JP2019121566A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2019121566A
JP2019121566A JP2018002314A JP2018002314A JP2019121566A JP 2019121566 A JP2019121566 A JP 2019121566A JP 2018002314 A JP2018002314 A JP 2018002314A JP 2018002314 A JP2018002314 A JP 2018002314A JP 2019121566 A JP2019121566 A JP 2019121566A
Authority
JP
Japan
Prior art keywords
storage element
enlarged diameter
relay
collector plate
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018002314A
Other languages
Japanese (ja)
Inventor
池田 幸太郎
Kotaro Ikeda
幸太郎 池田
将人 永田
Masahito Nagata
将人 永田
隆幸 鈴木
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2018002314A priority Critical patent/JP2019121566A/en
Publication of JP2019121566A publication Critical patent/JP2019121566A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

To provide a power storage element capable of preventing an external terminal, for connection with a collector plate, from cracking without performing heating treatment, and capable of reducing electrical resistance between the external terminal and the power storage element.SOLUTION: The shaft of an external terminal has an enlarged diameter part 43 at the tip penetrating the open hole 33 of a collector plate 30. The enlarged diameter part 43 has a notch 44 in the radial direction. The first half part 43A of the enlarged diameter part 43 contacting the connection 32 of the collector plate 30 connected with a power storage element has a larger connection surface area facing the relay part 31 of the collector plate 30, than a second half part 43B separated from the connection 32 of the collector plate 30.SELECTED DRAWING: Figure 6

Description

本発明は、蓄電素子に関する。   The present invention relates to a storage element.

従来から電池などの蓄電素子が知られている(下記特許文献1、2を参照)。特許文献1は、電池ケースの上蓋にシール用のパッキングを介して中空リベット状の電極端子を固定する密閉形電池において、次の特徴を有する電極端子を開示している(同文献、実用新案登録請求の範囲を参照)。   BACKGROUND Conventionally, storage elements such as batteries have been known (see Patent Documents 1 and 2 below). Patent Document 1 discloses an electrode terminal having the following features in a sealed battery in which a hollow rivet-like electrode terminal is fixed to the upper lid of a battery case via a sealing packing (the same document, utility model registration) See the claims).

特許文献1の電極端子は、上蓋上面に対向する平円板上の平頭部と、中空の軸部を一体に備えている。平頭部の裏面には、パッキング上面に圧接する環状突起を一体に形成している。中空の軸部の先端部側には、スリットにより分割された複数のかしめ用開脚部を形成している。この開脚部は、軸部よりも薄肉に形成され、軸部との境目の支点部で開脚されて電極端子を固定する。   The electrode terminal of Patent Document 1 integrally includes a flat head on a flat disk facing the upper lid upper surface and a hollow shaft portion. On the back surface of the flat head, an annular protrusion is integrally formed to be in pressure contact with the upper surface of the packing. On the tip end side of the hollow shaft portion, a plurality of caulking open legs divided by the slits are formed. The open leg portion is formed thinner than the shaft portion, and is opened at a fulcrum portion at the boundary with the shaft portion to fix the electrode terminal.

この構成により、開脚部を平面状に略90°折り曲げて十字状に開脚することで、平頭部と開脚部の間でパッキングを上下から締め付けることができる。したがって、中空の軸部の先端部をかしめ工具により強い押圧力で押しつぶす必要がなく、電極端子の固定作業が簡単になる。   According to this configuration, the open leg can be flatly bent approximately 90 ° and the cross leg can be opened, whereby the packing can be tightened from above and below between the flat head and the open leg. Therefore, there is no need to squeeze the end of the hollow shaft with a caulking tool with a strong pressing force, and the work of fixing the electrode terminal is simplified.

特許文献2は、電池缶と、電極群と、蓋体と、絶縁プレートと、ワッシャーと、電極タブと、絶縁ガスケットと、出力端子と具備する電池を開示している(同文献、請求項1を参照)。電極群は、電池缶内に収納され、正極および負極を含む。蓋体は、電池缶の開口部を塞ぎ、貫通孔を有している。   Patent Document 2 discloses a battery provided with a battery can, an electrode group, a lid, an insulating plate, a washer, an electrode tab, an insulating gasket, and an output terminal. See). The electrode assembly is housed in a battery can and includes a positive electrode and a negative electrode. The lid closes the opening of the battery can and has a through hole.

絶縁プレートは、蓋体の一方の面に配置され、蓋体の貫通孔と連通するように設けられた軸用貫通孔を有している。ワッシャーは、絶縁プレートに配置され、絶縁プレートの軸用貫通孔と連通するように設けられている。電極タブは、一端が電極群の正極または負極と電気的に接続され、かつ他端がワッシャーに溶接されている。   The insulating plate is disposed on one surface of the lid and has a shaft through hole provided to communicate with the through hole of the lid. The washer is disposed on the insulating plate and provided in communication with the shaft through hole of the insulating plate. One end of the electrode tab is electrically connected to the positive electrode or the negative electrode of the electrode group, and the other end is welded to the washer.

絶縁ガスケットは、フランジ部と、筒状軸部と、軸挿入孔とを備えている。フランジ部は、蓋体の他方の面に配置され、かつ凹みを有する。筒状軸部は、フランジ部から延出されて蓋体の貫通孔に挿入されている。軸挿入孔は、筒状軸部内の中空と連通するようにフランジ部に開口されている。   The insulating gasket includes a flange portion, a cylindrical shaft portion, and a shaft insertion hole. The flange portion is disposed on the other side of the lid and has a recess. The cylindrical shaft portion extends from the flange portion and is inserted into the through hole of the lid. The shaft insertion hole is opened in the flange so as to communicate with the hollow in the cylindrical shaft.

出力端子は、頭部と軸部とを有している。頭部は、絶縁ガスケットのフランジ部の凹み内に配置されている。軸部は、頭部から延出され、絶縁ガスケットの軸挿入孔および筒状軸部に挿入されて蓋体の貫通孔、絶縁プレートの軸用貫通孔およびワッシャーの軸用貫通孔にかしめ固定されている。   The output terminal has a head and a shaft. The head is disposed within the recess of the flange portion of the insulating gasket. The shaft extends from the head and is inserted into the shaft insertion hole and cylindrical shaft of the insulating gasket and crimped and fixed to the through hole of the lid, the shaft through hole of the insulating plate and the shaft through hole of the washer ing.

実開平4−74854号公報Japanese Utility Model Application Publication No. 4-74854 特開2009−76394号公報JP, 2009-76394, A

特許文献1に記載された電極端子は、中空の軸部の先端部をかしめ工具によって押しつぶす必要がなく、電極端子の固定作業が簡単である反面、開脚部の間に大きな隙間が形成される。そのため、電極端子の開脚部に接続される金属製平Oリングとの間の電流経路が十分に確保できず、電極端子と蓄電要素との間の電気抵抗を上昇させるおそれがある。   In the electrode terminal described in Patent Document 1, there is no need to squeeze the tip of the hollow shaft with a caulking tool, and while the work of fixing the electrode terminal is easy, a large gap is formed between the opening legs. . As a result, the current path between the flat terminal and the metal flat O-ring connected to the open leg of the electrode terminal can not be sufficiently secured, which may increase the electrical resistance between the electrode terminal and the storage element.

これに対し、特許文献2に記載された電池は、ワッシャー上でかしめにより出力端子の軸部に最大拡張部を形成することで、出力端子とワッシャーとの間の電気抵抗を低減させ、出力端子と電極群との間の電気抵抗を低減することができる。その反面、出力端子の軸部をかしめ工具によって押しつぶす必要があり、加工硬化と延性減少に起因して、軸部の最大拡張部に割れが生じるおそれがある。このような割れを防止するために、出力端子の熱処理を行うと、製造コストが上昇してしまう。   On the other hand, in the battery described in Patent Document 2, the electrical resistance between the output terminal and the washer is reduced by forming the maximum extension in the shaft of the output terminal by caulking on the washer, and the output terminal The electrical resistance between the and the electrode group can be reduced. On the other hand, it is necessary to squeeze the shaft portion of the output terminal with a caulking tool, and there is a possibility that a crack may occur in the maximum expansion portion of the shaft portion due to work hardening and ductility reduction. When the heat treatment of the output terminal is performed to prevent such a crack, the manufacturing cost is increased.

そこで、熱処理を行うことなく集電板に接続される外部端子の割れを防止することができ、かつ、外部端子と蓄電要素との間の電気抵抗を低減することができる蓄電素子を提供する。   Therefore, it is possible to provide a storage element capable of preventing a crack of an external terminal connected to a current collector without heat treatment and reducing the electrical resistance between the external terminal and the storage element.

本発明の一態様は、容器と、該容器に収容された蓄電要素と、該蓄電要素に接続され前記容器に収容された集電板と、該集電板に接続されて前記容器の外面に配置された外部端子と、を備えた蓄電素子であって、前記外部端子は、前記容器の外面に配置された端子部と、該端子部から延びて前記容器を貫通した軸部と、を有し、前記集電板は、前記軸部の中心軸に直交する方向に延在する中継部と、該中継部の延在方向の一端に設けられて前記蓄電要素に接続された接続部と、該接続部よりも前記中継部の前記延在方向の他端側に設けられた貫通孔と、を有し、前記軸部は、前記貫通孔を貫通した先端部に、前記貫通孔の内径よりも拡径されて前記中継部に接続された拡径部を有し、前記拡径部は、前記軸部の径方向に切り欠かれた切欠き部を有し、前記軸部の中心軸および前記中継部の前記延在方向に直交する中心線によって分けられる二つの半部のうち、前記接続部に近接した第1半部は、前記接続部から離隔した第2半部よりも、前記中継部に対向する接続面の面積が大きいことを特徴とする蓄電素子である。   One aspect of the present invention is a container, a storage element housed in the container, a current collector plate connected to the storage element and housed in the container, and a current collector plate connected to the outer surface of the container. A storage element having an external terminal disposed, wherein the external terminal includes a terminal portion disposed on the outer surface of the container, and a shaft portion extending from the terminal portion and penetrating the container The current collector plate is a relay portion extending in a direction orthogonal to the central axis of the shaft portion, and a connection portion provided at one end in the extension direction of the relay portion and connected to the electric storage element; A through hole provided on the other end side in the extending direction of the relay portion than the connection portion, and the shaft portion is formed at an end portion penetrating the through hole from an inner diameter of the through hole Also has an enlarged diameter portion that is enlarged and connected to the relay portion, and the enlarged diameter portion is a notch that is cut out in the radial direction of the shaft portion. Of the two halves separated by the center axis of the shaft and the center line orthogonal to the extension direction of the relay, the first half adjacent to the connection is separated from the connection The storage element is characterized in that the area of the connection surface facing the relay portion is larger than the second half portion.

上記態様によれば、集電板の中継部の貫通孔を貫通させた外部端子の軸部の先端部を塑性変形させて拡径させて拡径部を形成し、外部端子と集電板とを接続する時に、切欠き部によって軸部の先端の塑性変形が抑制される。これにより、外部端子の拡径部において、加工硬化と延性減少が抑制され、熱処理を行うことなく割れを防止することができる。   According to the above aspect, the distal end portion of the shaft portion of the external terminal penetrated through the through hole of the relay portion of the current collector plate is plastically deformed to expand the diameter to form the enlarged diameter portion, the external terminal and the current collector plate At the time of connecting, the plastic deformation of the tip of the shaft is suppressed by the notch. As a result, in the enlarged diameter portion of the external terminal, work hardening and ductility reduction are suppressed, and cracking can be prevented without heat treatment.

上記態様の蓄電素子において、電流は、蓄電要素から集電板の接続部へ流れ、接続部から集電板の中継部へ流れ、中継部から外部端子の拡径部へ流れ、拡径部から外部端子の軸部へ流れ、軸部から外部端子の端子部へ流れる。また、電流は、外部端子の端子部から軸部へ流れ、軸部から拡径部へ流れ、拡径部から集電板の中継部へ流れ、中継部から接続部へ流れ、接続部から蓄電要素へ流れる。   In the storage element of the above aspect, the current flows from the storage element to the connection portion of the current collector plate, flows from the connection portion to the relay portion of the current collector plate, flows from the relay portion to the enlarged diameter portion of the external terminal, and from the enlarged diameter portion It flows to the shaft of the external terminal and flows from the shaft to the terminal of the external terminal. In addition, current flows from the terminal of the external terminal to the shaft, flows from the shaft to the enlarged diameter, flows from the enlarged diameter to the relay of the current collector plate, flows from the relay to the connection, and stores electricity from the connection. Flow to the element.

すなわち、集電板の接続部に近接した拡径部の第1半部は、外部端子と蓄電要素との間の主要な電流経路の一部となり、第2半部よりも電流密度が高くなる。一方、集電板の接続部から離隔した拡径部の第2半部は、外部端子と蓄電要素との間の主要な電流経路から外れ、第1半部よりも電流密度が低くなる。また、拡径部の第1半部と第2半部は、それぞれ、集電板の中継部に対向する接続面を介して、集電板の中継部に電気的に接続されている。   That is, the first half of the enlarged diameter portion close to the connection portion of the current collector plate is a part of the main current path between the external terminal and the storage element, and the current density is higher than that of the second half. . On the other hand, the second half of the enlarged diameter portion separated from the connection portion of the current collector plate deviates from the main current path between the external terminal and the storage element, and has a lower current density than the first half. Further, the first half portion and the second half portion of the enlarged diameter portion are electrically connected to the relay portion of the current collector plate via the connection surface facing the relay portion of the current collector plate.

そのため、拡径部の第1半部と第2半部との間で、相対的に電流密度が高くなる第1半部の接続面の面積を、相対的に電流密度が低くなる拡径部の第2半部の接続面よりも大きくすることで、外部端子と蓄電要素との間の電気抵抗の増加を抑制し、電気抵抗を低減することができる。したがって、本発明の上記態様によれば、集電板に接続される外部端子の割れを、熱処理を行うことなく防止することができ、かつ、外部端子と蓄電要素との間の電気抵抗を低減することができる蓄電素子を提供することができる。   Therefore, the area of the connection surface of the first half where the current density is relatively high between the first half and the second half of the enlarged diameter part is the diameter enlarged part where the current density is relatively low. By making the second half portion larger than the connection surface of the second half portion, it is possible to suppress an increase in the electrical resistance between the external terminal and the storage element, and to reduce the electrical resistance. Therefore, according to the above aspect of the present invention, cracking of the external terminal connected to the current collector plate can be prevented without heat treatment, and the electrical resistance between the external terminal and the storage element can be reduced. A storage element that can be provided can be provided.

本発明の実施形態1に係る蓄電素子の外観斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The external appearance perspective view of the electrical storage element which concerns on Embodiment 1 of this invention. 図1に示す蓄電素子の分解斜視図。The disassembled perspective view of the electrical storage element shown in FIG. 図2の蓄電要素の一部を展開した状態を示す斜視図。The perspective view which shows the state which expand | deployed a part of electrical storage element of FIG. 図2の外部端子と集電板の近傍を拡大した分解斜視図。The disassembled perspective view which expanded the vicinity of the external terminal of FIG. 2, and a current collection board. 図1に示す蓄電素子のかしめ工程における外部端子の近傍の拡大断面図。The expanded sectional view of the vicinity of the external terminal in the crimping process of the electrical storage element shown in FIG. 図5に示すかしめ工程によって形成された拡径部の模式的な平面図。The typical top view of the enlarged diameter part formed of the crimping process shown in FIG. 図1の蓄電素子における電流の経路の一例を示す拡大正面図。FIG. 2 is an enlarged front view showing an example of a current path in the storage element of FIG. 1; 本発明の実施形態2に係る蓄電素子の拡径部の模式的な平面図。The typical top view of the enlarged diameter part of the electrical storage element which concerns on Embodiment 2 of this invention. 図8に示す拡径部の近傍の電流密度の分布図。FIG. 9 is a distribution diagram of current density in the vicinity of the enlarged diameter portion shown in FIG. 8. 比較形態に係る蓄電要素の拡径部の近傍の電流密度の分布図。The distribution map of the current density of the vicinity of the enlarged diameter part of the electrical storage element which concerns on a comparison form. 実施形態2および比較形態の蓄電素子の抵抗上昇率を示すグラフ。The graph which shows the resistance rise rate of the electrical storage element of Embodiment 2 and a comparison form. 本発明の実施形態3に係る蓄電素子の拡径部の模式的な平面図。The typical top view of the enlarged diameter part of the electrical storage element which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る蓄電素子の拡径部の模式的な平面図。The typical top view of the enlarged diameter part of the electrical storage element which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る蓄電素子の拡径部の模式的な平面図。The typical top view of the enlarged diameter part of the electrical storage element which concerns on Embodiment 5 of this invention.

以下、図面を参照して本発明に係る蓄電素子の実施形態を説明する。   Hereinafter, embodiments of a storage element according to the present invention will be described with reference to the drawings.

[実施形態1]
図1は、本発明の実施形態1に係る蓄電素子100の外観斜視図である。図2は、図1に示す蓄電素子100の分解斜視図である。本実施形態に係る蓄電素子100は、たとえば、車載用途の偏平角形のリチウムイオン二次電池である。蓄電素子100は、たとえば、電気自動車やハイブリッド自動車などの車両に搭載され、モータなどの電力を消費する機器へ電力を供給し、発電機などの電力を生成する機器から供給された電力を蓄える。
Embodiment 1
FIG. 1 is an external perspective view of a storage element 100 according to Embodiment 1 of the present invention. FIG. 2 is an exploded perspective view of storage element 100 shown in FIG. The storage element 100 according to the present embodiment is, for example, a flat rectangular lithium ion secondary battery for in-vehicle use. Storage element 100 is mounted, for example, on a vehicle such as an electric vehicle or a hybrid vehicle, supplies power to a device that consumes power such as a motor, and stores power supplied from a device that generates power such as a generator.

蓄電素子100は、主に、容器10と、この容器10に収容された蓄電要素20と、この蓄電要素20に接続されて容器10に収容された集電板30と、この集電板30に接続されて容器10の外面に配置された外部端子40と、を備えている。また、図1および図2に示す例において、蓄電素子100は、蓄電要素20および集電板30を覆う絶縁シート50と、容器10と集電板30との間に配置される絶縁板60と、容器10と外部端子40との間に配置されるガスケット70と、を備えている。   The storage element 100 mainly includes a container 10, a storage element 20 housed in the container 10, a current collector plate 30 connected to the storage element 20 and housed in the container 10, and the current collector plate 30. And an external terminal 40 connected and disposed on the outer surface of the container 10. Further, in the example shown in FIGS. 1 and 2, the storage element 100 includes an insulation sheet 50 covering the storage element 20 and the current collector plate 30, and an insulation plate 60 disposed between the container 10 and the current collector plate 30. And a gasket 70 disposed between the container 10 and the external terminal 40.

容器10は、たとえば、アルミニウムまたはアルミニウム合金を素材として薄型の直方体形状に形成され、容器10の厚さ方向を向く最大面積の広側面10wと、容器10の厚さ方向に沿う最小面積の狭側面10nと、容器10の高さ方向の上下の上面10tと底面10bを有している。なお、蓄電素子100の容器10の形状は、角形に限定されず、たとえば円筒形など、任意の形状を採用することができる。   The container 10 is made of, for example, aluminum or an aluminum alloy as a raw material and formed in a thin rectangular solid shape, and has a wide side 10w of the largest area facing the thickness direction of the container 10 and a narrow side of the smallest area along the thickness direction of the container 10 10 n and upper and lower upper and lower surfaces 10 t and 10 b in the height direction of the container 10. The shape of the container 10 of the storage element 100 is not limited to a square, and any shape such as a cylindrical shape can be adopted.

容器10は、たとえば、一端に開口部11aを有する電池缶11と、電池缶11の開口部11aを密閉する電池蓋12とによって構成されている。電池缶11は、たとえば、上端部が開放された有底角筒状に設けられ、上端部におおむね長方形の開口部11aを有する偏平な箱形の部材である。電池蓋12は、たとえば、容器10の幅方向を長手方向とするおおむね長方形の細長い板状の部材である。   The container 10 includes, for example, a battery can 11 having an opening 11a at one end, and a battery lid 12 for sealing the opening 11a of the battery can 11. The battery can 11 is, for example, a flat box-shaped member which is provided in a bottomed rectangular cylinder whose upper end is opened and which has a substantially rectangular opening 11a at its upper end. The battery cover 12 is, for example, a substantially rectangular elongated plate-like member whose longitudinal direction is the width direction of the container 10.

電池蓋12は、たとえば、長手方向の両端部に貫通孔12aを有し、長手方向の中央部にガス排出弁12bを有し、ガス排出弁12bと貫通孔12aとの間に注液栓12cによって密閉された注液口12dを有している。ガス排出弁12bは、たとえば、電池蓋12に設けられた薄肉部であり、溝状のスリットを有している。ガス排出弁12bは、容器10の内圧が上昇して所定の圧力に達すると開裂して、容器10の内部のガスを外部に放出することで、容器10の内圧を低下させて蓄電素子100の安全性を確保する。   The battery cover 12 has, for example, through holes 12a at both end portions in the longitudinal direction, and a gas discharge valve 12b at the central portion in the longitudinal direction, and the injection plug 12c is disposed between the gas discharge valve 12b and the through hole 12a. The liquid injection port 12 d is sealed by the The gas discharge valve 12 b is, for example, a thin-walled portion provided on the battery lid 12 and has a groove-like slit. The gas discharge valve 12 b is split when the internal pressure of the container 10 rises and reaches a predetermined pressure, and the gas inside the container 10 is discharged to the outside to lower the internal pressure of the container 10. Ensure safety.

図3は、図2に示す蓄電要素20の一部を展開した状態を示す斜視図である。蓄電要素20は、蓄電素子100の発電体であり、たとえば、長尺帯状の正極体21と負極体22とを、これらの間に長尺帯状のセパレータ23を介在させて捲回した捲回電極群である。正極体21は、長尺帯状の正極箔21aと、この正極箔21aの幅方向の一端を除く両面に形成された正極合剤層21bと、正極箔21aの幅方向の一端で正極箔21aが正極合剤層21bから露出した箔露出部21cとを有している。   FIG. 3 is a perspective view showing a state in which a part of the storage element 20 shown in FIG. 2 is developed. Storage element 20 is a power generation body of storage element 100. For example, a wound electrode obtained by winding long strip-like positive electrode body 21 and negative electrode body 22 with long strip-like separator 23 interposed therebetween. It is a group. The positive electrode body 21 has a long strip-like positive electrode foil 21a, a positive electrode mixture layer 21b formed on both sides of one end of the positive electrode foil 21a in the width direction, and a positive electrode foil 21a at one end in the width direction of the positive electrode foil 21a. And a foil exposed portion 21c exposed from the positive electrode mixture layer 21b.

同様に、負極体22は、長尺帯状の負極箔22aと、この負極箔22aの幅方向の一端を除く両面に形成された負極合剤層22bと、負極箔22aの幅方向の一端で負極箔22aが負極合剤層22bから露出した箔露出部22cとを有している。正極体21と負極体22は、捲回軸20Aを中心に偏平な形状に捲回され、それぞれの箔露出部21c,22cが捲回軸20A方向における反対の位置に配置されている。偏平な形状に捲回された蓄電要素20は、正極体21および負極体22が平坦に積層された厚さ方向を向く平坦部20Fと、平坦部20Fの両側で正極体21および負極体22が円弧状に湾曲して積層された半円筒状の湾曲部20Rと、を有している。   Similarly, the negative electrode body 22 includes a long strip-like negative electrode foil 22a, a negative electrode mixture layer 22b formed on both sides except one end in the width direction of the negative electrode foil 22a, and a negative electrode at one end in the width direction of the negative electrode foil 22a. Foil 22a has foil exposed portion 22c exposed from negative electrode mixture layer 22b. The positive electrode body 21 and the negative electrode body 22 are wound in a flat shape around the winding shaft 20A, and the respective foil exposed portions 21c and 22c are disposed at opposite positions in the direction of the winding shaft 20A. The storage element 20 wound into a flat shape has a flat portion 20F facing the thickness direction in which the positive electrode body 21 and the negative electrode body 22 are stacked flat, and the positive electrode body 21 and the negative electrode body 22 on both sides of the flat portion 20F. And a semi-cylindrical curved portion 20R which is curved and stacked in an arc shape.

外部端子40は、正極集電板30Pに接続される正極外部端子40Pと、負極集電板30Nに接続される負極外部端子40Nとを含む。正極外部端子40Pは、たとえば、アルミニウムまたはアルミニウム合金製の部材である。負極外部端子40Nは、たとえば、銅または銅合金製の部材である。正極外部端子40Pの形状と負極外部端子40Nの形状は、おおむね同一である。外部端子40は、たとえば、電池蓋12の長手方向の一端と他端に配置されている。   The external terminal 40 includes a positive electrode external terminal 40P connected to the positive electrode current collector plate 30P and a negative electrode external terminal 40N connected to the negative electrode current collector plate 30N. Positive electrode external terminal 40P is, for example, a member made of aluminum or an aluminum alloy. Negative electrode external terminal 40N is, for example, a member made of copper or a copper alloy. The shape of the positive electrode external terminal 40P and the shape of the negative electrode external terminal 40N are substantially the same. The external terminals 40 are disposed, for example, at one end and the other end of the battery lid 12 in the longitudinal direction.

図4は、外部端子40と集電板30とを接続する前の状態を示す拡大された分解斜視図である。外部端子40は、容器10の外面に配置された端子部41と、この端子部41から延びて容器10を貫通する軸部42と、を有している。外部端子40は、たとえば、一つの金属材料を成型または切削加工することにより、一部材として一体的に設けられている。   FIG. 4 is an enlarged exploded perspective view showing a state before the external terminal 40 and the current collector plate 30 are connected. The external terminal 40 has a terminal portion 41 disposed on the outer surface of the container 10, and a shaft portion 42 extending from the terminal portion 41 and penetrating the container 10. The external terminal 40 is integrally provided as one member, for example, by molding or cutting one metal material.

端子部41は、たとえば、おおむね直方体のブロック状の形状を有し、容器10の上面10tすなわち電池蓋12の外面に、ガスケット70を介して配置される。端子部41の電池蓋12と反対の面は、たとえば、電池蓋12の外面とおおむね平行であり、金属製の板状のバスバーを溶接するための外部端子40の溶接接合部である。   The terminal portion 41 has, for example, a substantially rectangular block shape and is disposed on the top surface 10 t of the container 10, that is, the outer surface of the battery lid 12 via a gasket 70. The surface of the terminal portion 41 opposite to the battery lid 12 is, for example, generally parallel to the outer surface of the battery lid 12 and is a welded joint of the external terminal 40 for welding a metal plate bar.

軸部42は、たとえば、端子部41の電池蓋12に対向する面に直交する中心軸42Aに沿って延び、基端側に円柱部42aを有し、先端側に円筒部42bを有している。円筒部42bの外径は円柱部42aの外径よりも縮径され、円柱部42aと円筒部42bとの間に段差が形成されている。円筒部42bは、先端部が中空の円筒状にされている。なお、軸部42は、たとえば、中空円筒状の円筒部42bの先端部に、軸部42の中心軸42Aに沿って延びるスリットを有していてもよい。   The shaft portion 42 extends, for example, along a central axis 42A orthogonal to the surface of the terminal portion 41 facing the battery lid 12, has a cylindrical portion 42a at the proximal end side, and has a cylindrical portion 42b at the distal end side There is. The outer diameter of the cylindrical portion 42b is smaller than the outer diameter of the cylindrical portion 42a, and a step is formed between the cylindrical portion 42a and the cylindrical portion 42b. The cylindrical portion 42 b has a hollow cylindrical end. The shaft portion 42 may have, for example, a slit extending along the central axis 42A of the shaft portion 42 at the tip of the hollow cylindrical cylindrical portion 42b.

また、軸部42は、先端部を塑性変形させて先端部に拡径部43(図5参照)を形成できるものであれば、全体が中空の筒状であってもよいし、全体が中実の柱状であってもよい。また、軸部42は、断面形状が円形の円筒状や円柱状に限定されず、断面形状が多角形の筒状や柱状であってもよい。   The shaft portion 42 may be a hollow cylinder as a whole, as long as the shaft portion 42 can be plastically deformed at the tip portion to form the enlarged diameter portion 43 (see FIG. 5) at the tip portion. It may be a real column. Further, the shaft portion 42 is not limited to a cylindrical or cylindrical shape having a circular cross-sectional shape, and may have a cylindrical shape or a columnar shape having a polygonal cross-sectional shape.

集電板30は、蓄電要素20の正極体21に接続される正極集電板30Pと、蓄電要素20の負極体22に接続される負極集電板30Nとを含んでいる。正極集電板30Pは、たとえば、アルミニウムまたはアルミニウム合金製の板状の部材である。負極集電板30Nは、たとえば、銅または銅合金製の板状の部材である。正極集電板30Pの形状と負極集電板30Nの形状は、おおむね鏡像対称である。   Current collector plate 30 includes a positive electrode current collector plate 30P connected to positive electrode body 21 of storage element 20 and a negative electrode current collector plate 30N connected to negative electrode body 22 of storage element 20. The positive electrode current collector plate 30P is, for example, a plate-like member made of aluminum or an aluminum alloy. Negative electrode current collector plate 30N is a plate-like member made of, for example, copper or copper alloy. The shape of the positive electrode current collector plate 30P and the shape of the negative electrode current collector plate 30N are approximately mirror-symmetrical.

集電板30は、軸部42の中心軸42Aに直交する方向に延在する中継部31と、この中継部31の延在方向の一端に設けられて蓄電要素20に接続された接続部32と、この接続部32よりも中継部31の延在方向の他端側に設けられた貫通孔33と、を有している。中継部31は、絶縁板60を介して電池蓋12の内面に固定される集電板30の基部であり、電池蓋12に平行に配置されるおおむね長方形の板状の部分である。   Current collector plate 30 is provided with a relay portion 31 extending in a direction orthogonal to central axis 42 A of shaft portion 42, and a connection portion 32 provided at one end in the extending direction of relay portion 31 and connected to storage element 20. And a through hole 33 provided on the other end side of the connecting portion 32 in the extending direction of the relay portion 31. The relay portion 31 is a base portion of the current collector plate 30 fixed to the inner surface of the battery lid 12 via the insulating plate 60, and is a substantially rectangular plate-like portion disposed parallel to the battery lid 12.

接続部32は、中継部31の延在方向の一端において中継部31に対しておおむね直角に曲折され、軸部42の中心軸42Aにおおむね平行に容器10の底面10bに向けて延びている。より詳細には、図2および図4に示す例において、接続部32は、容器10の広側面10wに対向する中継部31の一側縁であって、中継部31の延在方向すなわち容器10の幅方向に沿う中継部31の一側縁において、容器10の狭側面10nに隣接する容器10の幅方向における外側の中継部31の一端に接続されている。また、接続部32は、蓄電要素20の捲回軸20A方向の一端と他端においてそれぞれ捲回されて束ねられた正極体21の箔露出部21cと負極体22の箔露出部22cに沿って延びている。   The connection portion 32 is bent substantially at right angles to the relay portion 31 at one end in the extension direction of the relay portion 31 and extends toward the bottom surface 10 b of the container 10 generally in parallel to the central axis 42 A of the shaft portion 42. More specifically, in the example illustrated in FIG. 2 and FIG. 4, the connection portion 32 is one side edge of the relay portion 31 facing the wide side 10 w of the container 10 and the extension direction of the relay portion 31, that is, the container 10 The one side edge of the relay portion 31 along the width direction of the container 10 is connected to one end of the outer relay portion 31 in the width direction of the container 10 adjacent to the narrow side surface 10 n of the container 10. Further, connection portion 32 is arranged along foil exposed portion 21 c of positive electrode body 21 and foil exposed portion 22 c of negative electrode body 22 wound and bundled respectively at one end and the other end in the direction of winding axis 20 A of storage element 20. It extends.

絶縁シート50は、たとえば、可撓性および電気絶縁性を有する樹脂製のシートである。絶縁シート50は、蓄電要素20と、この蓄電要素20に接合された集電板30の周囲を覆うように配置されることで、蓄電要素20と電池缶11との間、および集電板30と電池缶11との間を電気的に絶縁している。絶縁板60は、たとえば、電気絶縁性を有する硬質の樹脂製の部材であり、外部端子40の軸部42を貫通させる貫通孔61を有している。絶縁板60は、集電板30の中継部31と電池蓋12との間に配置され、これらの間を電気的に絶縁している。   Insulating sheet 50 is, for example, a resin sheet having flexibility and electrical insulation. Insulating sheet 50 is arranged to cover storage element 20 and the periphery of current collecting plate 30 joined to storage element 20, so that between storage element 20 and battery can 11, and current collection plate 30. And the battery can 11 are electrically isolated. The insulating plate 60 is, for example, a hard resin member having an electrical insulation property, and has a through hole 61 through which the shaft portion 42 of the external terminal 40 passes. The insulating plate 60 is disposed between the relay portion 31 of the current collector plate 30 and the battery lid 12 to electrically insulate between them.

ガスケット70は、たとえば、柔軟性と電気絶縁性を有する樹脂製の部材である。ガスケット70は、外部端子40の端子部41の電池蓋12に対向する面と側面の端部を覆う本体部71と、本体部71に設けられた貫通孔72と、外部端子40の軸部42の基端部を覆う筒状部73とを有している。ガスケット70の本体部71は、外部端子40の端子部41と電池蓋12との間を電気的に絶縁している。ガスケット70の筒状部73は、外部端子40の軸部42と電池蓋12の貫通孔12aとの間を電気的に絶縁している。また、ガスケット70は、本体部71が外部端子40の端子部41と電池蓋12との間で圧縮されることで、電池蓋12の貫通孔12aを封止している。   The gasket 70 is, for example, a resin member having flexibility and electrical insulation. The gasket 70 has a main body 71 that covers the end of the side and the side facing the battery lid 12 of the terminal 41 of the external terminal 40, a through hole 72 provided in the main body 71, and a shaft 42 of the external terminal 40. And a tubular portion 73 covering the proximal end portion of the The main body portion 71 of the gasket 70 electrically insulates between the terminal portion 41 of the external terminal 40 and the battery cover 12. The cylindrical portion 73 of the gasket 70 electrically insulates between the shaft portion 42 of the external terminal 40 and the through hole 12 a of the battery lid 12. Further, the gasket 70 seals the through hole 12 a of the battery lid 12 by the main body 71 being compressed between the terminal 41 of the external terminal 40 and the battery lid 12.

次に、本実施形態の蓄電素子100の組み立て手順の一例を説明する。まず、図4に示すように、外部端子40の軸部42を、ガスケット70の貫通孔72、電池蓋12の貫通孔12a、絶縁板60の貫通孔61、および集電板30の中継部31の貫通孔33に、順次、貫通させる。次に、集電板30の中継部31の貫通孔33を貫通した外部端子40の軸部42の先端部を塑性変形させて拡径させることで、中継部31の貫通孔33の内径よりも拡径されて中継部31に接続された拡径部43(図5参照)を形成する。   Next, an example of an assembly procedure of the storage element 100 of the present embodiment will be described. First, as shown in FIG. 4, the shaft portion 42 of the external terminal 40 includes the through hole 72 of the gasket 70, the through hole 12 a of the battery cover 12, the through hole 61 of the insulating plate 60, and the relay portion 31 of the current collector plate 30. The through holes 33 are sequentially penetrated. Next, the tip of the shaft portion 42 of the external terminal 40 penetrating the through hole 33 of the relay portion 31 of the current collector plate 30 is plastically deformed and expanded in diameter, whereby the diameter is larger than the inner diameter of the through hole 33 of the relay portion 31 An enlarged diameter portion 43 (see FIG. 5) which is expanded in diameter and connected to the relay portion 31 is formed.

図5は、蓄電素子100の製造工程の一部であるかしめ工程における外部端子40の近傍の拡大断面図である。図6は、図5に示すかしめ工程によって形成された拡径部43の模式的な平面図である。ガスケット70の貫通孔72、電池蓋12の貫通孔12a、絶縁板60の貫通孔61、および集電板30の中継部31の貫通孔33を貫通した外部端子40の軸部42の先端部は、たとえば、かしめ工具Tによって軸部42の中心軸42A方向に押し潰されるように加圧される。   FIG. 5 is an enlarged cross-sectional view of the vicinity of the external terminal 40 in the caulking process, which is a part of the manufacturing process of the storage element 100. FIG. 6 is a schematic plan view of the enlarged diameter portion 43 formed by the caulking process shown in FIG. The tip end portion of the shaft portion 42 of the external terminal 40 penetrating the through hole 72 of the gasket 70, the through hole 12a of the battery lid 12, the through hole 61 of the insulating plate 60, and the through hole 33 of the relay portion 31 of the current collector plate 30 For example, pressure is applied so as to be crushed in the direction of the central axis 42A of the shaft portion 42 by the caulking tool T.

これにより、かしめ工具Tによって外部端子40の軸部42の先端部が径方向外側に拡げられ、集電板30の中継部31の貫通孔33の内径よりも拡径されて拡径部43が形成される。拡径部43は、集電板30の中継部31に対向する接続面43Fが、集電板30の中継部31に押し付けられ、中継部31に電気的に接続される。このとき、集電板30の中継部31は、たとえば、軸部42の基部と先端部との間の段差に係合し、この段差と軸部42の先端の拡径部43との間に挟持される。これにより、外部端子40の端子部41と拡径部43と電池蓋12との間でガスケット70が所定の変形量で圧縮された状態で、電池蓋12に対して外部端子40、ガスケット70、絶縁板60、および集電板30を固定することができる。   As a result, the tip end of the shaft 42 of the external terminal 40 is expanded radially outward by the caulking tool T, and the diameter of the enlarged diameter portion 43 is increased by the diameter of the through hole 33 of the relay portion 31 of the current collector plate 30. It is formed. In the enlarged diameter portion 43, the connection surface 43 </ b> F facing the relay portion 31 of the current collector plate 30 is pressed against the relay portion 31 of the current collector plate 30 and electrically connected to the relay portion 31. At this time, the relay portion 31 of the current collector plate 30 engages, for example, a step between the base portion and the tip portion of the shaft portion 42, and between the step and the enlarged diameter portion 43 at the tip of the shaft portion 42. It is pinched. Thus, with the gasket 70 compressed by a predetermined amount of deformation between the terminal portion 41 of the external terminal 40, the enlarged diameter portion 43 and the battery cover 12, the external terminal 40, the gasket 70, The insulating plate 60 and the current collector plate 30 can be fixed.

また、前述のように、軸部42が中空円筒状の円筒部42bの先端部に軸部42の中心軸42Aに沿って延びるスリットを有している場合には、このスリットが拡径部43の径方向の外側の部分ほど拡径部43の周方向に拡大され、拡径部43にくさび形、V字型または扇形の切欠き部44が形成される。また、軸部42が先端部にスリットを有しない場合には、軸部42の先端部に切込みを形成する凸部または刃を備えたかしめ工具Tを用いることで、切欠き部44を有する拡径部43を形成することができる。   Further, as described above, in the case where the shaft portion 42 has a slit extending along the central axis 42A of the shaft portion 42 at the tip end of the hollow cylindrical cylindrical portion 42b, this slit serves as the enlarged diameter portion 43. The radially outer portion is expanded in the circumferential direction of the enlarged diameter portion 43, and a wedge-shaped, V-shaped or sector-shaped notch portion 44 is formed in the enlarged diameter portion 43. Further, when the shaft portion 42 does not have a slit at the tip end portion, the caulking tool T is provided with a convex portion or a blade for forming a cut at the tip end portion of the shaft portion 42. The diameter portion 43 can be formed.

このように、かしめ工程において拡径部43に切欠き部44を形成することで、切欠き部44を形成しない場合と比較して、拡径部43を形成するときの軸部42の塑性変形を減少させることができる。より詳細には、拡径部43が切欠き部44を有しない場合、拡径部43の周方向の塑性変形は、径方向の外側ほど大きくなる。すると、拡径部43に加工硬化と延性減少に起因する割れが生じるおそれがある。このような割れを防止するために熱処理を行うと、蓄電素子100の製造コストが増加する。   Thus, by forming the notches 44 in the enlarged diameter portion 43 in the caulking step, plastic deformation of the shaft portion 42 when forming the enlarged diameter portion 43 as compared with the case where the notches 44 are not formed. Can be reduced. More specifically, when the enlarged diameter portion 43 does not have the notch portion 44, the plastic deformation in the circumferential direction of the enlarged diameter portion 43 becomes larger toward the outer side in the radial direction. Then, there is a possibility that the crack resulting from work hardening and ductility reduction may occur in the enlarged diameter portion 43. When heat treatment is performed to prevent such a crack, the manufacturing cost of the storage element 100 is increased.

これに対し、拡径部43が、軸部42の径方向に切り欠かれた切欠き部44を有する場合には、軸部42の先端を拡径させて拡径部43を形成するときの軸部42の周方向の塑性変形を減少させることができる。そのため、熱処理を行うことなく、拡径部43に加工硬化と延性減少に起因する割れが生じるのを防止することができる。しかし、拡径部43の切欠き部44が、外部端子40と蓄電要素20との間の電流密度が高い部分に設けられると、電流の流れが阻害され、外部端子40と蓄電要素20との間の電気抵抗が上昇するおそれがある。   On the other hand, when the enlarged diameter portion 43 has the notched portion 44 cut out in the radial direction of the shaft portion 42, the diameter of the tip end of the shaft portion 42 is expanded to form the enlarged diameter portion 43. Plastic deformation in the circumferential direction of the shaft portion 42 can be reduced. Therefore, it is possible to prevent the occurrence of cracking due to work hardening and ductility reduction in the enlarged diameter portion 43 without performing heat treatment. However, when notch 44 of enlarged diameter portion 43 is provided in a portion where current density between external terminal 40 and storage element 20 is high, the flow of current is interrupted, and external terminal 40 and storage element 20 There is a risk that the electrical resistance between them will rise.

このような外部端子40と蓄電要素20との間の電気抵抗の上昇を防止するために、本実施形態の蓄電素子100は、次の構成を備えることを特徴としている。拡径部43において、軸部42の中心軸42Aおよび中継部31の延在方向に直交する中心線C1によって分けられる二つの半部43A,43Bのうち、集電板30の接続部32に近接した第1半部43Aは、集電板30の接続部32から離隔した第2半部43Bよりも、集電板30の中継部31に対向する接続面43Fの面積が大きい。   In order to prevent such an increase in the electrical resistance between the external terminal 40 and the storage element 20, the storage element 100 of the present embodiment is characterized by having the following configuration. Of the two half parts 43A and 43B divided by the center axis 42A of the shaft part 42 and the center line C1 orthogonal to the extending direction of the relay part 31 in the enlarged diameter part 43, it approaches the connection part 32 of the current collector plate 30. The first half portion 43A has a larger area of the connection surface 43F facing the relay portion 31 of the current collector plate 30 than the second half portion 43B separated from the connection portion 32 of the current collector plate 30.

拡径部43の第1半部43Aおよび第2半部43Bは、それぞれ、集電板30の中継部31に対向する接続面43Fが中継部31に接して中継部31に電気的に接続されている。そのため、拡径部43の第1半部43Aおよび第2半部43Bは、集電板30の中継部31に対向する接続面43Fの面積が大きいほど、中継部31に電気的に接続される面積が大きくなり、電気抵抗が低下する。すなわち、集電板30の接続部32に近接した第1半部43Aは、集電板30の接続部32から離隔した第2半部43Bよりも、集電板30の中継部31との間の電気抵抗が小さい。なお、拡径部43の第1半部43Aおよび第2半部43Bの接続面43Fは、おおむね全面が集電板30の中継部31に接している。   In the first half portion 43A and the second half portion 43B of the enlarged diameter portion 43, the connection surface 43F facing the relay portion 31 of the current collector plate 30 is electrically connected to the relay portion 31 in contact with the relay portion 31. ing. Therefore, the first half portion 43A and the second half portion 43B of the enlarged diameter portion 43 are electrically connected to the relay portion 31 as the area of the connection surface 43F facing the relay portion 31 of the current collector plate 30 increases. The area increases and the electrical resistance decreases. That is, the first half portion 43A closer to the connection portion 32 of the current collector plate 30 is closer to the relay portion 31 of the current collector plate 30 than the second half portion 43B separated from the connection portion 32 of the current collector plate 30. Low electrical resistance. The connecting surface 43 F of the first half portion 43 A and the second half portion 43 B of the enlarged diameter portion 43 is generally in contact with the relay portion 31 of the current collector plate 30.

本実施形態の蓄電素子100において、外部端子40の軸部42の拡径部43は、集電板30の接続部32から離隔した第2半部43Bに唯一の切欠き部44を有している。図6に示す例において、第2半部43Bの切欠き部44は、軸部42の中心軸42Aに直交し、中継部31の延在方向に平行な中心線C2上に配置されている。また、図6に示す例において、集電板30の接続部32は、図2および図4に示す例と異なり、中継部31の延在方向の一端において、容器10の狭側面10nに対向する中継部31の側縁からおおむね直角に曲折され、容器10の狭側面10nに沿って容器10の底面10bに向けて延びている。   In the storage element 100 of the present embodiment, the enlarged diameter portion 43 of the shaft portion 42 of the external terminal 40 has a single notched portion 44 in the second half portion 43B separated from the connection portion 32 of the current collector plate 30. There is. In the example shown in FIG. 6, the notch 44 of the second half 43 B is disposed on the center line C 2 which is orthogonal to the central axis 42 A of the shaft 42 and parallel to the extending direction of the relay portion 31. Further, in the example shown in FIG. 6, the connection portion 32 of the current collector plate 30 is opposed to the narrow side surface 10 n of the container 10 at one end in the extension direction of the relay portion 31 unlike the example shown in FIGS. It is bent substantially at right angles from the side edge of the relay portion 31 and extends along the narrow side 10 n of the container 10 toward the bottom surface 10 b of the container 10.

また、本実施形態の蓄電素子100において、外部端子40の軸部42の拡径部43に設けられた切欠き部44は、拡径部43の径方向における内側の端部44aが、貫通孔33の開口縁33aよりも外側に設けられている。図6に示す例において、切欠き部44は、くさび形、V字型、または扇形の形状を有し、拡径部43の径方向における内側ほど、拡径部43の周方向の寸法が小さくなっている。拡径部43の強度は、たとえば、拡径部43の周方向の全周にわたって連続し、かつ、集電板30の中継部31の貫通孔33の外側に係合している拡径部43の円環部分43Cの強度として求められる。すなわち、拡径部43の強度は、たとえば、拡径部43の円環部分43Cの径方向の寸法43dと厚み43t(図5参照)を積算することによって求められる。   In addition, in the storage element 100 of the present embodiment, the notch 44 provided in the enlarged diameter portion 43 of the shaft portion 42 of the external terminal 40 has a through hole as the end portion 44a inside in the radial direction of the enlarged diameter portion 43 It is provided outside the opening edge 33a of 33. In the example shown in FIG. 6, the notch portion 44 has a wedge shape, a V shape, or a sector shape, and the dimension in the circumferential direction of the enlarged diameter portion 43 is smaller toward the radial inside of the enlarged diameter portion 43. It has become. The strength of the enlarged diameter portion 43 is, for example, continued along the entire circumferential direction of the enlarged diameter portion 43 and is engaged with the outside of the through hole 33 of the relay portion 31 of the current collector plate 30. Is determined as the strength of the annular portion 43C of That is, the strength of the enlarged diameter portion 43 can be obtained, for example, by integrating the radial dimension 43 d of the annular portion 43 C of the enlarged diameter portion 43 and the thickness 43 t (see FIG. 5).

以上のように、外部端子40の軸部42の先端部を塑性変形させるかしめにより拡径部43を形成することで、外部端子40の軸部42と集電板30の中継部31を電気的に接続するとともに、電池蓋12に対して外部端子40、ガスケット70、絶縁板60、および集電板30をかしめ固定することができる。その後、集電板30の接続部32を、蓄電要素20に接続する。   As described above, the enlarged diameter portion 43 is formed by plastic deformation of the distal end portion of the shaft portion 42 of the external terminal 40 to electrically connect the shaft portion 42 of the external terminal 40 and the relay portion 31 of the current collector plate 30. The external terminal 40, the gasket 70, the insulating plate 60, and the current collector plate 30 can be crimped and fixed to the battery lid 12. Thereafter, connection portion 32 of current collector plate 30 is connected to storage element 20.

より具体的には、図2に示すように、蓄電要素20は、たとえば、捲回軸20Aが容器10の幅方向すなわち電池蓋12の長手方向に平行に配置され、捲回軸20A方向の一端と他端に捲回された正極体21の箔露出部21cと負極体22の箔露出部22cが、平坦部20Fにおいて圧縮されて束ねられる。そして、集電板30の接続部32は、蓄電要素20の箔露出部21c,22cが束ねられた部分に対向して配置され、たとえば、超音波接合によって蓄電要素20の箔露出部21c,22cに接合されて電気的に接続される。これにより、正極外部端子40Pと負極外部端子40Nが、それぞれ、正極集電板30Pと負極集電板30Nを介して、蓄電要素20の正極体21と負極体22に電気的に接続される。   More specifically, as shown in FIG. 2, the storage element 20 has, for example, one end of the winding axis 20A disposed parallel to the width direction of the container 10, ie, the longitudinal direction of the battery cover 12, The foil exposed portion 21c of the positive electrode body 21 and the foil exposed portion 22c of the negative electrode body 22 wound around the other end are compressed and bundled at the flat portion 20F. The connection portion 32 of the current collector plate 30 is disposed opposite to the portion where the foil exposed portions 21c and 22c of the storage element 20 are bundled. For example, the foil exposed portions 21c and 22c of the storage element 20 are ultrasonically bonded. And electrically connected. As a result, the positive electrode external terminal 40P and the negative electrode external terminal 40N are electrically connected to the positive electrode body 21 and the negative electrode body 22 of the storage element 20 via the positive electrode current collector plate 30P and the negative electrode current collector plate 30N, respectively.

次に、集電板30に接合されて集電板30を介して電池蓋12に固定された蓄電要素20を、集電板30とともに絶縁シート50によって覆い、容器10の電池缶11の開口部11aから電池缶11の内部に挿入する。そして、集電板30、蓄電要素20およびこれらを覆う絶縁シート50の全体を電池缶11の内部に収容し、電池缶11の開口部11aを電池蓋12によって閉塞する。その後、たとえば、レーザ溶接によって、電池蓋12を全周にわたって電池缶11の上端部に接合して、電池缶11の開口部11aを電池蓋12によって密閉および封止し、電池缶11と電池蓋12によって、集電板30および蓄電要素20を収容する容器10を構成する。   Next, the storage element 20 joined to the current collector plate 30 and fixed to the battery lid 12 via the current collector plate 30 is covered with the current collector plate 30 by the insulating sheet 50, and the opening of the battery can 11 of the container 10 11a is inserted into the inside of the battery can 11. Then, the whole of the current collecting plate 30, the storage element 20 and the insulating sheet 50 covering them are accommodated inside the battery can 11, and the opening 11 a of the battery can 11 is closed by the battery lid 12. After that, for example, the battery lid 12 is joined to the upper end of the battery can 11 over the entire circumference by laser welding, and the opening 11a of the battery can 11 is sealed and sealed by the battery lid 12, and the battery can 11 and the battery lid The container 12 which accommodates the current collection board 30 and the electrical storage element 20 is comprised by 12.

その後、たとえば、電池蓋12に設けられた注液口12dを介して容器10の内部に電解液を注入し、注液口12dを注液栓12cによって閉塞し、たとえばレーザ溶接によって注液栓12cの全周を電池蓋12に接合することで、注液口12dを注液栓12cによって密閉および封止する。以上により、図1に示す形態の蓄電素子100を組み立てることができる。   Thereafter, for example, an electrolytic solution is injected into the inside of the container 10 through the liquid injection port 12d provided in the battery lid 12, and the liquid injection port 12d is closed by the liquid injection plug 12c. The liquid injection port 12 d is sealed and sealed by the liquid injection plug 12 c by bonding the entire circumference of the battery cover 12 to the battery cover 12. Thus, the storage element 100 in the form shown in FIG. 1 can be assembled.

以下、本実施形態の蓄電素子100の作用について説明する。   Hereinafter, the operation of the storage element 100 of the present embodiment will be described.

図7は、本実施形態の蓄電素子100における電流Iの経路の一例を示す拡大正面図である。なお、図7では、容器10の電池缶11、絶縁シート50等の図示を省略している。   FIG. 7 is an enlarged front view showing an example of the path of the current I in the storage element 100 of the present embodiment. In addition, illustration of the battery can 11 of the container 10, the insulation sheet 50 grade | etc., Is abbreviate | omitted in FIG.

本実施形態の蓄電素子100は、前述のように、たとえば、車両に搭載され、モータなどの電力を消費する機器へ電力を供給する。このとき、蓄電要素20の箔露出部21cから、集電板30の接続部32へ電流Iが流れる。集電板30の接続部32を流れた電流Iは、接続部32から中継部31へ流れ、中継部31から外部端子40の軸部42の拡径部43へ流れる。外部端子40の軸部42の拡径部43へ流れた電流Iは、軸部42を介して端子部41へ流れ、端子部41からバスバーや配線などを介して、モータなどの電力を消費する機器へ供給される。   As described above, for example, the storage element 100 of the present embodiment is mounted on a vehicle and supplies power to an apparatus that consumes power, such as a motor. At this time, a current I flows from the foil exposed portion 21 c of the storage element 20 to the connection portion 32 of the current collector plate 30. The current I flowing through the connection portion 32 of the current collector plate 30 flows from the connection portion 32 to the relay portion 31 and flows from the relay portion 31 to the enlarged diameter portion 43 of the shaft portion 42 of the external terminal 40. The current I flowing to the enlarged diameter portion 43 of the shaft portion 42 of the external terminal 40 flows to the terminal portion 41 via the shaft portion 42, and consumes power such as a motor from the terminal portion 41 via a bus bar or wiring. It is supplied to the equipment.

また、本実施形態の蓄電素子100は、前述のように、たとえば、発電機などの電力を生成する機器から供給された電力を蓄える。このとき、発電機などの電力を生成する機器から配線やバスバーなどを介して外部端子40の端子部41へ電流Iが流れる。端子部41へ流れた電流Iは、軸部42を介して軸部42の先端の拡径部43へ流れる。拡径部43へ流れた電流Iは、集電板30の中継部31を介して接続部32へ流れ、接続部32から蓄電要素20の箔露出部21cへ流れ、蓄電要素20に電力が蓄えられる。   Further, as described above, the storage element 100 of the present embodiment stores, for example, the power supplied from a device such as a generator that generates power. At this time, a current I flows from the device such as a generator to the terminal portion 41 of the external terminal 40 through the wiring, the bus bar, and the like. The current I having flowed to the terminal portion 41 flows to the enlarged diameter portion 43 at the tip of the shaft portion 42 via the shaft portion 42. The current I that has flowed to the enlarged diameter portion 43 flows to the connection portion 32 through the relay portion 31 of the current collector plate 30, flows from the connection portion 32 to the foil exposed portion 21c of the storage element 20, and power is stored in the storage element 20. Be

すなわち、本実施形態の蓄電素子100において、電流Iは、外部端子40の端子部41と軸部42との間では、軸部42の中心軸42Aの方向に流れる。また、電流Iは、外部端子40の軸部42と集電板30の接続部32との間は、軸部42の中心軸42Aに直交する中継部31の延在方向、すなわち容器10の幅方向に流れる。さらに電流Iは、集電板30の中継部31と蓄電要素20との間では、集電板30の接続部32の延在方向、すなわち容器10の高さ方向に流れる。   That is, in the storage element 100 of the present embodiment, the current I flows in the direction of the central axis 42A of the shaft portion 42 between the terminal portion 41 of the external terminal 40 and the shaft portion 42. Further, the current I is between the axial portion 42 of the external terminal 40 and the connection portion 32 of the current collector plate 30 in the extending direction of the relay portion 31 orthogonal to the central axis 42A of the axial portion 42, ie, the width of the container 10. Flow in the direction. Furthermore, the current I flows in the extending direction of the connection portion 32 of the current collector plate 30, that is, in the height direction of the container 10, between the relay portion 31 of the current collector plate 30 and the storage element 20.

すなわち、図6に示すように、集電板30の接続部32に近接した拡径部43の第1半部43Aは、外部端子40と蓄電要素20との間の主要な電流経路の一部となり、第2半部43Bよりも電流密度が高くなる。一方、集電板30の接続部32から離隔した拡径部43の第2半部43Bは、外部端子40と蓄電要素20との間の主要な電流経路から外れ、第1半部43Aよりも電流密度が低くなる。   That is, as shown in FIG. 6, the first half portion 43A of the enlarged diameter portion 43 adjacent to the connection portion 32 of the current collector plate 30 is a part of the main current path between the external terminal 40 and the storage element 20. Thus, the current density is higher than that of the second half 43B. On the other hand, the second half 43B of the enlarged diameter portion 43 separated from the connection portion 32 of the current collector plate 30 deviates from the main current path between the external terminal 40 and the storage element 20 and is more than the first half 43A. The current density is reduced.

ここで、本実施形態の蓄電素子100は、前述のように、次の構成を備えている。蓄電素子100は、主に、容器10と、この容器10に収容された蓄電要素20と、この蓄電要素20に接続されて容器10に収容された集電板30と、この集電板30に接続されて容器10の外面に配置された外部端子40と、を備えている。外部端子40は、容器10の外面に配置された端子部41と、この端子部41から延びて容器10を貫通した軸部42と、を有している。集電板30は、軸部42の中心軸42Aに直交する方向に延在する中継部31と、この中継部31の延在方向の一端に設けられて蓄電要素20に接続された接続部32と、この接続部32よりも中継部31の延在方向の他端側に設けられた貫通孔33と、を有している。軸部42は、貫通孔33を貫通した先端部に、貫通孔33の内径よりも拡径されて中継部31に接続された拡径部43を有している。拡径部43は、軸部42の径方向に切り欠かれた切欠き部44を有している。さらに、拡径部43は、軸部42の中心軸42Aおよび中継部31の延在方向に直交する中心線C1によって分けられる二つの半部43A,43Bのうち、接続部32に近接した第1半部43Aは、接続部32から離隔した第2半部43Bよりも、中継部31に対向する接続面43Fの面積が大きい。   Here, as described above, the storage element 100 of the present embodiment has the following configuration. The storage element 100 mainly includes a container 10, a storage element 20 housed in the container 10, a current collector plate 30 connected to the storage element 20 and housed in the container 10, and the current collector plate 30. And an external terminal 40 connected and disposed on the outer surface of the container 10. The external terminal 40 has a terminal portion 41 disposed on the outer surface of the container 10, and a shaft portion 42 extending from the terminal portion 41 and penetrating the container 10. Current collector plate 30 is provided with a relay portion 31 extending in a direction orthogonal to central axis 42 A of shaft portion 42, and a connection portion 32 provided at one end in the extending direction of relay portion 31 and connected to storage element 20. And a through hole 33 provided on the other end side of the connecting portion 32 in the extending direction of the relay portion 31. The shaft portion 42 has an enlarged diameter portion 43 which is larger in diameter than the inner diameter of the through hole 33 and connected to the relay portion 31 at a tip end portion which penetrates the through hole 33. The enlarged diameter portion 43 has a notch 44 cut in the radial direction of the shaft portion 42. Furthermore, the enlarged diameter portion 43 is the first one of the two half portions 43A, 43B divided by the center axis C1 of the shaft portion 42 and the center line C1 orthogonal to the extending direction of the relay portion 31. The half portion 43A has a larger area of the connection surface 43F facing the relay portion 31 than the second half portion 43B separated from the connection portion 32.

このように、本実施形態の蓄電素子100において、拡径部43は、軸部42の径方向に切り欠かれた切欠き部44を有している。そのため、前述のように、集電板30の中継部31の貫通孔33を貫通させた外部端子40の軸部42の先端部を塑性変形させて拡径させて拡径部43を形成し、外部端子40と集電板30とを接続する時に、切欠き部44によって軸部42の先端の塑性変形が抑制される。これにより、外部端子40の拡径部43において、加工硬化と延性減少が抑制され、熱処理を行うことなく割れを防止することができる。   As described above, in the storage element 100 of the present embodiment, the enlarged diameter portion 43 has the notch portion 44 cut out in the radial direction of the shaft portion 42. Therefore, as described above, the distal end portion of the shaft portion 42 of the external terminal 40 penetrating the through hole 33 of the relay portion 31 of the current collector plate 30 is plastically deformed to expand the diameter to form the enlarged diameter portion 43, When the external terminal 40 and the current collector plate 30 are connected, the notch 44 suppresses plastic deformation of the tip of the shaft 42. As a result, work hardening and ductility reduction are suppressed in the enlarged diameter portion 43 of the external terminal 40, and cracking can be prevented without heat treatment.

また、本実施形態の蓄電素子100は、前述のように、拡径部43の第1半部43Aと第2半部43Bとの間で、相対的に電流密度が高くなる第1半部43Aの接続面43Fの面積を、相対的に電流密度が低くなる拡径部43の第2半部43Bの接続面43Fよりも大きくしている。これにより、外部端子40と蓄電要素20との間の電気抵抗の増加を抑制し、電気抵抗を低減することができる。したがって、本実施形態の蓄電素子100によれば、集電板30に接続される外部端子40の割れを、熱処理を行うことなく防止することができ、かつ、外部端子40と蓄電要素20との間の電気抵抗を低減することができる蓄電素子100を提供することができる。   In addition, in the storage element 100 of the present embodiment, as described above, the current density is relatively high between the first half 43A and the second half 43B of the enlarged diameter portion 43. The area of the connection surface 43F is made larger than the connection surface 43F of the second half 43B of the enlarged diameter portion 43 where the current density is relatively low. Thereby, the increase in the electrical resistance between the external terminal 40 and the storage element 20 can be suppressed, and the electrical resistance can be reduced. Therefore, according to storage element 100 of the present embodiment, cracking of external terminal 40 connected to current collector plate 30 can be prevented without performing heat treatment, and external terminal 40 and storage element 20 Thus, it is possible to provide a storage element 100 capable of reducing the electrical resistance between the two.

また、本実施形態の蓄電素子100において、拡径部43の第1半部43Aおよび第2半部43Bは、それぞれ、接続面43Fが集電板30の中継部31に接して中継部31に電気的に接続されている。そのため、第1半部43Aと集電板30の中継部31との間の電流経路の面積と、第2半部43Bと集電板30の中継部31との間の電流経路の面積は、それぞれ、第1半部43Aの接続面43Fの面積と、第2半部43Bの接続面43Fの面積に比例する。したがって、第1半部43Aの接続面43Fの面積を第2半部43Bの接続面43Fの面積よりも大きくすることで、第1半部43Aと集電板30の中継部31との間の電流経路の面積が、第2半部43Bと集電板30の中継部31との間の電流経路の面積よりも大きくなる。よって、本実施形態の蓄電素子100によれば、外部端子40と蓄電要素20との間の電気抵抗を低減することができる。   In addition, in the storage element 100 of the present embodiment, the first half 43A and the second half 43B of the enlarged diameter portion 43 each contact the relay portion 31 of the current collector plate 30 with the connection surface 43F in contact with the relay portion 31. It is electrically connected. Therefore, the area of the current path between the first half 43A and the relay portion 31 of the current collector plate 30 and the area of the current path between the second half 43B and the relay portion 31 of the current collector 30 are They are respectively proportional to the area of the connecting surface 43F of the first half 43A and the area of the connecting surface 43F of the second half 43B. Therefore, by making the area of the connection surface 43F of the first half 43A larger than the area of the connection surface 43F of the second half 43B, the space between the first half 43A and the relay portion 31 of the current collector plate 30 can be obtained. The area of the current path is larger than the area of the current path between the second half 43B and the relay portion 31 of the current collector plate 30. Therefore, according to the storage element 100 of the present embodiment, the electrical resistance between the external terminal 40 and the storage element 20 can be reduced.

また、本実施形態の蓄電素子100において、拡径部43は、第2半部43Bに唯一の切欠き部44を有している。すなわち、拡径部43は、第1半部43Aに切欠き部44を有しないため、第1半部43Aの接続面43Fの面積を大きくすることができる。したがって、本実施形態の蓄電素子100によれば、外部端子40と蓄電要素20との間の電気抵抗を低減することができる。   Further, in the storage element 100 of the present embodiment, the enlarged diameter portion 43 has the only notch portion 44 in the second half portion 43B. That is, since the enlarged diameter part 43 does not have the notch part 44 in the 1st half part 43A, the area of the connection surface 43F of the 1st half part 43A can be enlarged. Therefore, according to the storage element 100 of the present embodiment, the electrical resistance between the external terminal 40 and the storage element 20 can be reduced.

また、本実施形態の蓄電素子100において、拡径部43の切欠き部44は、拡径部43の径方向における内側の端部44aが、貫通孔33の開口縁33aよりも外側に設けられている。この場合、拡径部43の強度を維持し、拡径部43によって集電板30の中継部31を電池蓋12に絶縁板60を介して強固に固定することができる。より詳細には、前述のように、拡径部43に周方向に円環部分43Cを形成し、円環部分43Cの径方向の寸法43dと厚み43tの積算から求められる拡径部43の強度を確保することができる。   Further, in the storage element 100 of the present embodiment, the notched portion 44 of the enlarged diameter portion 43 is provided with the inner end 44 a in the radial direction of the enlarged diameter portion 43 outside the opening edge 33 a of the through hole 33. ing. In this case, the strength of the enlarged diameter portion 43 can be maintained, and the relay portion 31 of the current collector plate 30 can be firmly fixed to the battery lid 12 via the insulating plate 60 by the enlarged diameter portion 43. More specifically, as described above, the annular portion 43C is formed in the circumferential direction in the enlarged diameter portion 43, and the strength of the enlarged diameter portion 43 obtained from the integration of the radial dimension 43d of the annular portion 43C and the thickness 43t. Can be secured.

以上説明したように、本実施形態によれば、集電板30に接続される外部端子40の割れを、熱処理を行うことなく防止することができ、かつ、外部端子40と蓄電要素20との間の電気抵抗を低減することができる蓄電素子100を提供することができる。   As described above, according to the present embodiment, cracking of the external terminal 40 connected to the current collector plate 30 can be prevented without performing heat treatment, and the external terminal 40 and the storage element 20 Thus, it is possible to provide a storage element 100 capable of reducing the electrical resistance between the two.

[実施形態2]
次に、図8から図11を参照して、本発明の実施形態2に係る蓄電素子を説明する。図8は、本発明の実施形態2に係る蓄電素子の拡径部43の模式的な平面図である。図9は、本実施形態の蓄電素子の拡径部43の近傍の電流密度の分布図である。図10は、比較形態の蓄電素子の拡径部43の近傍の電流密度の分布図である。図11は、本実施形態の蓄電素子および比較形態の蓄電素子の抵抗上昇率を示すグラフである。なお、図9および図10に示す分布図は、電流密度が低い部分ほど白色に近い淡色で示し、電流密度が高い部分ほど黒色に近い濃色で示している。
Second Embodiment
Next, with reference to FIG. 8 to FIG. 11, a storage element according to Embodiment 2 of the present invention will be described. FIG. 8 is a schematic plan view of the enlarged diameter portion 43 of the energy storage device according to Embodiment 2 of the present invention. FIG. 9 is a distribution diagram of current density in the vicinity of the enlarged diameter portion 43 of the energy storage device of this embodiment. FIG. 10 is a distribution diagram of current density in the vicinity of the enlarged diameter portion 43 of the storage element of the comparative embodiment. FIG. 11 is a graph showing the rate of increase in resistance of the storage element of the present embodiment and the storage element of the comparative embodiment. The distribution diagrams shown in FIG. 9 and FIG. 10 are shown in a lighter color closer to white as the current density is lower, and in a darker color closer to black as the current density is higher.

本実施形態の蓄電素子は、図8に示すように、外部端子40の軸部42の拡径部43と、集電板30の中継部31との間に、これら拡径部43と中継部31とを接合する溶接部Wを有する点で、前述の実施形態1の蓄電素子100と異なっている。本実施形態の蓄電素子のその他の部分は、前述の実施形態1の蓄電素子100と同様であるので、同様の部分には同一の符号を付して、重複する説明を省略する。   The storage element of the present embodiment is, as shown in FIG. 8, between the enlarged diameter portion 43 of the shaft portion 42 of the external terminal 40 and the relay portion 31 of the current collector plate 30, the enlarged diameter portion 43 and the relay portion The storage element 100 is different from the storage element 100 according to the above-described first embodiment in that it has a weld portion W for joining the third part 31 and the third part. The other parts of the storage element of this embodiment are the same as those of the storage element 100 of Embodiment 1 described above, so the same parts will be denoted by the same reference numerals and redundant description will be omitted.

外部端子40の軸部42の拡径部43と集電板30の中継部31とは、たとえば、レーザや電子ビーム等の高エネルギービームを照射する高エネルギービーム溶接によって溶接され、拡径部43と中継部31との間に溶接部Wが形成されている。図8に示す例において、拡径部43は、集電板30の中継部31の延在方向に平行な中心線C2に線対称に配置された複数の溶接部Wを有している。より具体的には、図8に示す例において、溶接部Wは、外部端子40の軸部42の中心軸42Aおよび集電板30の中継部31の延在方向に直交する拡径部43の中心線C1と拡径部43の外縁が交差する位置に1つずつ、合計2つが形成されている。溶接部Wは、切欠き部44を避けて設けられている。   The enlarged diameter portion 43 of the shaft portion 42 of the external terminal 40 and the relay portion 31 of the current collector plate 30 are welded, for example, by high energy beam welding which emits a high energy beam such as a laser or electron beam. A welded portion W is formed between the and the relay portion 31. In the example shown in FIG. 8, the enlarged diameter portion 43 has a plurality of welded portions W arranged in line symmetry with respect to a center line C2 parallel to the extending direction of the relay portion 31 of the current collector plate 30. More specifically, in the example shown in FIG. 8, the welding portion W has an enlarged diameter portion 43 orthogonal to the extending direction of the central axis 42 A of the shaft portion 42 of the external terminal 40 and the relay portion 31 of the current collector plate 30. A total of two are formed at positions where the center line C1 and the outer edge of the enlarged diameter portion 43 intersect. The weld portion W is provided to avoid the notch portion 44.

また、図8に示す例において、拡径部43の周方向に反時計回りの角度を設定し、一方の溶接部Wの角度を0度、他方の溶接部Wの位置を180度とする。そして、拡径部43の第2半部43Bの周縁部は、0度から180度までの角度範囲にあり、拡径部43の第1半部43Aの周縁部は180度から360度までの角度範囲にあるとする。すなわち、図8に示す例において、切欠き部44は、拡径部43の第2半部43Bの90度の位置に形成されている。   Further, in the example shown in FIG. 8, the counterclockwise angle is set in the circumferential direction of the enlarged diameter portion 43, and the angle of one welding portion W is set to 0 degrees, and the position of the other welding portion W is set to 180 degrees. And the peripheral part of the second half part 43B of the enlarged diameter part 43 is in the angle range from 0 degree to 180 degrees, and the peripheral part of the first half part 43A of the enlarged diameter part 43 is from 180 degrees to 360 degrees Suppose it is in the angle range. That is, in the example shown in FIG. 8, the notch portion 44 is formed at a position of 90 degrees of the second half portion 43 </ b> B of the enlarged diameter portion 43.

一方、図10に示す比較形態の蓄電素子において、切欠き部44は、拡径部43の第1半部43Aの270度の位置に形成されている。この場合、集電板30の中継部31に対向する拡径部43の接続面43Fの面積は、第2半部43Bよりも電流密度が高い第1半部43Aにおいて減少する。そのため、図11に示すように、図10に示す比較形態の蓄電素子は、図9に示す本実施形態の蓄電素子と比較して、蓄電要素20と外部端子40との間の電気抵抗が、たとえば、おおむね10%程度上昇するおそれがある。   On the other hand, in the storage element of the comparative form shown in FIG. 10, the notch 44 is formed at a position of 270 degrees of the first half 43A of the enlarged diameter portion 43. In this case, the area of the connection surface 43F of the enlarged diameter portion 43 facing the relay portion 31 of the current collector plate 30 decreases in the first half 43A having a higher current density than the second half 43B. Therefore, as shown in FIG. 11, the storage element of the comparative embodiment shown in FIG. 10 has an electric resistance between storage element 20 and external terminal 40, compared to the storage element of the present embodiment shown in FIG. For example, there is a risk of rising by about 10%.

これに対し、図9に示す本実施形態の蓄電素子において、切欠き部44は、拡径部43の第2半部43Bの90度の位置に形成されている。この場合、集電板30の中継部31に対向する拡径部43の接続面43Fの面積は、第1半部43Aよりも電流密度が低い第2半部43Bにおいて減少する。しかし、拡径部43の接続面43Fの面積は、第2半部43Bよりも電流密度が高い第1半部43Aにおいて減少せず、切欠き部44を有しない場合と同様の面積を維持することができる。   On the other hand, in the storage element of the present embodiment shown in FIG. 9, the notch 44 is formed at a position of 90 degrees of the second half 43 B of the enlarged diameter portion 43. In this case, the area of the connection surface 43F of the enlarged diameter portion 43 facing the relay portion 31 of the current collector plate 30 decreases in the second half 43B having a lower current density than the first half 43A. However, the area of the connecting surface 43F of the enlarged diameter portion 43 does not decrease in the first half 43A having a higher current density than the second half 43B, and maintains the same area as in the case where the notch 44 is not provided. be able to.

したがって、本実施形態によれば、前述の実施形態1と同様に、集電板30に接続される外部端子40の割れを、熱処理を行うことなく防止することができ、かつ、外部端子40と蓄電要素20との間の電気抵抗を低減することができる蓄電素子を提供することができる。   Therefore, according to the present embodiment, as in the first embodiment described above, cracking of the external terminal 40 connected to the current collector plate 30 can be prevented without performing heat treatment, and the external terminal 40 and It is possible to provide a storage element capable of reducing the electrical resistance between the storage element 20 and the storage element 20.

さらに、本実施形態の蓄電素子は、前述のように、拡径部43と集電板30の中継部31との間に、拡径部43と中継部31とを接合する溶接部Wを有している。これにより、拡径部43と集電板30の中継部31との接合強度が向上するだけでなく、拡径部43と集電板30の中継部31とが溶接部Wを介して電気的に接続される。これにより、外部端子40と蓄電要素20との間の電気抵抗をさらに低減することができる。   Furthermore, as described above, the storage element of the present embodiment has a welding portion W for joining the enlarged diameter portion 43 and the relay portion 31 between the enlarged diameter portion 43 and the relay portion 31 of the current collector plate 30. doing. Thus, not only the bonding strength between the enlarged diameter portion 43 and the relay portion 31 of the current collector plate 30 is improved, but the enlarged diameter portion 43 and the relay portion 31 of the current collector plate 30 are electrically Connected to Thereby, the electrical resistance between external terminal 40 and storage element 20 can be further reduced.

また、本実施形態の蓄電素子において、拡径部43は、複数の溶接部Wを有しているので、一つの溶接部Wのみを有する場合と比較して、外部端子40と蓄電要素20との間の電気抵抗をより低減することができる。さらに、拡径部43は、複数の溶接部Wは、中継部31の延在方向に平行な中心線C2に線対称に配置されている。これにより、各溶接部Wを介して流れる電流Iの偏りを抑制して、各溶接部Wを介して流れる電流Iをより均一にすることができ、外部端子40と蓄電要素20との間の電気抵抗をより低減することができる。   Further, in the storage element of the present embodiment, since enlarged diameter portion 43 has a plurality of welded portions W, external terminal 40 and storage element 20 are compared with the case where only one welded portion W is provided. Resistance can be further reduced. Furthermore, in the enlarged diameter portion 43, the plurality of welding portions W are disposed in line symmetry with respect to a center line C2 parallel to the extending direction of the relay portion 31. Thereby, the bias of the current I flowing through each welding portion W can be suppressed, and the current I flowing through each welding portion W can be made more uniform, and between the external terminal 40 and the storage element 20 Electrical resistance can be further reduced.

[実施形態3]
次に、図12を参照して、本発明の実施形態3に係る蓄電素子を説明する。図12は、本発明の実施形態3に係る蓄電素子の拡径部43の模式的な平面図である。本実施形態の蓄電素子は、溶接部Wの構成が前述の実施形態2に係る蓄電素子と異なっている。本実施形態の蓄電素子のその他の構成は、前述の実施形態2に係る蓄電素子と同様であるので、同様の部分には同一の符号を付して、重複する説明は省略する。
Third Embodiment
Next, with reference to FIG. 12, a storage element according to Embodiment 3 of the present invention will be described. FIG. 12 is a schematic plan view of the enlarged diameter portion 43 of the energy storage device according to Embodiment 3 of the present invention. The storage element of the present embodiment is different from the storage element according to the second embodiment in the configuration of the welding portion W. The other configuration of the storage element of the present embodiment is the same as that of the storage element according to the above-described second embodiment, so the same reference numerals are given to the same parts, and the overlapping description will be omitted.

本実施形態の蓄電素子において、溶接部Wは、外部端子40の軸部42の中心軸42Aおよび集電板30の中継部31の延在方向に直交する拡径部43の中心線C1と拡径部43の外縁が交差する位置を中心として、拡径部43の周方向に所定の角度範囲で設けられている。このような溶接部Wは、たとえば、高エネルギービームを拡径部43の周方向に連続的に照射することによって形成することができる。このように、溶接部Wが形成される領域を拡大することで、拡径部43と集電板30の中継部31とが溶接部Wを介して電気的に接続される領域を拡大することができ、外部端子40と蓄電要素20との間の電気抵抗をさらに低減することができる。   In the storage element of the present embodiment, welding portion W is expanded with center line C1 of enlarged diameter portion 43 orthogonal to the extending direction of central axis 42A of shaft portion 42 of external terminal 40 and relay portion 31 of current collector plate 30. It is provided in a predetermined angular range in the circumferential direction of the enlarged diameter portion 43 around a position where the outer edge of the diameter portion 43 intersects. Such a welded portion W can be formed, for example, by continuously irradiating a high energy beam in the circumferential direction of the enlarged diameter portion 43. Thus, by enlarging the area where the weld portion W is formed, the area where the enlarged diameter portion 43 and the relay portion 31 of the current collector plate 30 are electrically connected via the weld portion W is expanded. Thus, the electrical resistance between the external terminal 40 and the storage element 20 can be further reduced.

[実施形態4]
次に、図13を参照して、本発明の実施形態4に係る蓄電素子を説明する。図13は、本発明の実施形態4に係る蓄電素子の拡径部43の模式的な平面図である。本実施形態の蓄電素子は、切欠き部44の構成が前述の実施形態3に係る蓄電素子と異なっている。本実施形態の蓄電素子のその他の構成は、前述の実施形態3に係る蓄電素子と同様であるので、同様の部分には同一の符号を付して、重複する説明は省略する。
Fourth Embodiment
Next, with reference to FIG. 13, a storage element according to Embodiment 4 of the present invention will be described. FIG. 13 is a schematic plan view of the enlarged diameter portion 43 of the energy storage device according to Embodiment 4 of the present invention. The storage element of the present embodiment is different from the storage element according to the third embodiment in the configuration of the notch portion 44. The other configuration of the storage element of the present embodiment is the same as that of the storage element according to the third embodiment described above, so the same parts are denoted with the same reference numerals and redundant description will be omitted.

本実施形態の蓄電素子において、拡径部43は、複数の切欠き部44を有している。拡径部43において、第2半部43Bに設けられた切欠き部44の数は、第1半部43Aに設けられた切欠き部44の数よりも多い。これにより、本実施形態の蓄電素子において、集電板30の接続部32に近接した第1半部43Aは、集電板30の接続部32から離隔した第2半部43Bよりも、集電板30の中継部31に対向する接続面43Fの面積が大きくなっている。   In the storage element of the present embodiment, the enlarged diameter portion 43 has a plurality of notches 44. In the enlarged diameter portion 43, the number of notches 44 provided in the second half 43B is larger than the number of notches 44 provided in the first half 43A. Thus, in the storage element of the present embodiment, the first half 43A in the vicinity of the connection portion 32 of the current collector plate 30 is closer to the current collector than the second half 43B separated from the connection portion 32 in the current collector plate 30. The area of the connection surface 43F facing the relay portion 31 of the plate 30 is large.

したがって、本実施形態の蓄電素子によれば、前述の実施形態1から3の蓄電素子と同様の効果を得ることができる。さらに、外部端子40の軸部42の先端部を塑性変形させて拡径部43を形成する時に、複数の切欠き部44によって、軸部42の先端の塑性変形をより効果的に抑制することができる。これにより、外部端子40の拡径部43において、加工硬化と延性減少がより抑制され、熱処理を行うことなく、拡径部43の割れをより確実に防止することができる。   Therefore, according to the storage element of the present embodiment, it is possible to obtain the same effect as the storage element of the first to third embodiments described above. Furthermore, when forming the enlarged diameter portion 43 by plastically deforming the tip end portion of the shaft portion 42 of the external terminal 40, the plurality of notches 44 more effectively suppress plastic deformation of the tip end of the shaft portion 42. Can. As a result, work hardening and ductility reduction are further suppressed in the enlarged diameter portion 43 of the external terminal 40, and cracking of the enlarged diameter portion 43 can be more reliably prevented without heat treatment.

[実施形態5]
次に、図14を参照して、本発明の実施形態5に係る蓄電素子を説明する。図14は、本発明の実施形態5に係る蓄電素子の拡径部43の模式的な平面図である。本実施形態の蓄電素子は、切欠き部44の構成が前述の実施形態2に係る蓄電素子と異なっている。本実施形態の蓄電素子のその他の構成は、前述の実施形態2に係る蓄電素子と同様であるので、同様の部分には同一の符号を付して、重複する説明は省略する。
Fifth Embodiment
Next, with reference to FIG. 14, a storage element according to Embodiment 5 of the present invention will be described. FIG. 14 is a schematic plan view of the enlarged diameter portion 43 of the energy storage device according to Embodiment 5 of the present invention. The storage element of the present embodiment is different from the storage element according to the second embodiment in the configuration of the notch 44. The other configuration of the storage element of the present embodiment is the same as that of the storage element according to the above-described second embodiment, so the same reference numerals are given to the same parts, and the overlapping description will be omitted.

本実施形態の蓄電素子において、切欠き部44は、拡径部43の径方向における内側の端部44aに、円弧状の応力緩和部44Rを有している。この構成により、たとえば、拡径部43の周方向に応力が作用した場合、拡径部43の径方向における切欠き部44の内側の端部44aに応力が集中するのを防止することができる。これにより、拡径部43の周方向に応力が作用した場合に、拡径部43の径方向における切欠き部44の内側の端部44aを起点として割れが発生するのを防止することができる。   In the storage element of the present embodiment, the notch portion 44 has an arc-shaped stress relieving portion 44 </ b> R at the inner end portion 44 a in the radial direction of the enlarged diameter portion 43. With this configuration, for example, when stress acts in the circumferential direction of enlarged diameter portion 43, stress can be prevented from concentrating on end portion 44a inside notch 44 in the radial direction of enlarged diameter portion 43. . Thereby, when stress acts in the circumferential direction of enlarged diameter portion 43, generation of a crack can be prevented starting from end portion 44a on the inner side of notch 44 in the radial direction of enlarged diameter portion 43. .

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。たとえば、蓄電素子は、二次電池に限定されず、一次電池、電気二重層コンデンサ、キャパシタなど、電力を蓄えることができる電気化学素子を含む。   As mentioned above, although the embodiment of the present invention has been described in detail using the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within the scope of the present invention. Also, they are included in the present invention. For example, the storage element is not limited to a secondary battery, and includes an electrochemical element capable of storing power, such as a primary battery, an electric double layer capacitor, and a capacitor.

10 容器
20 蓄電要素
30 集電板
31 中継部
32 接続部
33 貫通孔
33a 開口縁
40 外部端子
41 端子部
42 軸部
42A 中心軸
43 拡径部
43A 第1半部
43B 第2半部
43F 接続面
44 切欠き部
44a 端部
44R 応力緩和部
100 蓄電素子
C1 中心線
C2 中心線
W 溶接部
DESCRIPTION OF SYMBOLS 10 container 20 electrical storage element 30 current collecting plate 31 relay part 32 connection part 33 through hole 33a opening edge 40 external terminal 41 terminal part 42 shaft part 42A central axis 43 enlarged diameter part 43A first half part 43B second half part 43F connection surface 44 notch 44a end 44R stress relaxation unit 100 storage element C1 center line C2 center line W weld

Claims (8)

容器と、該容器に収容された蓄電要素と、該蓄電要素に接続され前記容器に収容された集電板と、該集電板に接続されて前記容器の外面に配置された外部端子と、を備えた蓄電素子であって、
前記外部端子は、前記容器の外面に配置された端子部と、該端子部から延びて前記容器を貫通した軸部と、を有し、
前記集電板は、前記軸部の中心軸に直交する方向に延在する中継部と、該中継部の延在方向の一端に設けられて前記蓄電要素に接続された接続部と、該接続部よりも前記中継部の前記延在方向の他端側に設けられた貫通孔と、を有し、
前記軸部は、前記貫通孔を貫通した先端部に、前記貫通孔の内径よりも拡径されて前記中継部に接続された拡径部を有し、
前記拡径部は、前記軸部の径方向に切り欠かれた切欠き部を有し、前記軸部の中心軸および前記中継部の前記延在方向に直交する中心線によって分けられる二つの半部のうち、前記接続部に近接した第1半部は、前記接続部から離隔した第2半部よりも、前記中継部に対向する接続面の面積が大きいことを特徴とする蓄電素子。
A container, a storage element accommodated in the container, a current collector plate connected to the storage element and contained in the container, an external terminal connected to the current collector plate and disposed on the outer surface of the container A storage element comprising
The external terminal includes a terminal portion disposed on the outer surface of the container, and a shaft portion extending from the terminal portion and penetrating the container.
The current collector plate is a relay portion extending in a direction orthogonal to the central axis of the shaft portion, a connection portion provided at one end of the relay portion in the extension direction and connected to the storage element, and the connection And a through hole provided on the other end side in the extending direction of the relay portion than the portion;
The shaft portion has an enlarged diameter portion whose diameter is larger than the inner diameter of the through hole and connected to the relay portion at a tip end portion which penetrates the through hole.
The enlarged diameter portion has notches cut in a radial direction of the shaft portion, and two halves divided by a central axis of the shaft portion and a center line orthogonal to the extending direction of the relay portion A storage element characterized in that among the parts, a first half part close to the connection part has a larger area of a connection surface facing the relay part than a second half part separated from the connection part.
前記第1半部および前記第2半部は、それぞれ、前記接続面が前記中継部に接して前記中継部に電気的に接続されていることを特徴とする請求項1に記載の蓄電素子。   The storage element according to claim 1, wherein the connection surface of the first half portion and the second half portion is electrically connected to the relay portion while the connection surface is in contact with the relay portion. 前記拡径部と前記中継部との間に、前記拡径部と前記中継部とを接合する溶接部を有することを特徴とする請求項1に記載の蓄電素子。   The storage element according to claim 1, further comprising: a welding portion that joins the enlarged diameter portion and the relay portion between the enlarged diameter portion and the relay portion. 前記拡径部は、前記中継部の延在方向に平行な中心線に線対称に配置された複数の前記溶接部を有することを特徴とする請求項3に記載の蓄電素子。   The storage element according to claim 3, wherein the enlarged diameter portion includes a plurality of the welded portions arranged in line symmetry with respect to a center line parallel to the extending direction of the relay portion. 前記拡径部は、前記第2半部に唯一の前記切欠き部を有していることを特徴とする請求項1に記載の蓄電素子。   The storage element according to claim 1, wherein the enlarged diameter portion has only one notch in the second half. 前記拡径部は、複数の前記切欠き部を有し、
前記第2半部に設けられた前記切欠き部の数は、前記第1半部に設けられた前記切欠き部の数よりも多いことを特徴とする請求項1に記載の蓄電素子。
The enlarged diameter portion has a plurality of the notched portions,
The storage element according to claim 1, wherein the number of the notches provided in the second half is larger than the number of the notches provided in the first half.
前記切欠き部は、前記拡径部の径方向における内側の端部が、前記貫通孔の開口縁よりも外側に設けられていることを特徴とする請求項1に記載の蓄電素子。   2. The storage element according to claim 1, wherein an end of the notched portion in the radial direction of the enlarged diameter portion is provided outside an opening edge of the through hole. 前記切欠き部は、前記拡径部の径方向における内側の端部に、円弧状の応力緩和部を有していることを特徴とする請求項1に記載の蓄電素子。   The energy storage device according to claim 1, wherein the notch has an arc-shaped stress relieving portion at an inner end in a radial direction of the enlarged diameter portion.
JP2018002314A 2018-01-11 2018-01-11 Power storage element Pending JP2019121566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002314A JP2019121566A (en) 2018-01-11 2018-01-11 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002314A JP2019121566A (en) 2018-01-11 2018-01-11 Power storage element

Publications (1)

Publication Number Publication Date
JP2019121566A true JP2019121566A (en) 2019-07-22

Family

ID=67307357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002314A Pending JP2019121566A (en) 2018-01-11 2018-01-11 Power storage element

Country Status (1)

Country Link
JP (1) JP2019121566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170944A1 (en) * 2022-03-11 2023-09-14 株式会社 東芝 Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170944A1 (en) * 2022-03-11 2023-09-14 株式会社 東芝 Battery

Similar Documents

Publication Publication Date Title
JP6093874B2 (en) Prismatic secondary battery
JP6427462B2 (en) Square secondary battery
JP6427460B2 (en) Square secondary battery
US7335442B2 (en) Battery with current collector plate welded to electrode terminal assembly
JP5868265B2 (en) Single cells and batteries
JP5368660B1 (en) Prismatic secondary battery
JP5342090B1 (en) Electricity storage element
US10998538B2 (en) Energy storage device, energy storage apparatus and method of manufacturing energy storage device
JP4974734B2 (en) Secondary battery and secondary battery module
KR20090032997A (en) Sealed battery and manufacturing method of it
JP6550863B2 (en) STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE
JP2009259524A (en) Lid of battery case, battery, and method of manufacturing the same
WO2021153439A1 (en) Power storage device
JP5494794B2 (en) Battery manufacturing method and battery
JP5871871B2 (en) Prismatic secondary battery
WO2015125487A1 (en) Electricity storage element and electricity storage element production method
JP2019121566A (en) Power storage element
JP2019009045A (en) Power storage element
JP6907509B2 (en) Manufacturing method of power storage element, conductive member and power storage element
JP2022164957A (en) Power storage element
JP2014150047A (en) Electricity storage element
JP2021061206A (en) Sealed battery
JP7285817B2 (en) SEALED BATTERY AND METHOD OF MANUFACTURING SEALED BATTERY
WO2021014705A1 (en) Prismatic secondary battery
JP2005259410A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200220