JP2019123673A - Method of producing dichloroquinone derivative - Google Patents

Method of producing dichloroquinone derivative Download PDF

Info

Publication number
JP2019123673A
JP2019123673A JP2018003423A JP2018003423A JP2019123673A JP 2019123673 A JP2019123673 A JP 2019123673A JP 2018003423 A JP2018003423 A JP 2018003423A JP 2018003423 A JP2018003423 A JP 2018003423A JP 2019123673 A JP2019123673 A JP 2019123673A
Authority
JP
Japan
Prior art keywords
dichloroquinone
producing
general formula
acid
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003423A
Other languages
Japanese (ja)
Other versions
JP6802815B2 (en
Inventor
和紀 井口
Kazunori Iguchi
和紀 井口
秀和 尾迫
Hidekazu OSAKO
秀和 尾迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2018003423A priority Critical patent/JP6802815B2/en
Publication of JP2019123673A publication Critical patent/JP2019123673A/en
Application granted granted Critical
Publication of JP6802815B2 publication Critical patent/JP6802815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method of producing a dichloroquinone derivative which is versatile, easily applicable to an industrial process, and also advantageous in terms of production cost.SOLUTION: In a method of producing a dichloroquinone derivative represented by general formula (1), a compound represented by general formula (2) is reacted with 1.0 to 1.2 molar equivalents of N-chlorosuccinimide in an organic acid, and subsequently reacted with 1.0 to 1.2 molar equivalents of trichloroisocyanuric acid. (In general formulas (1) and (2), Rand Reach independently represent an alkyl group.)SELECTED DRAWING: None

Description

本発明は、ジクロロキノン誘導体の製造方法に関する。   The present invention relates to a method for producing dichloroquinone derivatives.

下記一般式(2)で表される化合物(スクシニロコハク酸類)は、赤〜紫色の有用な色材であるキナクリドン類の出発原料として非常に重要である。一方、スクシニロコハク酸類の酸化体である、下記一般式(1)で表されるジクロロキノン誘導体(ジハロキノン類)は、スクシニロコハク酸類に塩素ガスや臭素ガス等のハロゲンガスを作用させて製造されることが知られている。しかし、スクシニロコハク酸類にハロゲンガスを反応させる方法は、不純物が生じやすいとともに、その取り扱いに特別の配慮が必要なハロゲンガスを使用する方法であることから、さほど注目されている製造方法であるとは言えない。   The compound (succinillo succinic acid) represented by the following general formula (2) is very important as a starting material of quinacridone which is a useful coloring material of red to purple. On the other hand, a dichloroquinone derivative (dihaloquinones) represented by the following general formula (1), which is an oxidized form of succinyrosuccinic acid, is produced by reacting succinyrosuccinic acid with a halogen gas such as chlorine gas or bromine gas. Are known. However, the method of reacting halogenous gases with succinyrosuccinic acid is a method that uses halogen gas that requires special consideration for its handling as well as impurities that are likely to be generated, so it may be said that it is a production method that has received much attention I can not say.

Figure 2019123673
(前記一般式(1)及び(2)中、R1及びR2は、それぞれ独立にアルキル基を示す)
Figure 2019123673
(In the general formulas (1) and (2), R 1 and R 2 each independently represent an alkyl group)

近年、ハロゲンガスを使用しない簡便な方法として、4モル当量のN−クロロスクシンイミドをスクシニロコハク酸類に作用させてジハロキノン類を合成する方法が報告されている(非特許文献1)。   In recent years, as a simple method that does not use a halogen gas, a method of synthesizing dihaloquinones by causing 4 molar equivalents of N-chlorosuccinimide to act on succiniro succinic acids has been reported (Non-patent Document 1).

L.Hintermann and K.Suzuki,Synthesis,2008,No.14,p.2303−2306L. Hintermann and K. Suzuki, Synthesis, 2008, No. 14, p. 2303-2306

しかしながら、非特許文献1で報告された方法は、基質であるスクシニロコハク酸類に対して、比較的高価なN−クロロスクシンイミドを相当過剰に反応させることが必要な方法である。このため、工業的に有利であるとは言えず、汎用性の高い製造方法ではなかった。   However, the method reported in Non-Patent Document 1 is a method that requires a relatively expensive reaction of relatively expensive N-chlorosuccinimide with a substrate succiniro succinic acid. For this reason, it can not be said that it is industrially advantageous, and it was not a highly versatile manufacturing method.

また、一般式(1)で表されるジハロキノン類をキナクリドン類の製造中間体として用いると、塩素分子が脱離基として作用し、塩化水素の脱離に伴って反応が進行する。すなわち、非特許文献1で報告された方法を採用すると、最終生成物であるキナクリドン類の製造コストは、過剰に用いるN−クロロスクシンイミドのコストに依存することになる。このため、非特許文献1で報告された方法は、やはり工業的に有利な方法であるとは言えなかった。   Further, when the dihaloquinones represented by the general formula (1) are used as an intermediate for producing quinacridones, chlorine molecules act as a leaving group, and the reaction proceeds with the elimination of hydrogen chloride. That is, when the method reported in Non-patent Document 1 is adopted, the production cost of the final product quinacridone depends on the cost of N-chlorosuccinimide used in excess. For this reason, the method reported in Non-Patent Document 1 can not be said to be an industrially advantageous method either.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、汎用性が高く、工業的プロセスに容易に適用可能であるとともに、製造コスト面でも有利なジクロロキノン誘導体の製造方法を提供することにある。   The present invention has been made in view of the problems of the prior art, and the problems to be solved by the present invention are high in versatility and easily applicable to industrial processes, and also in terms of manufacturing cost. It is an object of the present invention to provide a process for the preparation of advantageous dichloroquinone derivatives.

すなわち、本発明によれば、以下に示すジクロロキノン誘導体の製造方法が提供される。
[1]下記一般式(1)で表されるジクロロキノン誘導体の製造方法であって、
下記一般式(2)で表される化合物に対し、1.0〜1.2モル当量のN−クロロスクシンイミドを有機酸中で反応させた後、引き続き、1.0〜1.2モル当量のトリクロロイソシアヌル酸を反応させる工程を有するジクロロキノン誘導体の製造方法。
That is, according to the present invention, a method for producing a dichloroquinone derivative shown below is provided.
[1] A method for producing a dichloroquinone derivative represented by the following general formula (1),
After reacting 1.0 to 1.2 molar equivalents of N-chlorosuccinimide in the organic acid with respect to the compound represented by the following general formula (2), subsequently, 1.0 to 1.2 molar equivalents of A process for producing a dichloroquinone derivative, comprising the step of reacting trichloroisocyanuric acid.

Figure 2019123673
(前記一般式(1)及び(2)中、R1及びR2は、それぞれ独立にアルキル基を示す)
Figure 2019123673
(In the general formulas (1) and (2), R 1 and R 2 each independently represent an alkyl group)

[2]前記有機酸が酢酸である前記[1]に記載のジクロロキノン誘導体の製造方法。   [2] The method for producing a dichloroquinone derivative according to [1], wherein the organic acid is acetic acid.

本発明によれば、汎用性が高く、工業的プロセスに容易に適用可能であるとともに、製造コスト面でも有利なジクロロキノン誘導体の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing a dichloroquinone derivative which is highly versatile and easily applicable to an industrial process and advantageous in terms of production cost.

<ジクロロキノン誘導体の製造方法>
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明のジクロロキノン誘導体の製造方法(以下、単に「本発明の製造方法」とも記す)は、下記一般式(1)で表されるジクロロキノン誘導体の製造方法である。そして、本発明の製造方法は、下記一般式(2)で表される化合物に対し、1.0〜1.2モル当量のN−クロロスクシンイミドを有機酸中で反応させた後、引き続き、1.0〜1.2モル当量のトリクロロイソシアヌル酸を反応させる工程(反応工程)を有する。以下、本発明の製造方法の詳細について説明する。
<Method for producing dichloroquinone derivative>
Hereinafter, although the embodiment of the present invention is described, the present invention is not limited to the following embodiment. The method for producing a dichloroquinone derivative of the present invention (hereinafter, also simply referred to as “production method of the present invention”) is a method for producing a dichloroquinone derivative represented by the following general formula (1). Then, according to the production method of the present invention, after 1.0 to 1.2 molar equivalents of N-chlorosuccinimide are reacted in the organic acid with respect to the compound represented by the following general formula (2), 1 It has a process (reaction process) of reacting .0 to 1.2 molar equivalents of trichloroisocyanuric acid. Hereinafter, the details of the production method of the present invention will be described.

Figure 2019123673
(前記一般式(1)及び(2)中、R1及びR2は、それぞれ独立にアルキル基を示す)
Figure 2019123673
(In the general formulas (1) and (2), R 1 and R 2 each independently represent an alkyl group)

トリクロロイソシアヌル酸は、例えば、プール等の殺菌剤として用いられることが知られている。また、安価であるとともに安定性に優れており、工業的に扱いやすい試薬である。そして、トリクロロイソシアヌル酸は、有効塩素率がより高い試薬である。例えば、N−クロロスクシンイミドの有効塩素率が51%であるのに対し、トリクロロイソシアヌル酸の有効塩素率は91%である(Organic Process Research and Development,2002,6,p.384−393)。   Trichloroisocyanuric acid is known to be used, for example, as a bactericidal agent such as a pool. In addition, it is an inexpensive reagent that is excellent in stability and industrially easy to handle. And trichloroisocyanuric acid is a reagent with a higher effective chlorine rate. For example, the effective chlorine rate of trichloroisocyanuric acid is 91% while the effective chlorine rate of N-chlorosuccinimide is 51% (Organic Process Research and Development, 2002, 6, p. 384-393).

本発明の製造方法では、一般式(2)で表される化合物を塩素化するための試薬(塩素化剤)として、N−クロロスクシンイミドとともにトリクロロイソシアヌル酸を用いる。N−クロロスクシンイミドだけでなく、トリクロロイソシアヌル酸を用いることで、高い製造収率を維持しつつ、高価であるとともに工業的にも不利なN−クロロスクシンイミドの使用量を低減することができる。   In the production method of the present invention, trichloroisocyanuric acid is used together with N-chlorosuccinimide as a reagent (chlorinating agent) for chlorinating a compound represented by the general formula (2). By using trichloroisocyanuric acid as well as N-chlorosuccinimide, the amount of expensive and industrially disadvantageous N-chlorosuccinimide can be reduced while maintaining a high production yield.

反応工程では、まず、一般式(2)で表される化合物に対し、N−クロロスクシンイミドを有機酸中で反応させる。一般式(2)で表される化合物の具体例としては、下記式(2a)〜(2d)で表される化合物を挙げることができる。   In the reaction step, first, N-chlorosuccinimide is reacted in an organic acid with respect to the compound represented by the general formula (2). As a specific example of a compound represented by General formula (2), the compound represented by following formula (2a)-(2d) can be mentioned.

Figure 2019123673
Figure 2019123673

N−クロロスクシンイミドの量は、一般式(2)で表される化合物に対して、1.0〜1.2モル当量である。一般式(2)で表される化合物に対するN−クロロスクシンイミドの量が1.0モル当量未満であると、塩素化が不十分になる。一方、1.2モル当量超とするとコスト面で不利になる。   The amount of N-chlorosuccinimide is 1.0 to 1.2 molar equivalents relative to the compound represented by the general formula (2). If the amount of N-chlorosuccinimide is less than 1.0 molar equivalent to the compound represented by the general formula (2), chlorination will be insufficient. On the other hand, if it is more than 1.2 molar equivalents, it will be disadvantageous in cost.

一般式(2)で表される化合物にN−クロロスクシンイミドを反応させる際の温度及び時間は特に限定されず、適宜設定することができる。具体的には、60〜100℃の温度範囲で、30分〜10時間程度反応させればよい。   The temperature and the time at the time of making N-chlorosuccinimide react with the compound represented by General formula (2) are not specifically limited, It can set suitably. Specifically, the reaction may be performed for about 30 minutes to 10 hours in a temperature range of 60 to 100 ° C.

反応工程では、N−クロロスクシンイミドを反応させた後、好ましくは反応生成物等を単離することなく、引き続きトリクロロイソシアヌル酸を反応させる。より具体的には、N−クロロスクシンイミドを反応させた反応系にトリクロロイソシアヌル酸を添加し、反応させればよい。N−クロロスクシンイミドを反応させずに、トリクロロイソシアヌル酸のみを一般式(2)で表される化合物に反応させても塩素化することはできず、一般式(1)で表される化合物を得ることはできない。   In the reaction step, after reacting N-chlorosuccinimide, trichloroisocyanuric acid is subsequently reacted, preferably without isolating a reaction product or the like. More specifically, trichloroisocyanuric acid may be added to a reaction system in which N-chlorosuccinimide is reacted, and then reacted. Even if only trichloroisocyanuric acid is reacted with the compound represented by the general formula (2) without reacting N-chlorosuccinimide, chlorination can not be carried out, and the compound represented by the general formula (1) is obtained. It is not possible.

トリクロロイソシアヌル酸の量は、一般式(2)で表される化合物に対して、1.0〜1.2モル当量である。一般式(2)で表される化合物に対するトリクロロイソシアヌル酸の量が1.0モル当量未満であると、塩素化が不十分になる。一方、1.2モル当量超とするとコスト面で不利になる。   The amount of trichloroisocyanuric acid is 1.0 to 1.2 molar equivalents relative to the compound represented by the general formula (2). If the amount of trichloroisocyanuric acid relative to the compound represented by the general formula (2) is less than 1.0 molar equivalent, chlorination will be insufficient. On the other hand, if it is more than 1.2 molar equivalents, it will be disadvantageous in cost.

トリクロロイソシアヌル酸を反応させる際の温度及び時間は特に限定されず、適宜設定することができる。具体的には、60〜100℃の温度範囲で、1〜10時間程度反応させればよい。   The temperature and time for reacting trichloroisocyanuric acid are not particularly limited, and can be set as appropriate. Specifically, the reaction may be performed for about 1 to 10 hours in a temperature range of 60 to 100 ° C.

一般式(2)で表される化合物と、N−クロロスクシンイミド及びトリクロロイソシアヌル酸とは、有機酸中で反応させる。有機酸を溶媒として用いることで、無機酸を用いる場合に比して、目的物である一般式(1)で表される化合物の分解を抑制し、収率を向上させることができる。なお、一般式(1)で表される化合物の分解を抑制して収率を向上させる観点からは、実質的に水が存在しない、非水溶媒中で反応させることが好ましい。有機酸としては、ギ酸、酢酸、クエン酸、シュウ酸、安息香酸などを挙げることができる。なかでも、水に溶けやすく、液体で扱いやすいことから酢酸が好ましい。トリクロロイソシアヌル酸を反応させた後は、必要に応じて精製等することで、目的とする一般式(1)で表される化合物を得ることができる。   The compound represented by the general formula (2) is reacted with N-chlorosuccinimide and trichloroisocyanuric acid in an organic acid. By using an organic acid as a solvent, the decomposition of the compound represented by the general formula (1), which is the target product, can be suppressed and the yield can be improved as compared with the case of using an inorganic acid. From the viewpoint of suppressing the decomposition of the compound represented by the general formula (1) to improve the yield, the reaction is preferably carried out in a non-aqueous solvent substantially free of water. As the organic acid, formic acid, acetic acid, citric acid, oxalic acid, benzoic acid and the like can be mentioned. Among them, acetic acid is preferable because it is easily soluble in water and easy to handle in liquid. After reacting trichloroisocyanuric acid, the compound represented by the general formula (1) can be obtained by purification and the like as required.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。製造した化合物の構造は、いずれも1H−NMR及び質量分析により同定した。 EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples and comparative examples, "parts" and "%" are based on mass unless otherwise specified. The structures of the produced compounds were all identified by 1 H-NMR and mass spectrometry.

(実施例1)
式(2a)で表される化合物250部及びN−クロロスクシンイミド154部を酢酸2500部に加え、80℃で30分加熱した。続けて、トリクロロイソシアヌル酸267部を加え、80℃で2時間さらに加熱した。冷却後に水を加えて反応を停止した。ろ過及び水で洗浄後、80℃で乾燥して、下記式(A)で表される化合物(A)247部(収率:77%)を得た。
Example 1
250 parts of a compound represented by the formula (2a) and 154 parts of N-chlorosuccinimide were added to 2500 parts of acetic acid and heated at 80 ° C. for 30 minutes. Subsequently, 267 parts of trichloroisocyanuric acid were added and further heated at 80 ° C. for 2 hours. After cooling, water was added to stop the reaction. After filtration and washing with water, drying was carried out at 80 ° C. to obtain 247 parts (yield: 77%) of a compound (A) represented by the following formula (A).

Figure 2019123673
Figure 2019123673

(実施例2)
式(2a)で表される化合物250部に代えて、式(2b)で表される化合物282部を使用したこと以外は、前述の実施例1と同様にして、下記式(B)で表される化合物(B)272部(収率:77%)を得た。
(Example 2)
In the same manner as in Example 1 described above except that 282 parts of the compound represented by Formula (2b) is used instead of 250 parts of the compound represented by Formula (2a), a table of the following Formula (B) is used. 272 parts (yield: 77%) of the compound (B) were obtained.

Figure 2019123673
Figure 2019123673

(比較例1)
式(2a)で表される化合物250部及びN−クロロスクシンイミド617部を酢酸2500部に加え、80℃で2時間加熱した。冷却後に水を加えて反応を停止した。ろ過及び水で洗浄後、80℃で乾燥して、化合物(A)247部(収率:77%)を得た。
(Comparative example 1)
250 parts of a compound represented by the formula (2a) and 617 parts of N-chlorosuccinimide were added to 2500 parts of acetic acid and heated at 80 ° C. for 2 hours. After cooling, water was added to stop the reaction. After filtration and washing with water, drying at 80 ° C. gave 247 parts (yield: 77%) of compound (A).

(比較例2)
式(2a)で表される化合物250部及びトリクロロイソシアヌル酸358部を酢酸2500部に加え、80℃で2時間加熱した。冷却後に水を加えて反応を停止した。ろ過及び水で洗浄したが、化合物(A)の生成を確認することはできなかった。
(Comparative example 2)
250 parts of a compound represented by the formula (2a) and 358 parts of trichloroisocyanuric acid were added to 2500 parts of acetic acid and heated at 80 ° C. for 2 hours. After cooling, water was added to stop the reaction. Although filtration and washing with water, it was not possible to confirm the formation of compound (A).

実施例及び比較例の詳細を表1に示す。   Details of Examples and Comparative Examples are shown in Table 1.

Figure 2019123673
Figure 2019123673

本発明の製造方法は、色材として有用なキナクリドン類を製造するための原料や中間体として用いられるジクロロキノン誘導体を工業的に製造する方法として好適である。   The production method of the present invention is suitable as a method for industrially producing dichloroquinone derivatives used as raw materials and intermediates for producing quinacridones useful as coloring materials.

Claims (2)

下記一般式(1)で表されるジクロロキノン誘導体の製造方法であって、
下記一般式(2)で表される化合物に対し、1.0〜1.2モル当量のN−クロロスクシンイミドを有機酸中で反応させた後、引き続き、1.0〜1.2モル当量のトリクロロイソシアヌル酸を反応させる工程を有するジクロロキノン誘導体の製造方法。
Figure 2019123673
(前記一般式(1)及び(2)中、R1及びR2は、それぞれ独立にアルキル基を示す)
A method for producing a dichloroquinone derivative represented by the following general formula (1), wherein
After reacting 1.0 to 1.2 molar equivalents of N-chlorosuccinimide in the organic acid with respect to the compound represented by the following general formula (2), subsequently, 1.0 to 1.2 molar equivalents of A process for producing a dichloroquinone derivative, comprising the step of reacting trichloroisocyanuric acid.
Figure 2019123673
(In the general formulas (1) and (2), R 1 and R 2 each independently represent an alkyl group)
前記有機酸が酢酸である請求項1に記載のジクロロキノン誘導体の製造方法。   The method for producing a dichloroquinone derivative according to claim 1, wherein the organic acid is acetic acid.
JP2018003423A 2018-01-12 2018-01-12 Method for producing dichloroquinone derivative Active JP6802815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003423A JP6802815B2 (en) 2018-01-12 2018-01-12 Method for producing dichloroquinone derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003423A JP6802815B2 (en) 2018-01-12 2018-01-12 Method for producing dichloroquinone derivative

Publications (2)

Publication Number Publication Date
JP2019123673A true JP2019123673A (en) 2019-07-25
JP6802815B2 JP6802815B2 (en) 2020-12-23

Family

ID=67397923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003423A Active JP6802815B2 (en) 2018-01-12 2018-01-12 Method for producing dichloroquinone derivative

Country Status (1)

Country Link
JP (1) JP6802815B2 (en)

Also Published As

Publication number Publication date
JP6802815B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP2020097607A (en) Novel manufacturing method of chromanone derivative
WO2019083001A1 (en) Method for producing benzoyl formic acid compound and pyridazine compound
CN106632014B (en) Preparation method of 2-amino-5-chloropyridine
JP2018203639A (en) Manufacturing method of n-carbamate protected carboxy anhydride
JP6802815B2 (en) Method for producing dichloroquinone derivative
JPS6351133B2 (en)
JP5140776B1 (en) Process for producing 1-substituted-3-fluoroalkylpyrazole-4-carboxylic acid ester
JP2015537051A (en) Process for the preparation of 4-haloalkyl-3-mercapto-substituted 2-hydroxybenzoic acid derivatives
JP2018076289A (en) Method for producing halogenated benzene derivative
TW201326116A (en) Method for producing 2,6-diethyl-4-methylphenylacetic acid
JP6477187B2 (en) Process for producing 2-amino-6-methylnicotinic acid ester
JP5232335B1 (en) Process for producing 1-substituted-3-fluoroalkylpyrazole-4-carboxylic acid ester
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP6166996B2 (en) Method for producing hydrazinoarylcarboxylic acids
JPH0258253B2 (en)
JP6349329B2 (en) Process for preparing 5-fluoro-1-methyl-3-difluoromethyl-1H-pyrazole-4-carbaldehyde
WO2015151190A1 (en) Method for producing irsogladine maleate
JP2016169165A (en) Method for producing 2,6-difluorobenzoylformate compound
JP5067780B2 (en) Process for producing quinolines having a perfluoroalkyl group
JP6809485B2 (en) Method for producing acid halide solution and method for producing monoester compound
JP2016094366A (en) Method for producing unsaturated group-containing halide
JP4587139B2 (en) A method for producing an aminoalkoxycarbostyril derivative.
JP6435207B2 (en) Process for producing (2,2,2-trifluoroethyl) ketone
JP2015231961A (en) Method for manufacturing dichloromethyl alkyl ether compound
JP2013129616A (en) Brominating agent and application of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201127

R150 Certificate of patent or registration of utility model

Ref document number: 6802815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250