JP2019125468A - Negative electrode slurry for lithium battery - Google Patents

Negative electrode slurry for lithium battery Download PDF

Info

Publication number
JP2019125468A
JP2019125468A JP2018004782A JP2018004782A JP2019125468A JP 2019125468 A JP2019125468 A JP 2019125468A JP 2018004782 A JP2018004782 A JP 2018004782A JP 2018004782 A JP2018004782 A JP 2018004782A JP 2019125468 A JP2019125468 A JP 2019125468A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode slurry
slurry
dispersion solvent
sbr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018004782A
Other languages
Japanese (ja)
Other versions
JP6904264B2 (en
Inventor
駿 竹岡
Shun Takeoka
駿 竹岡
佐藤 仁
Hitoshi Sato
仁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018004782A priority Critical patent/JP6904264B2/en
Publication of JP2019125468A publication Critical patent/JP2019125468A/en
Application granted granted Critical
Publication of JP6904264B2 publication Critical patent/JP6904264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To achieve all of SBR solubility, solid content dispersibility and slurry stability in a negative electrode slurry for a lithium battery involving a silicon-based active material, a sulfide solid electrolyte, styrene-butadiene rubber (SBR) and a dispersion solvent.SOLUTION: A solvent mixture is used as a dispersion solvent, which comprises: mesitylene of 25 vol.% or more and 75 vol.% or less; and a butyl butyrate of 25 vol.% or more and 75 vol.% or less. SBR is dissolved by mesitylene and in parallel, the precipitation of solid contents is suppressed by the butyl butyrate, thereby increasing the slurry stability.SELECTED DRAWING: Figure 1

Description

本願はリチウム電池用負極スラリーを開示する。   The present application discloses a negative electrode slurry for a lithium battery.

特許文献1には、シリコン系活物質と硫化物固体電解質とバインダーとを含むリチウム電池用負極合材が開示されている。バインダーとしてはスチレンブタジエンゴム(SBR)を用いることが可能である。特許文献2に開示されているように、リチウム電池用負極合材を作製する場合は、各成分を分散溶媒に分散及び溶解させてスラリーとすることが好ましい。リチウム電池用負極スラリーを構成する分散溶媒は、硫化物固体電解質等の固形分との不要な反応を起こさず、且つ、バインダーを溶解させることが可能なものが好ましい。リチウム電池用負極スラリーを構成する分散溶媒としては、例えば、酪酸ブチルが知られているが、酪酸ブチル中にSBR等のバインダーを溶解させることは困難である。   Patent Document 1 discloses a negative electrode composite for a lithium battery, which contains a silicon-based active material, a sulfide solid electrolyte, and a binder. It is possible to use styrene butadiene rubber (SBR) as a binder. As disclosed in Patent Document 2, in the case of producing a negative electrode composite material for a lithium battery, it is preferable to disperse and dissolve each component in a dispersion solvent to form a slurry. The dispersion solvent which comprises the negative electrode slurry for lithium batteries does not raise | generate an unnecessary reaction with solid content, such as a sulfide solid electrolyte, and what can dissolve a binder is preferable. For example, butyl butyrate is known as a dispersion solvent constituting a negative electrode slurry for lithium batteries, but it is difficult to dissolve a binder such as SBR in butyl butyrate.

特開2013−069416号公報JP, 2013-069416, A 特開2016−025025号公報JP, 2016-020255, A

従来の負極スラリーにおいては分散溶媒中にSBRを溶解させることが難しいという課題がある。この点、本発明者の新たな知見によれば、分散溶媒としてメシチレン(1,3,5−トリメチルベンゼン)を用いることで、分散溶媒中にSBRを良好に溶解させることができる。しかしながら、本発明者は、負極スラリーにおいて分散溶媒としてメシチレンを用いた場合、固形分の分散性やスラリーの安定性が悪いという新たな課題に突き当たった。   In the conventional negative electrode slurry, there is a problem that it is difficult to dissolve SBR in the dispersion solvent. In this respect, according to new findings of the present inventor, SBR can be favorably dissolved in the dispersion solvent by using mesitylene (1,3,5-trimethylbenzene) as the dispersion solvent. However, when using mesitylene as the dispersion solvent in the negative electrode slurry, the present inventors have encountered a new problem that the dispersibility of the solid content and the stability of the slurry are poor.

本願は上記課題を解決するための手段の一つとして、シリコン系活物質と硫化物固体電解質とスチレンブタジエンゴムと分散溶媒とを含み、前記分散溶媒が、25体積%以上75体積%以下のメシチレンと、25体積%以上75体積%以下の酪酸ブチルとの混合溶媒である、リチウム電池用負極スラリーを開示する。   The present application includes, as one of means for solving the above problems, a silicon-based active material, a sulfide solid electrolyte, a styrene butadiene rubber, and a dispersion solvent, and the dispersion solvent is mesitylene of 25% by volume or more and 75% by volume or less And a negative electrode slurry for a lithium battery, which is a mixed solvent of 25% by volume to 75% by volume of butyl butyrate.

本開示のリチウム電池用負極スラリーによれば、メシチレンによってSBRを溶解させつつ、酪酸ブチルによって固形分を均一に分散させるとともに沈降を抑制することができる。すなわち、固形分の分散性やスラリー安定性を高めることができる。   According to the negative electrode slurry for a lithium battery of the present disclosure, while dissolving SBR with mesitylene, it is possible to uniformly disperse the solid content with butyl butyrate and to suppress sedimentation. That is, the dispersibility of the solid content and the stability of the slurry can be enhanced.

実施例・比較例に係る結果を示す図である。It is a figure which shows the result concerning an Example and a comparative example.

1.リチウム電池用負極スラリー
本開示のリチウム電池用負極スラリーは、シリコン系活物質と硫化物固体電解質とスチレンブタジエンゴムと分散溶媒とを含み、分散溶媒が、25体積%以上75体積%以下のメシチレンと、25体積%以上75体積%以下の酪酸ブチルとの混合溶媒である点に一つの特徴を有する。
1. Negative Electrode Slurry for Lithium Battery The negative electrode slurry for lithium battery of the present disclosure comprises a silicon-based active material, a sulfide solid electrolyte, a styrene butadiene rubber, and a dispersion solvent, and the dispersion solvent is mesitylene of 25% by volume or more and 75% by volume or less It has one feature in that it is a mixed solvent with 25% by volume or more and 75% by volume or less of butyl butyrate.

1.1.シリコン系活物質
シリコン系活物質は、リチウム電池の負極活物質として機能し得るものであり、構成元素としてSiを含むものであればよい。例えば、単体のSiやSi合金やケイ素酸化物を用いることができる。特にSi又はケイ素酸化物が好ましい。シリコン系活物質の形状は一般的な形状、すなわち粒子状であればよい。シリコン系活物質は一次粒子状であっても二次粒子状であってもよい。シリコン系活物質の平均粒子径(D50)は0.01μm以上10μm以下であることが好ましい。下限がより好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、上限がより好ましくは5μm以下、さらに好ましくは3μm以下である。尚、平均粒子径(D50)とは、レーザ散乱・回折法に基づく粒度分布測定装置に基づいて測定した粒度分布から導き出されるメジアン径(50%体積平均粒子径)をいう。本開示の負極スラリーにおけるシリコン系活物質の含有量は特に限定されるものではなく、目的とする電池の性能に応じて適宜決定すればよい。例えば、負極スラリーのうち分散溶媒を除いた成分(乾燥後に負極合材層を構成する成分)全体を100質量%として、シリコン系活物質の含有量を30質量%以上90質量%以下とすることが好ましい。下限がより好ましくは50質量%以上、上限がより好ましくは80質量%以下である。
1.1. Silicon-Based Active Material The silicon-based active material can function as a negative electrode active material of a lithium battery, as long as it contains Si as a constituent element. For example, single Si, Si alloy or silicon oxide can be used. In particular, Si or silicon oxide is preferred. The shape of the silicon-based active material may be a general shape, that is, a particle shape. The silicon-based active material may be in the form of primary particles or secondary particles. The average particle size (D 50 ) of the silicon-based active material is preferably 0.01 μm to 10 μm. The lower limit is more preferably 0.05 μm or more, further preferably 0.1 μm or more, and the upper limit is more preferably 5 μm or less, still more preferably 3 μm or less. Incidentally, the average particle diameter (D 50), refers to a median diameter (50% volume average particle size) derived from the particle size distribution measured on the basis of the particle size distribution measuring apparatus based on a laser scattering-diffraction method. The content of the silicon-based active material in the negative electrode slurry of the present disclosure is not particularly limited, and may be appropriately determined according to the performance of the target battery. For example, the content of the silicon-based active material is 30% by mass or more and 90% by mass or less, with 100% by mass of the whole of the negative electrode slurry excluding the dispersion solvent (the component constituting the negative electrode mixture layer after drying) being 100% by mass. Is preferred. The lower limit is more preferably 50% by mass or more, and the upper limit is more preferably 80% by mass or less.

1.2.硫化物固体電解質
硫化物固体電解質は、リチウム電池の固体電解質として適用される硫化物をいずれも採用可能である。例えば、LiS−P、LiS−SiS、LiI−LiS−SiS、LiI−SiS−P、LiI−LiBr−LiS−P、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P−GeS等が挙げられる。これらの中でも、特に、LiS−Pを含む硫化物固体電解質がより好ましい。硫化物固体電解質は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。硫化物固体電解質の形状は一般的な形状、すなわち粒子状であればよい。硫化物固体電解質の粒子径は0.01μm以上5μm以下であることが好ましい。下限がより好ましくは0.05μm以上、さらに好ましくは0.1μm以上であり、上限がより好ましくは3μm以下、さらに好ましくは2μm以下である。本開示の負極スラリーにおける硫化物固体電解質の含有量は特に限定されるものではなく、目的とする電池の性能に応じて適宜決定すればよい。例えば、負極スラリーのうち分散溶媒を除いた成分(乾燥後に負極合材層を構成する成分)全体を100質量%として、硫化物固体電解質の含有量を5質量%以上60質量%以下とすることが好ましい。下限がより好ましくは20質量%以上、上限がより好ましくは50質量%以下である。
1.2. Sulfide Solid Electrolyte The sulfide solid electrolyte may employ any of the sulfides applied as solid electrolytes for lithium batteries. For example, Li 2 S-P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Si 2 S-P 2 S 5, LiI-LiBr-Li 2 S-P 2 S 5 , LiI-Li 2 S-P 2 S 5 , LiI-Li 2 S-P 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 -GeS 2 and the like. . Among these, in particular, a sulfide solid electrolyte containing Li 2 S—P 2 S 5 is more preferable. A sulfide solid electrolyte may be used individually by 1 type, and may mix and use 2 or more types. The shape of the sulfide solid electrolyte may be a general shape, that is, a particle shape. The particle diameter of the sulfide solid electrolyte is preferably 0.01 μm or more and 5 μm or less. The lower limit is more preferably 0.05 μm or more, further preferably 0.1 μm or more, and the upper limit is more preferably 3 μm or less, still more preferably 2 μm or less. The content of the sulfide solid electrolyte in the negative electrode slurry of the present disclosure is not particularly limited, and may be appropriately determined in accordance with the intended performance of the battery. For example, the content of the sulfide solid electrolyte is set to 5% by mass or more and 60% by mass or less, with 100% by mass of all components excluding the dispersion solvent in the negative electrode slurry (components constituting the negative electrode mixture layer after drying) being 100% by mass. Is preferred. The lower limit is more preferably 20% by mass or more, and the upper limit is more preferably 50% by mass or less.

1.3.スチレンブタジエンゴム
スチレンブタジエンゴム(SBR)は、上記のシリコン系活物質や硫化物固体電解質等を結着させるためのバインダーとして機能する。SBRは、リチウム電池のバインダーとして公知のもの(分子量等)を採用すればよい。本開示の負極スラリーにおいては、分散溶媒としてメシチレンを用いることで、SBRを良好に溶解させることができる。本開示の負極スラリーにおけるSBRの含有量は特に限定されるものではなく、目的とする電池の性能に応じて適宜決定すればよい。SBRが少な過ぎると負極合材層の成形性等に劣り、SBRが多過ぎると負極としての性能が低下する虞がある。
1.3. Styrene butadiene rubber Styrene butadiene rubber (SBR) functions as a binder for binding the above-mentioned silicon-based active material, sulfide solid electrolyte, and the like. SBR may be a known binder (such as molecular weight) of lithium battery. In the negative electrode slurry of the present disclosure, SBR can be favorably dissolved by using mesitylene as a dispersion solvent. The content of SBR in the negative electrode slurry of the present disclosure is not particularly limited, and may be appropriately determined according to the performance of the target battery. If the SBR is too small, the formability of the negative electrode mixture layer or the like will be inferior, and if the SBR is too large, the performance as the negative electrode may be degraded.

1.4.分散溶媒
分散溶媒は、25体積%以上75体積%以下のメシチレンと、25体積%以上75体積%以下の酪酸ブチルとの混合溶媒である。メシチレンを25体積%以上含むことで、分散溶媒中に上記のSBRを良好に溶解させることができる。また、酪酸ブチルを25体積%以上含むことで、分散溶媒中にシリコン系活物質や硫化物固体電解質といった固形分を良好に分散させることができるとともに、固形分の沈降速度を低下させることができる。スラリーにおける固形分の分散性を高めることで、成膜時の品質不良(ブツやスジ)を抑制することができる。また、スラリーにおける固形分の沈降速度を低下させることで、負極製造時の送液配管詰まり等を抑制することができる。本開示の負極スラリーにおける分散溶媒の含有量は特に限定されるものではなく、目的とするスラリー濃度に応じて適宜決定すればよい。
1.4. Dispersion solvent The dispersion solvent is a mixed solvent of 25% by volume or more and 75% by volume or less of mesitylene and 25% by volume or more and 75% by volume or less of butyl butyrate. By containing 25% by volume or more of mesitylene, the above-mentioned SBR can be well dissolved in the dispersion solvent. Further, by containing 25% by volume or more of butyl butyrate, solid content such as silicon-based active material and sulfide solid electrolyte can be favorably dispersed in the dispersion solvent, and the settling speed of solid content can be reduced. . By enhancing the dispersibility of the solid content in the slurry, it is possible to suppress quality defects (bumps and streaks) at the time of film formation. In addition, by lowering the settling speed of the solid content in the slurry, it is possible to suppress clogging of the liquid delivery pipe at the time of manufacturing the negative electrode and the like. The content of the dispersion solvent in the negative electrode slurry of the present disclosure is not particularly limited, and may be appropriately determined according to the target slurry concentration.

1.5.その他の成分
本開示の負極スラリーは、上記したシリコン系活物質、硫化物固体電解質、SBR及び分散溶媒に加えて、その他の成分を含んでいてもよい。
1.5. Other Components The negative electrode slurry of the present disclosure may contain other components in addition to the silicon-based active material, the sulfide solid electrolyte, the SBR, and the dispersion solvent described above.

本開示の負極スラリーには、上記のシリコン系活物質に加えて、上記課題を解決できる範囲において、例えばコンタミネーション等を考慮して、シリコン系活物質以外の負極活物質が含まれていてもよい。例えば、グラファイトやハードカーボン等の炭素材料;チタン酸リチウム等の各種酸化物;金属リチウムやリチウム合金等を含んでいてもよい。より顕著な効果を発揮できる観点からは、負極スラリーに含まれる負極活物質はシリコン系活物質を好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは99質量%以上含む。特に好ましくは負極スラリーに含まれる負極活物質はシリコン系活物質からなる。   The negative electrode slurry of the present disclosure includes a negative electrode active material other than the silicon-based active material in consideration of, for example, contamination and the like, in addition to the above-described silicon-based active material, in the range where the above problems can be solved. Good. For example, carbon materials such as graphite and hard carbon; various oxides such as lithium titanate; metallic lithium and lithium alloys may be included. From the viewpoint of achieving a more remarkable effect, the negative electrode active material contained in the negative electrode slurry preferably contains 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more of the silicon-based active material. Particularly preferably, the negative electrode active material contained in the negative electrode slurry is made of a silicon-based active material.

本開示の負極スラリーには、上記の硫化物固体電解質に加えて、上記課題を解決できる範囲において、例えばコンタミネーション等を考慮して、硫化物固体電解質以外の電解質が含まれていてもよい。例えば、酸化物固体電解質等を含んでいてもよい。より顕著な効果を発揮できる観点からは、負極スラリーに含まれる電解質は硫化物固体電解質を好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは99質量%以上含む。特に好ましくは負極スラリーに含まれる電解質は硫化物固体電解質からなる。   In addition to the above-mentioned sulfide solid electrolyte, the anode slurry of the present disclosure may contain an electrolyte other than the sulfide solid electrolyte in consideration of, for example, contamination and the like in the range in which the above-mentioned problems can be solved. For example, an oxide solid electrolyte may be included. From the viewpoint of achieving a more remarkable effect, the electrolyte contained in the negative electrode slurry preferably contains a sulfide solid electrolyte of 90% by mass or more, more preferably 95% by mass or more, and still more preferably 99% by mass or more. Particularly preferably, the electrolyte contained in the negative electrode slurry comprises a sulfide solid electrolyte.

本開示の負極スラリーには、上記のSBRに加えて、上記課題を解決できる範囲において、それ以外のバインダーが含まれていてもよい。例えば、カルボキシメチルセルロース(CMC)、アクリロニトリルブタジエンゴム(ABR)、ブタジエンゴム(BR)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)(前駆体であるポリアミック酸でもよい)等である。   The negative electrode slurry of the present disclosure may contain, in addition to the above-mentioned SBR, other binders insofar as the above-mentioned problems can be solved. For example, carboxymethylcellulose (CMC), acrylonitrile butadiene rubber (ABR), butadiene rubber (BR), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyimide (PI) (which may be a precursor polyamic acid) Etc.

本開示の負極スラリーにおいて、分散溶媒は、上記のメシチレン及び酪酸ブチルに加えて、上記課題を解決できる範囲において、それ以外の有機溶媒を含んでいてもよい。例えば、ヘプタンやN−メチルピロリドン等を含んでいてもよい。より顕著な効果を発揮できる観点からは、負極スラリーに含まれる分散溶媒は上記したメシチレン及び酪酸ブチルを合計で好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは99質量%以上含む。特に好ましくは負極スラリーに含まれる分散溶媒はメシチレン及び酪酸ブチルからなる。   In the negative electrode slurry of the present disclosure, the dispersion solvent may contain, in addition to mesitylene and butyl butyrate described above, other organic solvents as long as the above problems can be solved. For example, heptane, N-methyl pyrrolidone and the like may be contained. From the viewpoint of achieving more remarkable effects, the dispersion solvent contained in the negative electrode slurry preferably contains 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more in total of mesitylene and butyl butyrate described above. Including. Particularly preferably, the dispersion solvent contained in the negative electrode slurry comprises mesitylene and butyl butyrate.

本開示の負極スラリーは導電助剤を含むことが好ましい。導電助剤は、リチウム電池において採用される導電助剤として公知のものをいずれも採用できる。例えば、アセチレンブラック(AB)やケッチェンブラック(KB)や気相法炭素繊維(VGCF)やカーボンナノチューブ(CNT)やカーボンナノファイバー(CNF)や黒鉛等の炭素材料;ニッケル、アルミニウム、ステンレス鋼等の金属材料を用いることができる。特に炭素材料が好ましい。導電助剤は1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。導電助剤の形状は、粉末状、繊維状等、種々の形状を採用できる。負極スラリーにおける導電助剤の含有量は特に限定されるものではなく、目的とする電池の性能に応じて適宜決定すればよい。例えば、負極スラリーのうち分散溶媒を除いた成分(乾燥後に負極合材層を構成する成分)全体を100質量%として、導電助剤の含有量を1質量%以上10質量%以下とすることが好ましい。下限がより好ましくは2質量%以上、上限がより好ましくは7質量%以下である。   The negative electrode slurry of the present disclosure preferably contains a conductive aid. As the conductive support agent, any known conductive support agent used in lithium batteries can be adopted. For example, carbon materials such as acetylene black (AB), ketjen black (KB), vapor grown carbon fibers (VGCF), carbon nanotubes (CNT), carbon nanofibers (CNF) and graphite; nickel, aluminum, stainless steel, etc. Metal materials can be used. In particular, carbon materials are preferred. The conductive aid may be used alone or in combination of two or more. The shape of the conductive additive can be various shapes such as powder, fiber and the like. The content of the conductive additive in the negative electrode slurry is not particularly limited, and may be appropriately determined according to the performance of the target battery. For example, the content of the conductive additive may be 1% by mass or more and 10% by mass or less, with 100% by mass of the whole of the negative electrode slurry excluding the dispersion solvent (the component constituting the negative electrode mixture layer after drying) being 100% by mass. preferable. The lower limit is more preferably 2% by mass or more, and the upper limit is more preferably 7% by mass or less.

1.6.負極スラリーの粘度
負極スラリーは固形分を含んだ状態における粘度が500mPa・s以上1000mPa・s以下であることが好ましい。負極スラリーの粘度を500mPa・s以上1000mPa・s以下とすることで塗工性等が良好となる。負極スラリーの粘度は固形分の含有量を変化させること等によって容易に調整することができる。
1.6. Viscosity of Negative Electrode Slurry The negative electrode slurry preferably has a viscosity of 500 mPa · s or more and 1000 mPa · s or less when it contains solid content. Coating property etc. become favorable by the viscosity of negative electrode slurry being 500 mPa * s or more and 1000 mPa * s or less. The viscosity of the negative electrode slurry can be easily adjusted by, for example, changing the solid content.

2.リチウム電池用負極スラリーの製造方法
本開示の負極スラリーは、上記した各成分を混合することによって容易に製造することができる。混合方法については特に限定されるものではなく、公知の混合手段を用いればよい。本願を参照した当業者にとって自明であることから、さらなる説明は省略する。
2. Method of Producing Negative Electrode Slurry for Lithium Battery The negative electrode slurry of the present disclosure can be easily produced by mixing the components described above. The mixing method is not particularly limited, and known mixing means may be used. Further description is omitted as it is obvious to those skilled in the art with reference to the present application.

3.リチウム電池用負極の製造方法
本開示の負極スラリーを用いてリチウム電池用負極を製造することができる。リチウム電池用負極は、例えば、本開示の負極スラリーを負極集電体の表面に塗布し乾燥する過程を経ること等により容易に製造することができる。負極集電体はリチウム電池に適用される負極集電体として公知のものをいずれも採用可能であり、各種金属箔等を採用できる。本願を参照した当業者にとって自明であることから、さらなる説明は省略する。
3. Method for Producing Negative Electrode for Lithium Battery The negative electrode slurry of the present disclosure can be used to produce a negative electrode for lithium battery. The lithium battery negative electrode can be easily manufactured, for example, through the process of applying the negative electrode slurry of the present disclosure to the surface of the negative electrode current collector and drying. As the negative electrode current collector, any of known negative electrode current collectors applicable to lithium batteries can be adopted, and various metal foils and the like can be adopted. Further description is omitted as it is obvious to those skilled in the art with reference to the present application.

4.リチウム電池の製造方法
本開示の負極と正極と電解質とを用いてリチウム電池を製造することができる。リチウム電池における正極及び電解質の構成は当業者にとって自明であることから、さらなる説明は省略する。尚、本開示の負極スラリーは硫化物固体電解質を含んでおり、全固体電池(特に硫化物固体電池)の負極材料として好適である。すなわち、リチウム電池は電解質層として固体電解質層を有することが好ましく、硫化物固体電解質層を有することがより好ましい。全固体電池の構成については当業者にとって公知であることから詳細な説明は省略する。
4. Method of Manufacturing Lithium Battery A lithium battery can be manufactured using the negative electrode of the present disclosure, a positive electrode, and an electrolyte. The configuration of the positive electrode and the electrolyte in a lithium battery is obvious to those skilled in the art, and thus further description is omitted. In addition, the negative electrode slurry of this indication contains a sulfide solid electrolyte, and is suitable as an anode material of an all-solid-state battery (especially sulfide solid battery). That is, the lithium battery preferably has a solid electrolyte layer as an electrolyte layer, and more preferably has a sulfide solid electrolyte layer. The configuration of the all-solid-state battery is known to those skilled in the art, and thus the detailed description is omitted.

1.硫化物固体電解質の合成
LiS(フルウチ化学社製)0.550gと、P(アルドリッチ社製)0.887gと、LiI(日宝化学社製)0.285gと、LiBr(高純度化学社製)0.277gとを秤量し、メノウ乳鉢で5分間混合し、その後n−ヘプタン(脱水グレード、関東化学社製)を4g入れ、遊星型ボールミルを用いて40時間メカニカルミリングすることで硫化物固体電解質を得た。
1. Synthesis of sulfide solid electrolyte 0.550 g of Li 2 S (manufactured by Fluuchi Chemical Co., Ltd.), 0.887 g of P 2 S 5 (manufactured by Aldrich), 0.285 g of LiI (manufactured by Nichiho Chemical Co., Ltd.), LiBr (high) Weigh 0.277 g (manufactured by Purity Chemical Co., Ltd.) and mix for 5 minutes in an agate mortar, then add 4 g of n-heptane (dehydrated grade, manufactured by Kanto Chemical Co., Ltd.) and mechanically mill for 40 hours using a planetary ball mill. A sulfide solid electrolyte was obtained.

2.負極スラリーの作製
シリコン系活物質(Si、高純度化学社製)1.0gと、上記の硫化物固体電解質0.776gと、導電助剤(VGCF、昭和電工社製)0.04gと、SBR(旭化成社製)0.01gとを秤量し、下記表1に示す比率でメシチレンと酪酸ブチルとが混合された分散溶媒に投入後、超音波ホモジナイザー(SMT社製UH−50)を用いて混合し、評価用の負極スラリーを得た。スラリーにおける固形分濃度を調整することで様々な粘度のスラリーを作製した。
2. Preparation of Negative Electrode Slurry 1.0 g of a silicon-based active material (Si, manufactured by High Purity Chemical Co., Ltd.), 0.776 g of the above-mentioned sulfide solid electrolyte, 0.04 g of a conductive additive (VGCF, manufactured by Showa Denko), SBR After weighing out 0.01 g (manufactured by Asahi Kasei Corp.) and injecting it into a dispersion solvent in which mesitylene and butyl butyrate are mixed at a ratio shown in Table 1 below, mixing is performed using an ultrasonic homogenizer (UH-50 manufactured by SMT) Then, a negative electrode slurry for evaluation was obtained. By adjusting the solid content concentration in the slurry, slurries of various viscosities were produced.

3.負極スラリーの評価
3.1.固形分の分散性
得られたスラリーにおける固形分の分散性を官能評価した。評価指標は以下の通りとした。結果を下記表1に示す。
◎:スラリー作製時に硫化物固体電解質の凝集がなく、スラリーが滑らか。SBRの析出なし。
○:スラリー作製時に硫化物固体電解質がわずかに凝集し、スラリーの滑らかさが若干低い。SBRの析出なし。
×:SBRが溶解せずに析出。
3. Evaluation of Negative Electrode Slurry 3.1. Dispersion of Solid Content The dispersibility of the solid component in the obtained slurry was evaluated by sensory evaluation. The evaluation indicators were as follows. The results are shown in Table 1 below.
◎: There is no aggregation of the sulfide solid electrolyte at the time of slurry preparation, and the slurry is smooth. No precipitation of SBR.
○: The sulfide solid electrolyte is slightly aggregated during the preparation of the slurry, and the smoothness of the slurry is slightly low. No precipitation of SBR.
X: SBR precipitates without dissolution.

3.2.固形分の沈降速度
得られた負極スラリーにおける固形分の沈降速度を遠心沈降・光透過法によって測定した。測定にはLUM社製LuMiSizerを用いた。結果を下記表1及び図1に示す。
3.2. Sedimentation speed of solid content The sedimentation speed of solid content in the obtained negative electrode slurry was measured by a centrifugal sedimentation / light transmission method. LUM LuMiSizer was used for the measurement. The results are shown in Table 1 below and FIG.

表1及び図1に示す結果から明らかなように、メシチレンのみからなる分散溶媒を用いた比較例1〜3と、メシチレンと酪酸ブチルとを所定の比率で混合した分散溶媒を用いた実施例1〜14とを比較すると、スラリーの粘度を同等とした場合に、実施例1〜14のほうが固形分の分散性やスラリー安定性を高めることができた。実施例1〜14に係る分散溶媒によれば、メシチレンによってSBRを溶解させつつ、酪酸ブチルによって固形分を均一に分散させるとともに沈降を抑制することができることがわかった。尚、酪酸ブチルからなる分散溶媒を用いた比較例4は、SBRが溶解せずに析出してしまった。   As is clear from the results shown in Table 1 and FIG. 1, Comparative Examples 1 to 3 using a dispersion solvent consisting only of mesitylene, and Example 1 using a dispersion solvent in which mesitylene and butyl butyrate were mixed at a predetermined ratio. When the viscosity of the slurry is equalized, the dispersibility of the solid content and the slurry stability can be enhanced in Examples 1 to 14 in comparison with. According to the dispersion solvents according to Examples 1 to 14, it was found that while dissolving SBR with mesitylene, it is possible to uniformly disperse the solid content with butyl butyrate and to suppress sedimentation. In addition, in Comparative Example 4 in which a dispersion solvent composed of butyl butyrate was used, SBR was precipitated without being dissolved.

尚、上記の実施例においては導電助剤としてVGCFを含む形態を示したが、本開示の負極スラリーにおいて導電助剤の存在は任意である。本開示の負極スラリーにおいては、導電助剤の有無によらず、メシチレンと酪酸ブチルとを所定の比率で混合した分散溶媒を用いることで所望の効果を発揮でき、課題を解決することができる。   In addition, although the form containing VGCF as a conductive support agent was shown in said Example, presence of a conductive support agent is arbitrary in the negative electrode slurry of this indication. In the negative electrode slurry of the present disclosure, a desired effect can be exhibited by using a dispersion solvent in which mesitylene and butyl butyrate are mixed at a predetermined ratio regardless of the presence or absence of a conductive aid, and the problem can be solved.

本発明に係る負極スラリーを用いて製造されたリチウム電池は、例えば、携帯機器用の小型電源から車搭載用の大型電源まで、広く利用できる。   The lithium battery manufactured using the negative electrode slurry according to the present invention can be widely used, for example, from a small power source for portable devices to a large power source for vehicle mounting.

Claims (1)

シリコン系活物質と硫化物固体電解質とスチレンブタジエンゴムと分散溶媒とを含み、
前記分散溶媒が、25体積%以上75体積%以下のメシチレンと、25体積%以上75体積%以下の酪酸ブチルとの混合溶媒である、
リチウム電池用負極スラリー。
Containing silicon-based active material, sulfide solid electrolyte, styrene butadiene rubber, and dispersion solvent,
The dispersion solvent is a mixed solvent of 25% by volume or more and 75% by volume or less of mesitylene and 25% by volume or more and 75% by volume or less of butyl butyrate.
Negative electrode slurry for lithium battery.
JP2018004782A 2018-01-16 2018-01-16 Negative electrode slurry for lithium batteries Active JP6904264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004782A JP6904264B2 (en) 2018-01-16 2018-01-16 Negative electrode slurry for lithium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004782A JP6904264B2 (en) 2018-01-16 2018-01-16 Negative electrode slurry for lithium batteries

Publications (2)

Publication Number Publication Date
JP2019125468A true JP2019125468A (en) 2019-07-25
JP6904264B2 JP6904264B2 (en) 2021-07-14

Family

ID=67399501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004782A Active JP6904264B2 (en) 2018-01-16 2018-01-16 Negative electrode slurry for lithium batteries

Country Status (1)

Country Link
JP (1) JP6904264B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099950A (en) * 2019-12-23 2021-07-01 トヨタ自動車株式会社 slurry
JP7435531B2 (en) 2021-04-13 2024-02-21 トヨタ自動車株式会社 negative electrode slurry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121059A (en) * 1975-04-17 1976-10-22 Asahi Chem Ind Co Ltd Block copolymer latex composition having improved film forming propert y
JP2015082362A (en) * 2013-10-21 2015-04-27 トヨタ自動車株式会社 Electrode slurry for all-solid batteries, and method for manufacturing electrode for all-solid batteries
WO2017154851A1 (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for manufacturing all-solid-state secondary battery
WO2017199821A1 (en) * 2016-05-19 2017-11-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121059A (en) * 1975-04-17 1976-10-22 Asahi Chem Ind Co Ltd Block copolymer latex composition having improved film forming propert y
JP2015082362A (en) * 2013-10-21 2015-04-27 トヨタ自動車株式会社 Electrode slurry for all-solid batteries, and method for manufacturing electrode for all-solid batteries
WO2017154851A1 (en) * 2016-03-08 2017-09-14 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for manufacturing all-solid-state secondary battery
WO2017199821A1 (en) * 2016-05-19 2017-11-23 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021099950A (en) * 2019-12-23 2021-07-01 トヨタ自動車株式会社 slurry
JP7259733B2 (en) 2019-12-23 2023-04-18 トヨタ自動車株式会社 slurry
JP7435531B2 (en) 2021-04-13 2024-02-21 トヨタ自動車株式会社 negative electrode slurry

Also Published As

Publication number Publication date
JP6904264B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
García et al. Stability and rheological study of sodium carboxymethyl cellulose and alginate suspensions as binders for lithium ion batteries
JP3958781B2 (en) Negative electrode for lithium secondary battery, method for producing negative electrode composition, and lithium secondary battery
JP6645040B2 (en) Conductive material dispersion for electrochemical element, slurry for positive electrode of electrochemical element, positive electrode for electrochemical element, and electrochemical element
WO2022009915A1 (en) Carbon nanotubes, carbon nanotube dispersion liquid, and nonaqueous electrolyte secondary battery using same
JP2016028109A (en) Water dispersion of carboxymethylcellulose sodium containing multilayer carbon nanotube
KR20170081840A (en) Preparation method of positive eletrode slurry for lithium secondary battery
JP6319564B2 (en) Carbon nanotube dispersion and non-aqueous electrolyte secondary battery
US20120208081A1 (en) Coating method for producing electrodes for electrical energy stores
JP6472660B2 (en) Method for producing slurry for negative electrode of lithium ion secondary battery
JP2009016265A (en) Electrode for lithium battery, manufacturing method of electrode for lithium battery, lithium battery, and manufacturing method for lithium battery
JP2010218848A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, manufacturing method of anode for lithium-ion secondary battery, and slurry used for manufacturing
JP2007080652A (en) Slurry for forming lithium ion battery electrode and lithium ion battery
JP2014130844A (en) Method for manufacturing electrode of lithium ion secondary battery and lithium ion secondary battery
JPWO2013153916A1 (en) Electrochemical device current collector manufacturing method, electrochemical device electrode manufacturing method, electrochemical device current collector, electrochemical device, and coating liquid for producing electrochemical device current collector
JPWO2013179909A1 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, METHOD FOR PREPARING THE ELECTRODE PASTE, AND METHOD FOR PRODUCING THE ELECTRODE
JP2019169298A (en) Sulfide solid battery
TW201729452A (en) Anode material, anode and lithium ion secondary battery
JP2003308845A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP2018127397A (en) Carbon nanotube dispersion and nonaqueous electrolyte secondary battery
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
JP2013196804A (en) Mixture slurry, manufacturing method thereof, electrode formed by mixture slurry, and battery
JP2019125468A (en) Negative electrode slurry for lithium battery
JP2014026962A (en) Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
JP2017073363A (en) Method for producing electrode mixture slurry
JP2007234418A (en) Negative electrode mixture paste for nonaqueous secondary battery, negative electrode and nonaqueous secondary battery using it as well as manufacturing method of negative electrode mixture paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R151 Written notification of patent or utility model registration

Ref document number: 6904264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151