JP2019123242A - Blank for obtaining fiber-reinforced resin molded body - Google Patents

Blank for obtaining fiber-reinforced resin molded body Download PDF

Info

Publication number
JP2019123242A
JP2019123242A JP2019027499A JP2019027499A JP2019123242A JP 2019123242 A JP2019123242 A JP 2019123242A JP 2019027499 A JP2019027499 A JP 2019027499A JP 2019027499 A JP2019027499 A JP 2019027499A JP 2019123242 A JP2019123242 A JP 2019123242A
Authority
JP
Japan
Prior art keywords
melting point
fiber
polymer
thermoplastic polymers
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027499A
Other languages
Japanese (ja)
Other versions
JP6783883B2 (en
Inventor
森口 芳文
Yoshifumi Moriguchi
芳文 森口
貴至 岩本
Takashi Iwamoto
貴至 岩本
雄俊 中谷
Taketoshi Nakatani
雄俊 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2019027499A priority Critical patent/JP6783883B2/en
Publication of JP2019123242A publication Critical patent/JP2019123242A/en
Application granted granted Critical
Publication of JP6783883B2 publication Critical patent/JP6783883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

To provide a fiber-reinforced resin molded body having excellent mechanical property and high quality by uniformly and sufficiently mixing reinforced fibers formed of continuous fibers and a matrix resin between reinforced fibers composed of fibers.CONSTITUTION: There is provided a blank that is formed of laminating a plurality of woven fabrics composed of continuous fibers, and the continuous fibers constituting the woven fabrics contain at least conjugate fibers in which two kinds of thermoplastic polymers having melting points different from each other are conjugated, and the woven fabrics are composed of containing at least two kinds of thermoplastic polymers having melting points different from each other, and each of the laminated woven fabrics are united by melting or softening a polymer having a lowest melting point among the thermoplastic polymers constituting the woven fabrics. The blank is heat-molded with a predetermined molding die to melt the polymer having a low melting point and not melt the polymer having a high melting point for maintaining a shape of the fibers, both of which are constituting the blank, and then the resulting material is formed into a predetermined shape, and cooling and solidifying thereof are performed to obtain a fiber-reinforced resin molded body.SELECTED DRAWING: None

Description

本発明は、繊維強化樹脂成型体を得るための素板およびこれを用いて繊維強化樹脂成型体を製造する方法に関するものである。 The present invention relates to a base plate for obtaining a fiber-reinforced resin molded body and a method for producing a fiber-reinforced resin molded body using the base plate.

繊維強化樹脂材料は補強繊維とマトリクス樹脂で構成される機械的物性に優れた複合素材であり、船舶、航空機、機械類、自動車の部材などに利用されている。例えば補強繊維とマトリクス樹脂からなるプリプレグシートを積層し、所定の形状に賦形する方法や、補強繊維からなるプリフォームにマトリクス樹脂を含浸させる方法などにより製造される。
補強繊維としてガラス繊維、炭素繊維、アラミド繊維などの高強度・高弾性率繊維が用いることで機械的物性に優れた樹脂材料を得ることができる。補強繊維が無機繊維である場合、使用済みの製品のリサイクルが困難であり、また屈曲の多い成型品に用いる場合は補強繊維による補強効果が十分に得られないこともあるため、補強繊維として熱可塑性樹脂からなる繊維のみを用いた複合材料も検討されている。マトリクス樹脂としては熱硬化性樹脂や熱可塑性樹脂が使用されているが、後者は成形時のサイクルタイムが短く、自動車分野などで開発が進められている。マトリクス樹脂に熱可塑性樹脂を用いて、自動車内装材に好適な複合材料として、例えば、特許文献1には、繊維長5〜100mmの強化繊維と粒子形態や繊維形態の熱可塑性樹脂とを湿式分散法により抄造したシートにニードリングして加熱・圧縮によりスタンパブルシート(素板)を得る方法が開示されている。
A fiber reinforced resin material is a composite material excellent in mechanical properties composed of reinforcing fibers and a matrix resin, and is used for ships, aircraft, machinery, members of automobiles and the like. For example, it is manufactured by laminating a prepreg sheet comprising reinforcing fiber and matrix resin and shaping it into a predetermined shape, or a method of impregnating a preform comprising reinforcing fiber with a matrix resin.
By using high strength and high modulus fibers such as glass fibers, carbon fibers and aramid fibers as the reinforcing fibers, a resin material having excellent mechanical properties can be obtained. When the reinforcing fiber is an inorganic fiber, it is difficult to recycle the used product, and when it is used for a product having a large amount of bending, the reinforcing fiber may not have a sufficient reinforcing effect. Composite materials using only fibers made of a plastic resin have also been studied. As a matrix resin, a thermosetting resin or a thermoplastic resin is used, but the latter has a short cycle time during molding and is being developed in the automotive field and the like. As a composite material suitable for automobile interior materials using a thermoplastic resin as a matrix resin, for example, Patent Document 1 wet-disperses a reinforcing fiber having a fiber length of 5 to 100 mm and a thermoplastic resin in particle form or fiber form There is disclosed a method of obtaining a stampable sheet (base plate) by needling on a sheet formed by a method and heating and compressing.

マトリクス樹脂として熱可塑性樹脂を選択した場合、熱可塑性樹脂は、溶融時もある程度の粘度を有するため、溶融した熱可塑性樹脂を補強繊維間に均一かつ十分に含浸し難いが、特許文献1の技術によれば、粒子形態や繊維形態の熱可塑性樹脂と補強繊維とを湿式分散法により混合させるため、均一に混合しやすいという利点がある。   When a thermoplastic resin is selected as the matrix resin, the thermoplastic resin has a certain viscosity even during melting, so it is difficult to impregnate the molten thermoplastic resin uniformly and sufficiently between the reinforcing fibers, but the technique of Patent Document 1 According to the above, there is an advantage that the thermoplastic resin in the form of particles or fibers and the reinforcing fibers are mixed by the wet dispersion method, so that they can be uniformly mixed easily.

特開2004−217829号公報(特許請求の範囲、段落番号0001、0025〜0027)Unexamined-Japanese-Patent No. 2004-217829 (Claims, Paragraph No. 0001, 0025-0027)

補強繊維が繊維長5〜100mmの短繊維の場合は、上記した特許文献1のように混合しやすいが、補強繊維が連続繊維の場合には上記方法が適用できない。連続繊維からなる補強層とマトリクス樹脂と一体化する方法としては、例えば補強繊維からなるシートに熱可塑性樹脂からなるフィルムを積層したものを熱処理により一体化する方法、粉末状の熱可塑性樹脂を連続補強繊維シートに散布等により担持させた後に熱処理する方法、補強繊維からなるシートの表面に熱可塑性樹脂をコーティングした後に熱処理する方法などが挙げられる。本発明は、より均一かつ十分に連続繊維からなる補強繊維間にマトリクス樹脂を配合させ、機械的特性に優れた品質の高い繊維強化樹脂成型体を提供することを課題とする。   When the reinforcing fiber is a short fiber having a fiber length of 5 to 100 mm, mixing is easy as in Patent Document 1 described above, but when the reinforcing fiber is a continuous fiber, the above method can not be applied. As a method of integrating a reinforcing layer made of continuous fibers and a matrix resin, for example, a method of integrating a laminate of a film made of a thermoplastic resin and a sheet made of reinforcing fibers by heat treatment, continuous powdery thermoplastic resin Examples of the method include a method of heat treatment after supporting the reinforcing fiber sheet by spraying or the like, a method of heat treating after coating a thermoplastic resin on the surface of the sheet made of the reinforcing fibers, and the like. An object of the present invention is to provide a high-quality fiber-reinforced resin molded article excellent in mechanical properties by blending a matrix resin between reinforcing fibers composed of continuous fibers more uniformly and sufficiently.

本発明は、前記課題を達成するものであり、以下を要旨とする。   The present invention achieves the above-mentioned subject, and makes the following a gist.

すなわち、本発明は、繊維強化樹脂成型体を得るための素板であって、連続繊維によって構成される織布が複数枚積層されてなり、織布を構成する連続繊維が、融点の異なる2種の熱可塑性重合体が複合された複合繊維を少なくとも含み、織布は、融点の異なる熱可塑性重合体を少なくとも2種含むことにより構成され、積層された織布同士は、織布を構成する熱可塑性重合体のうち最も融点の低い重合体が溶融または軟化することによって一体化していることを特徴とする素板を要旨とする。   That is, the present invention is an element plate for obtaining a fiber-reinforced resin molded product, in which a plurality of woven fabrics constituted by continuous fibers are laminated, and the continuous fibers constituting the woven fabric have different melting points 2 The woven fabric is constituted by including at least two kinds of thermoplastic polymers different in melting point, and the laminated woven fabrics constitute a woven fabric. Among the thermoplastic polymers, the polymer having the lowest melting point is integrated by melting or softening, and the gist of the invention is a sheet material.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の繊維強化樹脂成型体を得るための素板は、連続繊維によって構成される織布が複数枚積層されてなり、織布が、少なくとも2種の融点の異なる熱可塑性重合体を含んでいる。融点の異なる2種の熱可塑性重合体のうち、低融点の重合体は、樹脂成型体のマトリックス樹脂となり、高融点の重合体が繊維形態を維持して樹脂成型体における補強繊維となる。なお、本発明 において、明確な融点を有さない非晶性の重合体については軟化点を融点とみなす。   The base plate for obtaining the fiber-reinforced resin molded product of the present invention is formed by laminating a plurality of woven fabrics constituted by continuous fibers, and the woven fabric contains at least two thermoplastic polymers having different melting points. There is. Of the two types of thermoplastic polymers having different melting points, the low melting point polymer becomes the matrix resin of the resin molded body, and the high melting point polymer maintains the fiber form and becomes the reinforcing fiber in the resin molded body. In the present invention, the softening point is regarded as the melting point for an amorphous polymer which does not have a definite melting point.

繊維強化樹脂成型体において、補強繊維として、連続繊維によって構成される織布を選択している理由は、機械的強度と寸法安定性 に優れることにある。例えば、不織布は構成繊維がランダムに配置されたものであるが、このような不織布に比べ、織布は、繊維が均一に配置され、物理特性の方向性も制御し易い。   The reason why a woven fabric composed of continuous fibers is selected as a reinforcing fiber in a fiber-reinforced resin molded product is that it is excellent in mechanical strength and dimensional stability. For example, non-woven fabrics are those in which constituent fibers are randomly arranged, but compared to such non-woven fabrics, fibers are uniformly arranged in a woven fabric, and the directionality of physical properties can be easily controlled.

本発明における織布は、少なくとも2種の融点の異なる熱可塑性重合体を含む。また、織布を構成する連続繊維は、高融点重合体と低融点重合体とからなる複合繊維によって少なくとも構成される。例えば、芯部が高融点重合体、鞘部が低融点重合体からなる芯鞘型複合繊維、高融点重合体と低融点重合体とが貼り合わされてなるサイドバイサイド型複合繊維が挙げられる。また、織布を構成する連続繊維として、高融点重合体からなる繊維と低融点重合体からなる繊維とが所望の比率で混繊されたマルチフィラメント糸を用いることが挙げられる。さらには、高融点重合体からなるフィラメントまたはマルチフィラメント糸と、低融点重合体からなるフィラメントまたはマルチフィラメント糸とを用い、織物を製織する際に、適宜の比率でそれぞれの糸を配列させて織布としたものが挙げられる。なお、連続繊維には必要に応じて撚糸や仮撚り加工、インターレース加工、タスラン加工などを施してもよく、また、織布を得る際に紡績糸やスリットヤーンも併用可能である。   The woven fabric in the present invention comprises at least two different melting point thermoplastic polymers. Further, the continuous fiber constituting the woven fabric is at least constituted by a composite fiber consisting of a high melting point polymer and a low melting point polymer. For example, a core-sheath type composite fiber in which the core part is a high melting point polymer and the sheath part is a low melting point polymer, and a side-by-side type composite fiber in which a high melting point polymer and a low melting point polymer are laminated. Moreover, using the multifilament yarn with which the fiber which consists of a high melting point polymer and the fiber which consists of a low melting point polymer are mixed by the desired ratio as a continuous fiber which comprises a woven fabric is mentioned. Furthermore, using a filament or multifilament yarn comprising a high melting point polymer and a filament or multifilament yarn comprising a low melting point polymer, when weaving a fabric, the respective yarns are arranged in an appropriate ratio to perform weaving. What is clothed is mentioned. The continuous fibers may be subjected to twisting, false twisting, interlacing, taslan processing, etc. as necessary, and when obtaining a woven fabric, spun yarn or slit yarn may be used in combination.

高融点重合体と低融点重合体との組み合わせとしては、具体的には、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリエチレンテレフタレート/ポリアミド、ポリエチレンテレフタレート/低融点ポリエステル共重合体等が挙げられる。   Specific examples of the combination of the high melting point polymer and the low melting point polymer include polyethylene terephthalate / polypropylene, polyethylene terephthalate / polyethylene, polyethylene terephthalate / polyamide, polyethylene terephthalate / low melting point polyester copolymer, and the like.

織布の織組織は、特に限定されないが、平織、綾織、朱子織や、多重織を用いることもできる。   The woven structure of the woven fabric is not particularly limited, but plain weave, twill weave, satin weave, and multiple weave can also be used.

このような織布が複数枚積層され、織布を構成する熱可塑性重合体のうち、最も融点の低い重合体が溶融または軟化することによって、積層された織布同士は一体化して、繊維強化樹脂成型体を得るための素板となる。積層枚数は、繊維強化樹脂成型体の用途や要求性能に応じて、また、織物の組織に応じて適宜選択すればよく、2枚以上とし、上限は10枚程度とする。素板を構成する織布が1枚では、繊維強化樹脂成型体として十分な強度を維持し難い。   A plurality of such woven fabrics are laminated, and the polymer having the lowest melting point of the thermoplastic polymers constituting the woven fabric is melted or softened, whereby the laminated woven fabrics are integrated, and the fiber is reinforced. It becomes a base plate for obtaining a resin molding. The number of laminated layers may be appropriately selected according to the application of the fiber-reinforced resin molded product and the required performance and according to the structure of the woven fabric, and is 2 or more, and the upper limit is about 10 or so. It is difficult to maintain sufficient strength as a fiber-reinforced resin molded product with one woven fabric constituting the base plate.

織布が積層されて一体化した素板において、高融点重合体と低融点重合体との質量比は、高融点重合体:低融点重合体=3〜7;7〜3であるのが好ましい。ここで、高融点重合体とは、繊維強化樹脂成型体とした際に補強繊維となるものであり、一方、低融点重合体とは、繊維強化樹脂成型体とした際にマトリックス樹脂となるものである。高融点重合体の量がこの比率よりも少ないと、補強繊維の比率が少なくなるため、耐衝撃性や曲げ強度が低下する傾向となる。一方、高融点重合体の量がこの比率よりも多いと、マトリックス樹脂となる低融点重合体の比率が少なくなり、溶融させて成型体を得るにあたりマトリックス樹脂の量が少なく所望の形状の成型体になりにくく、成型時に溶融させた樹脂を追加することを要する。   In the base plate in which the woven fabrics are laminated and integrated, the mass ratio of the high melting point polymer to the low melting point polymer is preferably high melting point polymer: low melting point polymer = 3 to 7; 7 to 3 . Here, the high melting point polymer is a reinforcing fiber when forming a fiber reinforced resin molded body, while the low melting point polymer is a matrix resin when forming a fiber reinforced resin molded body It is. If the amount of the high melting point polymer is less than this ratio, the ratio of the reinforcing fibers decreases, so that the impact resistance and the bending strength tend to decrease. On the other hand, when the amount of the high melting point polymer is larger than this ratio, the proportion of the low melting point polymer to be the matrix resin decreases, and the amount of the matrix resin is small to obtain a molded body by melting. It is difficult to become difficult and it is necessary to add the melted resin at the time of molding.

繊維強化樹脂成型体を得るための素板を得るには、上記した織布を複数枚積層し、加熱処理を施し、織布を構成する熱可塑性重合体のうち最も融点の低い重合体を溶融または軟化させ、織布同士を、溶融または軟化した重合体を介して一体化させる。   In order to obtain a base plate for obtaining a fiber-reinforced resin molded product, a plurality of the woven fabrics described above are laminated, heat treatment is performed, and a polymer having the lowest melting point is melted among thermoplastic polymers constituting the woven fabric. Or softened, and the woven fabrics are integrated through the melted or softened polymer.

加熱手段としては、熱風処理機、熱プレス機、熱ロール機等が挙げられる。なかでも、熱と圧力とを同時に与えることにより効率よく一体化の処理を施すことができることから、熱プレス機あるいは熱ロール機を用いることが好ましい。加熱処理は、積層した複数枚の織布を一体化させることが目的であるため、織布を構成する熱可塑性重合体のうち最も融点の低い重合体が溶融または軟化することにより織布同士が一体化すればよい。すなわち、成型体とした際、マトリックス樹脂となる重合体である低融点重合体をすべて溶融させる必要はなく、最も低い融点を有する重合体を少なくとも溶融または軟化させるとよい。なお、マトリックス樹脂となる重合体(低融点重合体)をすべて溶融させて素板としてもよい。すなわち、織布を構成する低融点重合体同士を十分に溶融させて、積層した織布同士の境界が不明になるほど強固に溶融により一体化したものであってもよく、また、低融点重合体が軟化することにより積層一体化したものであって、積層した織布同士の境界が明瞭な状態のものでもよい。後者の場合は、低融点重合体が軟化する温度で熱処理すればよく、加熱処理の設定温度は低融点重合体の融点よりも低い温度でもよい。また、マトリックス樹脂となる低融点重合体を2種以上含む場合においては、最も低い融点を有する重合体のみを溶融または軟化させて、他方の低融点重合体は、素板を製造するための熱処理では熱の影響を受けない温度で処理してもよい。すなわち、織布が、融点の異なる熱可塑性重合体を3種含むことにより構成され、融点の異なる3種の熱可塑性重合体A、熱可塑性重合体B、熱可塑性重合体Cのそれぞれの融点と加熱処理の際の温度 (Tx)とが、熱可塑性重合体Aの融点(Ta)、熱可塑性重合体Bの融点(Tb)、熱可塑性重合体Cの融点(Tc)がTa>Tb>Tcの関係であり、熱可塑性重合体Bおよび熱可塑性重合体Cが成型体とする際にマトリックス樹脂となる低融点重合体の場合に、加熱処理の際の設定温度(Tx)との関係をTa>Tb>Tx>Tcとするとよい。素板を製造するにおいて、織布同士を接着させる程度の溶融または軟化する程度にとどめて、素板においては低融点重合体の全てを溶融させず、成型体を得る段階で低融点重合体全てを溶融させることにより、素板の取り扱い性が良好となり、また素板にフレキシブル性を持たすことによって、成型体を得る段階で成型型枠の形状に沿いやすく、屈曲等の所望の形状を付与しやすい。   As a heating means, a hot air treatment machine, a heat press machine, a heat roll machine etc. are mentioned. Among them, it is preferable to use a heat press machine or a heat roll machine because the integrated process can be efficiently performed by simultaneously applying heat and pressure. The purpose of the heat treatment is to unify a plurality of laminated woven fabrics, so that, among the thermoplastic polymers constituting the woven fabric, the polymers having the lowest melting point are melted or softened to form woven fabrics. It may be integrated. That is, when forming a molded body, it is not necessary to melt all the low melting point polymers which are polymers serving as matrix resin, and it is preferable to at least melt or soften the polymer having the lowest melting point. In addition, all the polymers (low melting point polymers) to be the matrix resin may be melted to form a blank. That is, the low melting point polymers constituting the woven fabric may be sufficiently melted, and they may be firmly integrated by melting so that the boundary between the laminated woven fabrics is unclear, or the low melting point polymer The layers may be integrated by being softened, and the boundaries between the laminated woven fabrics may be in a clear state. In the latter case, heat treatment may be performed at a temperature at which the low melting point polymer softens, and the set temperature of the heat treatment may be a temperature lower than the melting point of the low melting point polymer. When two or more low melting point polymers to be a matrix resin are contained, only the polymer having the lowest melting point is melted or softened, and the other low melting point polymer is heat treated to produce a blank. Alternatively, the treatment may be carried out at a temperature not affected by heat. That is, the woven fabric is constituted by including three types of thermoplastic polymers having different melting points, and the melting points of the three types of thermoplastic polymers A, B, and C having different melting points. The heat treatment temperature (Tx) is the melting point (Ta) of the thermoplastic polymer A, the melting point (Tb) of the thermoplastic polymer B, and the melting point (Tc) of the thermoplastic polymer C is Ta> Tb> Tc In the case of a low melting point polymer which becomes a matrix resin when the thermoplastic polymer B and the thermoplastic polymer C are formed into a molded product, the relationship with the set temperature (Tx) at the time of heat treatment is Ta. It is preferable to set> Tb> Tx> Tc. In the production of the blank, the low melting point polymer is not all melted in the blank but only the melting or softening degree to bond the woven fabrics with one another, and all the low melting point polymers are obtained at the stage of obtaining the molding. By melting the blank, the handleability of the blank becomes good, and by giving flexibility to the blank, it easily conforms to the shape of the molding frame at the stage of obtaining a molded body, and imparts a desired shape such as bending. Cheap.

なお、加熱処理後の冷却としては、徐冷であっても、空冷や、冷媒で冷却した金型を用いる等により積極的な冷却であってもよい。   In addition, as cooling after heat processing, even if it is slow cooling, you may be active cooling by air cooling, using the metal mold | die cooled with the refrigerant | coolant, etc.

上記により得られた素板は、所定の成型金型にて熱成型して、素板を構成する低融点重合体(マトリックス樹脂となるもの)を溶かし、高融点重合体は溶かさずに繊維の形状を維持させ、所定の形状を賦形し、冷却固化して、繊維強化樹脂成型体を得る。熱成型においては、素板に予め熱を加えて次いで金型で成型する方法、金型内で加熱して熱成型する方法、予め熱を加えてさらに金型内でも加熱により熱成型する方法のいずれでもよい。熱成型においては、高融点重合体は溶けずに繊維形態を維持するため良好に樹脂成型体の補強繊維としての役割を担うものとなる。また、熱成型する際に、必要に応じて素板を複数枚積層して用いてもよい。   The base plate obtained as described above is thermoformed with a predetermined molding die to melt the low melting point polymer (which will be a matrix resin) constituting the base plate, and the high melting point polymer is not melted but of the fiber The shape is maintained, a predetermined shape is shaped, and cooling and solidification are performed to obtain a fiber-reinforced resin molded body. In heat forming, a method of applying heat to the base plate in advance and then molding with a mold, a method of heat forming by heating in a mold, and a method of heat forming by applying heat in advance and further heating in a mold Any one may be used. In the heat molding, the high melting point polymer does not melt, and in order to maintain the fiber form, the resin molded body plays a role as a reinforcing fiber. Moreover, when carrying out thermoforming, you may laminate and use two or more raw boards as needed.

また、本発明においては、素板の材料である織布を複数枚積層した積層体を用いて、織布間の熱接着を予め行わず、一気に織布間を一体化すると同時に熱成型を行うことにより繊維強化樹脂成型体を得ることもできる。すなわち、上記した連続繊維によって構成される織布であって、該織布が融点の異なる熱可塑性重合体を少なくとも2種含むことにより構成されたものであり、該織布を複数枚積層し、該積層体を、所定の成型金型にて熱成型して、織布を構成する低融点重合体(マトリックス樹脂となるもの)を溶かし、高融点重合体は溶かさずに繊維の形状を維持させ、所定の形状を賦形し、冷却固化して、繊維強化樹脂成型体を得る。積層体は、2枚以上の織布を積層したものとし、積層枚数の上限は限定しないが、成型体の要求性能に応じて適宜選択すればよいが、10枚程度とする。熱成型においては、上記と同様で、積層体に予め熱を加えて次いで金型で成型する方法、金型内で加熱して熱成型する方法、予め熱を加えてさらに金型内でも加熱により熱成型する方法のいずれでもよい。熱成型においては、高融点重合体は溶けずに繊維形態を維持するため良好に樹脂成型体の補強繊維としての役割を担うものとなる。   Further, in the present invention, using a laminate obtained by laminating a plurality of woven fabrics as a material of the base plate, the thermal bonding between the woven fabrics is not performed in advance, and the woven fabrics are integrated at once and heat molded simultaneously. Thus, a fiber-reinforced resin molded body can also be obtained. That is, it is a woven fabric constituted by the above-mentioned continuous fibers, wherein the woven fabric is constituted by including at least two kinds of thermoplastic polymers different in melting point, and a plurality of the woven fabrics are laminated; The laminate is thermoformed in a predetermined molding die to dissolve the low melting point polymer (which becomes the matrix resin) constituting the woven fabric, and maintain the shape of the fiber without melting the high melting point polymer. , Forming a predetermined shape, and cooling and solidifying to obtain a fiber-reinforced resin molded body. The laminated body is formed by laminating two or more woven fabrics, and the upper limit of the number of laminated sheets is not limited, but may be appropriately selected according to the required performance of the molded body, but is about 10 sheets. In the case of heat molding, as described above, a method in which heat is applied to the laminate in advance and then molding in a mold, a method in which heating is performed in a mold for thermal molding, heat is applied in advance, and heating is also performed in a mold Any method of thermoforming may be used. In the heat molding, the high melting point polymer does not melt, and in order to maintain the fiber form, the resin molded body plays a role as a reinforcing fiber.

本発明によれば、繊維強化樹脂成型体を得るための材料として、高融点重合体と低融点重合体を含む織物を用いており、成型体とする際に、高融点重合体が補強繊維となり、低融点重合体がマトリックス樹脂となるものであり、材料の段階より、高融点重合体と低融点重合体とが繊維の形態として均一に存在しているため、マトリックス樹脂と補強繊維とが均一に存在する成型体を得ることができる。   According to the present invention, a fabric containing a high melting point polymer and a low melting point polymer is used as a material for obtaining a fiber-reinforced resin molded body, and when forming a molded body, the high melting point polymer becomes a reinforcing fiber The low melting point polymer is to be a matrix resin, and the high melting point polymer and the low melting point polymer are uniformly present in the form of fibers from the stage of the material, so the matrix resin and reinforcing fibers are uniform. It is possible to obtain a molded body present in

次に、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.

実施例1
芯にポリエチレンテレフタレート(融点250℃)、鞘にエチレンテレフタレートを主たる繰り返し単位とするポリエステル共重合体(融点160℃)が配された芯鞘複合フィラメントからなる1670dtex/192fのマルチフィラメント糸(A)を準備した。芯鞘複合フィラメントの芯鞘比は、体積比で芯:鞘=2.7:1であった。
Example 1
1670 dtex / 192f multifilament yarn (A) comprising a core-sheath composite filament in which polyethylene terephthalate (melting point 250 ° C.) is disposed in the core and polyester copolymer (melting point 160 ° C.) comprising ethylene terephthalate as the main repeating unit in the sheath Got ready. The core-sheath ratio of the core-sheath composite filaments was core: sheath = 2.7: 1 in volume ratio.

前記芯鞘複合フィラメントからなるマルチフィラメント糸を経糸および緯糸に配して平織組織の織布を作製した。織密度は、経緯ともに25本/インチとした。   A multifilament yarn consisting of the core-sheath composite filaments was placed on the warp and weft to produce a plain weave woven fabric. The weave density was 25 yarns / inch for both reasons.

得られた織布を3枚重ねて、180℃に加熱したプレス機にて、押圧0.5MPaの条件で加熱加圧処理を行い、その後、室温で徐冷し、構成繊維同士および織布同士が熱融着してなる素板を得た。   Three sheets of the obtained woven fabric are stacked, and heat and pressure treatment is performed under the condition of 0.5 MPa pressure in a press heated to 180 ° C. Thereafter, the mixture is gradually cooled at room temperature to form constituent fibers and woven fabrics A heat-sealed blank was obtained.

実施例2
芯にポリエチレンテレフタレート(融点250℃)、鞘にエチレンテレフタレートを主たる繰り返し単位とするポリエステル共重合体(融点160℃)が配された芯鞘複合フィラメントからなる1100dtex/96fのマルチフィラメント糸(C)を準備した。芯鞘複合フィラメントの芯鞘比は、体積比で芯:鞘=2.7:1であった。
Example 2
A multifilament yarn (C) of 1100 dtex / 96 f consisting of a core-sheath composite filament in which a polyethylene terephthalate (melting point 250 ° C.) is disposed in the core and a polyester copolymer (melting point 160 ° C.) comprising ethylene terephthalate as the main repeating unit in the sheath Got ready. The core-sheath ratio of the core-sheath composite filaments was core: sheath = 2.7: 1 in volume ratio.

一方、ポリエチレンテレフタレートのみからなる単相のポリエステルフィラメントからなる1100dtex/192fのマルチフィラメント糸を準備し、このマルチフィラメント糸4本を合撚して合撚糸を準備した。   On the other hand, a 1100 dtex / 192 f multifilament yarn consisting of a single-phase polyester filament consisting only of polyethylene terephthalate was prepared, and four multifilament yarns were twisted to prepare a twisted yarn.

上記の芯鞘複合フィラメントからなるマルチフィラメント糸を経糸に用い、合撚糸を緯糸に配し、1/3綾両面織の組織で織布を作製した。織密度は、経113本/インチ、緯14本/インチとした。   The multifilament yarn consisting of the above-mentioned core-sheath composite filaments was used for the warp, the double-twisted yarn was arranged for the weft, and a woven fabric was produced with a structure of 1/3 double-sided weave. The weave density was 113 yarns / inch and 14 yarns / inch.

得られた織布を3枚重ねて、180℃に加熱したプレス機にて、押圧0.5MPaの条件で加熱加圧処理を行い、その後、室温で徐冷し、構成繊維同士および織布同士が熱融着してなる素板を得た。   Three sheets of the obtained woven fabric are stacked, and heat and pressure treatment is performed under the condition of 0.5 MPa pressure in a press heated to 180 ° C. Thereafter, the mixture is gradually cooled at room temperature to form constituent fibers and woven fabrics A heat-sealed blank was obtained.

得られた実施例1、2の素板を180℃の雰囲気中で加熱した後、雄型と雌型とからなる平板金型にて成型 し、平板状の補強繊維成型体を得た。
The base plates of the obtained Examples 1 and 2 were heated in an atmosphere of 180 ° C., and then molded using a flat plate mold consisting of a male mold and a female mold to obtain a flat reinforcing fiber molding.

Claims (6)

繊維強化樹脂成型体を得るための素板であって、連続繊維によって構成される織布が複数枚積層されてなり、織布を構成する連続繊維が、融点の異なる2種の熱可塑性重合体が複合された複合繊維を少なくとも含み、織布は、融点の異なる熱可塑性重合体を少なくとも2種含むことにより構成され、積層された織布同士は、織布を構成する熱可塑性重合体のうち最も融点の低い重合体が溶融または軟化することによって一体化していることを特徴とする素板。 It is a base plate for obtaining a fiber-reinforced resin molded product, in which a plurality of woven fabrics composed of continuous fibers are laminated, and the continuous fibers constituting the woven fabric are two kinds of thermoplastic polymers having different melting points. Among the thermoplastic polymers constituting the woven fabric, the woven fabric is constituted by including at least two kinds of thermoplastic polymers having different melting points, and A blank characterized in that a polymer having the lowest melting point is integrated by melting or softening. 繊維強化樹脂成型体を得るための素板の製造方法であって、
融点の異なる熱可塑性重合体を少なくとも2種含むことにより構成され、かつ、連続繊維によって構成され、連続繊維が融点の異なる2種の熱可塑性重合体が複合された複合繊維を少なくとも含む織布を複数枚積層し、
次いで、加熱処理を施し、織布を構成する熱可塑性重合体のうち最も融点の低い重合体を溶融または軟化させ、織布同士を一体化させることを特徴とする素板の製造方法。
A method for producing a blank for obtaining a fiber-reinforced resin molded article, comprising
A woven fabric comprising at least two kinds of thermoplastic polymers having different melting points, and at least a composite fiber composed of continuous fibers, wherein the continuous fibers are composed of two kinds of thermoplastic polymers having different melting points, Stack multiple sheets,
Next, heat treatment is performed to melt or soften the polymer having the lowest melting point among the thermoplastic polymers constituting the woven fabric, and the woven fabrics are integrated with each other.
加熱処理の際の温度が、織布を構成する熱可塑性重合体のうち最も融点の低い重合体の融点よりも高い温度であり、かつ、該最も融点の低い重合体以外の重合体の融点未満の温度であることを特徴とする請求項2記載の素板の製造方法。 The heat treatment temperature is higher than the melting point of the polymer having the lowest melting point among the thermoplastic polymers constituting the woven fabric, and is lower than the melting point of the polymer other than the polymer having the lowest melting point The method according to claim 2, wherein the temperature is 加熱処理の際の設定温度が、織布を構成する熱可塑性重合体のうち最も融点の低い重合体が軟化する温度であることを特徴とすることを特徴とする請求項2記載の素板の製造方法。 The base plate according to claim 2, characterized in that the set temperature in the heat treatment is a temperature at which the polymer having the lowest melting point of the thermoplastic polymers constituting the woven fabric is softened. Production method. 請求項1記載の素板を所定の成型金型にて、熱成型することにより、素板を構成する低融点重合体を溶かし、高融点重合体は溶かさずに繊維の形状を維持させ、所定の形状を賦形し、冷却固化して、繊維強化樹脂成型体を得ることを特徴とする繊維強化樹脂成型体の製造方法。 A low melting point polymer constituting the base plate is melted by thermoforming the base plate according to claim 1 with a predetermined molding die, and the high melting point polymer is not melted to maintain the shape of the fiber, and the predetermined state is obtained. A method for producing a fiber-reinforced resin molded article, comprising the steps of: shaping and cooling to solidify the fiber-reinforced resin molded article. 請求項2〜4のいずれか1項記載の素板の製造方法により得られた素板を、所定の成型金型にて、熱成型することにより、素板を構成する低融点重合体を溶かし、高融点重合体は溶かさずに繊維の形状を維持させ、所定の形状を賦形し、冷却固化して、繊維強化樹脂成型体を得ることを特徴とする繊維強化樹脂成型体の製造方法。
The low melting point polymer which comprises a base plate is melt | dissolved by thermoforming the base plate obtained by the manufacturing method of the base plate of any one of Claims 2-4 with a predetermined shaping | molding die, A method for producing a fiber-reinforced resin molded article, wherein the high melting point polymer is maintained without melting, the shape of the fiber is maintained, the predetermined shape is shaped, and the resin is cooled and solidified to obtain a fiber reinforced resin molded article.
JP2019027499A 2019-02-19 2019-02-19 Base plate for obtaining fiber reinforced plastic molded body Active JP6783883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027499A JP6783883B2 (en) 2019-02-19 2019-02-19 Base plate for obtaining fiber reinforced plastic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027499A JP6783883B2 (en) 2019-02-19 2019-02-19 Base plate for obtaining fiber reinforced plastic molded body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015031838A Division JP6685647B2 (en) 2015-02-20 2015-02-20 Method for producing plate for obtaining fiber-reinforced resin molding

Publications (2)

Publication Number Publication Date
JP2019123242A true JP2019123242A (en) 2019-07-25
JP6783883B2 JP6783883B2 (en) 2020-11-11

Family

ID=67397751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027499A Active JP6783883B2 (en) 2019-02-19 2019-02-19 Base plate for obtaining fiber reinforced plastic molded body

Country Status (1)

Country Link
JP (1) JP6783883B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197312A (en) * 1982-05-07 1983-11-17 Toray Ind Inc Fiber and fiber-reinforced elastic body and preparation thereof
JPS63270834A (en) * 1987-04-28 1988-11-08 東洋紡績株式会社 Composite molding sheet and its production
JP2005052987A (en) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197312A (en) * 1982-05-07 1983-11-17 Toray Ind Inc Fiber and fiber-reinforced elastic body and preparation thereof
JPS63270834A (en) * 1987-04-28 1988-11-08 東洋紡績株式会社 Composite molding sheet and its production
JP2005052987A (en) * 2003-08-05 2005-03-03 Du Pont Toray Co Ltd Fiber reinforced thermoplastic resin composite material, its manufacturing method and molded product using the composite material

Also Published As

Publication number Publication date
JP6783883B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
TWI661922B (en) Molding mold and compression molding method
JP5583277B2 (en) Manufacturing method of molded body by low pressure molding
CN102770480B (en) Fiber-reinforced resin sheet material and the fiber-reinforced resin formed product for having used it
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
WO2013089235A1 (en) Fibre-reinforced resin moulding, and vehicle interior material using same
JP5459005B2 (en) Press molding method and molded body thereof
JPH05214652A (en) Preparation of three dimensional raw fabric material
KR100230025B1 (en) Fiber reinforced porous sheets
JPH0742049A (en) Preparation of knitted fabric and fiber-reinforced laminate for using preparation of fiber-reinforced composite material and laminate
JPH05504107A (en) Improvement of thermoplastic composite materials
WO2019188873A1 (en) Press-molded article manufacturing method
JP2013208725A (en) Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same
TW201819159A (en) Molded article and compression molding method
JPS63270834A (en) Composite molding sheet and its production
JP7344472B2 (en) Reinforced fiber tape material and its manufacturing method, reinforced fiber laminate and fiber reinforced resin molded product using reinforced fiber tape material
JP6783883B2 (en) Base plate for obtaining fiber reinforced plastic molded body
JP4456938B2 (en) Polypropylene resin structure board
JP7082966B2 (en) Fiber-reinforced foamed particle molded product and its manufacturing method
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
CN114228023B (en) Hot press molding method and device for double-component single polymer composite material product
JP6685647B2 (en) Method for producing plate for obtaining fiber-reinforced resin molding
TW202124135A (en) Carbon fiber tape material, and reinforced fiber laminate and molded article using same
JPS6021952A (en) Production of high density fiber molded body
JP6458589B2 (en) Sheet material, integrated molded product, and integrated molded product manufacturing method
US20230311371A1 (en) Reinforced synthetic product with curved geometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6783883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150