the hydrogen channel of the separator, etc. It can be set as appropriate.

以上のように、本発明にかかる燃料電池システム及びその運転方法は、発電動作中の燃料電池から周期的に外部に排出する燃料オフガスを、発電停止中の燃料電池のアノードに供給して、発電停止中の燃料電池のアノードの触媒層の酸化劣化を防止しつつ、燃料電池システム全体の発電効率低下を抑制することができるので、例えば、自動車などの移動体の駆動源や、発電装置、コジェネレーションシステムなどに使用される、燃料ガス循環経路を備えた複数の固体高分子形の燃料電池から構成され、発電動作中の燃料電池と発電停止中の燃料電池が共存するように運転する燃料電池システム等の用途に適用できる。   As described above, the fuel cell system according to the present invention and the method of operating the same supply the fuel off gas periodically discharged to the outside from the fuel cell during power generation operation to the anode of the fuel cell during power generation suspension to generate power. Since it is possible to prevent the deterioration of the power generation efficiency of the entire fuel cell system while preventing the oxidation deterioration of the catalyst layer of the anode of the fuel cell during stoppage, for example, a driving source of a mobile body such as an automobile, A fuel cell comprising a plurality of polymer electrolyte fuel cells provided with a fuel gas circulation path, which is used for a generation system or the like, and operated such that the fuel cell in power generation and the fuel cell in power generation coexistence It can be applied to applications such as systems.

1−1,1−2,1−3 燃料電池
2−1,2−2,2−3 燃料ガス供給路
3−1,3−2,3−3 燃料ガス循環経路
4−1,4−2,4−3 燃料ガス排出経路
5 共用燃料ガス排出経路
6 排出弁
7−1,7−2,7−3 開閉弁
8,9,10 制御器
100,200,300 燃料電池システム
1-1, 1-2, 1-3 Fuel cell 2-1, 2-2, 2-3 Fuel gas supply path 3-1, 3-2, 3-3 Fuel gas circulation path 4-1, 4-2 , 4-3 Fuel gas discharge path 5 Common fuel gas discharge path 6 Discharge valve 7-1, 7-2, 7-3 On-off valve 8, 9, 10 Controller 100, 200, 300 Fuel cell system

Claims (6)

複数の燃料電池と、
複数の前記燃料電池のそれぞれに個別に設けられ前記燃料電池のアノードに燃料ガスを供給するための燃料ガス供給路と、
複数の前記燃料電池のそれぞれに個別に設けられ前記燃料電池の前記アノードから排出される未使用の燃料ガスを前記燃料ガスとして前記燃料ガス供給路に戻す燃料ガス循環経路と、
複数の前記燃料ガス循環経路からそれぞれ分岐し前記燃料ガス循環経路の前記燃料ガスを排出するための燃料ガス排出経路と、
一端が複数の前記燃料ガス排出経路の下流端と連通し他端が大気開放した共用燃料ガス排出経路と、
複数の前記燃料ガス排出経路にそれぞれに個別に設けられ前記燃料ガス排出経路を開閉する常閉の開閉弁と、
前記共用燃料ガス排出経路に設けられ前記共用燃料ガス排出経路を開閉する常開の排出弁と、
制御器と、
を備えた燃料電池システムであって、
前記制御器は、
少なくとも1台の前記燃料電池の発電停止中に少なくとも1台の発電動作中の前記燃料電池に対応する前記開閉弁を開状態にする場合は、前記排出弁を閉状態にしてから前記少なくとも1台の発電動作中の前記燃料電池に対応する前記開閉弁と前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁とを開状態にし、前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁を開状態にしてから所定時間経過後に、前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁を閉状態に戻すと共に、前記排出弁を開状態にし、前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁を閉状態に戻した後に、前記少なくとも1台の発電動作中の前記燃料電池に対応する前記開閉弁を閉状態にする制御を行う、燃料電池システム。
With multiple fuel cells,
A fuel gas supply passage provided individually for each of the plurality of fuel cells and for supplying a fuel gas to the anode of the fuel cell;
A fuel gas circulation path which is individually provided for each of a plurality of the fuel cells and returns unused fuel gas discharged from the anode of the fuel cell to the fuel gas supply path as the fuel gas;
A fuel gas discharge path branched from a plurality of the fuel gas circulation paths and discharging the fuel gas of the fuel gas circulation path;
A common fuel gas discharge path whose one end is in communication with the downstream end of the plurality of fuel gas discharge paths and whose other end is open to the atmosphere;
A normally-closed on-off valve individually provided for each of the plurality of fuel gas discharge paths to open and close the fuel gas discharge path;
A normally open discharge valve provided in the common fuel gas discharge path to open and close the common fuel gas discharge path;
A controller,
A fuel cell system comprising:
The controller
When opening the on-off valve corresponding to the fuel cell during at least one power generation operation while the power generation of the at least one fuel cell is stopped, the discharge valve is closed and then the at least one unit is closed Opening the open / close valve corresponding to the fuel cell in the power generation operation and the open / close valve corresponding to the fuel cell in the at least one power generation suspension state, and the fuel at the After a predetermined time has elapsed since the open / close valve corresponding to the battery is opened, the open / close valve corresponding to the fuel cell in a state where the power generation is stopped is returned to the closed state, and the discharge valve is opened. Closing the on-off valve corresponding to the fuel cell in the at least one power generation operation after returning the on-off valve corresponding to the fuel cell in the at least one power generation stop state to the close state Control is performed to the fuel cell system.
前記制御器は、
少なくとも1台の前記燃料電池の発電動作中に少なくとも2台の前記燃料電池が発電停止中であり、発電停止中の複数台の前記燃料電池同士で発電停止中の前記燃料ガスの消費量が異なる場合には、
発電停止中の複数台の前記燃料電池のうちで、前記燃料ガスの消費量が大きい前記燃料電池の前記アノードに、前記燃料ガスがより多く流入するように、発電停止中の複数台の前記燃料電池の前記開閉弁を制御する、請求項1に記載の燃料電池システム。
The controller
At least one of the fuel cells is stopping power generation during the power generation operation of at least one of the fuel cells, and the consumption of the fuel gas during power generation suspension differs among the plurality of fuel cells stopping power generation. in case of,
Among the plurality of fuel cells under power generation stop, the plurality of fuels under power generation stop so that the fuel gas flows more into the anode of the fuel cell that consumes a large amount of fuel gas. The fuel cell system according to claim 1, which controls the on-off valve of a cell.
前記制御器は、
少なくとも1台の前記燃料電池の発電動作中に少なくとも2台の前記燃料電池が発電停止中であり、発電停止中の複数台の前記燃料電池同士で発電動作終了直後の開回路電圧が異なる場合には、
発電停止中の複数台の前記燃料電池のうちで、前記発電動作終了直後の開回路電圧が低い前記燃料電池の前記アノードに、前記燃料ガスがより多く流入するように、発電停止中の複数台の前記燃料電池の前記開閉弁を制御する、請求項1に記載の燃料電池システム。
The controller
In a case where at least two of the fuel cells are in a power generation suspension state during power generation operation of at least one of the fuel cells, and a plurality of the fuel cells in the power generation suspension state have different open circuit voltages immediately after the power generation operation ends. Is
Among the plurality of fuel cells under power generation stop, a plurality of fuel cells under power generation stop so that more fuel gas flows into the anode of the fuel cell having a low open circuit voltage immediately after the end of the power generation operation. The fuel cell system according to claim 1, wherein the on-off valve of the fuel cell is controlled.
前記制御器は、
少なくとも1台の前記燃料電池の発電動作中に少なくとも2台の前記燃料電池が発電停止中であり、発電停止中の複数台の前記燃料電池同士で発電停止してからの経過時間が異なる場合には、
発電停止中の複数台の前記燃料電池のうちで、前記発電停止してからの経過時間が長い前
記燃料電池の前記アノードに、前記燃料ガスがより多く流入するように、発電停止中の複数台の前記燃料電池の前記開閉弁を制御する、請求項1に記載の燃料電池システム。
The controller
In a case where at least two of the fuel cells are in a power generation stop during the power generation operation of at least one of the fuel cells, and a plurality of the fuel cells in the power generation stop have different elapsed times from the power generation stop. Is
Among the plurality of fuel cells under power generation stop, a plurality of fuel cells under power generation stop so that more fuel gas flows into the anode of the fuel cell having a long elapsed time since the power generation stop. The fuel cell system according to claim 1, wherein the on-off valve of the fuel cell is controlled.
前記制御器は、発電動作中の前記燃料電池の前記開閉弁が開状態である回数に対して、発電停止中の前記燃料電池の前記開閉弁が開状態である回数を制御する、請求項2から4のいずれか1項に記載の燃料電池システム。 The controller controls the number of times the on-off valve of the fuel cell in an open state is open while the on-off valve of the fuel cell is in an open state relative to the number of times the on-off valve of the fuel cell is open in a power generation operation. The fuel cell system according to any one of to 4. 複数の燃料電池と、
複数の前記燃料電池のそれぞれに個別に設けられ前記燃料電池のアノードに燃料ガスを供給するための燃料ガス供給路と、
複数の前記燃料電池のそれぞれに個別に設けられ前記燃料電池の前記アノードから排出される未使用の燃料ガスを前記燃料ガスとして前記燃料ガス供給路に戻す燃料ガス循環経路と、
複数の前記燃料ガス循環経路からそれぞれ分岐し前記燃料ガス循環経路の前記燃料ガスを排出するための燃料ガス排出経路と、
一端が複数の前記燃料ガス排出経路の下流端と連通し他端が大気開放した共用燃料ガス排出経路と、
複数の前記燃料ガス排出経路にそれぞれに個別に設けられ前記燃料ガス排出経路を開閉する常閉の開閉弁と、
前記共用燃料ガス排出経路に設けられ前記共用燃料ガス排出経路を開閉する常開の排出弁と、
を備えた燃料電池システムの運転方法であって、
少なくとも1台の前記燃料電池の発電停止中に少なくとも1台の発電動作中の前記燃料電池に対応する前記開閉弁を開状態にする場合は、前記排出弁を閉状態にしてから前記少なくとも1台の発電動作中の前記燃料電池に対応する前記開閉弁と前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁とを開状態にし、前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁を開状態にしてから所定時間経過後に、前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁を閉状態に戻すと共に、前記排出弁を開状態にし、前記少なくとも1台の発電停止中の前記燃料電池に対応する前記開閉弁を閉状態に戻した後に、前記少なくとも1台の発電動作中の前記燃料電池に対応する前記開閉弁を閉状態にする、燃料電池システムの運転方法。
With multiple fuel cells,
A fuel gas supply passage provided individually for each of the plurality of fuel cells and for supplying a fuel gas to the anode of the fuel cell;
A fuel gas circulation path which is individually provided for each of a plurality of the fuel cells and returns unused fuel gas discharged from the anode of the fuel cell to the fuel gas supply path as the fuel gas;
A fuel gas discharge path branched from a plurality of the fuel gas circulation paths and discharging the fuel gas of the fuel gas circulation path;
A common fuel gas discharge path whose one end is in communication with the downstream end of the plurality of fuel gas discharge paths and whose other end is open to the atmosphere;
A normally-closed on-off valve individually provided for each of the plurality of fuel gas discharge paths to open and close the fuel gas discharge path;
A normally open discharge valve provided in the common fuel gas discharge path to open and close the common fuel gas discharge path;
A method of operating a fuel cell system comprising
When opening the on-off valve corresponding to the fuel cell during at least one power generation operation while the power generation of the at least one fuel cell is stopped, the discharge valve is closed and then the at least one unit is closed Opening the open / close valve corresponding to the fuel cell in the power generation operation and the open / close valve corresponding to the fuel cell in the at least one power generation suspension state, and the fuel at the After a predetermined time has elapsed since the open / close valve corresponding to the battery is opened, the open / close valve corresponding to the fuel cell in a state where the power generation is stopped is returned to the closed state, and the discharge valve is opened. Closing the on-off valve corresponding to the fuel cell in the at least one power generation operation after returning the on-off valve corresponding to the fuel cell in the at least one power generation stop state to the close state To method of operating a fuel cell system.
JP2018006835A 2018-01-19 2018-01-19 Fuel cell system and operation method therefor Pending JP2019125537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006835A JP2019125537A (en) 2018-01-19 2018-01-19 Fuel cell system and operation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006835A JP2019125537A (en) 2018-01-19 2018-01-19 Fuel cell system and operation method therefor

Publications (1)

Publication Number Publication Date
JP2019125537A true JP2019125537A (en) 2019-07-25

Family

ID=67398997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006835A Pending JP2019125537A (en) 2018-01-19 2018-01-19 Fuel cell system and operation method therefor

Country Status (1)

Country Link
JP (1) JP2019125537A (en)

Similar Documents

Publication Publication Date Title
CN108039504B (en) Shutdown control system and method for proton exchange membrane fuel cell
JP2007323954A (en) Fuel cell system, and control method thereof
JP4917796B2 (en) Fuel cell system
KR20150074311A (en) Fuel cell management method
JP2003115317A (en) Stopping method of power generation of fuel cell
US7709119B2 (en) Method for operating fuel cell
JP2007059120A (en) Fuel battery system
JP2010086853A (en) Fuel cell system and its operation stop method
JP2007323959A (en) Fuel cell system
JP5538192B2 (en) Fuel cell system
JPH07183039A (en) Stopping method for power generation at fuel cell plant
JP2008181768A (en) Fuel cell system
JP2006059734A (en) Fuel cell system and its starting/shutdown method
JP2019125537A (en) Fuel cell system and operation method therefor
JP2011034837A (en) Method for starting fuel cell system in below freezing point
JP5358988B2 (en) Fuel cell system
JP5502955B2 (en) Fuel cell system and control method thereof
US20100068566A1 (en) Method for minimizing membrane electrode degradation in a fuel cell power plant
JP2018147727A (en) Fuel cell system and operation method thereof
JP2006302578A (en) Operation method of fuel cell and fuel cell system
JP2005108698A (en) Fuel cell system
JP2017157283A (en) Tank shut-off valve control method
JP5485930B2 (en) Control method of fuel cell system
JP5415025B2 (en) Starting method of fuel cell system
JP2004134199A (en) Starting method of fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123