JP2019120531A - Thermophysical property measuring apparatus and thermophysical property measuring method - Google Patents

Thermophysical property measuring apparatus and thermophysical property measuring method Download PDF

Info

Publication number
JP2019120531A
JP2019120531A JP2017253765A JP2017253765A JP2019120531A JP 2019120531 A JP2019120531 A JP 2019120531A JP 2017253765 A JP2017253765 A JP 2017253765A JP 2017253765 A JP2017253765 A JP 2017253765A JP 2019120531 A JP2019120531 A JP 2019120531A
Authority
JP
Japan
Prior art keywords
measured
temperature
current
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017253765A
Other languages
Japanese (ja)
Other versions
JP7079471B2 (en
Inventor
康孝 天谷
Yasutaka Amaya
康孝 天谷
毅 島崎
Takeshi Shimazaki
毅 島崎
顕次郎 大川
Kenjiro Okawa
顕次郎 大川
弘之 藤木
Hiroyuki Fujiki
弘之 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017253765A priority Critical patent/JP7079471B2/en
Publication of JP2019120531A publication Critical patent/JP2019120531A/en
Application granted granted Critical
Publication of JP7079471B2 publication Critical patent/JP7079471B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

To provide a thermophysical property measuring apparatus and thermophysical property measuring method capable of conveniently obtaining a thermophysical property value such as accurate thermoelectric power and thermal conductivity regardless of the nature of a sample to be measured.SOLUTION: A thermophysical property measuring apparatus 50 includes current applying means for selectively applying a DC current of positive or negative polarity or an AC current with the same effective value of the DC current to an object to be measured with no temperature difference at both ends contained in the measuring unit 55, and temperature measuring means disposed at a measurement point on a central position or shifted by any distance from the central position of the object to be measured for measuring the temperature of the object to be measured, and a calculation unit 54 for calculating the Thomson coefficient of the object to be measured by calculating the ratio of a first temperature change at the measurement point shifted by any distance from the central portion measured when applying a different DC current of polarity at both ends by the current applying means, and a second temperature change in the central portion measured when the AC current is applied by the current applying means.SELECTED DRAWING: Figure 1

Description

本発明は、熱電能や熱伝導率などの熱物性値を測定するための技術に関するものである。   The present invention relates to a technique for measuring thermophysical properties such as thermopower and thermal conductivity.

一般的に、試料のトムソン係数、絶対ゼーベック係数(熱電能)、熱伝導率を得るためには、特許文献1にも示されているように、温度勾配を与えた当該試料に電流を流した上で発生する熱量を測定する方法が採られている。   Generally, in order to obtain the Thomson coefficient, absolute Seebeck coefficient (thermopower) and thermal conductivity of a sample, current is supplied to the sample to which a temperature gradient is applied, as also shown in Patent Document 1. A method is taken to measure the amount of heat generated above.

WO2015/025586号公報WO 2015/025586

しかし、上記の測定に際しては、当該試料に温度勾配を与えるため、当該試料の両端を加熱するための二個のヒータと、各ヒータの温度を測定するための温度計を設置する必要があり、測定の準備に手間がかかるという問題がある。   However, in the case of the above measurement, in order to apply a temperature gradient to the sample, it is necessary to install two heaters for heating both ends of the sample and a thermometer for measuring the temperature of each heater. There is a problem that it takes time to prepare for measurement.

また、上記の温度勾配が生じにくい試料においては、上記測定における精度が悪くなるという問題もある。   Moreover, in the sample which said temperature gradient does not produce easily, there also exists a problem that the precision in the said measurement worsens.

本発明は、上記のような問題を解決するためになされたもので、測定対象となる試料の性質によらず、簡便に正確な熱電能や熱伝導率などの熱物性値を得ることのできる熱物性測定装置及び熱物性測定方法を提供することを目的とする。   The present invention has been made to solve the above problems, and can easily obtain accurate thermophysical properties such as thermopower and thermal conductivity regardless of the properties of the sample to be measured. An object of the present invention is to provide a thermophysical property measuring device and a thermophysical property measuring method.

上記課題を解決するため、両端に温度差がない測定対象物に正極性若しくは負極性の直流電流又は実効値が上記直流電流の大きさである交流電流を選択的に印加する電流印加手段と、上記測定対象物の中央部及び中央部から任意の距離ずれた測定点に配置され、上記測定対象物の温度を測定する温度測定手段と、上記電流印加手段により上記両端に極性の異なる直流電流を印加したときにおいて上記温度測定手段によって測定される上記中央部から任意の距離ずれた測定点における第一の温度変化と、上記電流印加手段により上記交流電流を印加したときにおいて上記温度測定手段によって測定される上記中央部における第二の温度変化との比を計算することにより上記測定対象物のトムソン係数を算出する演算手段を備えた熱物性測定装置を提供する。   In order to solve the above problem, a current applying means for selectively applying an alternating current whose positive or negative direct current or effective value is the magnitude of the direct current to a measurement object having no temperature difference at both ends; A direct current with different polarity is applied to the both ends by the temperature measuring means for measuring the temperature of the object to be measured, which is disposed at the measurement point at an arbitrary distance from the central portion and the central portion of the object to be measured The first temperature change at a measurement point shifted by an arbitrary distance from the central portion measured by the temperature measuring means when applied and the AC current measured by the current applying means are measured by the temperature measuring means Thermophysical property measuring apparatus comprising arithmetic means for calculating the Thomson coefficient of the object to be measured by calculating the ratio to the second temperature change in the central portion To provide.

また、上記課題を解決するため、両端に温度差がない測定対象物の上記両端に極性の異なる直流電流を印加して、上記測定対象物の中央部から任意の距離ずれた測定点における第一の温度変化を測定する第一のステップと、上記両端に実効値が上記直流電流の大きさである交流電流を印加して、上記中央部における第二の温度変化を測定する第二のステップと、第一のステップで測定された上記第一の温度変化と、第二のステップで測定された上記第二の温度変化の比を計算することにより、上記測定対象物のトムソン係数を算出する第三のステップとを有する熱物性測定方法を提供する。   Further, in order to solve the above problem, DC current of different polarity is applied to the both ends of the measurement object having no temperature difference at both ends, and the first at the measurement point deviated from the center of the measurement object by an arbitrary distance A second step of measuring a second temperature change at the central portion by applying an alternating current whose effective value is the magnitude of the direct current across the two ends. Calculating a ratio of the first temperature change measured in the first step to the second temperature change measured in the second step to calculate a Thomson coefficient of the measurement object The thermal physical property measuring method which has three steps is provided.

本発明によれば、測定対象となる試料の性質によらず、簡便に正確な熱電能や熱伝導率などの熱物性値を得ることができる。   According to the present invention, it is possible to simply and accurately obtain thermophysical properties such as thermopower and thermal conductivity regardless of the properties of the sample to be measured.

本発明の実施の形態に係る熱物性測定装置50の構成を示すブロック図である。It is a block diagram which shows the structure of the thermophysical property measuring apparatus 50 which concerns on embodiment of this invention. 図1に示された測定部55の構成を示す図である。It is a figure which shows the structure of the measurement part 55 shown by FIG. 図1に示された熱物性測定装置50を用いて実現される熱物性測定方法を示すフローチャートである。It is a flowchart which shows the thermal physical-property measurement method implement | achieved using the thermal physical-property measurement apparatus 50 shown by FIG. 図2に示された試料4の温度分布を示したグラフである。It is the graph which showed the temperature distribution of the sample 4 shown by FIG.

以下において、本発明の実施の形態に係る熱物性測定装置及び熱物性測定方法を、図面を参照しつつ詳しく説明する。なお、図中同一符号は、同一又は相等部分を示す。   Hereinafter, a thermophysical property measurement device and a thermophysical property measurement method according to an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or equivalent parts.

図1は、本発明の実施の形態に係る熱物性測定装置50の構成を示すブロック図である。図1に示されるように、熱物性測定装置50は、ユーザインタフェース51、記憶部53、演算部54、測定部55、及びこれらを互いに接続するバス52とを備える。   FIG. 1 is a block diagram showing the configuration of a thermophysical property measurement apparatus 50 according to the embodiment of the present invention. As shown in FIG. 1, the thermal property measuring apparatus 50 includes a user interface 51, a storage unit 53, an arithmetic unit 54, a measuring unit 55, and a bus 52 connecting these components to one another.

ここで、ユーザインタフェース51は、ユーザの熱物性測定装置50に対する動作命令を受け付けると共に、生成されたデータをユーザが目視により認識できるよう表示する機能を有する。また、記憶部53は、演算部54が実行するプログラムを格納すると共に、バス52を介して供給されたデータを記憶する。演算部54は、記憶部53に予め格納された上記プログラムを実行することにより、供給されたデータを対象として所定の演算を行う。なお、具体的な演算内容については、後に詳しく説明する。また測定部55は、測定対象とされた試料の熱電特性を測定する。   Here, the user interface 51 has a function of receiving an operation command to the thermal property measuring apparatus 50 of the user and displaying the generated data so that the user can visually recognize. Further, the storage unit 53 stores the program executed by the calculation unit 54 and stores data supplied via the bus 52. Arithmetic unit 54 performs a predetermined arithmetic operation on the supplied data by executing the program stored in advance in storage unit 53. The specific contents of the calculation will be described in detail later. The measurement unit 55 also measures the thermoelectric characteristics of the sample to be measured.

図2は、図1に示された測定部55の構成を示す図である。図2に示されるように、測定部55はチャンバ1と、金属ブロック2,3と、熱電対5,10と、電流印加部100とを含む。ここで、電流印加部100は、直流電流を発生させる正極性直流電源6と、上記直流電流と大きさが等しく極性が異なる直流電流を発生させる負極性直流電源7と、実効値が上記直流電流の大きさである交流電流を発生させる交流電源8と、スイッチ9とを含む。   FIG. 2 is a diagram showing the configuration of the measurement unit 55 shown in FIG. As shown in FIG. 2, the measurement unit 55 includes a chamber 1, metal blocks 2 and 3, thermocouples 5 and 10, and a current application unit 100. Here, the current application unit 100 includes a positive polarity DC power supply 6 for generating a DC current, a negative polarity DC power supply 7 for generating a DC current having the same magnitude and polarity as the DC current, and the DC current having an effective value And an AC power supply 8 for generating an AC current having a magnitude of and a switch 9.

なお、測定部55は、熱解析における熱的境界条件を十分に満足できるように設計されている。具体的には、チャンバ1内は熱の対流伝達を抑制するために真空とされ、試料4の両端には温度T1の金属ブロック2,3が接続される。これらの金属ブロック2,3は熱浴としての機能を有する。 The measurement unit 55 is designed to be able to sufficiently satisfy the thermal boundary conditions in thermal analysis. Specifically, the inside of the chamber 1 is evacuated to suppress the convective transfer of heat, and the metal blocks 2 and 3 of the temperature T 1 are connected to both ends of the sample 4. These metal blocks 2 and 3 have a function as a heat bath.

また、試料4の中央部には熱電対10が取り付けられるが、さらに、トムソン熱と同時に発生する試料4の自己ジュール発熱を積極的に利用するため、試料4の中央部から任意の距離xだけずらした位置(以下「ずれ測定点」という。)には熱電対5が取り付けられる。なお、熱電対5,10は熱の流出を低減させるため、熱コンダクタンスが十分小さいものであることが好ましい。   In addition, a thermocouple 10 is attached to the central part of the sample 4, but in order to actively utilize the self-joule heat generation of the sample 4 generated simultaneously with Thomson heat, only a given distance x from the central part of the sample 4 The thermocouple 5 is attached to the shifted position (hereinafter referred to as "shift measurement point"). The thermocouples 5 and 10 preferably have a sufficiently small thermal conductance to reduce the heat flow.

また、試料4の両端間には、上記のように極性の異なる直流電流及びそれと実効値が等しい交流電流を発生することが可能な電流印加部100が接続される。ここで、交流電源8により発生される交流電流の波形は周期的であればよく、例えば正弦波や矩形波等が考えられる。   Further, between the ends of the sample 4 is connected a current applying unit 100 capable of generating a direct current having different polarity and an alternating current having an effective value equal to that as described above. Here, the waveform of the alternating current generated by the alternating current power supply 8 may be periodic, and, for example, a sine wave or a rectangular wave can be considered.

さらに、スイッチ9は制御信号Ctにより交流電源8、正極性直流電源6、負極性直流電源7、交流電源8の順番にオンさせるが、この動作については後に詳しく説明する。   Furthermore, the switch 9 is turned on in the order of the AC power supply 8, the positive polarity DC power supply 6, the negative polarity DC power supply 7, and the AC power supply 8 by the control signal Ct. This operation will be described in detail later.

図3は、図1に示された熱物性測定装置50により実現される熱物性測定方法を示すフローチャートである。以下において、当該熱物性測定方法を図3を用いて詳しく説明する。   FIG. 3 is a flow chart showing a thermal property measuring method realized by the thermal property measuring apparatus 50 shown in FIG. In the following, the thermal physical property measurement method will be described in detail with reference to FIG.

最初のステップS1において試料4の両端に温度T1の金属ブロック2,3を設置する。そして、ステップS2において試料4の中央部に熱電対10を取り付けると共に、中央部から例えば試料4の長さの1/4など任意の距離ずれたずれ測定点に熱電対5を取り付ける。なお、図2に示されるように、試料4の両端におけるx座標は、ずれ測定点の位置を原点として、それぞれ座標(−l)、座標lとされる。 Installing the metal block 2 and 3 of the temperature T 1 of the opposite ends of the sample 4 in a first step S1. Then, in step S2, the thermocouple 10 is attached to the central portion of the sample 4 and the thermocouple 5 is attached to a shift measuring point which is shifted by an arbitrary distance such as 1/4 of the length of the sample 4 from the central portion. Incidentally, as shown in FIG. 2, x coordinates of both ends of the sample 4, the origin position of the displacement measuring point, respectively the coordinates (-l 1), are the coordinates l 2.

ここで、上記のように熱電対5をずれ測定点に取り付ける理由を説明する。図4は、横軸を試料4の中央部を原点とした位置x、縦軸を試料4の温度Tとしたときの、試料4の温度分布を示すグラフである。   Here, the reason for attaching the thermocouple 5 to the displacement measurement point as described above will be described. FIG. 4 is a graph showing the temperature distribution of the sample 4 when the horizontal axis represents the position x with the center of the sample 4 as the origin and the vertical axis represents the temperature T of the sample 4.

図4に示されるように、ジュール発熱による温度分布は破線グラフg1で示されるように放物線状となる。このため、試料4の中央部では温度勾配I2がゼロとなり、ジュール効果によって生じる温度勾配によるトムソン効果は生じない。一方、試料4の中央部以外の位置では、図4に示されるように有限の温度勾配I1,I3があるため、ジュール熱に起因したトムソン熱が発生する。そして、このようなトムソン効果により、温度分布はグラフg2で示されるように、原点を中心として左右非対称の曲線になる。従って、温度の測定位置を当該中央部からずらすことにより、自己ジュール発熱により生じた温度勾配によるトムソン効果による温度変化を測定することができることになる。   As shown in FIG. 4, the temperature distribution due to Joule heating is parabolic as shown by a broken line graph g1. Therefore, the temperature gradient I2 is zero in the central portion of the sample 4, and the Thomson effect due to the temperature gradient caused by the Joule effect does not occur. On the other hand, at positions other than the central portion of the sample 4, since there are finite temperature gradients I1 and I3 as shown in FIG. 4, Thomson heat due to Joule heat is generated. Then, due to such a Thomson effect, the temperature distribution is asymmetrical with respect to the origin, as shown by the graph g2. Therefore, by shifting the measurement position of the temperature from the central portion, it is possible to measure the temperature change due to the Thomson effect due to the temperature gradient generated by the self Joule heating.

次に、ステップS3においてチャンバ1内を真空にする。   Next, in step S3, the inside of the chamber 1 is evacuated.

次に、ステップS4において試料4の両端に正極性の直流電流I+DCを印加して、熱電対5で試料4のずれ測定点における温度T+DCを測定し、ステップS5において試料4の両端に負極性の直流電流I-DCを印加して、熱電対5で試料4のずれ測定点における温度T- DCを測定する。 Next, in step S4, a direct current I + DC of positive polarity is applied to both ends of the sample 4 and the temperature T + DC at the displacement measurement point of the sample 4 is measured by the thermocouple 5. In step S5, both ends of the sample 4 A direct current I- DC of negative polarity is applied thereto, and the temperature T -DC at the displacement measurement point of the sample 4 is measured by the thermocouple 5.

そして、ステップS6において、演算部54は、以下の式(10)を用いてステップS4で測定された温度T+DCとステップS5で測定された温度T-DCの平均差を計算することにより、上記の温度変化δTDCを算出する。 Then, in step S6, the calculation unit 54 calculates the average difference between the temperature T + DC measured in step S4 and the temperature T -DC measured in step S5 using the following equation (10), The above-mentioned temperature change δT DC is calculated.

次に、ステップS7において試料4の両端に交流電源8を用いて交流電流を印加して、試料中央部における温度を熱電対10により測定する。   Next, in step S7, an alternating current is applied to both ends of the sample 4 using an alternating current power supply 8, and the temperature at the central portion of the sample is measured by the thermocouple 10.

次に、ステップS8において、演算部54は、記憶部53に予め格納されたプログラムを実行することにより、ステップS6で得られた温度変化δTDCとステップS7で得られた温度δTACmを用いてトムソン係数μを算出する。そして、以下のケルビンの式(1)により、該トムソン係数μを用いて絶対熱電能Sを求める。なお、式(1)におけるTは温度、Tは超伝導転移温度を示す。 Next, in step S8, the computing unit 54 executes the program stored in advance in the storage unit 53 to use the temperature change δT DC obtained in step S6 and the temperature δT ACm obtained in step S7. Calculate Thomson coefficient μ. Then, the absolute thermopower S is determined using the Thomson coefficient μ according to the following Kelvin equation (1). In the formula (1), T represents a temperature, and T 0 represents a superconducting transition temperature.

Figure 2019120531
Figure 2019120531

そして、ステップS9において、演算部54は、ステップS8で算出されたトムソン係数μを用いて当該試料の熱伝導率を算出するが、具体的な算出方法については後述する。   Then, in step S9, the calculation unit 54 calculates the thermal conductivity of the sample using the Thomson coefficient μ calculated in step S8, and a specific calculation method will be described later.

なお、図3に示された熱物性測定方法においては、ステップS1とステップS2は順序が逆であっても良い。また、ステップS4及びステップS5からなる直流電流を用いた測定とステップS7における交流電流を用いた測定は、いずれを先に行っても良い。また、ステップS9における熱伝導率の算出は、必ずしも絶対熱電能を求めた後に行わなくとも良い。   In the thermal property measurement method shown in FIG. 3, the order of step S1 and step S2 may be reversed. Further, either measurement using a direct current consisting of step S4 and step S5 or measurement using an alternating current in step S7 may be performed first. In addition, the calculation of the thermal conductivity in step S9 may not necessarily be performed after the absolute thermopower is determined.

以下においては、上記トムソン係数μの算出方法について詳しく説明する。   Hereinafter, the method of calculating the Thomson coefficient μ will be described in detail.

最初に、フーリエの法則に基づく熱伝導解析を行い、任意の温度測定点xでのトムソン係数の理論式を導出する。   First, heat conduction analysis based on Fourier's law is performed to derive a theoretical expression of Thomson coefficient at an arbitrary temperature measurement point x.

図2に示されるように、試料4の両端は一定の温度Tに保たれ、同時に、試料4に直流電流若しくは交流電流が印加される。なお、試料4で発生した熱流は、試料と試料に取り付けられた熱電対5を介して、温度一定(この場合は室温)の熱浴に流れるものとする。 As shown in FIG. 2, both ends of the sample 4 are kept at a constant temperature T 1 , and at the same time, a direct current or an alternating current is applied to the sample 4. The heat flow generated in the sample 4 flows into the heat bath having a constant temperature (in this case, room temperature) via the sample and the thermocouple 5 attached to the sample.

また、熱電対5の位置座標は、図2に示されるように、ずれ測定点を原点として、試料4の両端がそれぞれ座標(−l)、座標lとなるような一次元座標xで示される。なお、試料4の全長を長さlとすると、長さlは座標(−l)の絶対値と座標lとの和に等しい大きさとなる。 The position coordinates of the thermocouple 5, as shown in FIG. 2, the origin shift measuring point, both ends of the sample 4 respectively coordinates (-l 1), a one-dimensional coordinate x such that coordinates l 2 Indicated. Here, assuming that the total length of the sample 4 is a length l, the length l is equal to the sum of the absolute value of the coordinate (−l 1 ) and the coordinate l 2 .

上記のような熱的境界条件を有する試料に直流電流Iを印加した場合、試料の定常状態での熱伝導方程式は次式(2)のように表現できる。なお、式(2)以下において、aは試料の断面積、κは試料の熱伝導率、Tは試料の温度、ρは試料の電気抵抗率、pは試料の周囲長、σはステファン・ボルツマン定数、εは試料の輻射率、Tは熱電対5のゼロ点温度を示す。 When a direct current I is applied to a sample having the above thermal boundary conditions, the heat conduction equation in the steady state of the sample can be expressed as the following equation (2). In equation (2) and below, a is the cross-sectional area of the sample, κ is the thermal conductivity of the sample, T is the temperature of the sample, ρ is the electrical resistivity of the sample, p is the perimeter of the sample, σ is Stefan-Boltzmann The constant, ε, represents the emissivity of the sample, and T 0 represents the zero point temperature of the thermocouple 5.

Figure 2019120531
Figure 2019120531

上式(2)における左辺第一項は試料中の熱伝導、同第二項はトムソン効果による発熱と吸熱、同第三項はジュール熱、同第四項は輻射熱を示す。そして、定常状態では上式(2)の右辺はゼロになる。ここで、式(2)の両辺をaκで割ると、次式(3)が得られる。   In the above equation (2), the first term on the left side indicates heat conduction in the sample, the second term indicates heat generation and heat absorption by the Thomson effect, the third term indicates Joule heat, and the fourth term indicates radiant heat. And in the steady state, the right side of the above equation (2) becomes zero. Here, the following equation (3) can be obtained by dividing both sides of the equation (2) by ak.

Figure 2019120531
Figure 2019120531

式(3)の左辺第四項に示された輻射に起因する熱損失は、室温近傍においてはジュール熱の1/100以下であることから、ここでは無視することができる。なお、高温においては無視できないが、温度領域200℃〜400℃では良い近似となる。また、試料内の温度分布は十分小さいものとし、トムソン係数、電気伝導率、熱伝導率などの物性値も定数として扱っている。これらの仮定の下で、式(3)は次式(4)のように簡素化される。   The heat loss due to radiation shown in the fourth term on the left side of the equation (3) can be ignored here because it is 1/100 or less of Joule heat in the vicinity of room temperature. In addition, although it can not disregard at high temperature, it becomes a good approximation in the temperature area | region 200 degreeC-400 degreeC. In addition, the temperature distribution in the sample is assumed to be sufficiently small, and physical property values such as the Thomson coefficient, the electrical conductivity, and the thermal conductivity are also treated as constants. Under these assumptions, equation (3) is simplified as in equation (4).

Figure 2019120531
Figure 2019120531

ここで、定数C及び定数Dは次式(5)のように定義される。   Here, the constant C and the constant D are defined as in the following equation (5).

Figure 2019120531
Figure 2019120531

なお、上記の定数Cはトムソン効果に起因する定数項であり、定数Dはジュール発熱に起因する定数項とみなすことができる。   The above-mentioned constant C is a constant term attributable to the Thomson effect, and the constant D can be regarded as a constant term attributable to Joule heating.

ところで、図2に示された試料4の境界条件は、次式(6),(7)で与えられる。   The boundary conditions of the sample 4 shown in FIG. 2 are given by the following equations (6) and (7).

Figure 2019120531
Figure 2019120531

Figure 2019120531
Figure 2019120531

なお、式(7)で示される第二の境界条件は、試料4に取り付けられた熱電対5を介した熱損失を示しており、式(7)以下においてKは熱電対5の熱コンダクタンスを示す。 Note that the second boundary condition represented by the equation (7) indicates the heat loss through the thermocouple 5 attached to the sample 4 and K 1 is the thermal conductance of the thermocouple 5 in the equation (7) or less Indicates

ここで、常微分方程式をなす式(4)及び境界条件を示す式(6),(7)からなる非斉次の境界値問題では、解析的な一般解を得られることが知られている。そこで、位置座標xについて2次以上の項を無視して級数展開すると、直流電流を印加した場合における温度分布TDCが、次式(8)のように、熱電対5の取り付け位置を示す座標l,lの関数として示される。なお、式(8)以下において、Kは試料の熱コンダクタンスを示す。 Here, it is known that an analytic general solution can be obtained in the inhomogeneous boundary value problem consisting of the equation (4) forming an ordinary differential equation and the equations (6) and (7) indicating a boundary condition . Therefore, if series expansion is performed ignoring the second or higher order terms with respect to the position coordinate x, the temperature distribution T DC in the case of applying a direct current is a coordinate showing the attachment position of the thermocouple 5 as in the following equation (8) It is shown as a function of l 1 and l 2 . In the following equation (8), K 0 represents the thermal conductance of the sample.

Figure 2019120531
Figure 2019120531

式(8)において、右辺第一項は試料4の初期温度、同第二項はジュール発熱及び二次のトムソン効果による温度上昇を表す。また、係数Nは、試料4の熱電対5を介した熱損失係数であり、試料4と熱電対5の熱コンダクタンスの比から算出される。また、差δlは熱電対5から試料4の両端までの長さの差を示す。   In the equation (8), the first term on the right side represents the initial temperature of the sample 4, and the second term represents the temperature increase due to the Joule heat and the second-order Thomson effect. The coefficient N is a heat loss coefficient through the thermocouple 5 of the sample 4 and is calculated from the ratio of the thermal conductance of the sample 4 to that of the thermocouple 5. The difference δl indicates the difference in length from the thermocouple 5 to both ends of the sample 4.

ここで、式(8)の右辺第二項のジュール熱の項に一次のトムソン係数による定数Cが現れているが、これはジュール熱の温度勾配を考慮したことではじめて現れたトムソン熱の項であり、差δlがゼロ、すなわち試料4の中央部に熱電対5が取り付けられている場合には、この項はゼロとなる。一方、試料4に交流電流を印加した場合の温度分布TACは、式(8)の定数Cをゼロとすることにより得られる次式(9)により示すことができる。 Here, a constant C by a first-order Thomson coefficient appears in the Joule heat term of the second term on the right side of the equation (8), but this is a Thomson heat term that first appeared in consideration of the temperature gradient of the Joule heat If the difference δl is zero, ie, the thermocouple 5 is attached to the central portion of the sample 4, this term is zero. On the other hand, the temperature distribution T AC when an alternating current is applied to the sample 4 can be expressed by the following equation (9) obtained by setting the constant C of the equation (8) to zero.

Figure 2019120531
Figure 2019120531

これまでに得られた試料温度の解析式から、以下のようにトムソン係数が導出される。式(8)に示されるように、1次のトムソン効果による吸熱および発熱は、電流の極性に依存するのに対し、ジュール効果および2次のトムソン効果による発熱は電流の極性には依存しない。そこで、電流を正の方向に加えた際の温度分布をTDC+、負の方向に加えた際の温度分布をTDC-とする。ここで、試料4のずれ測定点における温度の平均差δTDCを次のように定義する。 The Thomson coefficient is derived from the analytical equation of the sample temperature obtained so far as follows. As shown in equation (8), the endotherm and heat generation by the first-order Thomson effect depend on the polarity of the current, while the Joule effect and heat generation by the second-order Thomson effect do not depend on the polarity of the current. Therefore, let T DC + be the temperature distribution when the current is applied in the positive direction, and T DC− be the temperature distribution when the current is applied in the negative direction. Here, the average difference ΔT DC of the temperature at the displacement measurement point of the sample 4 is defined as follows.

Figure 2019120531
Figure 2019120531

式(10)に式(8)を代入すると、平均差δTDCは次式(11)のように表せる。すなわち、平均差δTDCは電流に対する奇数次の項だけが残るため、ジュール発熱で生じた温度勾配にトムソン係数に関する定数項Cが乗算された式で表されることになる。 Substituting the equation (8) into the equation (10), the average difference δT DC can be expressed as the following equation (11). That is, since only the odd-order term with respect to the current remains, the average difference δT DC is expressed by an equation in which the temperature gradient generated by Joule heating is multiplied by the constant term C related to the Thomson coefficient.

Figure 2019120531
Figure 2019120531

そして、式(11)をトムソン係数について解けば、熱電対の設置位置の関数として次式(12)のようにトムソン係数μを得ることができる。ここでは、直流電流を加えたという意味でμDCと表す。 Then, if equation (11) is solved for the Thomson coefficient, a Thomson coefficient μ can be obtained as a function of the installation position of the thermocouple as in the following equation (12). Here, it is expressed as μ DC in the sense that a direct current is added.

Figure 2019120531
Figure 2019120531

ここで、熱電対5からの熱損失が充分小さい場合には、式(12)は次式(13)により近似できる。   Here, when the heat loss from the thermocouple 5 is sufficiently small, the equation (12) can be approximated by the following equation (13).

Figure 2019120531
Figure 2019120531

ここで、式(13)には温度勾配情報は含まれないものの、様々な試料情報に関するパラメータが含まれているため、煩雑なものとなっている。そこで、交流電流を加えた時の温度変化を用いれば、これまでの交流直流法(AC-DC法)と同じ要領で式(13)を簡略化することができる。すなわち、式(13)は次式のように変形することができる。なお、式(14)以下において、Rは試料の電気抵抗を示す。また、δTACmは試料中央の測定点の温度変化に相当し、試料に交流を加えた際に生じるジュール発熱による温度上昇を表している。 Here, although the temperature gradient information is not included in the equation (13), parameters relating to various sample information are included, which is complicated. Therefore, equation (13) can be simplified in the same manner as the alternating current direct current method (AC-DC method) by using the temperature change when an alternating current is applied. That is, equation (13) can be transformed as the following equation. In the following formula (14), R represents the electrical resistance of the sample. Further, ΔT ACm corresponds to the temperature change at the measurement point in the center of the sample, and represents the temperature rise due to Joule heat generated when an alternating current is applied to the sample.

Figure 2019120531
Figure 2019120531

そして、式(14)をトムソン係数μについて解けば、次式(15)を得る。ここでは、交流電流を印加したという意味でトムソン係数をμACと表す。 Then, if equation (14) is solved for the Thomson coefficient μ, the following equation (15) is obtained. Here, the Thomson coefficient is expressed as μ AC in the sense that an alternating current is applied.

Figure 2019120531
Figure 2019120531

ここで、熱電対5からの熱損失が充分小さい場合には、式(15)は次式(16)により近似できる。   Here, when the heat loss from the thermocouple 5 is sufficiently small, the equation (15) can be approximated by the following equation (16).

Figure 2019120531
Figure 2019120531

式(16)には試料の温度勾配が含まれない上、AC-DC法と同様に試料の熱伝導率は含まれていない。つまり、温度勾配を与えずとも、自己発熱でトムソン効果が測定できることが解析的に示された。   The equation (16) does not include the temperature gradient of the sample, and does not include the thermal conductivity of the sample as in the AC-DC method. That is, it was analytically shown that the Thomson effect can be measured by self-heating without giving a temperature gradient.

一方で、追加的に必要となる物理量は熱電対5のズレ量であるが、試料4の中央部に設置するのと同様に、測定前には採寸するはずなので、測定に際して大きな手間にもならないと考えられる。   On the other hand, although the physical quantity required additionally is the shift amount of the thermocouple 5, it is not necessary to take a great deal of time in the measurement because it should be measured before the measurement as in the case of placing in the center of the sample 4. it is conceivable that.

また、測定対象である試料4の熱伝導率は、上記の式(13)と式(16)が等しい値になることを利用して、容易に算出することができる。   Further, the thermal conductivity of the sample 4 to be measured can be easily calculated using the fact that the equation (13) and the equation (16) become equal values.

上記のような方法により算出された絶対熱電能や熱伝導率の値は、図1に示された記憶部53に記憶され、ユーザインタフェース51は、熱物性測定装置50のユーザにより入力された所定の動作命令に応じて、当該値をユーザが目視により認識できるよう表示する。   The values of the absolute thermal power and the thermal conductivity calculated by the above method are stored in the storage unit 53 shown in FIG. 1, and the user interface 51 is a predetermined input by the user of the thermal physical property measuring device 50. In response to the operation command, the value is displayed so that the user can visually recognize it.

以上より、本発明の実施の形態に係る熱物性測定装置及び熱物性測定方法によれば、トムソン熱の測定のために流す電流により発生するジュール発熱による当該試料の温度勾配を利用するため、当該測定にあたって当該試料の両端にヒータや温度計を設ける必要がなくなり、たとえ温度勾配が生じにくい試料であっても、簡便に正確なトムソン係数や絶対ゼーベック係数、熱伝導率を得ることができる。   As described above, according to the thermophysical property measurement apparatus and the thermophysical property measurement method according to the embodiment of the present invention, the temperature gradient of the sample due to Joule heat generated by the current flowing for measuring the Thomson heat is used. It is not necessary to provide a heater and a thermometer at both ends of the sample in measurement, and even if the sample does not easily generate a temperature gradient, accurate Thomson coefficient, absolute Seebeck coefficient and thermal conductivity can be easily obtained.

5,10 熱電対
6 正極性直流電源
7 負極性直流電源
8 交流電源
9 スイッチ
50 熱物性測定装置
54 演算部
55 測定部
100 電流印加部

5, 10 Thermocouple 6 Positive DC Power Supply 7 Negative DC Power Supply 8 AC Power Supply 9 Switch 50 Thermophysical Property Measurement Device 54 Operation Unit 55 Measurement Unit 100 Current Application Unit

Claims (7)

両端に温度差がない測定対象物に正極性若しくは負極性の直流電流又は実効値が前記直流電流の大きさである交流電流を選択的に印加する電流印加手段と、
前記測定対象物の中央部及び前記中央部から任意の距離ずれた測定点に配置され、前記測定対象物の温度を測定する温度測定手段と、
前記電流印加手段により前記両端に極性の異なる直流電流を印加したときにおいて前記温度測定手段によって測定される前記中央部から任意の距離ずれた測定点における第一の温度変化と、前記電流印加手段により前記交流電流を印加したときにおいて前記温度測定手段によって測定される前記中央部における第二の温度変化との比を計算することにより前記測定対象物のトムソン係数を算出する演算手段を備えた熱物性測定装置。
A current applying means for selectively applying an alternating current whose positive or negative direct current or effective value is the magnitude of the direct current to a measurement object having no temperature difference at both ends;
Temperature measurement means disposed at a central portion of the measurement object and at a measurement point shifted by an arbitrary distance from the central portion, and measuring the temperature of the measurement object;
When a direct current of different polarity is applied to the both ends by the current application means, a first temperature change at a measurement point deviated from the center by an arbitrary distance measured by the temperature measurement means, and the current application means Thermophysical property provided with calculating means for calculating the Thomson coefficient of the object to be measured by calculating the ratio to the second temperature change in the central portion measured by the temperature measuring means when the alternating current is applied measuring device.
前記演算手段は、前記測定対象物に前記正極性の直流電流を印加した時に前記測定点で測定された前記測定対象物の温度と、前記測定対象物に前記負極性の直流電流を印加した時に前記測定点で測定された前記測定対象物の温度との平均差を算出して前記第一の温度変化とする、請求項1に記載の熱物性測定装置。   The calculation means is configured to measure the temperature of the object to be measured measured at the measurement point when the direct current of positive polarity is applied to the object to be measured, and when applying the negative current of negative polarity to the object to be measured The thermophysical property measuring apparatus according to claim 1, wherein an average difference from the temperature of the measurement object measured at the measurement point is calculated as the first temperature change. 前記演算手段は、さらに、前記トムソン係数を用いて前記測定対象物の絶対熱電能及び熱伝導率の少なくとも一方を算出する、請求項1に記載の熱物性測定装置。   The thermophysical property measuring device according to claim 1, wherein said operation means further calculates at least one of absolute thermopower and thermal conductivity of said measurement object using said Thomson coefficient. 両端に温度差がない測定対象物の前記両端に極性の異なる直流電流を印加して、前記測定対象物の中央部から任意の距離ずれた測定点における第一の温度変化を測定する第一のステップと、
前記両端に実効値が前記直流電流の大きさである交流電流を印加して、前記中央部における第二の温度変化を測定する第二のステップと、
前記第一のステップで測定された前記第一の温度変化と、前記第二のステップで測定された前記第二の温度変化の比を計算することにより、前記測定対象物のトムソン係数を算出する第三のステップとを有する熱物性測定方法。
A first method of measuring a first temperature change at a measurement point which is shifted by an arbitrary distance from a central portion of the measurement object by applying a DC current of different polarity to the both ends of the measurement object having no temperature difference at both ends. Step and
Applying an alternating current whose effective value is the magnitude of the direct current to the both ends, and measuring a second temperature change in the central portion;
The Thomson coefficient of the object to be measured is calculated by calculating the ratio of the first temperature change measured in the first step to the second temperature change measured in the second step. The thermal physical-property measuring method which has 3rd step.
前記第一のステップは、
前記両端に正極性の直流電流を印加して、前記測定点の温度を測定する正電流印加ステップと、
前記両端に負極性の直流電流を印加して、前記測定点の温度を測定する負電流印加ステップと、
前記正電流印加ステップと前記負電流印加ステップでそれぞれ測定された前記測定点の温度の平均差を算出して前記第一の温度変化とする温度変化算出ステップ、とを含む請求項4に記載の熱物性測定方法。
The first step is
A positive current application step of measuring a temperature of the measurement point by applying a positive DC current to the both ends;
A negative current application step of measuring a temperature of the measurement point by applying a negative DC current to the both ends;
The temperature change calculation step according to claim 4, further comprising: calculating an average difference between the temperatures of the measurement points measured in the positive current application step and the negative current application step to obtain the first temperature change. Thermal property measurement method.
前記第二のステップは、前記第一のステップの前若しくは後に実行される請求項4に記載の熱電能測定方法。   The method according to claim 4, wherein the second step is performed before or after the first step. 前記トムソン係数を用いて前記測定対象物の絶対熱電能及び熱伝導率の少なくとも一方を算出する第四のステップをさらに含む請求項4に記載の熱物性測定方法。

The thermophysical property measuring method according to claim 4, further comprising a fourth step of calculating at least one of absolute thermopower and thermal conductivity of the object to be measured using the Thomson coefficient.

JP2017253765A 2017-12-28 2017-12-28 Thermophysical property measuring device and thermophysical property measuring method Active JP7079471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017253765A JP7079471B2 (en) 2017-12-28 2017-12-28 Thermophysical property measuring device and thermophysical property measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017253765A JP7079471B2 (en) 2017-12-28 2017-12-28 Thermophysical property measuring device and thermophysical property measuring method

Publications (2)

Publication Number Publication Date
JP2019120531A true JP2019120531A (en) 2019-07-22
JP7079471B2 JP7079471B2 (en) 2022-06-02

Family

ID=67307142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253765A Active JP7079471B2 (en) 2017-12-28 2017-12-28 Thermophysical property measuring device and thermophysical property measuring method

Country Status (1)

Country Link
JP (1) JP7079471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965212A (en) * 2020-07-31 2020-11-20 南方科技大学 Thermophysical property calculation method, thermophysical property test system, electronic device, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259859A (en) * 1979-05-03 1981-04-07 Yoshihiro Iida Method for determination of thermal properties by arbitrary heating
JP2003014804A (en) * 2001-06-28 2003-01-15 Komatsu Ltd Apparatus and method for measurement of figure of merit of thermoelectric element
WO2015025586A1 (en) * 2013-08-22 2015-02-26 独立行政法人産業技術総合研究所 Thermophysical property measurement method and thermophysical property measurement device
JP2016024174A (en) * 2014-07-24 2016-02-08 国立大学法人埼玉大学 Substance thermal diffusivity measurement method and substance thermoelectric characteristic evaluation device using the method
WO2017169462A1 (en) * 2016-03-29 2017-10-05 国立研究開発法人産業技術総合研究所 Method for measuring thermophysical property and device for measuring thermophysical property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259859A (en) * 1979-05-03 1981-04-07 Yoshihiro Iida Method for determination of thermal properties by arbitrary heating
JP2003014804A (en) * 2001-06-28 2003-01-15 Komatsu Ltd Apparatus and method for measurement of figure of merit of thermoelectric element
WO2015025586A1 (en) * 2013-08-22 2015-02-26 独立行政法人産業技術総合研究所 Thermophysical property measurement method and thermophysical property measurement device
JP2016024174A (en) * 2014-07-24 2016-02-08 国立大学法人埼玉大学 Substance thermal diffusivity measurement method and substance thermoelectric characteristic evaluation device using the method
WO2017169462A1 (en) * 2016-03-29 2017-10-05 国立研究開発法人産業技術総合研究所 Method for measuring thermophysical property and device for measuring thermophysical property

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
天谷 康孝: "精密低周波交流電圧発生器を用いたゼーベック係数の絶対測定技術の開発", 科学研究費助成事業 研究報告書, JPN6021029307, 13 June 2016 (2016-06-13), JP, ISSN: 0004681347 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965212A (en) * 2020-07-31 2020-11-20 南方科技大学 Thermophysical property calculation method, thermophysical property test system, electronic device, and storage medium
CN111965212B (en) * 2020-07-31 2023-05-09 捷耀精密五金(深圳)有限公司 Thermophysical property calculation method, thermophysical property test system, electronic device, and storage medium

Also Published As

Publication number Publication date
JP7079471B2 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
KR102630649B1 (en) Apparatus, systems and methods for non-invasive thermal irradiation
JP6202580B2 (en) Thermophysical property measuring method and thermophysical property measuring device
Mannella et al. Peltier cells as temperature control elements: Experimental characterization and modeling
TW201910761A (en) Sensor system and integrated heater sensor for measuring and controlling the performance of the heater system
Chen et al. Metrological software test for simulating the method of determining the thermocouple error in situ during operation
Zueco et al. Simultaneous inverse determination of temperature-dependent thermophysical properties in fluids using the network simulation method
JP6607469B2 (en) Thermophysical property measuring method and thermophysical property measuring device
Al-Khalidy On the solution of parabolic and hyperbolic inverse heat conduction problems
Yao et al. Thermal conductivity of ethyl fluoride (HFC161)
Pavlasek et al. Hysteresis effects and strain-induced homogeneity effects in base metal thermocouples
Löhle et al. Analysing inverse heat conduction problems by the analysis of the system impulse response
Zhuo et al. An inverse method for the estimation of a long-duration surface heat flux on a finite solid
JP7079471B2 (en) Thermophysical property measuring device and thermophysical property measuring method
Löhle Derivation of the non-integer system identification method for the adiabatic boundary condition using Laplace transform
JP2005140693A (en) Method and apparatus for identifying thermophysical property values
Vasylkiv et al. The control system of the profile of temperature field
JP7016141B2 (en) Thermophysical property measuring device and thermophysical property measuring method
Hindasageri et al. A novel concept to estimate the steady state heat flux from impinging premixed flame jets in an enclosure by numerical IHCP technique
Pierce et al. Measuring thermal substrate resistance and impact on the characterization of thermoelectric modules
Gałązka et al. Radiative heat losses in thermal conductivity measurements: A correction for linear temperature gradients
Bouaanani et al. Performance of a thermocouple subjected to a variable current
Razouk et al. Uncertainty assessment of enthalpy of fusion measurements performed by using an improved Calvet calorimeter
Fu et al. Simultaneous measurements of high-temperature total hemispherical emissivity and thermal conductivity using a steady-state calorimetric technique
KR101230492B1 (en) System and method for controlling temperature in thermoelectric element evaluation apparatus
Saito et al. Estimating surface temperature of a calibration apparatus for contact surface thermometers from its internal temperature profile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220516

R150 Certificate of patent or registration of utility model

Ref document number: 7079471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150