JP2019123631A - Silicic acid fertilizer and manufacturing method therefor - Google Patents

Silicic acid fertilizer and manufacturing method therefor Download PDF

Info

Publication number
JP2019123631A
JP2019123631A JP2018004182A JP2018004182A JP2019123631A JP 2019123631 A JP2019123631 A JP 2019123631A JP 2018004182 A JP2018004182 A JP 2018004182A JP 2018004182 A JP2018004182 A JP 2018004182A JP 2019123631 A JP2019123631 A JP 2019123631A
Authority
JP
Japan
Prior art keywords
silicic acid
fertilizer
mass
mgo
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018004182A
Other languages
Japanese (ja)
Other versions
JP7079100B2 (en
Inventor
今井 敏夫
Toshio Imai
敏夫 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018004182A priority Critical patent/JP7079100B2/en
Publication of JP2019123631A publication Critical patent/JP2019123631A/en
Application granted granted Critical
Publication of JP7079100B2 publication Critical patent/JP7079100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fertilizers (AREA)

Abstract

To provide a silicic acid fertilizer or the like, manufactured by using a blast furnace water granulated slag as a part of a raw material and high in solubility of silicic acid and solubilization ratio of magnesia.SOLUTION: The silicic acid fertilizer has percentage content of merwinite (3CaO MgO 2SiO) of 10 mass% or more and percentage content of MgO of 5 to 25 mass%, water solubility by a water-weak acidic cation-exchange resin method of 20% or more and solubilization ratio of magnesia of 70% or more. The manufacturing method of the silicic acid fertilizer by burning a mixed raw material by mixing at least a blast furnace water granulated slag, a magnesium source and a calcium source so that percentage of MgO is 5 to 25 mass% at 1250 to 1400°C, and then cooling at a rate of 30°C or less per min. and forming the merwinite.SELECTED DRAWING: None

Description

本発明は、けい酸の水溶性および苦土のく溶性が高い、特にけい酸の水溶性が高い、けい酸質肥料とその製造方法に関する。   The present invention relates to a silicic acid fertilizer having high water solubility and silica solubility of silicic acid, particularly, high water solubility of silicic acid, and a method of producing the same.

けい酸質肥料は、ケイカル(ケイ酸カルシウム)とケイ酸カリ(ケイ酸カリウム)肥料があり、従来、稲作等に用いられてきた。これらの肥料のうち、ケイカルは製鋼過程で副生する、いわゆる鉄鋼スラグである。この鉄鋼スラグは、おもにSiO、CaO、およびAlを含み、土壌へのけい酸の補給、アルカリ性化合物による酸性土壌の矯正等の効果がある。
しかし、ケイカルからのけい酸の溶出量(可溶性けい酸)は、0.5モルの塩酸水溶液中では30質量%を越えるが、土壌のpHである5〜7程度では5質量%程度と少ない。そのため、水田1000m当たり約200kgものケイカルを施肥する場合があり、手間やコストの点から農家にとって負担が大きい。また、ケイカルは肥料の三要素である窒素、燐、および加里のいずれも含まないため、通常、肥料の三要素を含む他の肥料と多量のケイカルを混合する必要がある。例えば、中性域でも比較的けい酸の溶出量が多い熔成りん肥と混合する場合でも、ケイカルの混合量は、熔成りん肥40kgに対し200kgと多量になる。
As the siliceous fertilizer, there are cai-cal (calcium silicate) and potassium silicate (potassium silicate) fertilizers, and it has been conventionally used for rice cultivation and the like. Among these fertilizers, Kikaru is a so-called steel slag which is by-produced in the steel making process. This iron and steel slag mainly contains SiO 2 , CaO and Al 2 O 3 and has effects such as replenishment of silicic acid to the soil and correction of acidic soil with an alkaline compound.
However, although the amount of elution of silicic acid from silica gel (soluble silicic acid) exceeds 30% by mass in a 0.5 molar aqueous hydrochloric acid solution, it is as small as about 5% by mass at about 5 to 7 which is the pH of soil. Therefore, about 200 kg of caiscal may be fertilized per 1000 m 2 of paddy field, and the burden on farmers is large in terms of labor and cost. In addition, it is usually necessary to mix a large amount of caica with other fertilizers containing the three elements of fertilizer, since the latter does not contain nitrogen, phosphorus and potassium which are the three elements of fertilizer. For example, even when mixed with manure which has a relatively large amount of elution of silicic acid even in the neutral region, the amount of mixed keikaru is as large as 200 kg with respect to 40 kg of manure.

そこで、ケイカルの欠点であるけい酸の低い水溶性を改善したけい酸質肥料が、いくつか提案されている。
例えば、特許文献1に記載のけい酸質肥料は、特定の粒度を有するけい酸質組成物の粉末に、特定の水への溶解速度を有する有機質結合材(蔗糖や廃糖蜜)を添加し、造粒してなるけい酸質肥料である。そして、水−弱酸性陽イオン交換樹脂法を用いて測定した1ヶ月以内の、該肥料のけい酸分の溶出量は16質量%以上である。
また、特許文献2に記載のけい酸質肥料は、前記有機質結合材が、糊化処理されたデンプンからなる肥料である。
そして、前記いずれのけい酸質肥料も、MgOを1〜20質量%、SiO2を30〜50質量%含有するほか、CaOおよびP25等を含有する非晶質物質である。
さらに、特許文献3に記載のけい酸質肥料は、主成分がSiO2、MgO、CaO、およびP25からなり、SiO2を12質量%以上30質量%未満含有し、水−弱酸性陽イオン交換樹脂法で測定した10日以内のけい酸分の溶出量が10質量%以上である。しかし、該けい酸質肥料の製造では、マグネシウム源として天然の蛇紋岩を使わなければならず、またバッチ方式による熔融スラグ化であるためエネルギー消費が多く、また生産効率が低いため経済的ではない。
Therefore, some silicic acid fertilizers have been proposed, which improve the low water solubility of silicic acid, which is a drawback of caiscal.
For example, in the siliceous fertilizer described in Patent Document 1, an organic binder (sucrose or waste molasses) having a specific dissolution rate in water is added to a powder of a siliceous composition having a specific particle size, It is a siliceous fertilizer produced by granulation. And the elution amount of the silicic acid component of this fertilizer within 1 month measured using a water-weak acid cation exchange resin method is 16 mass% or more.
Moreover, the siliceous acid fertilizer described in Patent Document 2 is a fertilizer in which the organic binder is gelatinized starch.
And, in addition to 1 to 20 mass% of MgO and 30 to 50 mass% of SiO 2 , each of the siliceous fertilizers is an amorphous material containing CaO, P 2 O 5 and the like.
Furthermore, the siliceous fertilizer described in Patent Document 3 is composed mainly of SiO 2 , MgO, CaO, and P 2 O 5 , contains 12% by mass or more and less than 30% by mass of SiO 2 , and is water-weakly acidic The elution amount of the silica within 10 days as measured by the cation exchange resin method is 10% by mass or more. However, in the production of the siliceous fertilizer, natural serpentine must be used as a magnesium source, and it is not economical because it consumes a large amount of energy because it is batchwise melt slagging, and its production efficiency is low. .

ところで、前記ケイカルの原料である鉄鋼スラグは、製鋼スラグと高炉スラグに分類される。さらに製鋼スラグは、電気炉スラグと転炉系スラグに分類され、高炉スラグは高炉徐冷スラグと高炉水砕スラグに分類される。こられのスラグのうち、高炉水砕スラグの発生量が最も多く年間2000万トンにのぼり、鉄鋼スラグの全発生量の約半分を占める。そして、現在、その9割以上がセメント原料として有効利用されているが、将来、セメント需要の低下が予想されるため、有効利用できない高炉水砕スラグが余ることが懸念されている。   By the way, iron and steel slag which is a raw material of the above-mentioned caikaru is classified into steelmaking slag and blast furnace slag. Furthermore, steelmaking slag is classified into electric furnace slag and converter-type slag, and blast furnace slag is classified into blast furnace slowly cooled slag and blast furnace granulated slag. Among these slags, the amount of blast furnace granulated slag generated is the largest, reaching 20 million tons per year, accounting for about half of the total amount of steel slag generated. And although 90% or more of them are currently used effectively as cement raw materials, it is feared that in the future the demand for cement is expected to decline, so there is a surplus of ground granulated blast furnace slag which can not be used effectively.

特開2002−068871号公報Japanese Patent Application Laid-Open No. 2002-068871 特開2002−068870号公報JP 2002-068870 A 特開2002−047081号公報Japanese Patent Application Laid-Open No. 2002-047081

そこで、本発明は、高炉水砕スラグを原料の一部に用いて製造したけい酸質肥料であって、けい酸の水溶性および苦土のく溶性が高いけい酸質肥料等を提供することを目的とする。   Therefore, the present invention is a silicic acid fertilizer manufactured using blast furnace granulated slag as a part of the raw material, and providing a silicic acid fertilizer having a high water solubility of silicic acid and a high water content of magnesia. With the goal.

本発明者らは、前記将来の課題を見据えて、前記目的を達成できるけい酸質肥料を検討したところ、Si成分およびMg成分をメルビナイト中に固定したけい酸質肥料は、けい酸の水溶性および苦土のく溶性が向上することを見出し、本発明を完成させた。すなわち、本発明は、下記の構成を有するけい酸質肥料等である。   The present inventors examined silicic acid fertilizers capable of achieving the above purpose with an eye to the future problem, and silicic acid fertilizers in which Si component and Mg component are fixed in mervinite are water solubility of silicic acid The present invention has been completed by finding that the solubility of and is improved. That is, the present invention is a siliceous fertilizer and the like having the following constitution.

[1]メルビナイト(3CaO・MgO・2SiO)の含有率が10質量%以上、およびMgOの含有率が5〜25質量%であるけい酸質肥料であって、水−弱酸性陽イオン交換樹脂法によるけい酸の水溶率が20%以上、および苦土のく溶率が70%以上である、けい酸質肥料。
[2]少なくとも高炉水砕スラグと、マグネシウム源またはカルシウム源を、MgOの含有率が5〜25質量%になるように混合した混合原料を、1250〜1400℃で焼成した後、毎分30℃以下の速度で冷却して、メルビナイトが生成した前記[1]に記載のけい酸質肥料を製造する、けい酸質肥料の製造方法。
[3] 焼成炉としてロータリーキルンを用いる、前記[2]に記載のけい酸質肥料の製造方法。
[1] A siliceous fertilizer having a content of mervinite (3CaO · MgO · 2SiO 2 ) of 10% by mass or more and a content of MgO of 5 to 25% by mass, which is a water-weakly acidic cation exchange resin A siliceous fertilizer having a water solubility of at least 20% and a dissolution rate of at least 70% of clay according to the method.
[2] 30 ° C./minute after firing at 1250 ° C. to 1400 ° C. of a mixed material in which at least blast furnace granulated slag and a magnesium source or calcium source are mixed so that the content of MgO is 5 to 25% by mass The manufacturing method of the siliceous fertilizer which manufactures the siliceous fertilizer as described in said [1] which cooled with the following speed | rate and which the merbinite produced | generated.
[3] The method for producing a siliceous fertilizer according to the above [2], wherein a rotary kiln is used as a firing furnace.

本発明のけい酸質肥料およびその製造方法は、以下の効果がある。
(i) 本発明のけい酸質肥料は、けい酸の水溶性および苦土のく溶性が高く、特にけい酸の水溶性が高い。
(ii) 本発明のけい酸質肥料は、将来、多量に余ると予想される高炉水砕スラグを、原料として有効利用できる。
(iii) 本発明のけい酸質肥料は焼成して製造するため、溶融して製造する溶融肥料に比べ、製造に要するエネルギーの消費が少なく、省エネルギーである。
(vi) 本発明のけい酸質肥料の製造方法において、焼成炉としてロータリーキルンを用いれば、連続生産が可能で生産効率が向上する。
The siliceous fertilizer of the present invention and the method for producing the same have the following effects.
(i) The siliceous fertilizer according to the present invention is highly soluble in water and siliceous in water, and in particular, highly soluble in water.
(ii) The siliceous fertilizer of the present invention can effectively utilize blast furnace granulated slag which is expected to be abundant in the future as a raw material.
(iii) Since the siliceous acid fertilizer of the present invention is produced by firing, it consumes less energy for production than the molten fertilizer produced by melting and is energy saving.
(vi) In the method for producing a siliceous fertilizer according to the present invention, if a rotary kiln is used as a firing furnace, continuous production is possible and production efficiency is improved.

以下、本発明について、けい酸質肥料とその製造方法に分けて詳細に説明する。
1.けい酸質肥料
本発明のけい酸質肥料は、メルビナイトの含有率が10質量%以上、およびMgOの含有率が5〜25質量%であるけい酸質肥料であって、水−弱酸性陽イオン交換樹脂法によるけい酸水溶率は20%以上、および苦土のく溶率は70%以上である。なお、前記MgOの含有率は、メルビナイト中のMgOも含めた全MgOの含有率を意味する。
Hereinafter, the present invention will be described in detail by dividing it into a siliceous fertilizer and its production method.
1. Silicate fertilizer The silicate fertilizer according to the present invention is a silicate fertilizer having a content of mervinite of 10% by mass or more and a content of MgO of 5 to 25% by mass, which is a water-weakly acidic cation. The water solubility of silicon dioxide according to the exchange resin method is 20% or more, and the dissolution rate of clay is 70% or more. In addition, the content rate of the said MgO means the content rate of all the MgO also including MgO in merbinite.

本発明のけい酸質肥料特有の技術的特徴は、Si成分とMg成分をメルビナイトの鉱物中に固定したことにより、けい酸の水溶率と苦土のく溶率が向上した点である。したがって、けい酸質肥料中のメルビナイトの含有率が10質量%以上、およびMgOの含有率が5〜25質量%の範囲であれば、後掲の表2に示すように、水−弱酸性陽イオン交換樹脂法によるけい酸の水溶率は20%以上になる。また、メルビナイトの含有率は、好ましくは50質量%以上、より好ましくは70〜95質量%であり、MgOの含有率は、好ましくは15〜20質量%である。なお、Mg/Caのモル比は、好ましくは0.2〜0.8、より好ましくは0.3〜0.8、さらに好ましくは0.5〜0.8である。
ここで、けい酸の水溶率とは、けい酸質肥料中の全けい酸に対する水−弱酸性陽イオン交換樹脂法による水溶性けい酸の質量比率(%)である。また、水−弱酸性陽イオン交換樹脂法は、中性(pH=7)付近でのけい酸の溶解性を評価する方法であり、水−弱酸性陽イオン交換樹脂法を用いた水溶性けい酸の測定は、以下の文献Aおよび文献Bに記載された方法に準拠して行う。
The technical feature unique to the siliceous fertilizer of the present invention is that the Si content and the Mg content are fixed in the mineral of mervinite, thereby improving the water solubility of silicic acid and the solubility of clay. Therefore, if the content of mervinite in the siliceous fertilizer is 10% by mass or more and the content of MgO is in the range of 5 to 25% by mass, as shown in Table 2 below, water-weakly acidic positive The water solubility of silica by ion exchange resin method is 20% or more. Moreover, the content of mervinite is preferably 50% by mass or more, more preferably 70 to 95% by mass, and the content of MgO is preferably 15 to 20% by mass. The molar ratio of Mg / Ca is preferably 0.2 to 0.8, more preferably 0.3 to 0.8, and still more preferably 0.5 to 0.8.
Here, the water content of silicon dioxide means the mass ratio (%) of water-soluble silicon dioxide obtained by the water-weakly acidic cation exchange resin method to the total silicon dioxide in the silicon dioxide fertilizer. In addition, the water-weakly acidic cation exchange resin method is a method for evaluating the solubility of silicic acid in the vicinity of neutrality (pH = 7), and the water-soluble silicon using the water-weakly acidic cation exchange resin method The measurement of the acid is carried out according to the methods described in the following documents A and B.

文献A:加藤直人著「農林水産省・農業環境技術研究所報告」16巻,9−75頁(1998)
文献B:加藤、尾和共著 Soil Sci.Plant Nutr.,43巻,2号,351−359頁(1997)
Literature A: Report by Naoto Kato, "Ministry of Agriculture, Forestry and Fisheries, Agricultural Environment Technology Research Institute", Vol. 16, pp. 9-75 (1998)
Literature B: Kato, Owa co-authored Soil Sci. Plant Nutr. 43, No. 2, 351-359 (1997).

また、水溶性けい酸の測定においてイオン交換樹脂を用いるのは、けい酸質肥料から溶出するアルカリ土類金属等のアルカリ性物質が溶液中に溶けて生ずるpHの上昇を、イオン交換樹脂のイオン交換能を利用して防止するためである。水田の土壌はほぼ中性でありpH緩衝能が高いため、水−弱酸性陽イオン交換樹脂法を用いると、実際の水田により近い環境下でけい酸の水溶性を評価できる。
なお、原料およびけい酸質肥料中の酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。
In addition, the use of ion exchange resin in the measurement of water-soluble silicic acid is due to the increase in pH caused by dissolution of alkaline substances such as alkaline earth metals eluted from silicic acid fertilizer in the solution, ion exchange of ion exchange resin It is for preventing using a function. Since the soil of the paddy field is almost neutral and has a high pH buffering capacity, the water-weakly acidic cation exchange resin method can be used to evaluate the water solubility of silicon acid in an environment closer to that of the actual paddy field.
In addition, the quantification of the oxides in the raw material and the siliceous fertilizer can be performed by the fundamental parameter method using a fluorescent X-ray apparatus.

2.けい酸質肥料の製造方法
本発明のけい酸質肥料の製造方法は、少なくとも高炉水砕スラグと、マグネシウム源またはカルシウム源を、MgOの含有率が5〜25質量%になるように混合した混合原料を、1250〜1400℃で焼成した後、毎分30℃以下の速度で冷却して、メルビナイトが生成したけい酸質肥料を製造する方法である。
なお、高炉スラグには、前述のとおり、高炉徐冷スラグと高炉水砕スラグがあるが、非晶質である高炉水砕スラグは、徐冷して結晶化した高炉徐冷スラグに比べ、粉砕が容易であるとともに、反応性に優れているので、本発明で用いる原料として好適である。
以下、本発明のけい酸質肥料の製造方法について、必須の工程である、高炉水砕スラグと、マグネシウム源またはカルシウム源等の原料の混合工程、混合原料の焼成工程、および、焼成物の冷却工程に分けて詳細に説明する。
2. Method for producing siliceous fertilizer The method for producing siliceous fertilizer according to the present invention is a method comprising mixing at least blast furnace granulated slag and a magnesium source or a calcium source such that the content of MgO is 5 to 25% by mass. The raw material is calcined at 1250 to 1400 ° C. and then cooled at a rate of 30 ° C. or less per minute to produce a silicic acid fertilizer in which melvinite is produced.
In addition, although blast furnace slag includes blast furnace slowly cooled slag and blast furnace granulated slag as described above, amorphous blast furnace granulated slag is crushed compared to blast furnace slowly cooled slag which is gradually cooled and crystallized. It is suitable as a raw material to be used in the present invention because it is easy to use and is excellent in reactivity.
Hereinafter, the process of mixing the ground granulated blast furnace slag and the material such as the magnesium source or the calcium source, the process of firing the mixed material, and the process of cooling the fired product, which are essential processes for the method of producing the siliceous fertilizer of the present invention It divides into a process and demonstrates in detail.

(1)原料の混合工程
該工程は、けい酸質肥料(焼成物)中のメルビナイトの含有率が10質量%以上、およびMgOの含有率が5〜25質量%になるように、高炉水砕スラグ、マグネシウム源またはカルシウム源を混合して混合原料(焼成用原料)を得る工程である。混合し易い粒度にするために、前記原料は、必要に応じて、ボールミル、ローラーミル、またはロッドミル等で粉砕する。
(1) Mixing step of raw materials In this step, the blast furnace water is crushed so that the content of mervinite in the siliceous fertilizer (calcined product) is 10% by mass or more and the content of MgO is 5 to 25% by mass. In this step, a slag, a magnesium source or a calcium source is mixed to obtain a mixed material (raw material for firing). In order to make the particle size easy to mix, the raw material is crushed by a ball mill, a roller mill, a rod mill or the like as required.

前記原料のうち、高炉水砕スラグは、表1にその化学組成の1例を示すように、Alを十数パーセント、MgOを数パーセント含有する、非晶質のケイ酸カルシウムの1種である。
高炉水砕スラグ中には、もともとマグネシウムが含まれているため、焼成して冷却するだけでもメルビナイトが生成するが、けい酸質肥料中のメルビナイトの含有率を高めるためには、好ましくは、メルビナイトの化学式(3CaO・MgO・2SiO)に合わせて、前記原料を混合するとよい。メルビナイト中のマグネシウムの固溶範囲は広いため、マグネシウムの固容量が多いほど、けい酸質肥料中のけい酸の水溶性は高くなる。すなわち、マグネシウムが多く固溶したメルビナイトを多く含む程、けい酸苦土肥料中のけい酸の水溶性は高くなる。
Among the raw materials, ground granulated blast furnace slag, as shown in Table 1 as an example of its chemical composition, is one of amorphous calcium silicate containing several tens of Al 2 O 3 and several percent of MgO. It is a species.
Granulated blast furnace slag originally contains magnesium, so calcining and cooling alone produces mervinite, but in order to increase the content of mervinite in the siliceous fertilizer, mervinite is preferably used. The raw materials may be mixed according to the chemical formula (3CaO · MgO · 2SiO 2 ) of Since the solid solution range of magnesium in merbinite is wide, the water solubility of silicic acid in silicic acid fertilizer is higher as the solid content of magnesium is larger. That is, the higher the content of mervinite in which a large amount of magnesium is solid-solved, the higher the water solubility of the silicic acid in the silicic acid magnesia fertilizer becomes.

また、原料の混合方法として、例えば、各原料の一部を電気炉等で焼成した後、該焼成灰中の酸化物を定量し、該定量値と所定の配合に基づき、各原料を混合する方法が挙げられる。該酸化物の定量は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により行うことができる。焼成前の原料の化学組成は、焼成物の化学組成と、焼成による揮発成分を除きほぼ同一であるから、例えば、MgOの含有率が5〜25質量%の焼成物を得るためには、通常、MgOの含有率が該範囲を満たす混合原料を用いれば十分である。ただし、正確を期すためには、該原料の一部を電気炉等で焼成して、該原料中のMgOの含有率と、該焼成物中のMgOの含有率との相関を事前に把握しておき、該相関に基づき、原料の混合割合を、目的とする焼成物中のMgOの含有率になるように修正することが好ましい。   In addition, as a method of mixing the raw materials, for example, after firing a part of each raw material in an electric furnace or the like, the oxide in the calcined ash is quantified, and each raw material is mixed based on the quantitative value and a predetermined composition. The method is mentioned. The determination of the oxide can be performed by a fundamental parameter method using a fluorescent X-ray apparatus. The chemical composition of the raw material before firing is almost the same as the chemical composition of the fired product, except for the volatile component resulting from the firing, so, for example, in order to obtain a fired product having a content of MgO of 5 to 25% by mass, It is sufficient to use a mixed material in which the content of MgO satisfies the above range. However, to ensure accuracy, a part of the raw material is fired in an electric furnace or the like, and the correlation between the content of MgO in the raw material and the content of MgO in the fired product is grasped in advance. Incidentally, based on the correlation, it is preferable to correct the mixing ratio of the raw materials to be the content of MgO in the intended fired product.

前記混合工程において混合する原料のうち、前記高炉水砕スラグは、製鉄所の製鋼過程において副生する高炉スラグを水中で急冷して得られる水砕スラグである。   Among the raw materials to be mixed in the mixing step, the blast furnace granulated slag is a granulated slag obtained by quenching in water the blast furnace slag which is by-produced in the steel making process of a steelmaking plant.

また、前記マグネシウム源は、けい酸質肥料中のMgOの含有率が5〜25質量%の範囲内になるように調製するために用いる原料である。該マグネシウム源は、炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、およびドロマイト等から選ばれる1種以上が挙げられる。また、カルシウム源は、けい酸質酸肥料中のCaOの含有率が、好ましくは38〜55質量%の範囲内になるように調製するために用いる原料であるが、CaOを添加する場合であっても、MgOが5質量%を下回らないように添加する必要がある。該カルシウム源は、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、リン酸カルシウム、石灰石、生石灰、消石灰、セメント、廃コンクリート、および生コンスラッジ等から選ばれる1種以上が挙げられる。   Moreover, the said magnesium source is a raw material used in order to prepare so that the content rate of MgO in a siliceous fertilizer will be in the range of 5-25 mass%. The magnesium source includes one or more selected from magnesium carbonate, magnesium oxide, magnesium hydroxide, and dolomite. In addition, the calcium source is a raw material used to prepare the content of CaO in the silicic acid fertilizer to be preferably in the range of 38 to 55% by mass, but when CaO is added However, it is necessary to add MgO so as not to fall below 5% by mass. The calcium source includes one or more selected from calcium carbonate, calcium oxide, calcium hydroxide, calcium phosphate, limestone, quick lime, slaked lime, cement, waste concrete, fresh concrete sludge and the like.

さらに、化学組成比を調整するための原料として、ケイ酸源を用いることができる。該ケイ酸源は、石炭灰、珪石、珪砂、鋳物砂、白土、ゼオライト、珪藻土、火山灰、廃コンクリート、および生コンスラッジ等から選ばれる1種以上が挙げられる。また、化学組成比の調整の容易さの観点から、SiOの含有率が50質量%以上のケイ酸源が好ましい。なお、前記ケイ酸源のうち、廃コンクリート、および生コンスラッジ等は、カルシウム源としても機能する。 Furthermore, a silicic acid source can be used as a raw material for adjusting the chemical composition ratio. Examples of the silicic acid source include one or more selected from coal ash, silica stone, silica sand, foundry sand, clay, zeolite, diatomaceous earth, volcanic ash, waste concrete, fresh concrete sludge and the like. In addition, from the viewpoint of the easiness of adjustment of the chemical composition ratio, a silica source having a content of SiO 2 of 50% by mass or more is preferable. Among the above-mentioned silicic acid sources, waste concrete, fresh concrete sludge and the like also function as calcium sources.

(2)混合原料の焼成工程
該工程は、前記混合原料を、焼成炉を用いて焼成する工程である。前記混合原料は、粉末の状態で、該粉末に水を添加してスラリーにした状態で、または脱水ケーキの状態で焼成するか、若しくは、より焼成効率を上げるために、該粉末を、パンペレタイザー等の造粒機や、ブリケットマシン、およびロールプレス等の成形機で、それぞれ造粒や成形してから焼成する。
前記焼成工程において、焼成温度は、好ましくは1250〜1400℃である。該温度が1250未満では焼成が不十分でけい酸の水溶性が低くなるおそれがあり、1400℃を超えると焼成物が溶融して溶融物になるおそれがある。また、前記焼成炉は、連続生産ができるためロータリーキルンが好ましい。また、焼成時間は10〜60分が好ましく、20〜40分がより好ましい。該時間が10分未満では焼成が不十分であり、60分を超えると生産効率が低下する。
(2) Firing step of mixed raw material This step is a step of firing the mixed raw material using a firing furnace. The mixed raw material may be fired in the form of a powder, in the form of a slurry by adding water to the powder, or in the form of a dewatered cake, or in order to further increase the firing efficiency, the powder may be a pan pelletizer And the like, and then fired after being granulated and molded, respectively, with a granulator of the like, a briquette machine, and a molding machine such as a roll press.
In the firing step, the firing temperature is preferably 1250 to 1400 ° C. If the temperature is less than 1250, the calcination may be insufficient and the water solubility of the silicic acid may be lowered. If the temperature exceeds 1400 ° C., the calcined product may be melted to become a molten material. Moreover, since the said baking furnace can carry out continuous production, a rotary kiln is preferable. Moreover, 10 to 60 minutes are preferable and 20 to 40 minutes of a baking time are more preferable. If the time is less than 10 minutes, firing is insufficient, and if it exceeds 60 minutes, the production efficiency is reduced.

(3)焼成物の冷却工程
該工程は、けい酸質肥料中にメルビナイトを生成するための必須の工程であり、冷却速度は毎分30℃以下である。冷却速度が毎分30℃を超えると、メルビナイトの生成量が減少する傾向にある。
(3) Step of Cooling the Calcined Product The step is an essential step for producing mervinite in the siliceous fertilizer, and the cooling rate is 30 ° C. or less per minute. When the cooling rate exceeds 30 ° C./min, the amount of melvinite formed tends to decrease.

(4)粉砕および造粒工程
該工程は、前記焼成物の粒度を調整するための工程であり、粉塵の発生を抑制して、肥料の取り扱いを容易にするためや、肥料の効果を十分に発揮するため、肥料の粒度を調整する必要がある場合に選択する任意の工程である。該粒度は0.1〜10mmが好ましく、0.5〜5mmがより好ましい。
粉砕手段として、例えば、ジョークラッシャー、ローラーミル、ボールミル、またはロッドミル等を用いることができる。また、造粒手段として、例えば、パン型ミキサー、パンペレタイザー、ブリケットマシン、ロールプレス、または押出成型機等を用いることができる。
また、該工程において、肥料の用途に応じて、適宜、りん酸、窒素、および加里等のその他の肥料成分を、新たに添加することができる。
(4) Pulverization and granulation step This step is a step for adjusting the particle size of the fired product, and the generation of dust is suppressed to facilitate the handling of the fertilizer, or the effect of the fertilizer is sufficient. This is an optional step that is selected when it is necessary to adjust the particle size of the fertilizer in order to exert it. The particle size is preferably 0.1 to 10 mm, and more preferably 0.5 to 5 mm.
As a grinding means, for example, a jaw crusher, a roller mill, a ball mill, or a rod mill can be used. In addition, as a granulating means, for example, a pan-type mixer, a pan pelletizer, a briquette machine, a roll press, or an extrusion molding machine can be used.
In the step, other fertilizer components such as phosphoric acid, nitrogen and potassium may be added as appropriate depending on the use of the fertilizer.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.けい酸質肥料の製造
表1に示す化学組成を有する高炉水砕スラグ(新日鐵住金社製)、試薬の酸化マグネシウム、および二酸化ケイ素を用い、表2に示す実施例1〜5、および比較例の配合に従い混合して混合原料を調製した。次に、該混合原料を用いて、一軸加圧成形機により成形し、直径40mm、高さ10mmの円柱状のペレットを作製した。さらに、該ペレットを、電気炉内に載置した後、昇温速度20℃/分で、表2に示す温度まで昇温し、該温度の下で10分間焼成して焼成物を得た。さらに、該焼成物を、鉄製乳鉢を用いて目開き600μmのふるいを全通するまで粉砕して、粉末状のけい酸質肥料(実施例1〜5、比較例)を製造した。なお、焼成後のけい酸質肥料の化学組成は、焼成前の混合原料の化学組成と、焼成による揮発成分を除きほぼ同一であった。
Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
1. Production of siliceous fertilizer Using ground granulated blast furnace slag (made by Nippon Steel & Sumikin Co., Ltd.) having the chemical composition shown in Table 1, magnesium oxide as a reagent, and silicon dioxide, Examples 1 to 5 shown in Table 2 and comparison Mixed raw materials were prepared by mixing according to the formulation of the example. Next, using the mixed raw material, it was molded by a uniaxial pressure molding machine to produce cylindrical pellets having a diameter of 40 mm and a height of 10 mm. Furthermore, after the pellets were placed in an electric furnace, the temperature was raised to the temperature shown in Table 2 at a heating rate of 20 ° C./min, and firing was performed for 10 minutes under the temperature to obtain a fired product. Furthermore, the calcined product was pulverized using an iron mortar until it passed through a sieve with a mesh size of 600 μm to produce powdered silicic acid fertilizer (Examples 1 to 5; Comparative Example). The chemical composition of the siliceous fertilizer after firing was almost the same as the chemical composition of the mixed raw material before firing, except for the volatile component by firing.

Figure 2019123631
Figure 2019123631

Figure 2019123631
Figure 2019123631

2.けい酸の水溶率と苦土のく溶率の算出
(1)全けい酸と全苦土の測定
けい酸質肥料中の全けい酸と全苦土は、蛍光エックス線装置を用いてファンダメンタルパラメーター法により測定した。
(2)水溶性けい酸の測定とけい酸の水溶率の算出
水溶性けい酸の測定とけい酸の水溶率の算出は、水−弱酸性陽イオン交換樹脂法を用いて以下の手順で行った。
すなわち、あらかじめ水酸化ナトリウム水溶液と希塩酸を用いて逆再生処理したイオン交換樹脂(アンバーライトIRC−50、オルガノ社製)2gと純水1リットルを入れた樹脂製のビーカー内に、前記実施例1〜5、および比較例のけい酸質肥料のそれぞれ0.2gを加え、マグネチックスターラーで静かに10分間撹拌した後、10日間静置した。この10日間が経過した後、再度マグネチックスターラーで静かに10分間撹拌した後、30分間静置し、上澄み液2mlをメスフラスコに分取し、塩酸(1+1)1mlを添加した後、20mlに希釈した。これをICP発光分析法により溶液中のSiの濃度を定量してSiOの濃度に換算して水溶性けい酸を測定し、全けい酸に対する水溶性けい酸の質量比率であるけい酸の水溶率を算出した。
(3)く溶性苦土の測定と苦土のく溶率の算出
く溶性苦土の測定および苦土のく溶率の算出は、肥料分析法(農林水産省農業環境技術研究所法)に規定されている、2質量%のクエン酸水溶液を用いた方法にしたがい、く溶性苦土を測定して、全苦土に対するく溶性苦土の比率である苦土のく溶率を算出した。
これらの結果を表2に示す。
2. Calculation of water solubility of silicic acid and dissolution rate of magnesia (1) Measurement of total silicic acid and total magnesia Total silicic acid and all magnesia in siliceous fertilizer are fundamental parameter method using fluorescent X-ray apparatus It measured by.
(2) Measurement of Water-Soluble Silica and Calculation of Water Solubility of Silica The measurement of water-soluble silicon and calculation of the water solubility of silicon were carried out according to the following procedure using a water-weak acid cation exchange resin method.
That is, Example 1 was placed in a beaker made of resin in which 2 g of ion exchange resin (Amberlite IRC-50, manufactured by Organo Corporation) and 1 liter of pure water, which had been reversely regenerated using an aqueous sodium hydroxide solution and dilute hydrochloric acid in advance. Each of 0.2 g of each of the silicic acid fertilizers of Comparative Examples 5 and 5 and Comparative Example was added thereto, and the mixture was gently stirred with a magnetic stirrer for 10 minutes and then allowed to stand for 10 days. After 10 days have passed, the solution is gently stirred again for 10 minutes with a magnetic stirrer, and left for 30 minutes, 2 ml of the supernatant liquid is separated into a measuring flask, 1 ml of hydrochloric acid (1 + 1) is added, and then 20 ml is added. Diluted. The concentration of Si in the solution is quantified by ICP emission analysis to convert it to the concentration of SiO 2 to measure the water-soluble silica, and the mass ratio of the water-soluble silica to the total silicon is the water solubility of the silica The rate was calculated.
(3) Measurement of the soluble magnesia and calculation of the dissolution rate of the bitter soil Measurement of the soluble magnesia and calculation of the dissolution rate of the bitter clay are based on the method of fertilizer analysis (Agriculture Environmental Technology Research Institute of the Ministry of Agriculture, Forestry and Fisheries) According to the method using a 2% by mass aqueous solution of citric acid as specified, the dissolution of the clay was measured to calculate the dissolution rate of the clay, which is the ratio of the clay complex to the total mass.
The results are shown in Table 2.

表2に示すように、本発明のけい酸質肥料(実施例1〜5)の水溶性けい酸は、10.1%以上、およびけい酸の水溶率は29%以上と高かった。これに対し、比較例のけい酸質肥料の水溶性けい酸は3.6%、けい酸の水溶率は10%と低かった。なお、苦土のく溶率では、比較例と同じか(実施例1)、比較例より低いが(実施例1以外の実施例)、苦土のく溶率は70%以上であれば、苦土の肥料効果は充分発揮されるから、肥料効果はなんら損なわれない。   As shown in Table 2, the water-soluble silicic acid of the siliceous fertilizer according to the present invention (Examples 1 to 5) had a high water content of 10.1% or more and the water content of the silicon acid was 29% or more. On the other hand, the water-soluble silicic acid of the silicic acid fertilizer of the comparative example was as low as 3.6% and the water solubility of the silicic acid was as low as 10%. In addition, the dissolution rate of magnesia is the same as that of the comparative example (Example 1), but is lower than that of the comparative example (Examples other than Example 1), but the dissolution rate of magnesia is 70% or more, The fertilizer effect of the bitter soil is sufficiently exhibited, so the fertilizer effect is not lost at all.

以上の結果から、本発明のけい酸質肥料はけい酸の水溶性および苦土のく溶性が高く、また、高炉水砕スラグの新たな用途を提供できる。また、本発明のけい酸質肥料の製造方法は、溶融による溶融肥料の製造に比べ、焼成におけるエネルギー消費が少ないため、省エネルギーに寄与できるとともに、ロータリーキルンを用いた場合、連続生産ができ生産効率が向上する。   From the above results, the siliceous fertilizer of the present invention is high in the water solubility of silica and the water solubility of magnesia, and can provide a new use of ground granulated blast furnace slag. In addition, since the method of producing silicic acid fertilizer according to the present invention consumes less energy in firing than the production of molten fertilizer by melting, it can contribute to energy saving, and when a rotary kiln is used, continuous production can be performed and production efficiency is improves.

Claims (3)

メルビナイト(3CaO・MgO・2SiO)の含有率が10質量%以上、およびMgOの含有率が5〜25質量%であるけい酸質肥料であって、水−弱酸性陽イオン交換樹脂法によるけい酸の水溶率が20%以上、および苦土のく溶率が70%以上である、けい酸質肥料。 A siliceous fertilizer having a content of mervinite (3CaO · MgO · 2SiO 2 ) of 10% by mass or more and a content of MgO of 5 to 25% by mass, which is a silicon-based fertilizer by the water-weakly acidic cation exchange resin method A siliceous fertilizer having a water solubility of acid of 20% or more and a dissolution rate of clay of 70% or more. 少なくとも高炉水砕スラグと、マグネシウム源またはカルシウム源を、MgOの含有率が5〜25質量%になるように混合した混合原料を、1250〜1400℃で焼成した後、毎分30℃以下の速度で冷却して、メルビナイトが生成した請求項1に記載のけい酸質肥料を製造する、けい酸質肥料の製造方法。   After firing at 1250 ° C to 1400 ° C, the mixed raw material obtained by mixing at least the blast furnace granulated slag and the magnesium source or the calcium source so that the content of MgO is 5 to 25% by mass, the velocity of 30 ° C or less per minute The method for producing a siliceous fertilizer according to claim 1, wherein the silicic acid fertilizer according to claim 1, wherein the melvinite is produced by cooling in 焼成炉としてロータリーキルンを用いる、請求項2に記載のけい酸質肥料の製造方法。   The method for producing a siliceous fertilizer according to claim 2, wherein a rotary kiln is used as a calciner.
JP2018004182A 2018-01-15 2018-01-15 Silicic acid fertilizer and its manufacturing method Active JP7079100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018004182A JP7079100B2 (en) 2018-01-15 2018-01-15 Silicic acid fertilizer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018004182A JP7079100B2 (en) 2018-01-15 2018-01-15 Silicic acid fertilizer and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019123631A true JP2019123631A (en) 2019-07-25
JP7079100B2 JP7079100B2 (en) 2022-06-01

Family

ID=67397966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018004182A Active JP7079100B2 (en) 2018-01-15 2018-01-15 Silicic acid fertilizer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7079100B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141479A (en) * 1982-12-29 1984-08-14 藤後 幸功 Granular acidic slag fertilizer and manufacture
JPS63230587A (en) * 1987-03-18 1988-09-27 村樫石灰工業株式会社 Readily disintegrable granular composition
JP2006306696A (en) * 2005-03-31 2006-11-09 Jfe Steel Kk Raw material for siliceous fertilizer and method of manufacturing the same
JP2007284289A (en) * 2006-04-17 2007-11-01 Nippon Yakin Kogyo Co Ltd Slag for fertilizer, method for manufacturing the same, and silicic acid fertilizer
CN102391021A (en) * 2011-08-15 2012-03-28 广州钢铁企业集团有限公司 Method for producing silicon-calcium-magnesium fertilizer by using ironmaking blast furnace water-quenching slag as raw materials
JP2013014492A (en) * 2011-07-06 2013-01-24 Taiheiyo Cement Corp Silicic acid phosphate fertilizer, and method for producing the same
JP2014152047A (en) * 2013-02-05 2014-08-25 Sangyo Shinko Kk Method for manufacturing silicate fertilizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141479A (en) * 1982-12-29 1984-08-14 藤後 幸功 Granular acidic slag fertilizer and manufacture
JPS63230587A (en) * 1987-03-18 1988-09-27 村樫石灰工業株式会社 Readily disintegrable granular composition
JP2006306696A (en) * 2005-03-31 2006-11-09 Jfe Steel Kk Raw material for siliceous fertilizer and method of manufacturing the same
JP2007284289A (en) * 2006-04-17 2007-11-01 Nippon Yakin Kogyo Co Ltd Slag for fertilizer, method for manufacturing the same, and silicic acid fertilizer
JP2013014492A (en) * 2011-07-06 2013-01-24 Taiheiyo Cement Corp Silicic acid phosphate fertilizer, and method for producing the same
CN102391021A (en) * 2011-08-15 2012-03-28 广州钢铁企业集团有限公司 Method for producing silicon-calcium-magnesium fertilizer by using ironmaking blast furnace water-quenching slag as raw materials
JP2014152047A (en) * 2013-02-05 2014-08-25 Sangyo Shinko Kk Method for manufacturing silicate fertilizer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
永井 彰一郎ら著: "CaO−SiO2系、MgO−SiO2系、CaO−MgO−SiO2系合成鉱物の肥効性について", 石膏と石灰, vol. 第1958巻、第34号, JPN6021042294, 1 May 1958 (1958-05-01), pages 7 - 15, ISSN: 0004624072 *
永井 彰一郎ら著: "メルウィナイトの合成および合成物の酸溶解性", 工業化学雑誌, vol. 第62巻、第9号, JPN6021042295, 5 September 1959 (1959-09-05), pages 1348 - 1352, ISSN: 0004624071 *
永井 彰一郎ら著: "焼成珪酸苦土石灰肥料の鉱物組成と酸溶解性との関係および焼成条件の検討", 石膏と石灰, vol. 第1959号、第38巻, JPN6021042293, 1 January 1959 (1959-01-01), pages 239 - 246, ISSN: 0004624073 *

Also Published As

Publication number Publication date
JP7079100B2 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
TWI567048B (en) A method for producing a cement composition
JP2006298706A (en) New potassium phosphate compound fertilizer
CN107056115A (en) A kind of rush for ardealite based cementitious material coagulates type early strength agent and preparation method thereof
JP2007308322A (en) Method of manufacturing fertilizer using waste, and fertilizer
CN107848816A (en) The manufacture method of calcium silicate hydrate as the accelerator for hardening in concrete or cement class material and the calcium silicate hydrate manufactured with this method
JP6804132B2 (en) Silicic acid fertilizer and its manufacturing method
JP6722969B2 (en) Silicate fertilizer and method for producing the same
WO2019004357A1 (en) Steelmaking slag for use as fertilizer starting material, method for producing steelmaking slag for use as fertilizer starting material, method for producing fertilizer, and fertilization method
JPH04243992A (en) Fused compound fertilizer
JP2013014492A (en) Silicic acid phosphate fertilizer, and method for producing the same
JP7079101B2 (en) How to make silicic acid fertilizer
JP7079100B2 (en) Silicic acid fertilizer and its manufacturing method
JP2019123657A (en) Method of producing magnesia silicate fertilizer
JP7085351B2 (en) Silicic acid magnesium fertilizer calcined product and its manufacturing method
JP6804131B2 (en) Silicic acid fertilizer and its manufacturing method
JP7386600B2 (en) Method for producing silicic acid fertilizer
JPS6335598B2 (en)
JP7411314B2 (en) Silicate fertilizer and its manufacturing method
JP5515329B2 (en) Cement clinker, cement-based solidified material, method for solidifying soil, and method for producing cement clinker
EP2735555A1 (en) Hydraulic binders
JP2013155273A (en) Soil improvement material and soil improvement method
JP2005213277A (en) Soil caking agent
JP4164229B2 (en) Cement composition
JP2013032269A (en) Phosphate fertilizer and method for producing the same
JP6006654B2 (en) Method for producing siliceous fertilizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220520

R150 Certificate of patent or registration of utility model

Ref document number: 7079100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150