JP2019124283A - Cylindrical vibration controller - Google Patents

Cylindrical vibration controller Download PDF

Info

Publication number
JP2019124283A
JP2019124283A JP2018004799A JP2018004799A JP2019124283A JP 2019124283 A JP2019124283 A JP 2019124283A JP 2018004799 A JP2018004799 A JP 2018004799A JP 2018004799 A JP2018004799 A JP 2018004799A JP 2019124283 A JP2019124283 A JP 2019124283A
Authority
JP
Japan
Prior art keywords
elastic
inner shaft
elastic connector
shaft member
compressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018004799A
Other languages
Japanese (ja)
Inventor
智博 宮崎
Tomohiro Miyazaki
智博 宮崎
山田 隆亮
Takaaki Yamada
隆亮 山田
有美 原
Yumi Hara
有美 原
鈴木 康雄
Yasuo Suzuki
康雄 鈴木
潤己 大脇
Junki Owaki
潤己 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2018004799A priority Critical patent/JP2019124283A/en
Publication of JP2019124283A publication Critical patent/JP2019124283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

To provide a cylindrical vibration controller of a novel structure capable of tuning a spring characteristic at large degree of freedom, and capable of attaining excellent durability.SOLUTION: An elastic connector 16 elastically connecting an inner shaft member 14 and an outer cylinder member 22 to each other over the whole circumference is formed of foam polyurethane resin. The elastic connector 16 is disposed between the inner shaft member 14 and the outer cylinder member 22 in a state of being compressed in a direction orthogonal to an axis. Annular recess grooves 20, 20 extending circumferentially are each formed on both end surfaces of the elastic connector 16. In the elastic connector 16 in a molding state of being not compressed between the inner shaft member 14 and the outer cylinder member 22, the recess grooves 20, 20 are opened to an axial end surface of the elastic connector 16.SELECTED DRAWING: Figure 2

Description

本発明は、インナ軸部材とアウタ筒部材が弾性連結体で相互に弾性連結された構造を有する筒形防振装置に関するものである。   The present invention relates to a cylindrical vibration damping device having a structure in which an inner shaft member and an outer cylindrical member are elastically connected to each other by an elastic connecting member.

従来から、自動車のサスペンションブッシュなどに適用される筒形防振装置が知られている。筒形防振装置は、例えば、特開2004−205049号公報(特許文献1)に開示された防振ブッシュのように、内筒と外筒が厚肉筒状のゴム状弾性体で相互に弾性連結された構造を有している。   2. Description of the Related Art Conventionally, a cylindrical vibration damping device applied to a suspension bush or the like of an automobile is known. The cylindrical vibration isolation device is, for example, an inner cylinder and an outer cylinder that are thick-walled cylindrical rubber-like elastic bodies, such as a vibration isolation bush disclosed in JP-A-2004-205049 (Patent Document 1). It has a resiliently coupled structure.

ところで、従来の筒形防振装置では、より柔らかいばね特性が必要な場合に、ゴム状弾性体に対して軸方向に貫通するすぐり孔を形成する構造も、一般的に知られている。例えば、特許文献1に示されているように、一対のすぐり孔が内筒を挟んだ径方向両側に形成されることで、径方向のばね特性が調節されるようになっている。   By the way, in the conventional cylindrical vibration-damping device, when softer spring characteristics are required, a structure is also generally known in which a burr hole penetrating in the axial direction is formed with respect to the rubber-like elastic body. For example, as disclosed in Patent Document 1, the spring characteristics in the radial direction are adjusted by forming a pair of blind holes on both sides in the radial direction across the inner cylinder.

ところが、特許文献1のようにすぐり孔が形成された構造では、ゴム状弾性体の弾性変形時にすぐり孔の内周面に応力の集中が生じて、ゴム状弾性体の耐久性が低下するおそれがあった。また、ゴム状弾性体が大きく変形して、すぐり孔が実質的になくなるまで潰れると、ゴム状弾性体の動ばねが急激に大きくなって、乗り心地の悪化などを引き起こすおそれもあった。   However, in the structure in which the flat hole is formed as in Patent Document 1, stress concentration may occur on the inner peripheral surface of the flat hole during elastic deformation of the rubber-like elastic body, and the durability of the rubber-like elastic body may be reduced. was there. In addition, when the rubber-like elastic body is largely deformed and crushed until the burr hole is substantially eliminated, the dynamic spring of the rubber-like elastic body may be rapidly enlarged, which may cause a deterioration in ride comfort and the like.

特開2004−205049号公報JP 2004-205049 A

本発明は、上述の事情を背景に為されたものであって、その解決課題は、ばね特性を大きな自由度でチューニングすることができると共に、優れた耐久性を実現することもできる、新規な構造の筒形防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and the problem to be solved is that the spring characteristics can be tuned with a large degree of freedom, and excellent durability can also be realized. An object of the present invention is to provide a cylindrical vibration damping device having a structure.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   The following describes aspects of the present invention made to solve such problems. In addition, the component employ | adopted in each aspect described below can be employ | adopted as much as possible in arbitrary combination.

本発明者らは、筒形防振装置において柔らかいばね特性を実現するために、インナ軸部材とアウタ筒部材を弾性連結する弾性連結体を発泡ポリウレタン樹脂によって形成することを検討した。ところが、サスペンションブッシュなどの筒形防振装置に要求されるばね特性を発泡ポリウレタン樹脂製の弾性連結体で得ようとすると、ばね特性が柔らかくなり過ぎる場合があり、その場合には、インナ軸部材とアウタ筒部材の間で弾性連結体を大きく圧縮することによってばねを調節する必要がある。   The present inventors examined forming an elastic connecting body which elastically connects an inner shaft member and an outer cylinder member with foaming polyurethane resin, in order to realize a soft spring characteristic in a cylindrical vibration isolation device. However, if it is attempted to obtain the spring characteristics required for a cylindrical vibration damping device such as a suspension bush with an elastic connection body made of foamed polyurethane resin, the spring characteristics may be too soft, in which case the inner shaft member It is necessary to adjust the spring by greatly compressing the resilient connection between the and the outer tubular member.

しかしながら、発泡ポリウレタン樹脂製の弾性連結体は、気泡の大きさや形状、配置などが均一ではなく、密度にムラがあることから、変形剛性が均一になり難く、大きく圧縮しようとすると、密度の小さい部分が局所的に大きく変形するなどして、安定して目的とする変形態様となるように圧縮することが難しいという新たな問題が発生した。そこで、本発明者らは、かかる問題を解決すべく多くの検討と実験を行った結果、発泡ポリウレタン樹脂製の弾性連結体を採用することによって生じた上記の如き新たな問題をも解決することが可能となる本発明を為すに至った。   However, since the size, shape, arrangement, etc. of the bubbles are not uniform, and the density is uneven, the elastic connector made of the foamed polyurethane resin is unlikely to be uniform in deformation rigidity, and the density is small when trying to compress largely. There has been a new problem that it is difficult to compress the part to a target deformation mode stably by causing a large local deformation. Accordingly, as a result of conducting a number of studies and experiments to solve such problems, the present inventors have also solved the above new problems caused by employing an elastic connector made of a foamed polyurethane resin. The present invention has been made possible.

すなわち、本発明の第一の態様は、インナ軸部材とアウタ筒部材が弾性連結体で全周に亘って相互に弾性連結された筒形防振装置において、前記弾性連結体が発泡ポリウレタン樹脂で形成されており、該弾性連結体が前記インナ軸部材と前記アウタ筒部材の間に軸直角方向に圧縮された状態で配されていると共に、周方向に延びる環状の凹溝が該弾性連結体の両端面にそれぞれ形成されており、該インナ軸部材と該アウタ筒部材との間で圧縮されていない成形状態の該弾性連結体において該凹溝が該弾性連結体の軸方向端面に開口していることを、特徴とする。   That is, according to the first aspect of the present invention, in the cylindrical vibration-damping device in which the inner shaft member and the outer cylindrical member are elastically connected to each other over the entire circumference by the elastic connection body, the elastic connection body is a polyurethane foam resin. The elastic connector is disposed between the inner shaft member and the outer cylindrical member in a state of being compressed in a direction perpendicular to the axial direction, and an annular concave groove extending in the circumferential direction is the elastic connector The concave groove is formed in the end face in the axial direction of the elastic connector in the elastic connector in a molded state not formed between the inner shaft member and the outer cylindrical member, which are respectively formed on both end surfaces of the It is characterized by

このような第一の態様に従う構造とされた筒形防振装置によれば、弾性連結体が発泡ポリウレタン樹脂によって形成されていることにより、より柔らかいばね特性を容易に実現することができる。従って、柔らかいばね特性を得るために弾性連結体に形成されていた貫通穴(すぐり孔)などを設けることなく、十分に柔らかいばね特性を得ることが可能となって、弾性連結体において貫通穴などの形成による応力の集中化を回避することもできる。   According to the cylindrical vibration-damping device having the structure according to the first aspect, softer spring characteristics can be easily realized by forming the elastic connector from the foamed polyurethane resin. Therefore, it is possible to obtain a sufficiently soft spring characteristic without providing a through hole (surrounding hole) or the like formed in the elastic connector in order to obtain a soft spring characteristic, and a through hole or the like in the elastic connector It is also possible to avoid stress concentration due to the formation of

さらに、弾性連結体がインナ軸部材とアウタ筒部材の間で軸直角方向に圧縮されていることから、弾性連結体の圧縮変形量を調節することによって、弾性連結体のばね特性を大きな自由度でチューニングすることができる。   Furthermore, since the elastic connector is compressed in the direction perpendicular to the axis between the inner shaft member and the outer cylinder member, the spring characteristics of the elastic connector can be increased by adjusting the amount of compressive deformation of the elastic connector. Can be tuned.

しかも、弾性連結体を大きく圧縮する場合にも、弾性連結体の軸方向両端面に開口する環状の凹溝によって、特に弾性連結体の軸方向両端部の変形態様の安定化が図られて、弾性連結体の軸方向端面において座屈のような歪な変形が生じるのを防ぐことができる。それ故、弾性連結体の軸直角方向での圧縮変形量を大きな自由度で設定することが可能になり、弾性連結体のばね特性のチューニングを容易に行うことができる。   Moreover, even when the elastic connector is greatly compressed, the deformation of the axial ends of the elastic connector can be particularly stabilized by the annular recessed grooves opened at both axial end surfaces of the elastic connector. It is possible to prevent the occurrence of distortion such as buckling at the axial end face of the elastic connector. Therefore, the amount of compressive deformation in the direction perpendicular to the axis of the elastic connector can be set with a large degree of freedom, and the spring characteristics of the elastic connector can be easily tuned.

本発明の第二の態様は、第一の態様に記載された筒形防振装置であって、前記弾性連結体が前記インナ軸部材と前記アウタ筒部材の間で軸直角方向に圧縮された状態において、前記凹溝が潰れて実質的に閉じているものである。   A second aspect of the present invention is the cylindrical vibration damping device described in the first aspect, wherein the elastic connector is compressed in a direction perpendicular to the axis between the inner shaft member and the outer cylindrical member. In the state, the concave groove is crushed and substantially closed.

第二の態様によれば、弾性連結体がインナ軸部材とアウタ筒部材の間で軸直角方向に圧縮された状態において、凹溝が実質的に潰れて閉じていることによって、振動が入力される筒形防振装置の使用状態において、凹溝が防振特性に影響し難い。更に、筒形防振装置の使用状態において、凹溝の形成部分に対する応力の集中が防止されて、耐久性が確保される。   According to the second aspect, in the state where the elastic connector is compressed in the direction perpendicular to the axis between the inner shaft member and the outer cylinder member, vibration is input by the concave groove being substantially crushed and closed. In the state of use of the cylindrical vibration isolation device, the recessed groove hardly affects the vibration isolation characteristics. Furthermore, in the use state of the cylindrical vibration damping device, concentration of stress on the formation portion of the concave groove is prevented, and durability is ensured.

本発明の第三の態様は、第一又は第二の態様に記載された筒形防振装置において、前記インナ軸部材には外周へ突出する凸部が設けられており、前記凹溝における深さ寸法が最大となる部分が該凸部よりも外周側に位置しているものである。   According to a third aspect of the present invention, in the cylindrical vibration-damping device described in the first or second aspect, the inner shaft member is provided with a convex portion projecting to the outer periphery, and the deep groove in the concave groove The portion having the largest dimension is located on the outer peripheral side of the projection.

第三の態様によれば、インナ軸部材の凸部によっても弾性連結体の圧縮変形の割合などを調節することが可能であり、弾性連結体のばね特性をより大きな自由度でチューニングすることが可能となる。   According to the third aspect, it is possible to adjust the rate of compressive deformation and the like of the elastic connector also by the convex portion of the inner shaft member, and to tune the spring characteristics of the elastic connector with a greater degree of freedom It becomes possible.

さらに、弾性連結体の凹溝がインナ軸部材の凸部よりも外周に設けられていることにより、弾性連結体の圧縮時に、凸部によって拘束されない弾性連結体の外周部分の歪な変形が凹溝によって防止されて、弾性連結体の変形態様の安定化が図られる。   Furthermore, by providing the recessed groove of the elastic connection body on the outer periphery than the convex portion of the inner shaft member, the strain deformation of the outer peripheral portion of the elastic connection body which is not restrained by the convex portion when the elastic connection body is compressed is concaved. By means of the groove, the deformation of the elastic connection is stabilized.

本発明の第四の態様は、第一〜第三の何れか1つの態様に記載された筒形防振装置において、前記インナ軸部材と前記アウタ筒部材の間で圧縮されていない成形状態の前記弾性連結体の軸直角方向の外径寸法が、前記アウタ筒部材の軸直角方向の内径寸法よりも大きくされているものである。   According to a fourth aspect of the present invention, in the cylindrical vibration damping device described in any one of the first to third aspects, the molded state which is not compressed between the inner shaft member and the outer cylindrical member An outer diameter dimension in a direction perpendicular to the axis of the elastic connection body is larger than an inner diameter dimension in a direction perpendicular to the axis of the outer cylindrical member.

第四の態様によれば、アウタ筒部材の内周に弾性連結体を配することで、弾性連結体の外径寸法がアウタ筒部材によって小さくされて、弾性連結体が軸直角方向で圧縮される。なお、アウタ筒部材は、予め成形状態の弾性連結体の外径寸法よりも小さな内径寸法を有するように成形されていても良いし、成形状態の弾性連結体に外挿された状態で縮径加工されることによって、内径寸法が成形状態の弾性連結体の外径寸法よりも小さくなるようにしても良い。   According to the fourth aspect, by arranging the elastic connecting body on the inner periphery of the outer cylindrical member, the outer diameter dimension of the elastic connecting body is reduced by the outer cylindrical member, and the elastic connecting body is compressed in the direction perpendicular to the axis Ru. The outer cylindrical member may be previously formed to have an inner diameter smaller than the outer diameter of the elastic connector in the molded state, or the diameter may be reduced in the state of being externally inserted into the elastic connector in the molded state. By being processed, the inner diameter may be smaller than the outer diameter of the elastic connection body in a molded state.

本発明の第五の態様は、第一〜第四の何れか1つの態様に記載された筒形防振装置において、前記弾性連結体の軸直角方向の外径寸法が、該弾性連結体が前記インナ軸部材と前記アウタ筒部材の間で軸直角方向に圧縮されることによって成形状態に比して25〜70%小さくなっているものである。   According to a fifth aspect of the present invention, in the cylindrical vibration damping device described in any one of the first to fourth aspects, the elastic connector has an outer diameter dimension in a direction perpendicular to the axis of the elastic connector. By being compressed in a direction perpendicular to the axis between the inner shaft member and the outer cylindrical member, it is 25 to 70% smaller than the molded state.

第五の態様によれば、弾性連結体の軸直角方向の圧縮変形の割合が上記の範囲で設定されることによって、弾性連結体を発泡ポリウレタン樹脂で形成しながら、実用上で適当なばね特性を有する筒形防振装置を得ることができる。   According to the fifth aspect, the proportion of the compressive deformation in the direction perpendicular to the axis of the elastic connector is set within the above range, whereby spring characteristics suitable for practical use can be obtained while forming the elastic connector from the foamed polyurethane resin. The cylindrical vibration-damping device can be obtained.

本発明によれば、弾性連結体が発泡ポリウレタン樹脂によって形成されていることにより、より柔らかいばね特性を容易に実現することが可能となって、貫通穴などのばね低減手段を特別に設ける必要がなく、貫通穴などの形成による応力の集中化を回避することも可能になる。更に、弾性連結体がインナ軸部材とアウタ筒部材の間で軸直角方向に圧縮されていることから、弾性連結体の圧縮変形の比率を調節することによって、弾性連結体のばね特性を大きな自由度でチューニングすることができる。しかも、弾性連結体を大きく圧縮する場合にも、弾性連結体の軸方向両端面に開口する環状の凹溝によって、特に弾性連結体の軸方向両端部の変形態様の安定化が図られて、弾性連結体の軸方向端面において座屈のような歪な変形が生じるのを防ぐことができる。   According to the present invention, since the elastic connector is formed of the foamed polyurethane resin, it is possible to easily realize softer spring characteristics, and it is necessary to specially provide spring reduction means such as through holes. It is also possible to avoid concentration of stress due to formation of through holes and the like. Furthermore, since the elastic connector is compressed in the direction perpendicular to the axis between the inner shaft member and the outer cylindrical member, the spring characteristics of the elastic connector can be made largely free by adjusting the ratio of the compressive deformation of the elastic connector. Can be tuned in degrees. Moreover, even when the elastic connector is greatly compressed, the deformation of the axial ends of the elastic connector can be particularly stabilized by the annular recessed grooves opened at both axial end surfaces of the elastic connector. It is possible to prevent the occurrence of distortion such as buckling at the axial end face of the elastic connector.

本発明の第一の実施形態としてのサスペンションブッシュを示す正面図。BRIEF DESCRIPTION OF THE DRAWINGS The front view which shows the suspension bush as 1st embodiment of this invention. 図1のII−II断面図。II-II sectional drawing of FIG. 図2のIII−III断面図。III-III sectional drawing of FIG. 図1に示すサスペンションブッシュを構成するブッシュ本体の正面図。The front view of the bush main body which comprises the suspension bush shown in FIG. 図4のV−V断面図。FIG. 5 is a cross-sectional view taken along line V-V of FIG. 4. 本発明の第二の実施形態としてのサスペンションブッシュを示す正面図。The front view which shows the suspension bush as 2nd embodiment of this invention. 図6のVII−VII断面図。VII-VII sectional drawing of FIG. 図6に示すサスペンションブッシュを構成するブッシュ本体の正面図。The front view of the bush main body which comprises the suspension bush shown in FIG. 図8のIX−IX断面図。IX-IX sectional drawing of FIG. 本発明の第三の実施形態としてのサスペンションブッシュを示す正面図。The front view which shows the suspension bush as 3rd embodiment of this invention. 図10のXI−XI断面図。XI-XI sectional drawing of FIG. 図10に示すサスペンションブッシュを構成するブッシュ本体の正面図。The front view of the bush main body which comprises the suspension bush shown in FIG. 図12のXIII−XIII断面図。XIII-XIII sectional drawing of FIG. 本発明の別の一実施形態としてのサスペンションブッシュを示す断面図であって、図15のXIV−XIV断面に相当する図。FIG. 16 is a cross-sectional view showing a suspension bush as another embodiment of the present invention, the view corresponding to the XIV-XIV cross section of FIG. 15. 図14のXV−XV断面図。XV-XV sectional drawing of FIG.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜3には、本発明に従う構造とされた筒形防振装置の第一の実施形態として、自動車用のサスペンションブッシュ10を示す。サスペンションブッシュ10は、ブッシュ本体12を備えており、ブッシュ本体12は、インナ軸部材14に弾性連結体16が固着された構造を有している。以下の説明において、原則として、上下方向とは図1中の上下方向を、前後方向とは軸方向である図2中の上下方向を、左右方向とは図1中の左右方向を、それぞれ言う。なお、以下の説明における上下方向と左右方向と前後方向は、サスペンションブッシュ10の車両装着状態における車両の上下方向、左右方向、前後方向とは、必ずしも一致しない。   1 to 3 show a suspension bush 10 for a car as a first embodiment of a cylindrical vibration-damping device constructed according to the present invention. The suspension bush 10 includes a bush main body 12, and the bush main body 12 has a structure in which an elastic connecting member 16 is fixed to an inner shaft member 14. In the following description, in principle, the vertical direction means the vertical direction in FIG. 1, the longitudinal direction means the vertical direction in FIG. 2 which is the axial direction, and the horizontal direction means the horizontal direction in FIG. . In the following description, the vertical direction, the horizontal direction, and the front-rear direction do not necessarily coincide with the vertical direction, the horizontal direction, or the front-rear direction of the vehicle when the suspension bush 10 is mounted on the vehicle.

より詳細には、インナ軸部材14は、金属などで形成された硬質の部材であって、全体として前後方向に直線的に延びる厚肉小径の略円筒形状を有している。更に、インナ軸部材14は、軸方向の中央部分において左右各一方側へ突出する凸部18,18を備えている。本実施形態の凸部18は、図2,3などにも示すように、インナ軸部材14と一体形成されており、基端部分の表面がインナ軸部材14における凸部18を外れた部分の外周面に対して滑らかに連続していると共に、突出先端部分の表面が角や部分的な凹凸を持たない滑らかな湾曲面で構成されている。   More specifically, the inner shaft member 14 is a hard member formed of metal or the like, and has a thick, small diameter, substantially cylindrical shape extending linearly in the front-rear direction as a whole. Furthermore, the inner shaft member 14 is provided with convex portions 18 and 18 which project to the left and right sides in the central portion in the axial direction. The convex portion 18 of the present embodiment is integrally formed with the inner shaft member 14 as shown in FIGS. 2 and 3 and the like, and the surface of the base end portion is a portion of the inner shaft member 14 outside the convex portion 18. While being smoothly continuous with the outer peripheral surface, the surface of the projecting tip portion is constituted by a smooth curved surface without corners or partial irregularities.

弾性連結体16は、全体として円環形状乃至は円筒形状とされており、前面および後面が外周へ向けて次第に軸方向内側へ傾斜する傾斜面とされて、前後方向の厚さ寸法が外周へ向けて次第に小さくなっている。   The elastic connector 16 has a toroidal shape or a cylindrical shape as a whole, and the front and rear surfaces are inclined surfaces which gradually incline inward in the axial direction toward the outer periphery, and the thickness dimension in the front-rear direction is the outer periphery It is getting smaller and smaller.

さらに、弾性連結体16は、多孔質の発泡ポリウレタン樹脂(以下、発泡ウレタン)で形成されている。弾性連結体16を形成する発泡ウレタンの組成は、特に限定されるものではないが、例えば、エチレングリコール,ブタンジオールおよびアジピン酸の縮合重合体などからなるポリエステル系ポリオールをポリオール成分とし、ジフェニルメタンジイソシアネート(MDI)や1,5−ナフタレンジイソシアネート(NDI)などをイソシアネート成分とするウレタン原料からなる発泡ウレタンが、好適に採用される。また、ウレタン原料には、上記のポリオール成分とイソシアネート成分の他に、水などの発泡剤、エチレングリコールなどの鎖延長剤、触媒、整泡剤、加水分解防止剤、難燃剤、減粘剤、安定剤、充填剤、架橋剤、着色剤などが、必要に応じて配合される。また、発泡ウレタンの発泡率は、特に限定されないが、例えば、25〜70%程度とされることが望ましい。   Furthermore, the elastic connector 16 is formed of a porous polyurethane foam resin (hereinafter, urethane foam). The composition of the foamed urethane forming the elastic connector 16 is not particularly limited. For example, a polyester-based polyol composed of a condensation polymer of ethylene glycol, butanediol and adipic acid etc. is used as a polyol component, and diphenylmethane diisocyanate ( Foamed urethane made of a urethane material having MDI), 1,5-naphthalene diisocyanate (NDI) or the like as an isocyanate component is preferably employed. In addition to the above-mentioned polyol component and isocyanate component, urethane raw materials also include foaming agents such as water, chain extenders such as ethylene glycol, catalysts, foam stabilizers, hydrolysis inhibitors, flame retardants, viscosity reducing agents, Stabilizers, fillers, crosslinking agents, colorants, etc. are blended as needed. Further, the foaming ratio of the foamed urethane is not particularly limited, but for example, it is desirable to be about 25 to 70%.

更にまた、弾性連結体16は、全周に亘って連続する環状乃至は筒状とされており、軸方向に貫通する穴は形成されていない。弾性連結体16は、予め設定された軸方向に貫通する穴を備えていなければ、軸方向に貫通する連続気泡を含んでいても良いが、軸方向に貫通する気泡を持たないことが望ましく、例えば独立気泡の発泡ウレタンによって形成されている。   Furthermore, the elastic connecting member 16 is in the form of a continuous ring or tube around the entire circumference, and no axially penetrating hole is formed. The elastic connector 16 may include an axially penetrating continuous bubble unless it has a predetermined axially penetrating hole, but preferably has no axially penetrating bubble, For example, it is formed of closed-cell urethane foam.

さらに、弾性連結体16には、周方向に延びる凹溝20,20が形成されている。凹溝20は、図4,5に示すように、全周に亘って連続して延びる環状とされており、径方向に圧縮されていない成形状態の弾性連結体16の径方向中間部分において軸方向両端面である前面と後面の各一方に開口している。本実施形態の凹溝20は、開口に向けて溝幅寸法が次第に大きくなる溝断面形状を有していると共に、溝内面が部分的な凹凸や角のない滑らかに連続する面で構成されている。また、図5に示す凹溝20の深さ寸法dは、径方向の同じ位置における弾性連結体16の前後厚さ寸法tに対して、25%以下とされていることが望ましい。   Furthermore, in the elastic connection body 16, concave grooves 20, 20 extending in the circumferential direction are formed. As shown in FIGS. 4 and 5, the recessed groove 20 is formed into an annular shape extending continuously along the entire circumference, and the shaft is provided at the radially intermediate portion of the resilient connecting member 16 in a molded state which is not radially compressed. It opens in each one of the front and rear surfaces which are the direction both end surfaces. The concave groove 20 of this embodiment has a groove cross-sectional shape in which the groove width dimension gradually increases toward the opening, and the inner surface of the groove is formed of a smoothly continuous surface without partial unevenness and corners. There is. The depth d of the recessed groove 20 shown in FIG. 5 is preferably 25% or less with respect to the front-rear thickness t of the elastic connector 16 at the same position in the radial direction.

本実施形態では、弾性連結体16の前面に開口する凹溝20と後面に開口する凹溝20が、互いに略同一形状であるとともに弾性連結体16に対して径方向で互いに略同じ位置に形成されている。これにより、本実施形態の弾性連結体16は、軸方向中央を通って軸直角方向に広がる平面に関して略面対称の形状とされている。   In the present embodiment, the concave groove 20 opening in the front surface of the elastic connector 16 and the concave groove 20 opening in the rear surface have substantially the same shape and are formed at substantially the same positions in the radial direction with respect to the elastic connector 16 It is done. As a result, the elastic connector 16 of the present embodiment has a substantially plane-symmetrical shape with respect to a plane extending in the direction perpendicular to the axis through the axial center.

そして、弾性連結体16の内周面がインナ軸部材14の外周面に固着されて、ブッシュ本体12が構成されている。なお、インナ軸部材14と弾性連結体16を相互に固着する手段は、特に限定されないが、本実施形態では接着剤によって接着されている。   The inner peripheral surface of the elastic connecting member 16 is fixed to the outer peripheral surface of the inner shaft member 14 to constitute the bush main body 12. The means for fixing the inner shaft member 14 and the elastic connector 16 to each other is not particularly limited, but in the present embodiment, they are adhered by an adhesive.

かかるインナ軸部材14と弾性連結体16の接着状態において、インナ軸部材14の凸部18,18は、弾性連結体16に埋設状態で固着されており、弾性連結体16の内周面の前後両端部分が凸部18,18よりも前後外側においてインナ軸部材14の外周面に固着されている。また、弾性連結体16の凹溝20,20は、少なくとも深さ寸法が最大となる部分が、インナ軸部材14の凸部18,18よりも外周側に配置されており、本実施形態では、図4に示すように、凹溝20,20の全体が凸部18,18に対して軸方向の投影において重なり合うことなく径方向外側に離れている。   In the bonded state of the inner shaft member 14 and the elastic connector 16, the convex portions 18 and 18 of the inner shaft member 14 are fixed to the elastic connector 16 in a buried state, and the front and back of the inner peripheral surface of the elastic connector 16 Both end portions are fixed to the outer peripheral surface of the inner shaft member 14 at the front and rear outside of the convex portions 18, 18. Further, at least a portion where the depth dimension of the concave portions 20 and 20 of the elastic connection body 16 is maximum is disposed on the outer peripheral side of the convex portions 18 and 18 of the inner shaft member 14, and in the present embodiment, As shown in FIG. 4, the entire recessed grooves 20, 20 are separated radially outward without overlapping with the projections 18, 18 in axial projection.

また、ブッシュ本体12には、アウタ筒部材22が取り付けられている。アウタ筒部材22は、金属などで形成された硬質の部材であって、前後方向に直線的に延びる薄肉大径の略円筒形状を有している。更に、アウタ筒部材22の軸方向寸法は、インナ軸部材14の軸方向寸法よりも小さくされていると共に、インナ軸部材14における凸部18,18の同方向での最大寸法よりも大きくされている。なお、本実施形態のアウタ筒部材22は、後述する縮径加工を施す前の状態において、内径寸法が弾性連結体16の外径寸法と略同じ大きさとされている。   Further, the outer cylindrical member 22 is attached to the bush main body 12. The outer cylindrical member 22 is a hard member formed of metal or the like, and has a thin, large-diameter, substantially cylindrical shape that linearly extends in the front-rear direction. Furthermore, the axial dimension of the outer cylindrical member 22 is made smaller than the axial dimension of the inner shaft member 14 and made larger than the maximum dimension of the convex portions 18, 18 in the inner shaft member 14 in the same direction. There is. The outer cylindrical member 22 of the present embodiment has an inner diameter dimension substantially the same as the outer diameter dimension of the elastic connecting member 16 in a state before the diameter reducing process described later is performed.

そして、アウタ筒部材22は、図5に二点鎖線で仮想的に示すように、ブッシュ本体12の弾性連結体16に外挿される。本実施形態では、アウタ筒部材22がブッシュ本体12の前後中央部分に外挿されており、インナ軸部材14の凸部18,18の全体が左右方向の投影においてアウタ筒部材22と重なり合っていると共に、凸部18,18よりも軸方向外方に位置するアウタ筒部材22の軸方向両端部分が、弾性連結体16の外周面よりも軸方向外方まで突出している。なお、本実施形態において、アウタ筒部材22の外挿による弾性連結体16の径方向での圧縮は、実質的に生じない。   Then, the outer cylindrical member 22 is extrapolated to the elastic connection body 16 of the bush main body 12 as virtually shown by a two-dot chain line in FIG. 5. In the present embodiment, the outer cylindrical member 22 is externally inserted in the front-rear central portion of the bush main body 12, and the entire convex portions 18, 18 of the inner shaft member 14 overlap the outer cylindrical member 22 in the left-right direction projection. At the same time, the axially opposite end portions of the outer cylindrical member 22 located axially outward of the projections 18, 18 project axially outward beyond the outer peripheral surface of the elastic connector 16. In the present embodiment, the compression in the radial direction of the elastic connector 16 due to the extrapolation of the outer cylindrical member 22 does not substantially occur.

また、弾性連結体16に外挿されたアウタ筒部材22は、八方絞りなどの縮径加工によって、図1〜3に示すように、小径化される。これにより、アウタ筒部材22がブッシュ本体12における弾性連結体16の外周部分に非接着で取り付けられて、インナ軸部材14とアウタ筒部材22が弾性連結体16によって相互に弾性連結されている。   Further, as shown in FIGS. 1 to 3, the diameter of the outer cylindrical member 22 extrapolated to the elastic connection body 16 is reduced by diameter reduction processing such as an eight-way drawing. Thus, the outer cylindrical member 22 is non-adhesively attached to the outer peripheral portion of the elastic connecting member 16 in the bush main body 12, and the inner shaft member 14 and the outer cylindrical member 22 are elastically connected to each other by the elastic connecting member 16.

なお、弾性連結体16が、軸方向に貫通する穴などを持たず、全周に亘って連続する形状とされていることから、インナ軸部材14とアウタ筒部材22は、弾性連結体16によって全周に亘って径方向で相互に弾性連結されている。尤も、ばね特性の調節などを目的とする凹所や軸方向に貫通する穴などを弾性連結体16に形成することも可能であり、その場合、当該凹所や穴は、弾性連結体16の予圧縮によって潰れて実質的に消失していても良いし、弾性連結体16の予圧縮後に開口状態で残っていても良い。また、例えば、周方向に延びる筒状乃至は板状の中間部材を、弾性連結体16の径方向中間部分に固着して、ばね特性を調節することもできる。なお、弾性連結体16に凹所や貫通穴を設けたり中間部材を固着する場合には、それら凹所、貫通穴、中間部材などは凹溝20,20を外れて設けられる。   The inner shaft member 14 and the outer cylindrical member 22 are formed by the elastic connecting member 16 because the elastic connecting member 16 does not have a hole or the like penetrating in the axial direction but has a shape continuous over the entire circumference. It is elastically connected mutually in the radial direction over the entire circumference. However, it is also possible to form a recess intended for adjustment of the spring characteristics, a hole penetrating in the axial direction, etc. in the elastic connecting member 16, in which case the recess or the hole corresponds to that of the elastic connecting member 16. It may be crushed and eliminated substantially by pre-compression, or may remain in an open state after pre-compression of the elastic connector 16. Further, for example, a cylindrical or plate-like intermediate member extending in the circumferential direction may be fixed to a radially intermediate portion of the elastic connector 16 to adjust the spring characteristics. In the case where a recess or a through hole is provided in the elastic connection body 16 or the intermediate member is fixed, the recess, the through hole, the intermediate member or the like is provided out of the recessed grooves 20, 20.

本実施形態では、縮径加工前のアウタ筒部材22の内径寸法と成形状態の弾性連結体16の外径寸法が略同じであったことからも分かるように、成形状態の弾性連結体16の外径寸法は、縮径加工後のアウタ筒部材22の内径寸法よりも大きくされている。従って、アウタ筒部材22が弾性連結体16に外挿された状態で縮径されることにより、弾性連結体16がインナ軸部材14とアウタ筒部材22の径方向間で径方向に圧縮されている。   In this embodiment, as can be seen from the fact that the inner diameter of the outer cylindrical member 22 before diameter reduction processing and the outer diameter of the elastic connector 16 in the molded state are substantially the same, the elastic connector 16 in the molded state is The outer diameter dimension is made larger than the inner diameter dimension of the outer cylindrical member 22 after diameter reduction processing. Therefore, by reducing the diameter of the outer cylindrical member 22 in a state where the outer cylindrical member 22 is externally inserted into the elastic connecting body 16, the elastic connecting body 16 is radially compressed between the inner shaft member 14 and the outer cylindrical member 22 in the radial direction. There is.

なお、弾性連結体16は、多孔質の発泡ウレタンで形成されていることから、自動車用のサスペンションブッシュなどに要求されるばね特性を得るために、一般的な中実のゴムに比して径方向に大きく圧縮される。特に、弾性連結体16は、インナ軸部材14の凸部18,18が突出する左右方向において、上下方向よりも大きな比率で圧縮されており、例えば、インナ軸部材14の凸部18,18とアウタ筒部材22との径方向間において、圧縮前の弾性連結体16の外径寸法に対して25〜70%という高比率で圧縮された状態で配設されている。尤も、弾性連結体16の圧縮変形量は、要求されるばね特性や弾性連結体16の発泡率などを考慮して、適宜に設定される。   In addition, since the elastic connecting body 16 is formed of porous urethane foam, in order to obtain the spring characteristics required for a suspension bush for automobiles and the like, the diameter is smaller than that of a general solid rubber. It is greatly compressed in the direction. In particular, the elastic connector 16 is compressed at a larger ratio than the vertical direction in the left-right direction in which the protrusions 18 of the inner shaft member 14 project, for example, with the protrusions 18 of the inner shaft member 14 and It is disposed in a state of being compressed at a high ratio of 25 to 70% with respect to the outer diameter dimension of the elastic connecting member 16 before compression between the outer cylindrical member 22 and the radial direction. However, the amount of compressive deformation of the elastic connector 16 is appropriately set in consideration of the required spring characteristics, the expansion ratio of the elastic connector 16 and the like.

ここにおいて、弾性連結体16が径方向に圧縮されて変形せしめられることにより、弾性連結体16の前面と後面に設けられた凹溝20,20は、図1,2に示す圧縮状態において、径方向で潰れて実質的に閉じている。このように、弾性連結体16は、凹溝20,20が形成された部分において、凹溝20,20が溝幅方向で閉じるような変形が生じ易くなっており、弾性連結体16の変形態様が特に軸方向両端部において凹溝20,20に誘導されることで安定して、発泡ウレタン製で大きな圧縮が必要とされる弾性連結体16であっても、弾性連結体16の軸方向端部における歪な変形を防ぐことができる。   Here, the concave grooves 20, 20 provided on the front surface and the rear surface of the elastic connector 16 in the compressed state shown in FIGS. 1 and 2 by the elastic connector 16 being compressed and deformed in the radial direction. Crushed in the direction is substantially closed. Thus, in the portion where the recessed grooves 20, 20 are formed, the elastic connector 16 is easily deformed such that the recessed grooves 20, 20 close in the groove width direction. In particular, even if the elastic connector 16 is made of urethane foam and requires a large compression, the axial end of the elastic connector 16 is stabilized by being guided to the recessed grooves 20 and 20 particularly at both axial ends. It is possible to prevent distorted deformation in the part.

弾性連結体16は、発泡ウレタンで形成されていることから、ポアソン比が十分に小さく圧縮性を有している。それ故、弾性連結体16が径方向に予圧縮される際に、弾性連結体16において軸方向の膨らみは小さいか殆どなく、ポアソン比が略0.5のゴムやエラストマのように軸方向に膨らむことで凹溝の底面が盛り上がるようにして深さが小さくなるのとは異なり、凹溝20は溝幅方向の両内面が互いに重なるように潰れて閉じる。このように、凹溝20は、単に溝幅方向に潰れて溝幅方向の両内面が相互に重なることで閉じているのであって、弾性連結体がゴムやエラストマで形成されている場合のように軸方向に膨らむことで溝深さが小さくなって凹溝が浅底になったり消失したりするのとは、変形の機序が異なると共に、構造的にも相違している。このような発泡ウレタン製の弾性連結体16の変形態様を考慮して、本実施形態では凹溝20の溝断面形状が底部に向かって次第に狭幅とされていることにより、凹溝20は、弾性連結体16の予圧縮によって溝幅方向の両内面が底部側から相互に当接して、次第に浅くなって消失するようになっている。   Since the elastic connector 16 is formed of urethane foam, it has a sufficiently small Poisson's ratio and has compressibility. Therefore, when the elastic connector 16 is pre-compressed in the radial direction, the elastic connector 16 has small or little axial expansion, and has an Poisson's ratio of about 0.5 in the axial direction like a rubber or elastomer. Unlike the fact that the bottom surface of the recessed groove is raised by swelling and the depth is reduced, the recessed groove 20 is closed so that both inner surfaces in the groove width direction overlap with each other. As described above, the recessed groove 20 is simply closed in the groove width direction and both inner surfaces in the groove width direction overlap with each other, so that the elastic connector is formed of rubber or elastomer. The fact that the groove depth is reduced due to the axial expansion to make the groove shallow and disappears is different in the mechanism of deformation and structurally different. In the present embodiment, in consideration of the deformation mode of the elastic connecting member 16 made of foamed urethane, the groove cross-sectional shape of the groove 20 is gradually narrowed toward the bottom in the present embodiment. The inner surfaces in the groove width direction come into contact with each other from the bottom side by pre-compression of the elastic connection body 16 so as to gradually become shallow and disappear.

なお、各凹溝20は、弾性連結体16の圧縮によって全体が厳密に閉じている必要はなく、実質的に閉じていれば良い。即ち、凹溝20は、弾性連結体16の圧縮によって溝深さ寸法の2/3以上が潰れて塞がっていれば、実質的に閉じているとみなすことができる。例えば、本実施形態では、図1,2に示すように、凹溝20の開口端部において僅かな凹みが残っているが、凹溝20の溝内面の略全体が径方向で相互に密着しており、凹溝20が実質的に閉じている。   The respective recessed grooves 20 do not have to be strictly closed entirely by the compression of the elastic connection body 16 and may be substantially closed. That is, the concave groove 20 can be considered to be substantially closed if 2/3 or more of the groove depth dimension is crushed and closed by the compression of the elastic connection body 16. For example, in the present embodiment, as shown in FIGS. 1 and 2, although a slight dent remains at the open end of the recessed groove 20, substantially the entire inner surface of the groove of the recessed groove 20 adheres to each other in the radial direction. And the recessed groove 20 is substantially closed.

このような本実施形態に従う構造とされたサスペンションブッシュ10によれば、弾性連結体16が発泡ウレタンで形成されていることにより、軸方向の貫通穴などを形成することなく柔らかいばね特性(低動ばね特性)を実現することができる。従って、振動が入力される使用状態において、貫通穴の形成部分に応力が集中することがなく、耐久性の向上が図られる。   According to the suspension bush 10 having the structure according to the present embodiment, since the elastic connection body 16 is formed of urethane foam, soft spring characteristics (low motion without forming an axial through hole, etc. Spring characteristics) can be realized. Therefore, in the use condition where vibration is input, stress is not concentrated on the formation portion of the through hole, and durability can be improved.

さらに、弾性連結体16がインナ軸部材14とアウタ筒部材22の間で圧縮されることにより、弾性連結体16のばね特性を大きな自由度で調節することができる。特に、弾性連結体16を従来のゴムブッシュよりも大きく圧縮すれば、従来のゴムブッシュにおいて貫通穴を設けるなどして実現されていたばね特性を、簡単に且つ優れた耐久性で実現することもできる。特に、径方向の圧縮による弾性連結体16の外径寸法の変化割合を25%以上且つ70%以下とすることによって、弾性連結体16のばねを実用上で適当な硬さに調節することができる。   Furthermore, the elastic connection body 16 is compressed between the inner shaft member 14 and the outer cylindrical member 22, so that the spring characteristics of the elastic connection body 16 can be adjusted with a large degree of freedom. In particular, if the elastic connector 16 is compressed more than the conventional rubber bush, the spring characteristic realized by providing the through hole in the conventional rubber bush can be realized simply and with excellent durability. . In particular, the spring of the elastic connector 16 can be adjusted to a practically suitable hardness by setting the change ratio of the outer diameter of the elastic connector 16 due to radial compression to 25% or more and 70% or less. it can.

また、弾性連結体16の前面と後面に開口する凹溝20,20が形成されていることによって、弾性連結体16が大きく圧縮される際に、弾性連結体16の軸方向端部の変形が凹溝20,20によって案内されるようになっており、弾性連結体16の軸方向端面において座屈様の歪な折れが発生するなどの不具合を回避することができる。従って、弾性連結体16のばね特性を大きな自由度で調節可能としながら、弾性連結体16の変形態様の安定化が図られて、弾性連結体16の圧縮作業が容易になり得る。   Further, by forming the concave grooves 20, 20 opened in the front surface and the rear surface of the elastic connecting member 16, when the elastic connecting member 16 is largely compressed, deformation of the axial end portion of the elastic connecting member 16 occurs. It is guided by the recessed grooves 20 and 20, and it is possible to avoid a defect such as the occurrence of a buckling-like distorted breakage at the axial end face of the elastic connection body 16. Therefore, while the spring characteristics of the elastic connector 16 can be adjusted with a large degree of freedom, the deformation of the elastic connector 16 can be stabilized and the compression operation of the elastic connector 16 can be facilitated.

さらに、凹溝20,20は、弾性連結体16がインナ軸部材14とアウタ筒部材22の間で径方向に圧縮された状態において、実質的に潰れて閉じている。これにより、使用状態のサスペンションブッシュ10において、凹溝20,20が弾性連結体16のばね特性に影響し難く、且つ凹溝20,20の形成部分に対する応力の集中も回避される。   Furthermore, the concave grooves 20, 20 are substantially collapsed and closed in a state in which the elastic connector 16 is radially compressed between the inner shaft member 14 and the outer cylindrical member 22. As a result, in the suspension bush 10 in use, the recessed grooves 20 do not easily affect the spring characteristics of the elastic connecting member 16, and the concentration of stress on the portion where the recessed grooves 20 are formed is also avoided.

また、本実施形態では、インナ軸部材14において左右両側へ突出する凸部18,18が周方向で部分的に設けられていることから、軸方向中央部分において弾性連結体16の左右方向の長さ寸法が上下方向の長さ寸法よりも短くされている。それ故、アウタ筒部材22が全周に亘って一定量だけ縮径されると、弾性連結体16は、左右方向の圧縮による変形の割合が上下方向の圧縮による変形の割合よりも大きくなって、左右方向のばねが上下方向のばねよりも硬くなる。このように、インナ軸部材14に凸部18,18を形成することによっても、弾性連結体16のばね特性を調節することができる。   Further, in the present embodiment, since the convex portions 18 and 18 projecting to the left and right sides in the inner shaft member 14 are partially provided in the circumferential direction, the length of the elastic connecting member 16 in the left and right direction is The height dimension is made shorter than the vertical length dimension. Therefore, when the diameter of the outer cylindrical member 22 is reduced by a fixed amount over the entire circumference, the elastic connector 16 has a rate of deformation due to compression in the left-right direction greater than a rate of deformation due to compression in the vertical direction. The left and right springs are harder than the vertical springs. Thus, the spring characteristics of the elastic connector 16 can also be adjusted by forming the projections 18 and 18 on the inner shaft member 14.

しかも、凹溝20,20が凸部18,18よりも外周に配置されていることによって、凹溝20,20による弾性連結体16の変形態様の安定化が、凸部18,18によって変形を拘束されない弾性連結体16の外周部分において有効に発揮される。   In addition, the concave grooves 20 and 20 are disposed on the outer periphery than the convex portions 18 and 18, so stabilization of the deformation mode of the elastic connecting member 16 by the concave grooves 20 and 20 is deformed by the convex portions 18 and 18. It is effectively exhibited at the outer peripheral portion of the elastic connector 16 which is not restrained.

図6,7には、本発明に従う構造とされた筒形防振装置の第二の実施形態として、自動車用のサスペンションブッシュ30を示す。サスペンションブッシュ30はブッシュ本体32を備えており、ブッシュ本体32はインナ軸部材14に発泡ウレタン製の弾性連結体34が固着された構造を有している。以下の説明において、第一の実施形態と実質的に同一の部材および部位については、図中に同一の符号を付すことで説明を省略する。   6 and 7 show a suspension bush 30 for a car as a second embodiment of a cylindrical vibration-damping device constructed according to the present invention. The suspension bush 30 includes a bush main body 32. The bush main body 32 has a structure in which an elastic connection body 34 made of urethane foam is fixed to the inner shaft member 14. In the following description, parts substantially the same as those of the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

弾性連結体34には、図8,9に示すように、内周凹溝36,36と外周凹溝38,38が、本実施形態の凹溝として形成されている。内周凹溝36と外周凹溝38は、それぞれ弾性連結体34の前面と後面に開口して周方向環状に延びており、外周凹溝38が内周凹溝36に対して外周側に離れて設けられている。また、本実施形態において、内周凹溝36の溝底面と外周凹溝38の溝底面が前後方向の略同じ位置に配されており、内周凹溝36の溝深さ寸法が外周凹溝38の溝深さ寸法よりも大きくされている。なお、内周凹溝36と外周凹溝38は、何れもインナ軸部材14の凸部18,18よりも外周に位置している。   As shown in FIGS. 8 and 9, in the elastic connection body 34, inner circumferential grooves 36, 36 and outer circumferential grooves 38, 38 are formed as the grooves of the present embodiment. The inner circumferential groove 36 and the outer circumferential groove 38 respectively open in the front and rear surfaces of the elastic connecting member 34 and extend circumferentially annularly, and the outer circumferential groove 38 separates from the inner circumferential groove 36 toward the outer circumferential side Is provided. Further, in the present embodiment, the groove bottom surface of the inner peripheral groove 36 and the groove bottom surface of the outer peripheral groove 38 are disposed at substantially the same position in the front-rear direction, and the groove depth dimension of the inner peripheral groove 36 is the outer peripheral groove. It is made larger than the 38 groove depth dimension. Each of the inner circumferential groove 36 and the outer circumferential groove 38 is located on the outer periphery than the projections 18 and 18 of the inner shaft member 14.

そして、弾性連結体34とインナ軸部材14を固着してなるブッシュ本体32にアウタ筒部材22が外挿されて、アウタ筒部材22が縮径加工されることにより、弾性連結体34がインナ軸部材14とアウタ筒部材22の間で径方向に予圧縮されている。かかる予圧縮状態の弾性連結体34において、内周凹溝36,36と外周凹溝38,38は、何れも径方向で潰れて実質的に閉じている。   Then, the outer cylindrical member 22 is externally inserted into the bush main body 32 in which the elastic connecting body 34 and the inner shaft member 14 are fixed, and the diameter of the outer cylindrical member 22 is reduced, whereby the elastic connecting body 34 is inner shaft It is radially pre-compressed between the member 14 and the outer cylindrical member 22. In the elastic connector 34 in such a pre-compressed state, the inner circumferential grooves 36, 36 and the outer circumferential grooves 38, 38 are all radially closed and substantially closed.

このような本実施形態に従う構造とされたサスペンションブッシュ30においても、弾性連結体34が発泡ウレタン製とされていることから、弾性連結体34の径方向の圧縮量を調節することによって、ばね特性を大きな自由度で簡単にチューニングすることができる。   Also in the suspension bush 30 having the structure according to the present embodiment, since the elastic connecting body 34 is made of urethane foam, the spring characteristics are adjusted by adjusting the amount of compression of the elastic connecting body 34 in the radial direction. You can easily tune with great freedom.

また、本実施形態のサスペンションブッシュ30では、径方向の異なる位置において環状に延びる内周凹溝36と外周凹溝38が、弾性連結体34の前後両面に形成されていることから、弾性連結体34を径方向に大きく予圧縮する際に、弾性連結体34の軸方向両端部において歪な変形がより生じ難く、弾性連結体34の変形態様の安定化を図ることができる。しかも、内周凹溝36,36と外周凹溝38,38は、何れも弾性連結体34の予圧縮状態において実質的に閉じていることから、サスペンションブッシュ30の使用状態で振動が入力される際に、それら内周凹溝36,36と外周凹溝38,38が防振性能に影響し難く、且つ応力の集中による耐久性の低下も問題になり難い。   Further, in the suspension bush 30 according to the present embodiment, since the inner peripheral groove 36 and the outer peripheral groove 38 extending annularly at different positions in the radial direction are formed on both the front and rear surfaces of the elastic connector 34, the elastic connector is When pre-compressing 34 greatly in the radial direction, strain deformation is less likely to occur at both axial ends of the elastic connector 34, and the deformation mode of the elastic connector 34 can be stabilized. Moreover, since the inner circumferential grooves 36, 36 and the outer circumferential grooves 38, 38 are substantially closed in the pre-compression state of the elastic connector 34, vibration is input when the suspension bush 30 is in use. In such a case, the inner peripheral grooves 36, 36 and the outer peripheral grooves 38, 38 hardly affect the anti-vibration performance, and the decrease in durability due to the concentration of stress does not easily become a problem.

このように、弾性連結体に形成される凹溝は前後各1つに限定されず、弾性連結体の前面および後面に各複数の凹溝を形成しても良い。なお、弾性連結体の前面および後面の何れに対しても、3つ以上の凹溝を形成することもできる。   As described above, the concave grooves formed in the elastic connector are not limited to one each in the front and rear direction, and a plurality of concave grooves may be formed on the front surface and the rear surface of the elastic connector. In addition, three or more concave grooves can also be formed on any of the front surface and the rear surface of the elastic connector.

図10,11には、本発明に従う構造とされた筒形防振装置の第三の実施形態として、自動車用のサスペンションブッシュ40を示す。サスペンションブッシュ40はブッシュ本体42を備えており、ブッシュ本体42はインナ軸部材14に弾性連結体44が固着された構造を有している。   10 and 11 show a suspension bush 40 for a car as a third embodiment of a cylindrical vibration-damping device constructed according to the present invention. The suspension bush 40 includes a bush main body 42, and the bush main body 42 has a structure in which an elastic connecting body 44 is fixed to the inner shaft member 14.

より詳細には、弾性連結体44は、第一の実施形態と同様の発泡ウレタンで形成されており、図12,13に示すように、軸方向寸法の大きい内周厚肉部46と、軸方向寸法の小さい外周薄肉部48とを、一体で備えている。   More specifically, the elastic connector 44 is formed of the same urethane foam as that of the first embodiment, and as shown in FIGS. An outer peripheral thin portion 48 with a small dimension is integrally provided.

内周厚肉部46は、厚肉の略円筒形状を有しており、軸方向寸法がインナ軸部材14よりも小さく且つアウタ筒部材22と略同じとされている。この内周厚肉部46の内周面がインナ軸部材14の外周面に固着されることにより、弾性連結体44がインナ軸部材14に固着されてブッシュ本体42が構成されている。   The inner circumferential thick portion 46 has a thick, substantially cylindrical shape, and has an axial dimension smaller than the inner shaft member 14 and substantially the same as the outer cylindrical member 22. The elastic connecting member 44 is fixed to the inner shaft member 14 by the inner peripheral surface of the inner peripheral thick portion 46 being fixed to the outer peripheral surface of the inner shaft member 14, and the bush main body 42 is configured.

外周薄肉部48は、内周厚肉部46の外周面から外周へ突出するように全周に亘って略一定の断面形状で設けられており、外周へ向けて次第に前後厚さ寸法が小さくなっていると共に、内周端の前後厚さ寸法が内周厚肉部46の前後厚さ寸法よりも小さくされている。これにより、内周厚肉部46の軸方向端面と外周薄肉部48の軸方向端面は、内周厚肉部46の外周面で構成された段差50を介して連続している。   The outer peripheral thin portion 48 is provided with a substantially constant cross-sectional shape over the entire periphery so as to project from the outer peripheral surface of the inner peripheral thick portion 46 to the outer periphery, and the thickness dimension becomes smaller gradually toward the outer periphery In addition, the front and rear thickness dimension of the inner peripheral end is made smaller than the front and rear thickness dimension of the inner peripheral thick portion 46. Thus, the axial end surface of the inner circumferential thick portion 46 and the axial end surface of the outer circumferential thin portion 48 are continuous via the step 50 formed by the outer circumferential surface of the inner circumferential thick portion 46.

そして、かくの如き構造を有する弾性連結体44は、内周面がインナ軸部材14に固着されていると共に、アウタ筒部材22に挿入されており、弾性連結体44に外挿されたアウタ筒部材22が縮径加工されることによって、インナ軸部材14とアウタ筒部材22の間で径方向に予圧縮されている。なお、図11に示す弾性連結体44が予圧縮された状態において、外周薄肉部48は完全に潰れることなく残存しており、内周厚肉部46の外周面(段差50)がアウタ筒部材22の内周面に対して外周に離れている。   Then, the elastic connecting body 44 having such a structure has an inner peripheral surface fixed to the inner shaft member 14 and is inserted into the outer cylindrical member 22, and the outer cylinder is externally inserted into the elastic connecting body 44. By reducing the diameter of the member 22, it is radially compressed between the inner shaft member 14 and the outer cylindrical member 22. In the state where the elastic connecting member 44 shown in FIG. 11 is pre-compressed, the outer peripheral thin portion 48 remains without being completely crushed, and the outer peripheral surface (step 50) of the inner peripheral thick portion 46 is the outer cylindrical member. It is separated to the outer periphery with respect to the inner peripheral surface of 22.

本実施形態において、凹溝20,20は、弾性連結体44の外周薄肉部48に形成されている。これにより、軸方向寸法が大きく且つインナ軸部材14に固着される内周厚肉部46に比して、弾性連結体44の圧縮時に変形態様が安定し難い外周薄肉部48において、凹溝20,20による変形態様の安定化が図られる。   In the present embodiment, the recessed grooves 20 are formed in the outer peripheral thin portion 48 of the elastic connection body 44. As a result, the recessed groove 20 in the outer peripheral thin portion 48 in which the deformation mode is difficult to be stabilized at the time of compression of the elastic connector 44 as compared with the inner circumferential thick portion 46 which has a large axial dimension and is fixed to the inner shaft member 14. , 20 stabilize the deformation mode.

本実施形態に示されているように、弾性連結体の具体的な形状は特に限定されるものではなく、要求特性などに応じて適宜に設定され得る。   As shown in the present embodiment, the specific shape of the elastic connector is not particularly limited, and may be appropriately set according to the required characteristics and the like.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、前記実施形態においてインナ軸部材14に設けられていた凸部18,18は、必須ではなく、例えば、図14,15に示すサスペンションブッシュ60を構成するインナ軸部材62のように、凸部がない構造も採用され得る。また、凸部は、必ずしも径方向両側に突出する一対である必要はなく、全周に亘って略一定の断面形状を有する凸部を設けても良いし、周方向で突出高さが変化する凸部を全周に亘って設けても良い。更に、凸部は、インナ軸部材と別体で形成されて、インナ軸部材に固定されることで設けられるようにもできる。   Although the embodiments of the present invention have been described above in detail, the present invention is not limited by the specific description. For example, the convex portions 18 and 18 provided on the inner shaft member 14 in the embodiment are not essential. For example, like the inner shaft member 62 constituting the suspension bush 60 shown in FIGS. A structure without a can also be adopted. Further, the convex portions do not necessarily have to be a pair protruding in both radial directions, and may have convex portions having a substantially constant cross-sectional shape over the entire circumference, and the protruding height changes in the circumferential direction The convex portion may be provided over the entire circumference. Furthermore, the convex portion may be formed separately from the inner shaft member and provided by being fixed to the inner shaft member.

また、弾性連結体に形成される凹溝は、周方向に連続していれば、断面形状を周方向で変化させることも可能である。即ち、溝幅寸法や溝深さ寸法、溝断面積などを周方向で変化させることにより、互いに異なる径方向において互いに異なるばね特性を設定することも可能になる。更に、全周に亘って形成された凹溝の内周側や外周側に部分的に周方向に延びる溝を追加することで、互いに異なる径方向においてばね特性を異ならせることもできる。   Moreover, if the ditch | groove formed in an elastic connection body is continuous in the circumferential direction, it is also possible to change cross-sectional shape in the circumferential direction. That is, by changing the groove width dimension, the groove depth dimension, the groove cross-sectional area, and the like in the circumferential direction, it becomes possible to set different spring characteristics in mutually different radial directions. Furthermore, spring characteristics can be made different in different radial directions by adding a groove that extends partially in the circumferential direction on the inner peripheral side or the outer peripheral side of the recessed groove formed over the entire circumference.

前記実施形態では、成形状態の弾性連結体16にアウタ筒部材22が外挿された後、アウタ筒部材22を縮径加工することで、弾性連結体16が径方向に予圧縮される構造について説明したが、例えば、予め成形状態の弾性連結体よりも小径とされたアウタ筒部材を準備して、当該アウタ筒部材に弾性連結体を縮径させながら押し入れることにより、弾性連結体を予圧縮することもできる。また、弾性連結体がアウタ筒部材への挿入によってある程度予圧縮された後、アウタ筒部材を縮径加工することで、弾性連結体が更に大きく予圧縮されるようにしても良い。   In the above embodiment, after the outer cylindrical member 22 is extrapolated to the elastic connection body 16 in the formed state, the diameter reduction process of the outer cylindrical member 22 is performed, whereby the elastic connection body 16 is precompressed in the radial direction. As described above, for example, an outer cylindrical member having a diameter smaller than that of the elastic connection body in a molded state is prepared, and the elastic connection body is preliminarily inserted by pressing the elastic connection body into the outer cylindrical member while reducing the diameter. It can also be compressed. In addition, after the elastic connecting body is pre-compressed to a certain extent by the insertion into the outer cylindrical member, the diameter of the outer cylindrical member may be reduced to pre-compress the elastic connecting body.

さらに、インナ軸部材の外径寸法が成形状態の弾性連結体の内径寸法よりも大きくされており、インナ軸部材が弾性連結体の中央孔に押し入れられることによって、弾性連結体を径方向に予圧縮することもできる。更にまた、弾性連結体の外周面に接着されたアウタ筒部材を縮径加工することによっても、弾性連結体に径方向の予圧縮を及ぼすことができる。   Furthermore, the outer diameter dimension of the inner shaft member is made larger than the inner diameter dimension of the elastic connection body in the molded state, and the elastic connection body is radially pretensioned by the inner shaft member being pushed into the central hole of the elastic connection body. It can also be compressed. Furthermore, radial compression can be exerted on the elastic connector by reducing the diameter of the outer cylindrical member bonded to the outer peripheral surface of the elastic connector.

また、弾性連結体は、発泡ウレタンで形成されていることから、ポアソン比が十分に小さく圧縮性を有している。それ故、凹溝が潰れるように変形する際に、局所的な応力集中が問題になり難く、例えば矩形断面のような角のある溝断面形状の凹溝も採用可能である。尤も、応力集中の軽減と耐久性の向上などの観点から、凹溝の溝断面形状は、好適には角のない滑らかに湾曲した内面を有する形状とされる。より好適には、前記実施形態のような開口部から底部に向かって溝幅方向で次第に狭くなるような溝断面形状とされて、それによって、凹溝が潰れた変形状態で特に応力が集中し易い溝最深部において、更なる応力集中の軽減が図られ得る。   Further, since the elastic connector is formed of urethane foam, it has a sufficiently small Poisson's ratio and has compressibility. Therefore, when the concave groove deforms so as to be crushed, local stress concentration is less likely to be a problem, and for example, a concave groove having an angular groove cross-sectional shape such as a rectangular cross-section can be adopted. However, from the viewpoint of reducing stress concentration and improving durability, the groove cross-sectional shape of the recessed groove is preferably a shape having a smoothly curved inner surface without corners. More preferably, the groove has a cross-sectional shape that gradually narrows in the groove width direction from the opening to the bottom as in the above embodiment, whereby stress is particularly concentrated in the deformed deformation of the groove. Further stress concentration reduction can be achieved at the deepest portion of the easy groove.

なお、インナ軸部材とアウタ筒部材は、何れも円筒形状に限定されるものではなく、例えば長円筒形状などでも良い。また、弾性連結体の形状も、インナ軸部材およびアウタ筒部材の形状に応じて適宜に変更され得る。   The inner shaft member and the outer cylindrical member are not limited to the cylindrical shape, and may be, for example, an elongated cylindrical shape. In addition, the shape of the elastic coupling body may be appropriately changed according to the shapes of the inner shaft member and the outer cylindrical member.

10,30,40,60:サスペンションブッシュ(筒形防振装置)、14,62:インナ軸部材、16,34,44:弾性連結体、18:凸部、20:凹溝、22:アウタ筒部材、36:内周凹溝(凹溝)、38:外周凹溝(凹溝) 10, 30, 40, 60: Suspension bush (cylindrical vibration damping device) 14, 62: Inner shaft member, 16, 34, 44: Elastic connection body, 18: convex portion, 20: concave groove, 22: outer cylinder Member, 36: inner circumferential concave groove (concave groove), 38: outer circumferential concave groove (concave groove)

Claims (5)

インナ軸部材とアウタ筒部材が弾性連結体で全周に亘って相互に弾性連結された筒形防振装置において、
前記弾性連結体が発泡ポリウレタン樹脂で形成されており、該弾性連結体が前記インナ軸部材と前記アウタ筒部材の間に軸直角方向に圧縮された状態で配されていると共に、
周方向に延びる環状の凹溝が該弾性連結体の両端面にそれぞれ形成されており、該インナ軸部材と該アウタ筒部材との間で圧縮されていない成形状態の該弾性連結体において該凹溝が該弾性連結体の軸方向端面に開口していることを特徴とする筒形防振装置。
In a cylindrical vibration damping device in which an inner shaft member and an outer cylindrical member are elastically connected to each other over the entire circumference by an elastic connecting member,
The elastic connecting body is formed of a foamed polyurethane resin, and the elastic connecting body is disposed between the inner shaft member and the outer cylindrical member in a state of being compressed in a direction perpendicular to the axial direction,
Annular concave grooves extending in the circumferential direction are respectively formed on both end faces of the elastic connector, and the recesses are formed in the elastic connector in a non-compressed state between the inner shaft member and the outer cylindrical member. A groove is opened at an axial end face of the elastic coupling body.
前記弾性連結体が前記インナ軸部材と前記アウタ筒部材の間で軸直角方向に圧縮された状態において前記凹溝が潰れて実質的に閉じている請求項1に記載の筒形防振装置。   The cylindrical vibration-damping device according to claim 1, wherein the recessed groove is crushed and substantially closed in a state in which the elastic coupling body is compressed in a direction perpendicular to the axis between the inner shaft member and the outer cylindrical member. 前記インナ軸部材には外周へ突出する凸部が設けられており、前記凹溝における深さ寸法が最大となる部分が該凸部よりも外周側に位置している請求項1又は2に記載の筒形防振装置。   The said inner-shaft member is provided with the convex part which protrudes on outer periphery, The part which the depth dimension in the said concave part becomes the largest is located in the outer peripheral side rather than this convex part. Cylindrical vibration control device. 前記インナ軸部材と前記アウタ筒部材の間で圧縮されていない成形状態の前記弾性連結体の軸直角方向の外径寸法が、前記アウタ筒部材の軸直角方向の内径寸法よりも大きくされている請求項1〜3の何れか一項に記載の筒形防振装置。   The outer diameter dimension in the direction perpendicular to the axis of the elastic connecting member in a molded state not being compressed between the inner shaft member and the outer cylinder member is larger than the inner diameter dimension in the direction perpendicular to the axis of the outer cylinder member The cylindrical vibration-damping device according to any one of claims 1 to 3. 前記弾性連結体の軸直角方向の外径寸法が、該弾性連結体が前記インナ軸部材と前記アウタ筒部材の間で軸直角方向に圧縮されることによって成形状態に比して25〜70%小さくなっている請求項1〜4の何れか一項に記載の筒形防振装置。   The outer diameter dimension of the elastic connector in the direction perpendicular to the axis is 25 to 70% of the molded state by the elastic connector being compressed in the direction perpendicular to the axis between the inner shaft member and the outer cylindrical member The cylindrical vibration-damping device according to any one of claims 1 to 4, which is smaller.
JP2018004799A 2018-01-16 2018-01-16 Cylindrical vibration controller Pending JP2019124283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004799A JP2019124283A (en) 2018-01-16 2018-01-16 Cylindrical vibration controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004799A JP2019124283A (en) 2018-01-16 2018-01-16 Cylindrical vibration controller

Publications (1)

Publication Number Publication Date
JP2019124283A true JP2019124283A (en) 2019-07-25

Family

ID=67398603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004799A Pending JP2019124283A (en) 2018-01-16 2018-01-16 Cylindrical vibration controller

Country Status (1)

Country Link
JP (1) JP2019124283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623190A (en) * 2020-12-08 2022-06-14 住友理工株式会社 Cylindrical vibration-proof device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623190A (en) * 2020-12-08 2022-06-14 住友理工株式会社 Cylindrical vibration-proof device
CN114623190B (en) * 2020-12-08 2023-05-16 住友理工株式会社 Cylindrical vibration isolator

Similar Documents

Publication Publication Date Title
JP4714505B2 (en) Air spring
US6820908B1 (en) Isolation mount
JP5503537B2 (en) Bump stopper and manufacturing method thereof
CN101802438B (en) Supplementary spring with axially extending contour elements
US20080012188A1 (en) One-piece microcellular polyurethane insulator having different densities
JP4961775B2 (en) Rail vehicle link and manufacturing method thereof
JP2000161419A (en) Bumper spring
US20040075204A1 (en) Spring element
US11028894B2 (en) Tubular vibration-damping device
JP2019124283A (en) Cylindrical vibration controller
JP2014152821A (en) Suspension mount
JP2588784Y2 (en) Vehicle suspension mounting rubber
JP6148897B2 (en) Stabilizer bush
JP2011007257A (en) Vibration absorbing bush
JP5806877B2 (en) Anti-vibration bush
CN110529545B (en) Liquid-filled vibration-proof device
JP2019124324A (en) Cylindrical vibration controller
JP5490566B2 (en) Suspension support
US11993115B2 (en) Spring element, in particular jounce bumper, for a vehicle shock absorber
US20220234405A1 (en) Spring element, in particular jounce bumper, for a vehicle suspension
JP2023504838A (en) Motor vehicle suspension system jounce bumper and method of making such a jounce bumper
US20230120628A1 (en) Mounting bushing
JP4982319B2 (en) Bound stopper and manufacturing method thereof
JP2001193776A (en) Combined vibration proof bush
US20200086707A1 (en) Spring support configured to receive a coil spring of a motor-vehicle spring system, motor-vehicle spring system, and use of a spring support