JP2019120442A - Flying object - Google Patents

Flying object Download PDF

Info

Publication number
JP2019120442A
JP2019120442A JP2017254558A JP2017254558A JP2019120442A JP 2019120442 A JP2019120442 A JP 2019120442A JP 2017254558 A JP2017254558 A JP 2017254558A JP 2017254558 A JP2017254558 A JP 2017254558A JP 2019120442 A JP2019120442 A JP 2019120442A
Authority
JP
Japan
Prior art keywords
flying object
radome
flying
connection member
fixing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017254558A
Other languages
Japanese (ja)
Other versions
JP2019120442A5 (en
JP6914187B2 (en
Inventor
隆二 月舘
Ryuji Tsukidate
隆二 月舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017254558A priority Critical patent/JP6914187B2/en
Publication of JP2019120442A publication Critical patent/JP2019120442A/en
Publication of JP2019120442A5 publication Critical patent/JP2019120442A5/ja
Application granted granted Critical
Publication of JP6914187B2 publication Critical patent/JP6914187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

To provide a flying object which prevents a radome for the flying object from being separated from a flying object body.SOLUTION: A flying object 100 of the present invention comprises: a cylindrical flying object body 1; a fixing member 6 which is a columnar first coupling member fixed on a distal end side of the flying object body 1 and extending outside in the radial direction from the flying object body 1; a coupling member 8 which is a columnar second coupling member provided at the fixing member 6 and extending outside in the radial direction from the fixing member 6; and a radome 2 for the flying object which has an insertion hole 21a into which the coupling member 8 is inserted formed thereon and is coupled to the distal end side of the flying object body 1 via the coupling member 8 and the fixing member 6. The flying object has a gap G2 formed between an inner peripheral surface of the radome 2 for the flying object and a radial outer surface of the fixing member 6.SELECTED DRAWING: Figure 2

Description

この発明は、目標に向けて電波誘導によって飛しょうする円筒状の飛しょう体本体と、飛しょう体本体の先端に設けられる飛しょう体用レドームとを備える飛しょう体に関する。   The present invention relates to a flying body provided with a cylindrical flying body that flies by electromagnetic induction toward a target, and a flying radome provided at the tip of the flying body.

特許文献1に開示される従来の飛しょう体は、目標に向けて電波誘導によって飛しょうする飛しょう体本体と、飛しょう体本体の先端に設けられ目標を検知するためのアンテナと、飛しょう体本体の先端に設けられアンテナを保護する飛しょう体用レドームとを備える。飛しょう体は、飛しょう開始から数秒間という短い時間で超音速又は極超音速に達するものが多く、空力加熱を受け、機体が高温に晒される。空力加熱は、飛しょう体の表面を大気が高速で流れて、飛しょう体の表面と大気との間で摩擦が発生し、摩擦熱により大気及び飛しょう体が加熱される現象のことである。飛しょう体本体の先端に設けられる飛しょう体用レドームは、飛しょう体の部位の中で熱的環境が厳しい部位の一つであり、大きな空力荷重、空力加熱及び熱衝撃を受ける。熱衝撃とは、物体が激しい温度変化によって衝撃的な熱応力を受ける現象である。そのため、飛しょう体用レドームには、高い強度、耐熱性、及び耐熱衝撃性が要求される。また、飛しょう体用レドームは、アンテナが送受信する電波を透過させる必要があるため、飛しょう体用レドームには、電波透過性が要求される。上記の要求を満たすために、飛しょう体用レドームの材料には、一般に、耐熱温度が1000℃以上であり、熱膨張係数が5×10−6/℃以下の誘電体材料であるセラミックスが使用される。 The conventional flying body disclosed in Patent Document 1 includes a flying body that flies by electromagnetic induction toward a target, an antenna provided at the tip of the flying body and a target for detecting the target, and a fly. A flying radome is provided at the tip of the body to protect the antenna. Many flying vehicles reach supersonic velocity or hypersonic velocity in a short time of a few seconds from the start of flight, and are subjected to aerodynamic heating to expose the vehicle to high temperatures. Aerodynamic heating is a phenomenon in which the atmosphere flows at high speed on the surface of the projectile, friction is generated between the surface of the projectile and the atmosphere, and the atmosphere and the projectile are heated by frictional heat. . The flying body radome provided at the tip of the flying body is one of the parts where the thermal environment is severe among the parts of the flying body, and receives large aerodynamic load, aerodynamic heating and thermal shock. Thermal shock is a phenomenon in which an object is subjected to an impulsive thermal stress due to a drastic temperature change. Therefore, high strength, heat resistance, and thermal shock resistance are required of the flying radome. Moreover, since it is necessary to transmit radio waves transmitted and received by the antenna, the flying radome is required to have radio wave transparency for the flying radome. In order to satisfy the above requirements, generally used as the material of the radome for the flying object is a ceramic which is a dielectric material having a heat resistance temperature of 1000 ° C. or more and a thermal expansion coefficient of 5 × 10 −6 / ° C. or less Be done.

これに対して、飛しょう体本体には、熱膨張係数が10×10−6/℃から30×10−6/℃の範囲にある高剛性の材料である鉄、アルミニウムなどが用いられる。このように、飛しょう体用レドームと飛しょう体本体との間には大きな熱膨張係数の差があるため、両者を直接接合した構造にすると、飛しょう時の空力加熱によって接合部分に大きな熱応力が発生し、飛しょう体用レドームに割れ又は亀裂が発生する。このため、従来の飛しょう体では、高剛性でありながら熱膨張係数が比較的低い繊維強化プラスチック(Fiber Reinforced Plastics:FRP)によって構成されるリングを介して、飛しょう体用レドームが飛しょう体本体へ固定される。そして、リングへの飛しょう体用レドームの取付けには、接着剤が利用される。 On the other hand, iron, aluminum or the like which is a high rigidity material having a thermal expansion coefficient in the range of 10 × 10 −6 / ° C. to 30 × 10 −6 / ° C. is used for the flight body main body. As described above, since there is a large difference in thermal expansion coefficient between the flying radome and the flying main body, if the two are directly joined, the large amount of heat is generated at the junction due to aerodynamic heating at the time of flight. Stress is generated and cracks or cracks occur in the flying radome. For this reason, in the conventional projectiles, the projectile radome can be transported through a ring made of fiber reinforced plastic (FRP) which has a relatively low thermal expansion coefficient but a high rigidity. It is fixed to the body. And, an adhesive is used to attach the flying body radome to the ring.

特開平11−37699号公報Japanese Patent Application Laid-Open No. 11-37699

従来の飛しょう体では、飛しょう速度が高くなり、また飛しょう体の飛しょう時間が長くなるに従って、空力加熱の総量が増加すると、接着剤の温度が耐熱温度を超えて、リングへの飛しょう体用レドームの接着強度が低下するおそれがある。また、飛しょう体用レドームの熱衝撃を緩和するために、飛しょう体用レドームの材料に熱伝導率の高い材料が用いられる場合、飛しょう体用レドームから接着剤に熱が伝わり易くなるため、接着剤の温度が高温になり、接着剤の温度が耐熱温度を超えて、接着強度が低下するおそれがある。そのため、従来の飛しょう体では、接着強度が低下して、飛しょう体用レドームが飛しょう体本体から外れる可能性があるという課題がある。また、接着強度は接着剤の経年劣化により低下することが知られているが、接着強度の低下率を定量的に推測することは困難である。そのため、従来の飛しょう体では、接着剤の経年劣化によって接着強度が低下しても、飛しょう体用レドームがリングから外れることがないように、初期の接着強度に余裕を持たせる必要がある。   In the conventional projectiles, when the total amount of aerodynamic heating increases as the flight speed increases and the flight time of the projectiles increases, the temperature of the adhesive exceeds the heat resistance temperature, and the flight to the ring occurs. There is a risk that the adhesive strength of the radome for bones may decrease. In addition, when a material with high thermal conductivity is used as the material of the radome for the flying object to ease the thermal shock of the radome for the flying object, heat is easily transmitted from the flying object radome to the adhesive. The temperature of the adhesive becomes high, the temperature of the adhesive exceeds the heat resistance temperature, and the adhesive strength may be reduced. Therefore, in the case of the conventional flying object, there is a problem that the adhesion strength is lowered and the flying object radome may be detached from the flying object body. Moreover, although it is known that adhesive strength falls with age deterioration of an adhesive agent, it is difficult to estimate quantitatively the fall rate of adhesive strength. Therefore, in the case of a conventional flying object, it is necessary to allow for an initial bonding strength so that the flying object radome does not come off the ring even if the adhesive strength decreases due to the aging of the adhesive. .

本発明は、上記に鑑みてなされたものであって、飛しょう体本体から飛しょう体用レドームが外れることを防止できる飛しょう体を得ることを目的とする。   The present invention has been made in view of the above, and it is an object of the present invention to obtain a flying body that can prevent the flying body radome from being detached from the flying body main body.

上述した課題を解決し、目的を達成するために、本発明に係る飛しょう体は、目標に向けて電波誘導により飛しょうする円筒状の飛しょう体本体と、飛しょう体本体の先端側に固定され、飛しょう体本体から飛しょう体本体の径方向外側に伸びる柱状の第1の連結部材とを備える。飛しょう体は、第1の連結部材に設けられ、第1の連結部材から径方向外側に伸びる柱状の第2の連結部材と、第2の連結部材が挿入される挿入孔が形成され、第2の連結部材と第1の連結部材とを介して飛しょう体本体の先端側に連結される飛しょう体用レドームとを備える。飛しょう体用レドームの内周面と、第1の連結部材の径方向外側の面との間に隙間が形成されることを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the flying body according to the present invention has a cylindrical flying body that flies by electromagnetic induction toward the target and a tip side of the flying body. And a pillar-shaped first connecting member fixed and extending radially outward of the flight main body. The projectile is provided on the first connection member, and a columnar second connection member extending radially outward from the first connection member and an insertion hole into which the second connection member is inserted are formed. A flying radome is connected to the front end side of the flight vehicle main body via the second connecting member and the first connecting member. A gap is formed between the inner peripheral surface of the flying object radome and the radial outer surface of the first connecting member.

本発明に係る飛しょう体は、飛しょう体本体から飛しょう体用レドームが外れることを防止できる、という効果を奏する。   The flying body according to the present invention has the effect of being able to prevent the flying body radome from being detached from the body of the flying body.

本発明の実施の形態1に係る飛しょう体の外観図An appearance view of a flying object according to Embodiment 1 of the present invention 図1に示す飛しょう体本体と飛しょう体用レドームとの連結部を拡大視した断面図Sectional drawing which expanded the connection part of the flight vehicle main body and the flying radome shown in FIG. 図2に示す固定部材へ連結部材を埋め込んだ状態を示す図The figure which shows the state which embedded the connection member in the fixing member shown in FIG. 図2に示すレドーム側結合部の挿入孔へ、図3に示す連結部材を挿入する状態を示す図The figure which shows the state which inserts the connection member shown in FIG. 3 in the insertion hole of the radome side coupling | bond part shown in FIG. 図2に示す飛しょう体本体へ、図4に示す固定部材及び飛しょう体用レドームを組み付ける状態を示す図The figure which shows the state which assemble | attaches the fixing member and the radome for flying bodies shown in FIG. 4 to the flying body main body shown in FIG. 図5に示す飛しょう体本体へ組み付けられた固定部材を、皿ねじを用いて飛しょう体本体へ固定する状態を示す図The figure which shows the state which fixes the fixing member assembled | attached to the flight body main body shown in FIG. 5 to a flight body main body using a flathead screw. 図6に示すレドーム側結合部に穴埋部材及び第2の断熱部を取付け、図6に示す第1の円筒部に第1の断熱部を取付ける状態を示す図The figure which shows a state which attaches an embedding member and a 2nd heat insulation part to the radome side coupling part shown in FIG. 6, and attaches a 1st heat insulation part to the 1st cylindrical part shown in FIG. 図2に示すレドーム側結合部及び第1の円筒部のそれぞれの半径の変化量を説明するための図The figure for demonstrating the variation | change_quantity of each radius of the radome side coupling | bond part shown in FIG. 2, and a 1st cylindrical part 本発明の実施の形態2に係る飛しょう体の部分拡大図A partially enlarged view of a flying object according to a second embodiment of the present invention 本発明の実施の形態3に係る飛しょう体の飛しょう体用レドーム及び飛しょう体本体の連結部を拡大視した断面図Sectional drawing which expanded the connection part of the radome for flight bodies of the flight object concerning Embodiment 3 of this invention, and a flight body main part 図10に示す固定部材を径方向内側から見た状態を示す図FIG. 11 is a view of the fixing member shown in FIG. 実施の形態3の第1変形例に係る飛しょう体の断面図Cross-sectional view of a flying object according to a first modification of the third embodiment 実施の形態3の第2変形例に係る飛しょう体の断面図Cross-sectional view of a flying object according to a second modification of the third embodiment 本発明の実施の形態4に係る飛しょう体の飛しょう体用レドーム及び飛しょう体本体の連結部を拡大視した断面図Sectional drawing which expanded the connection part of the radome for flight bodies of the flight object concerning Embodiment 4 of this invention, and a flight body main part.

以下に、本発明の実施の形態に係る飛しょう体を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a flying object according to an embodiment of the present invention will be described in detail based on the drawings. The present invention is not limited by the embodiment.

実施の形態1.
図1は本発明の実施の形態1に係る飛しょう体の外観図である。図2は図1に示す飛しょう体本体と飛しょう体用レドームとの連結部を拡大視した断面図である。図1及び図2において、矢印D1で示す方向は、飛しょう体100の中心軸AXが伸びる方向である軸方向を表し、矢印D2で示す方向は、飛しょう体100の径方向を表し、矢印D3で示す方向は、中心軸AXの周方向を表す。以下では軸方向D1を単に「軸方向」と称し、径方向D2を単に「径方向」と称し、周方向D3を単に「周方向」と称する。
Embodiment 1
FIG. 1 is an external view of a flying object according to Embodiment 1 of the present invention. FIG. 2 is an enlarged cross-sectional view of the connecting portion between the body of the flying object and the radome for flying object shown in FIG. In FIG. 1 and FIG. 2, the direction shown by the arrow D1 represents the axial direction which is the direction in which the central axis AX of the flying object 100 extends, the direction shown by the arrow D2 represents the radial direction of the flying object 100, the arrow The direction indicated by D3 represents the circumferential direction of the central axis AX. Hereinafter, the axial direction D1 is simply referred to as “axial direction”, the radial direction D2 is simply referred to as “radial direction”, and the circumferential direction D3 is simply referred to as “circumferential direction”.

図1では、各構成の左側の端部を先端、各構成の右側の端部を後端とする。また、飛しょう体100の飛行方向は、図1の右側から左側に向かう方向に等しい。飛しょう体100は、円筒状の飛しょう体本体1と、飛しょう体本体1の先端に設けられる飛しょう体用レドーム2と、飛しょう体本体1の先端寄りの外周部に設けられる第1の断熱部3と、飛しょう体用レドーム2の後端寄りの外周部に設けられる第2の断熱部4と、飛しょう体100の内部に設けられる電子機器5とを備える。飛しょう体100は、電子機器5が送受信する電波により、目標までの距離及び方位を計測して、目標に向けて電波誘導により飛しょうする。電子機器5は、目標までの距離及び方位を計測するためのアンテナである。   In FIG. 1, the left end of each configuration is a front end, and the right end of each configuration is a rear end. Also, the flight direction of the flying object 100 is equal to the direction from the right to the left in FIG. 1. The flying object 100 includes a cylindrical flying object body 1, a flying object radome 2 provided at the tip of the object body 1, and a first provided at the outer periphery of the flying object body 1 near the tip. And a second heat insulating portion 4 provided on the outer peripheral portion near the rear end of the radome 2 for a flying object, and an electronic device 5 provided inside the flying object 100. The flying object 100 measures the distance and direction to the target by radio waves transmitted and received by the electronic device 5, and flies toward the target by radio wave induction. The electronic device 5 is an antenna for measuring the distance and the direction to the target.

飛しょう体用レドーム2は、飛しょう体100が高速で飛しょうする際に生じる空力荷重及び空力加熱を受けやすい部位であるため、空力抵抗を減らして高速で飛しょうできるように、先端部が尖った流線型をなし、外径が先端部から後端部に向かって滑らかに拡がり、後端部が開口して中空となっている。飛しょう体用レドーム2には、高い強度、耐熱性、及び耐熱衝撃性が要求されると共に電波透過性が要求される。そのため、飛しょう体用レドーム2の材料には、熱膨張係数が5×10−6/℃以下のセラミックスが用いられる。セラミックスには、アルミナ(Al)、コージライト(2MgO・2AlO・5SiO)、ヒューズドシリカ(SiO)、シリコンナイトライド(Si)などのセラミックス焼結体を例示できる。 Since the flying radome 2 is a portion susceptible to aerodynamic load and aerodynamic heating that occurs when the flying object 100 flies at high speed, the tip portion is made to be able to fly at high speed with reduced aerodynamic resistance. It has a sharp streamlined shape, and its outer diameter smoothly spreads from the front end to the rear end, and the rear end is open and hollow. The flying radome 2 is required to have high strength, heat resistance, and thermal shock resistance, as well as radio wave transmission. Therefore, a ceramic having a thermal expansion coefficient of 5 × 10 −6 / ° C. or less is used as the material of the radome 2 for a flying object. Examples of ceramics include ceramic sintered bodies such as alumina (Al 2 O 3 ), cordierite (2MgO · 2Al 2 O · 5SiO 2 ), fused silica (SiO 2 ), silicon nitride (Si 3 N 4 ), etc. it can.

飛しょう体本体1の材料には、熱膨張係数が10×10−6/℃から30×10−6/℃の範囲にある高剛性の材料である鉄、アルミニウムなどが用いられる。 As a material of the flying object body 1, iron, aluminum or the like which is a high rigidity material having a thermal expansion coefficient in the range of 10 × 10 −6 / ° C. to 30 × 10 −6 / ° C. is used.

図2に示すように、飛しょう体本体1は、軸方向に伸びる円筒状の筐体10と、筐体10の軸方向の端部に設けられ飛しょう体用レドーム2を筐体10へ結合するための本体側結合部11とを備える。筐体10と本体側結合部11とは、鉄、アルミニウムなどの材料を用いて、ダイカストにより一体成型で製造してもよいし、それぞれを個別に製作した後に互いに組み合わせてもよい。   As shown in FIG. 2, the flying object body 1 is provided at an axially extending cylindrical casing 10 and at an axial end of the casing 10 to couple the flying object radome 2 to the casing 10 And a body-side coupling portion 11 for The housing 10 and the main body side joint portion 11 may be manufactured by die-cast integrally using materials such as iron and aluminum, or may be combined with each other after being separately manufactured.

本体側結合部11は、第1の円筒部11a、張り出し部11b、第2の円筒部11c及び機器設置部11dを備える。   The main body side coupling portion 11 includes a first cylindrical portion 11a, a projecting portion 11b, a second cylindrical portion 11c, and a device installation portion 11d.

第1の円筒部11aは、筐体10の先端側の端部から飛しょう体用レドーム2に向かって軸方向に伸び、外径が筐体10の外径よりも小さく、筐体10と同軸に設けられる円筒状の部材である。第1の円筒部11aの軸方向の先端は、飛しょう体用レドーム2の軸方向の後端と向き合っている。飛しょう体用レドーム2の構成の詳細は後述する。   The first cylindrical portion 11 a axially extends from the end on the tip end side of the housing 10 toward the flying object radome 2, and the outer diameter is smaller than the outer diameter of the housing 10 and is coaxial with the housing 10 It is a cylindrical member provided in The axial front end of the first cylindrical portion 11 a faces the axial rear end of the flying object radome 2. Details of the configuration of the flying object radome 2 will be described later.

第1の円筒部11aの径方向外側には、第1の断熱部3が設けられる。第1の断熱部3の材料には、耐熱温度が高く断熱性に優れたシリコーン樹脂が用いられる。第1の断熱部3の材料は、熱伝導率が第1の円筒部11aの熱伝導率よりも低い材料であればよく、シリコーン樹脂に限定されない。第1の断熱部3は、第1の円筒部11aの外周面上に、周方向に連続して環状に設けられている。第1の断熱部3は、伸縮性のある環状の断熱部材を径方向に引き伸ばした状態で第1の円筒部11aに組み付けたものでもよいし、帯状の断熱部材を第1の円筒部11aの周囲に環状に連続して巻いたものでもよい。第1の断熱部3の軸方向の長さは、第1の円筒部11aの軸方向の長さに等しい。第1の円筒部11aの軸方向の長さは、第1の円筒部11aと筐体10との接続部から、第1の円筒部11aの飛しょう体用レドーム2側の端部までの幅に等しい。第1の断熱部3の外周面は、筐体10の外周面を軸方向に第1の円筒部11aまで延長した仮想面上に位置する。   The 1st heat insulation part 3 is provided in the radial direction outer side of the 1st cylindrical part 11a. As a material of the first heat insulating portion 3, a silicone resin having a high heat resistance temperature and excellent heat insulating properties is used. The material of the first heat insulating portion 3 may be a material whose thermal conductivity is lower than the thermal conductivity of the first cylindrical portion 11a, and is not limited to silicone resin. The first heat insulating portion 3 is annularly continuously provided in the circumferential direction on the outer peripheral surface of the first cylindrical portion 11 a. The first heat insulating portion 3 may be one in which the stretchable annular heat insulating member is stretched in the radial direction and assembled to the first cylindrical portion 11a, or the belt-shaped heat insulating member is the one of the first cylindrical portion 11a. It may be annularly wound continuously around the periphery. The axial length of the first heat insulating portion 3 is equal to the axial length of the first cylindrical portion 11a. The axial length of the first cylindrical portion 11a is the width from the connecting portion between the first cylindrical portion 11a and the housing 10 to the end portion of the first cylindrical portion 11a on the side of the radome 2 for the flying object. be equivalent to. The outer peripheral surface of the first heat insulating portion 3 is located on a virtual surface in which the outer peripheral surface of the housing 10 is extended to the first cylindrical portion 11 a in the axial direction.

張り出し部11bは、第1の円筒部11aの内周面の内、先端寄りの部分から径方向内側に伸びて、筐体10と同軸に設けられる環状板形状の部材である。   The overhanging portion 11 b is an annular plate-shaped member that extends radially inward from a portion near the tip of the inner circumferential surface of the first cylindrical portion 11 a and is provided coaxially with the housing 10.

第2の円筒部11cは、張り出し部11bの内周面寄りの部分から飛しょう体用レドーム2に向かって軸方向に伸び、外径OD1が飛しょう体用レドーム2の内径ID1よりも小さく、筐体10と同軸に設けられる円筒の部材である。第2の円筒部11cには、第2の円筒部11cの外周面から第2の円筒部11cの内周面に向かって貫通し、かつ、径方向に伸びる貫通孔11c1が形成される。貫通孔11c1は、周方向に互いに離れて3つ以上形成される。複数の貫通孔11c1のそれぞれは、軸方向の位置が等しい。周方向に隣接する貫通孔11c1同士の離間幅は互いに等しい。なお、ここで述べる「等しい」は、厳密に等しい状態を表すのみならず、飛しょう体100を構成する各部品の製造上の公差、当該各部品の組立て上のばらつきなどを考慮した範囲を含むものとする。   The second cylindrical portion 11c axially extends from the portion near the inner peripheral surface of the overhang portion 11b toward the flying object radome 2, and the outer diameter OD1 is smaller than the inner diameter ID1 of the flying object radome 2, It is a cylindrical member provided coaxially with the housing 10. In the second cylindrical portion 11c, a through hole 11c1 penetrating from the outer peripheral surface of the second cylindrical portion 11c toward the inner peripheral surface of the second cylindrical portion 11c and extending in the radial direction is formed. Three or more through holes 11c1 are formed apart from each other in the circumferential direction. Each of the plurality of through holes 11c1 has the same axial position. The separation widths of the through holes 11c1 adjacent in the circumferential direction are equal to each other. In addition, "equal" described here not only represents a strictly equal state, but also includes a range taking into consideration manufacturing tolerances of the respective parts constituting the flying object 100, assembly variations of the respective parts, and the like. It shall be

機器設置部11dは、第2の円筒部11cの内周面の内、先端寄りの部分に設けられる円盤板状の部材である。機器設置部11dの飛しょう体用レドーム2側の端面には、電子機器5が固定されている。   The device mounting portion 11 d is a disk-shaped member provided on a portion near the tip of the inner peripheral surface of the second cylindrical portion 11 c. The electronic device 5 is fixed to the end face of the device installation section 11 d on the side of the flying object radome 2.

第2の円筒部11cの径方向外側には、第1の連結部材である固定部材6が設けられる。固定部材6は、径方向に伸びる円柱形状又は多角柱形状の部材である。固定部材6は、飛しょう体用レドーム2又は飛しょう体本体1と同様の材料を用いて、ダイカストにより一体成型で製造してもよいし、飛しょう体用レドーム2又は飛しょう体本体1と同様の材料で形成されるブロック状の塊を切削加工して製造してもよい。   The fixing member 6, which is a first connecting member, is provided on the radially outer side of the second cylindrical portion 11c. The fixing member 6 is a radially extending cylindrical or polygonal cylindrical member. The fixing member 6 may be manufactured by die-casting integrally using the same material as the flying object radome 2 or the flying object body 1, or the flying object radome 2 or the flight object body 1 It may be manufactured by cutting a block-like block formed of the same material.

固定部材6の径方向内側の面は、第2の円筒部11cの外周面に接している。固定部材6の径方向内側の面は、軸方向に直交する断面が、第2の円筒部11cの外周面に接する円弧形状に湾曲している。   The radially inner surface of the fixing member 6 is in contact with the outer peripheral surface of the second cylindrical portion 11c. The radially inner surface of the fixing member 6 has a cross section orthogonal to the axial direction curved in an arc shape contacting the outer peripheral surface of the second cylindrical portion 11c.

固定部材6は、第2の円筒部11cの外周面上に、周方向に互いに離れて3つ以上設けられる。複数の固定部材6のそれぞれは、軸方向の位置が等しい。周方向に隣接する固定部材6同士の離間幅は互いに等しい。なお、ここで述べる「等しい」は、厳密に等しい状態を表すのみならず、飛しょう体100を構成する各部品の製造上の公差、当該各部品の組立て上のばらつきなどを考慮した範囲を含むものとする。   The fixing members 6 are provided three or more apart from each other in the circumferential direction on the outer peripheral surface of the second cylindrical portion 11c. Each of the plurality of fixing members 6 has the same axial position. The separation widths of the fixing members 6 adjacent in the circumferential direction are equal to each other. In addition, "equal" described here not only represents a strictly equal state, but also includes a range taking into consideration manufacturing tolerances of the respective parts constituting the flying object 100, assembly variations of the respective parts, and the like. It shall be

固定部材6の径方向の幅は、第2の円筒部11cの外周面と飛しょう体用レドーム2のレドーム側結合部21の内周面との間に形成される隙間G1の径方向の幅よりも狭い。そのため、固定部材6の径方向外側の面と、飛しょう体用レドーム2のレドーム側結合部21の内周面との間には、隙間G2が形成される。   The radial width of the fixing member 6 is the radial width of the gap G1 formed between the outer peripheral surface of the second cylindrical portion 11c and the inner peripheral surface of the radome-side joint portion 21 of the radome 2 for a flying object. It is narrower than. Therefore, a gap G2 is formed between the radially outer surface of the fixing member 6 and the inner circumferential surface of the radome-side coupling portion 21 of the flying object radome 2.

固定部材6には、固定部材6の径方向外側の面から固定部材6の径方向内側の面に向かって貫通し、かつ、径方向に伸びる貫通孔6aが形成される。貫通孔6aは、第2の円筒部11cに形成される貫通孔11c1と連通する。貫通孔6aには、皿ねじ7が有する円錐形の頭部7aの形状に合わせたザグリ加工部6a1が形成されている。皿ねじ7の先端部である雄ねじ部7bは、固定部材6の貫通孔6aを通り、第2の円筒部11cの貫通孔11c1にねじ込まれている。ザグリ加工部6a1を設けることにより、皿ねじ7の頭部7aの傾斜面が、貫通孔6aを形成する固定部材6の内周面に接する。皿ねじ7以外のねじを用いた場合に比べて、固定部材6と皿ねじ7との接触面積が増えて、固定部材6と皿ねじ7との間に生じる摩擦力が増加するため、皿ねじ7の緩みが抑制され、第2の円筒部11cへの固定部材6の固定を維持できる。なお、実施の形態1では皿ねじ7が用いられているが、固定部材6を第2の円筒部11cに固定できれば、皿ねじ7以外のねじでもよい。   The fixing member 6 is formed with a through hole 6 a which penetrates from the radial outer surface of the fixing member 6 toward the radial inner surface of the fixing member 6 and extends in the radial direction. The through hole 6a communicates with the through hole 11c1 formed in the second cylindrical portion 11c. In the through hole 6a, a counterbore portion 6a1 is formed in accordance with the shape of the conical head 7a of the flat screw 7. The male screw portion 7 b which is the tip of the flat head screw 7 passes through the through hole 6 a of the fixing member 6 and is screwed into the through hole 11 c 1 of the second cylindrical portion 11 c. By providing the counterbore portion 6a1, the inclined surface of the head portion 7a of the flat screw 7 contacts the inner peripheral surface of the fixing member 6 forming the through hole 6a. The contact area between the fixing member 6 and the countersunk screw 7 is increased and the frictional force generated between the fixing member 6 and the countersunk screw 7 is increased as compared to the case where a screw other than the countersunk screw 7 is used. The looseness of 7 is suppressed, and the fixation of the fixing member 6 to the second cylindrical portion 11c can be maintained. Although the countersunk screw 7 is used in the first embodiment, any screw other than the countersunk screw 7 may be used as long as the fixing member 6 can be fixed to the second cylindrical portion 11c.

固定部材6の径方向外側寄りの部分には、円柱状の2つの連結部材8の一端が接続されている。なお連結部材8の形状は円柱に限定されず、挿入孔21aへ挿入できる形状であれば四角柱でもよい。第2の連結部材である連結部材8の径方向と直交する断面の断面積は、固定部材6の径方向と直交する断面の断面積よりも小さい。2つの連結部材8は、固定部材6の貫通孔6aを挟み込むように、軸方向に互いに離れて設けられている。連結部材8は、固定部材6と同様の材料を用いて、ダイカストにより一体成型で製造してもよいし、飛しょう体用レドーム2又は飛しょう体本体1と同様の材料で形成されるブロック状の塊を切削加工して製造してもよい。実施の形態1では、連結部材8及び固定部材6をそれぞれ個別に製作した後に互いに組み合わせた場合の例を説明している。   One end of two cylindrical connection members 8 is connected to a radially outer portion of the fixing member 6. The shape of the connecting member 8 is not limited to a cylinder, and may be a square pole as long as it can be inserted into the insertion hole 21a. The cross-sectional area of the cross section orthogonal to the radial direction of the connecting member 8 which is the second connecting member is smaller than the cross-sectional area of the cross section orthogonal to the radial direction of the fixing member 6. The two connecting members 8 are axially separated from each other so as to sandwich the through hole 6 a of the fixing member 6. The connecting member 8 may be manufactured by die casting using the same material as the fixing member 6 by die casting, or a block shape formed of the same material as the flying object radome 2 or the flying object body 1 It may be manufactured by cutting a lump of In the first embodiment, an example in which the connecting member 8 and the fixing member 6 are separately manufactured and then combined with each other is described.

電子機器5の周囲を覆い、かつ、第1の円筒部11aの軸方向先端面に向き合って設けられる飛しょう体用レドーム2は、円錐状の第1のレドーム20とレドーム側結合部21とを備える。第1のレドーム20及びレドーム側結合部21は、一体成型で製造してもよいし、それぞれを個別に製作した後に互いに組み合わせてもよい。   The flying body radome 2 which covers the periphery of the electronic device 5 and is provided so as to face the end face in the axial direction of the first cylindrical portion 11 a includes the conical first radome 20 and the radome side joint portion 21. Prepare. The first radome 20 and the radome side joint part 21 may be manufactured by integral molding, or may be combined with each other after being separately manufactured.

レドーム側結合部21は、第1のレドーム20の後端部から飛しょう体本体1に向かって軸方向に伸び、外径が第1のレドーム20の外径よりも小さく、飛しょう体本体1と同軸に設けられる円筒状の部材である。   The radome-side joint portion 21 extends in the axial direction from the rear end of the first radome 20 toward the flight body 1, and the outer diameter is smaller than the outer diameter of the first radome 20. And a cylindrical member provided coaxially with the

レドーム側結合部21の径方向外側には、第2の断熱部4が設けられる。第2の断熱部4の材料には、耐熱温度が高く断熱性に優れたシリコーン樹脂が用いられる。第2の断熱部4の材料は、熱伝導率がレドーム側結合部21の熱伝導率よりも低い材料であればよく、シリコーン樹脂に限定されない。第2の断熱部4は、レドーム側結合部21の外周面上に、周方向に連続して環状に設けられている。第2の断熱部4は、伸縮性のある環状の断熱部材を径方向に引き伸ばした状態でレドーム側結合部21に組み付けたものでもよいし、帯状の断熱部材をレドーム側結合部21の周囲に環状に連続して巻いたものでもよい。第2の断熱部4の軸方向の長さは、レドーム側結合部21の軸方向の長さに等しい。レドーム側結合部21の軸方向の長さは、第1のレドーム20とレドーム側結合部21との接続部から、レドーム側結合部21の飛しょう体本体1側の端部までの幅に等しい。第2の断熱部4の外周面は、第1のレドーム20の外周面を軸方向にレドーム側結合部21まで延長した仮想面上に位置する。   A second heat insulating portion 4 is provided on the radial outside of the radome side coupling portion 21. As a material of the second heat insulating portion 4, a silicone resin having a high heat resistance temperature and an excellent heat insulating property is used. The material of the second heat insulating portion 4 may be a material whose thermal conductivity is lower than the thermal conductivity of the radome side joint portion 21 and is not limited to the silicone resin. The second heat insulating portion 4 is annularly continuously provided in the circumferential direction on the outer peripheral surface of the radome side coupling portion 21. The second heat insulating portion 4 may be one in which the stretchable annular heat insulating member is radially extended and assembled to the radome side joint portion 21, or a belt-like heat insulating member is provided around the radome side joint portion 21. It may be continuously wound in a ring. The axial length of the second heat insulating portion 4 is equal to the axial length of the radome side coupling portion 21. The axial length of the radome-side joint 21 is equal to the width from the connection between the first radome 20 and the radome-side joint 21 to the end of the radome-side joint 21 on the side of the flying object body 1. . The outer peripheral surface of the second heat insulating portion 4 is located on a virtual surface in which the outer peripheral surface of the first radome 20 is extended in the axial direction to the radome side coupling portion 21.

レドーム側結合部21には、レドーム側結合部21の外周面からレドーム側結合部21の内周面に向かって貫通し、かつ、径方向に伸びる2つの挿入孔21aが形成される。またレドーム側結合部21には、レドーム側結合部21の外周面からレドーム側結合部21の内周面に向かって貫通し、かつ、径方向に伸びる挿入孔21bが形成される。   In the radome side joint portion 21, two insertion holes 21a which penetrate from the outer peripheral surface of the radome side joint portion 21 toward the inner peripheral surface of the radome side joint portion 21 and extend in the radial direction are formed. Further, an insertion hole 21b is formed in the radome side joint portion 21 so as to penetrate from the outer peripheral surface of the radome side joint portion 21 toward the inner peripheral surface of the radome side joint portion 21 and extend in the radial direction.

2つの挿入孔21aは、連結部材8の他端側をレドーム側結合部21に挿入するための穴である。挿入孔21aの直径は、連結部材8の直径と等しく、又は連結部材8の直径よりも僅かに大きい値に設定される。僅かに大きい値とは、挿入孔21aに対して連結部材8を挿入可能であり、かつ、レドーム側結合部21と固定部材6との間で軸方向又は周方向に遊びが生じない値である。挿入孔21aの直径をこのような値に設定することにより、連結部材8と挿入孔21aの内周面との間の隙間が小さくなり、レドーム側結合部21と固定部材6との間で、軸方向又は周方向に遊びが生じることを防止できる。   The two insertion holes 21 a are holes for inserting the other end side of the connection member 8 into the radome side coupling portion 21. The diameter of the insertion hole 21 a is set to be equal to the diameter of the connecting member 8 or slightly larger than the diameter of the connecting member 8. A slightly larger value is a value at which the connecting member 8 can be inserted into the insertion hole 21a and no play is generated in the axial direction or circumferential direction between the radome side joint portion 21 and the fixing member 6 . By setting the diameter of the insertion hole 21 a to such a value, the gap between the connecting member 8 and the inner peripheral surface of the insertion hole 21 a is reduced, and between the radome side coupling portion 21 and the fixing member 6, It is possible to prevent play in the axial or circumferential direction.

2つの挿入孔21aは、挿入孔21bを挟み込むように、軸方向に互いに離れて形成される。2つの挿入孔21aの組みは、周方向に配列される複数の固定部材6のそれぞれに対応する位置に、周方向に互いに離れて複数形成される。   The two insertion holes 21a are formed apart from each other in the axial direction so as to sandwich the insertion hole 21b. A plurality of sets of the two insertion holes 21a are formed at positions respectively corresponding to the plurality of fixing members 6 arranged in the circumferential direction, being separated from each other in the circumferential direction.

挿入孔21bは、皿ねじ7を、飛しょう体用レドーム2の外側から第2の円筒部11cに向けて挿入するための穴である。挿入孔21bは、固定部材6に形成される貫通孔6aと連通し、さらに第2の円筒部11cに形成される貫通孔11c1と連通する。挿入孔21bは、周方向に配列される複数の固定部材6のそれぞれに対応する位置に、周方向に互いに離れて複数形成される。レドーム側結合部21の挿入孔21bと貫通孔6aのザグリ加工部6a1とには、シリコーン系樹脂で形成される穴埋部材9が挿入されている。穴埋部材9は、径方向に伸びる円柱状の部材である。挿入孔21b及びザグリ加工部6a1へ挿入される前の穴埋部材9の外径は、挿入孔21bの内径よりも僅かに大きく、またザグリ加工部6a1の最大内径よりも僅かに大きい値に設定される。僅かに大きい値とは、挿入孔21b及びザグリ加工部6a1に対して穴埋部材9を挿入可能な寸法である。なお、穴埋部材9は、挿入孔21bと貫通孔6aのザグリ加工部6a1とに充填されたシリコーン系樹脂が硬化して形成されたものでもよい。   The insertion hole 21 b is a hole for inserting the countersunk screw 7 from the outside of the flying radome 2 toward the second cylindrical portion 11 c. The insertion hole 21 b communicates with the through hole 6 a formed in the fixing member 6 and further communicates with the through hole 11 c 1 formed in the second cylindrical portion 11 c. A plurality of insertion holes 21 b are formed in the circumferential direction at positions corresponding to the plurality of fixing members 6 arranged in the circumferential direction, respectively. In the insertion hole 21b of the radome side joint portion 21 and the counterbore portion 6a1 of the through hole 6a, a hole filling member 9 made of silicone resin is inserted. The filling member 9 is a cylindrical member extending in the radial direction. The outer diameter of the filling member 9 before being inserted into the insertion hole 21b and the counterbore 6a1 is set to a value slightly larger than the inner diameter of the insertion hole 21b and slightly larger than the maximum inner diameter of the counterbore 6a1. Be done. The slightly larger value is a dimension that allows the hole filling member 9 to be inserted into the insertion hole 21b and the counterbore portion 6a1. The hole filling member 9 may be formed by curing a silicone resin filled in the insertion hole 21b and the counterbore portion 6a1 of the through hole 6a.

穴埋部材9の皿ねじ7側の面は、皿ねじ7に接している。そのため、飛しょう体100の振動によって固定部材6に締結された皿ねじ7が僅かに緩んだ場合でも、径方向外側への皿ねじ7が制限される。従って、固定部材6の第2の円筒部11cへの固定を維持できる。   The surface of the hole filling member 9 on the flat screw 7 side is in contact with the flat screw 7. Therefore, even if the countersunk screw 7 fastened to the fixing member 6 is slightly loosened by the vibration of the flying object 100, the countersunk screw 7 to the radially outer side is limited. Accordingly, the fixing of the fixing member 6 to the second cylindrical portion 11c can be maintained.

また、穴埋部材9の径方向外側の端面は、レドーム側結合部21の外周面を軸方向に挿入孔21bまで延長した仮想面上に位置する。そして、穴埋部材9の径方向外側の端面は、第2の断熱部4の内周面と接している。これにより、穴埋部材9の径方向外側の端面が第2の断熱部4の内周面と接していない場合に比べて、穴埋部材9と第2の断熱部4との間の隙間を小さくすることができる。これにより、レドーム側結合部21の外周面から内周面に伝わった熱が連結部材8と穴埋部材9とに分散されるため、レドーム側結合部21からの熱が連結部材8のみに伝わる場合に比べて、固定部材6の局所的な熱膨張が抑制される。従って、固定部材6の経年劣化の進行を抑制できると共に、連結部材8と挿入孔21aとの接触部に生じる熱応力の上昇を抑制できる。   Further, the radially outer end surface of the filling member 9 is located on a virtual surface in which the outer peripheral surface of the radome side coupling portion 21 is extended in the axial direction to the insertion hole 21 b. The radially outer end surface of the hole filling member 9 is in contact with the inner circumferential surface of the second heat insulating portion 4. Thereby, compared with the case where the radial outer end face of the hole filling member 9 is not in contact with the inner peripheral surface of the second heat insulating portion 4, the gap between the hole filling member 9 and the second heat insulating portion 4 is It can be made smaller. As a result, the heat transmitted from the outer peripheral surface of the radome side joint portion 21 to the inner peripheral surface is dispersed to the connecting member 8 and the embedding member 9, so the heat from the radome side joint portion 21 is transmitted only to the connecting member 8 As compared with the case, the local thermal expansion of the fixing member 6 is suppressed. Therefore, while progress of the aged deterioration of the fixing member 6 can be suppressed, the raise of the thermal stress which arises in the contact part of the connection member 8 and the insertion hole 21a can be suppressed.

次に、図3から図7を用いて飛しょう体100の組立手順を説明する。図3は図2に示す固定部材へ連結部材を埋め込んだ状態を示す図である。図4は図2に示すレドーム側結合部の挿入孔へ、図3に示す連結部材を挿入する状態を示す図である。図5は図2に示す飛しょう体本体へ、図4に示す固定部材及び飛しょう体用レドームを組み付ける状態を示す図である。図6は図5に示す飛しょう体本体へ組み付けられた固定部材を、皿ねじを用いて飛しょう体本体へ固定する状態を示す図である。図7は図6に示すレドーム側結合部に穴埋部材及び第2の断熱部を取付け、図6に示す第1の円筒部に第1の断熱部を取付ける状態を示す図である。   Next, the assembly procedure of the flying object 100 will be described using FIGS. 3 to 7. FIG. 3 is a view showing the connecting member embedded in the fixing member shown in FIG. FIG. 4 is a view showing a state in which the connecting member shown in FIG. 3 is inserted into the insertion hole of the radome side joint portion shown in FIG. FIG. 5 is a view showing a state where the fixing member and the flying radome shown in FIG. 4 are assembled to the flying body shown in FIG. FIG. 6 is a view showing a fixing member assembled to the body shown in FIG. 5 in a state of being fixed to the body using a countersunk screw. FIG. 7 is a view showing a state in which the hole filling member and the second heat insulating portion are attached to the radome side joint portion shown in FIG. 6 and the first heat insulating portion is attached to the first cylindrical portion shown in FIG.

飛しょう体100を組み立てる場合、先ず図3のように固定部材6へ2つの連結部材8のそれぞれの一端側が埋め込まれる。2つの連結部材8を埋め込んだ固定部材6が3つ製作される。次に、固定部材6へ埋め込まれた連結部材8の他端側が、図4のようにレドーム側結合部21に形成された2つの挿入孔21aのそれぞれに挿入される。この作業は、周方向に配列される2つの挿入孔21aの組みのそれぞれに対して行われる。挿入孔21aに連結部材8が挿入された後、図5のように、固定部材6を第2の円筒部11cに近づけて、飛しょう体用レドーム2を飛しょう体本体1に嵌め合わせる。なお、固定部材6とレドーム側結合部21との間には隙間G2が形成されるため、固定部材6を第2の円筒部11cに嵌め合わせる際、固定部材6は隙間G2分径方向に移動可能である。そのため、固定部材6をレドーム側結合部21へ容易に嵌め込むことができる。   When assembling the flying object 100, first, one end side of each of two connection members 8 is embedded in the fixing member 6 as shown in FIG. Three fixing members 6 in which two connecting members 8 are embedded are manufactured. Next, the other end side of the connection member 8 embedded in the fixing member 6 is inserted into each of the two insertion holes 21 a formed in the radome side coupling portion 21 as shown in FIG. 4. This operation is performed on each of the two sets of insertion holes 21a arranged in the circumferential direction. After the connecting member 8 is inserted into the insertion hole 21a, as shown in FIG. 5, the fixing member 6 is brought close to the second cylindrical portion 11c, and the flying object radome 2 is fitted to the flying object body 1. In addition, since the gap G2 is formed between the fixing member 6 and the radome side coupling portion 21, when fitting the fixing member 6 to the second cylindrical portion 11c, the fixing member 6 moves in the radial direction by the gap G2. It is possible. Therefore, the fixing member 6 can be easily fitted into the radome side coupling portion 21.

飛しょう体用レドーム2が飛しょう体本体1に嵌め合わされた後、図6のように、皿ねじ7がレドーム側結合部21の挿入孔21bと固定部材6の貫通孔6aとに挿入され、皿ねじ7が第2の円筒部11cの貫通孔11c1にねじ込まれる。これにより固定部材6が飛しょう体本体1に固定され、飛しょう体用レドーム2は、連結部材8、固定部材6、皿ねじ7を介して、径方向に移動可能な状態で、飛しょう体本体1に連結される。このとき、飛しょう体用レドーム2の径方向以外の移動は制限されている。前述したように、挿入孔21aの直径が、連結部材8の直径と等しく、又は連結部材8の直径よりも僅かに大きい値に設定されているためである。   After the radome 2 for a flying object is fitted to the flying object body 1, a countersunk screw 7 is inserted into the insertion hole 21b of the redome-side joint 21 and the through hole 6a of the fixing member 6, as shown in FIG. The countersunk screw 7 is screwed into the through hole 11c1 of the second cylindrical portion 11c. Thereby, the fixing member 6 is fixed to the flying object body 1, and the flying object radome 2 can be moved in the radial direction via the connecting member 8, the fixing member 6, and the flat screw 7 It is connected to the main body 1. At this time, movement of the flying object radome 2 other than in the radial direction is restricted. As described above, the diameter of the insertion hole 21 a is set to be equal to the diameter of the connecting member 8 or slightly larger than the diameter of the connecting member 8.

固定部材6が飛しょう体本体1に固定された後、図7のように、穴埋部材9が挿入孔21bに埋め込まれる。その後、第2の断熱部4がレドーム側結合部21の外周面にシリコーン系接着剤などで固定され、第1の断熱部3が第1の円筒部11aの外周面にシリコーン系接着剤などで固定される。なお、第1の円筒部11aへの第1の断熱部3の固定は、飛しょう体用レドーム2が飛しょう体本体1に嵌め合わされる前に行ってもよい。   After the fixing member 6 is fixed to the flying object body 1, as shown in FIG. 7, the hole filling member 9 is embedded in the insertion hole 21b. After that, the second heat insulating portion 4 is fixed to the outer peripheral surface of the radome side joint portion 21 with a silicone adhesive or the like, and the first heat insulating portion 3 is fixed to the outer peripheral surface of the first cylindrical portion 11a with a silicone adhesive or the like. It is fixed. The fixation of the first heat insulating portion 3 to the first cylindrical portion 11 a may be performed before the flying object radome 2 is fitted to the flying object body 1.

次に、実施の形態1に係る飛しょう体100の効果を説明する。図8は図2に示すレドーム側結合部及び第1の円筒部のそれぞれの半径の変化量を説明するための図である。   Next, the effects of the flying object 100 according to the first embodiment will be described. FIG. 8 is a view for explaining the variation of the radius of each of the radome side joint portion and the first cylindrical portion shown in FIG.

符号103で示す矢印の向きは、飛しょう体100の飛しょう時に、レドーム側結合部21が広がる方向を表す。レドーム側結合部21が広がる方向は、レドーム側結合部21の径方向に等しい。符号103で示す矢印の長さは、径方向に広がる前のレドーム側結合部21の半径r1と、飛しょう体100の飛しょう時に径方向に広がったレドーム側結合部21の半径r1との差分に相当する寸法を、大まかに表したものである。レドーム側結合部21の半径r1は、中心軸AXからレドーム側結合部21の内周面までの距離に等しい。以下では、当該差分に相当する寸法を「レドーム側結合部21の半径の変化量」と称する。   The direction of the arrow indicated by reference numeral 103 indicates the direction in which the radome-side joint 21 spreads when the flying object 100 flies. The direction in which the radome-side joint 21 extends is equal to the radial direction of the radome-side joint 21. The length of the arrow indicated by reference numeral 103 is the difference between the radius r1 of the radome-side joint 21 before spreading in the radial direction and the radius r1 of the radome-side joint 21 spreading in the radial direction when the flying object 100 flies. The dimensions corresponding to are roughly represented. The radius r1 of the radome-side joint 21 is equal to the distance from the central axis AX to the inner circumferential surface of the radome-side joint 21. Below, the dimension equivalent to the said difference is called "the variation | change_quantity of the radius of the radome side coupling part 21."

符号104で示す矢印の向きは、飛しょう体100の飛しょう時に、第2の円筒部11cが広がる方向を表す。第2の円筒部11cが広がる方向は、第2の円筒部11cの径方向に等しい。符号104で示す矢印の長さは、径方向に広がる前の第2の円筒部11cの半径r2と、飛しょう体100の飛しょう時に径方向に広がった第2の円筒部11cの半径r2との差分に相当する寸法を、大まかに表したものである。第2の円筒部11cの半径r2は、中心軸AXから第2の円筒部11cの内周面までの距離に等しい。以下では、当該差分に相当する寸法を「第2の円筒部11cの半径の変化量」と称する。   The direction of the arrow indicated by reference numeral 104 indicates the direction in which the second cylindrical portion 11 c spreads when the flying object 100 flies. The direction in which the second cylindrical portion 11c extends is equal to the radial direction of the second cylindrical portion 11c. The length of the arrow indicated by reference numeral 104 is the radius r2 of the second cylindrical portion 11c before it spreads in the radial direction, and the radius r2 of the second cylindrical portion 11c spreads in the radial direction when the flying object 100 flies. The dimensions corresponding to the difference of are roughly represented. The radius r2 of the second cylindrical portion 11c is equal to the distance from the central axis AX to the inner circumferential surface of the second cylindrical portion 11c. Below, the dimension equivalent to the said difference is called "the variation | change_quantity of the radius of the 2nd cylindrical part 11c."

前述したように、飛しょう体用レドーム2及び飛しょう体本体1は、それぞれの熱膨張係数が異なる。また第2の円筒部11cがレドーム側結合部21の内側に設けられているため、第2の円筒部11c及びレドーム側結合部21のそれぞれが受ける空力加熱の総量が異なる。また、このような変化量の違いが生じても、第2の連結部である連結部材8の挿入孔21aへの挿入深さにより、変化量の違いを吸収できる。   As described above, the flying object radome 2 and the flying object body 1 have different coefficients of thermal expansion. Further, since the second cylindrical portion 11c is provided inside the radome side joint portion 21, the total amount of aerodynamic heating received by the second cylindrical portion 11c and the radome side joint portion 21 is different. Moreover, even if such a difference in the amount of change occurs, the difference in the amount of change can be absorbed by the insertion depth of the connecting member 8 which is the second connecting portion into the insertion hole 21a.

実施の形態1に係る飛しょう体100では、図2に示すように、飛しょう体本体1に固定部材6が固定され、固定部材6から径方向に伸びる柱状の連結部材8が、飛しょう体用レドーム2の挿入孔21aに挿入される。また、固定部材6の径方向外側の面とレドーム側結合部21の内周面との間に、隙間G2が形成されている。この構成により、レドーム側結合部21の半径の変化量と第2の円筒部11cの半径の変化量とが異なる場合でも、レドーム側結合部21の内周面が固定部材6及び第2の円筒部11cによって径方向へ押されることがない。従って、レドーム側結合部21と第2の円筒部11cとの間には、飛しょう時の空力加熱に起因する熱応力が発生しない。そのため、実施の形態1に係る飛しょう体100では、FRP製のリング、すなわち飛しょう体本体1と飛しょう体用レドーム2との間に生じる熱応力を緩和させるためのリングが不要になる。   In the flying object 100 according to the first embodiment, as shown in FIG. 2, the fixing member 6 is fixed to the flying object body 1, and the columnar connecting member 8 extending in the radial direction from the fixing member 6 is the flying object. It is inserted into the insertion hole 21 a of the radome 2. Further, a gap G2 is formed between the radially outer surface of the fixing member 6 and the inner peripheral surface of the radome-side joint portion 21. With this configuration, even when the amount of change in radius of the radome side joint portion 21 and the amount of change in radius of the second cylindrical portion 11c are different, the inner peripheral surface of the radome side joint portion 21 is the fixing member 6 and the second cylinder It is not pushed in the radial direction by the part 11c. Therefore, no thermal stress is generated between the radome side joint portion 21 and the second cylindrical portion 11c due to aerodynamic heating at the time of flight. Therefore, in the flying object 100 according to the first embodiment, a ring made of FRP, that is, a ring for relieving thermal stress generated between the flying object body 1 and the flying object radome 2 becomes unnecessary.

また、リングと飛しょう体用レドーム2との接着には、接着強度が高いエポキシ系接着剤を用いることが多い。しかしながら、耐熱温度が200℃を超える接着剤の種類は少ない上に、飛しょう体の飛しょう距離及び飛しょう速度によっては、接着剤の温度が耐熱温度を超える場合がある。また、リングの温度上昇を防ぐために空力加熱に直接晒される飛しょう体の外周面に断熱材を設けた場合でも、飛しょう体の飛しょう距離が長くなり、又は飛しょう速度が高くなると、接着剤の耐熱温度を超えることがある。これに対して、実施の形態1に係る飛しょう体100では、リングが不要になるため、リングへ飛しょう体用レドーム2を固定するための接着剤が不要になる。従って、接着剤の接着強度が失われるような高温環境化にも耐え得る飛しょう体100を製造できる。また、接着剤が不要になることによって、経年劣化による接着強度が低下しても飛しょう体用レドーム2がリングから外れることがないように初期の接着強度に余裕を持たせるといった措置が不要になり、飛しょう体100の製造コストを低減できると共に、飛しょう体100の長期間保管が可能になる。   In addition, an epoxy-based adhesive having high adhesive strength is often used for bonding the ring and the flying object radome 2. However, there are few types of adhesives whose heat resistance temperature exceeds 200 ° C., and depending on the flight distance and speed of the projectile, the temperature of the adhesive may exceed the heat resistance temperature. In addition, even if a heat insulating material is provided on the outer peripheral surface of the flight body exposed directly to aerodynamic heating in order to prevent the temperature rise of the ring, if the flight distance of the flight body becomes long or the flight speed becomes high, adhesion The heat resistance temperature of the agent may be exceeded. On the other hand, in the flying object 100 according to the first embodiment, a ring is not necessary, and therefore, an adhesive for fixing the flying object radome 2 to the ring becomes unnecessary. Therefore, the flying object 100 can be manufactured which can withstand high temperature environment where the adhesive strength of the adhesive is lost. In addition, by eliminating the need for adhesives, it is not necessary to take measures such as giving an initial bond strength a margin so that the flying object radome 2 does not come off the ring even if the bond strength decreases due to aging. As a result, the manufacturing cost of the flying object 100 can be reduced, and the flying object 100 can be stored for a long time.

また、実施の形態1に係る飛しょう体100では、周方向に配列された3つ以上の固定部材6を用いて飛しょう体用レドーム2が飛しょう体本体1に連結される構造である。そのため、飛しょう時に加熱された飛しょう体用レドーム2が径方向に拡大しても、飛しょう体本体1から飛しょう体用レドーム2が外れることを防止できる共に、1つ又は2つの固定部材6を用いる場合に比べて、飛しょう体用レドーム2の周方向への偏りとがた付きとを抑制できる。また飛しょう体用レドーム2の周方向への偏りとがた付きとが抑制されるため、飛しょう体100の飛しょう距離を伸ばすことができると共に、飛しょう体100を目標に向けて正確に誘導することができる。   In the flying object 100 according to the first embodiment, the flying object radome 2 is connected to the flying object body 1 by using three or more fixing members 6 arranged in the circumferential direction. Therefore, even if the flying object radome 2 heated at the time of flight is expanded in the radial direction, it can be prevented that the flying object radome 2 is detached from the flight object body 1, and one or two fixing members As compared with the case of using No. 6, it is possible to suppress the deviation and rattling of the flying object radome 2 in the circumferential direction. In addition, since the deviation and rattling of the flying object radome 2 in the circumferential direction are suppressed, the flying distance of the flying object 100 can be extended, and the flying object 100 can be accurately aimed toward the target. It can be induced.

また、実施の形態1に係る飛しょう体100では、外周面が第2の断熱部4によって覆われる飛しょう体用レドーム2のレドーム側結合部21が、柱状の連結部材8と、周方向に離れて配列される複数の固定部材6とを介して、飛しょう体本体1の第2の円筒部11cに連結される構造である。そのため、連結部材8の径方向と直交する断面の断面積は、飛しょう体本体1とリングとの接触面積に比べて小さくなる。従って、空力加熱によって高温になった第2の断熱部4の熱が連結部材8及び固定部材6を介して、飛しょう体本体1に伝わる熱の伝達量は、リングを介して飛しょう体本体1から飛しょう体用レドーム2に伝わる熱の伝達量に比べて、小さくなる。その結果、飛しょう体用レドーム2で囲まれる空間部と飛しょう体本体1との温度上昇が抑制され、電子機器5を構成する電子部品と、飛しょう体本体1に内蔵される電子部品とが熱によって破損するリスクを低減できる。   Moreover, in the flying object 100 according to the first embodiment, the radome-side joint portion 21 of the flying object radome 2 whose outer peripheral surface is covered by the second heat insulating portion 4 is a columnar connecting member 8 in the circumferential direction. It is a structure connected with the 2nd cylindrical part 11c of the flying body main body 1 via the some fixing member 6 arranged apart. Therefore, the cross-sectional area of the cross section orthogonal to the radial direction of the connection member 8 becomes smaller than the contact area of the flying object body 1 and the ring. Therefore, the amount of heat transfer of the heat of the second heat insulating part 4 that has become high temperature due to aerodynamic heating via the connecting member 8 and the fixing member 6 to the body 1 is the body of the body via the ring. It becomes smaller than the amount of heat transferred from 1 to the flying radome 2. As a result, the temperature rise of the space portion surrounded by the flying object radome 2 and the flying object body 1 is suppressed, and the electronic parts constituting the electronic device 5 and the electronic parts incorporated in the flying object body 1 Can reduce the risk of being damaged by heat.

なお、2つの連結部材8が周方向に離れて設けられている場合、2つの連結部材8の離間幅は、固定部材6の熱膨張の前後で異なる値となる。また、2つの挿入孔21aが周方向に離れて設けられている場合、2つの挿入孔21aの離間幅は、飛しょう体用レドーム2の熱膨張の前後で異なる値となる。レドーム側結合部21の半径の変化量は、レドーム側結合部21の軸方向の変化量よりも大きいため、周方向に離れて設けられている連結部材8と挿入孔21aとの接触部に生じる熱応力は、2つの連結部材8が軸方向に離れて設けられている場合に比べて、大きくなる。実施の形態1に係る飛しょう体100では、2つの連結部材8が軸方向に離れて設けられているため、連結部材8と挿入孔21aとの接触部に生じる熱応力の上昇が抑制される。従って、連結部材8の初期の強度に余裕を持たせるといった措置が不要になり、飛しょう体100の製造コストを低減できる。   In addition, when the two connection members 8 are provided separately in the circumferential direction, the separation widths of the two connection members 8 have different values before and after the thermal expansion of the fixing member 6. When the two insertion holes 21a are provided circumferentially apart, the separation widths of the two insertion holes 21a become different values before and after the thermal expansion of the radome 2 for a flying object. The amount of change in radius of the radome-side joint 21 is larger than the amount of change in the axial direction of the radome-side joint 21, and therefore occurs in the contact portion between the connecting member 8 provided in the circumferential direction and the insertion hole 21a. The thermal stress is greater than when the two connection members 8 are provided axially apart. In the flying object 100 according to the first embodiment, since the two connection members 8 are provided apart from each other in the axial direction, an increase in thermal stress generated at the contact portion between the connection member 8 and the insertion hole 21a is suppressed. . Therefore, it is not necessary to provide a measure for the initial strength of the connecting member 8 and the manufacturing cost of the flying object 100 can be reduced.

なお、実施の形態1に係る飛しょう体100には2つの連結部材8が用いられているが、2つの連結部材8の代わりに1つの連結部材8を用いてもよい。この場合、例えば、固定部材6の先端側の面と貫通孔6aとの間に1つの連結部材8を設けてもよいし、固定部材6の後端側の面と貫通孔6aとの間に1つの連結部材8を設けてもよい。このように構成した場合でも、レドーム側結合部21を、1つの連結部材8と固定部材6とを介して、飛しょう体本体1へ連結することができる。但し、このように構成した場合、固定部材6の貫通孔6aの軸中心から連結部材8の軸中心までの軸方向長に応じたねじりモーメントが、レドーム側結合部21と第2の円筒部11cとの間に発生する。そのため、ねじりモーメントが連結部材8及び皿ねじ7に作用しても連結部材8及び皿ねじ7が変形しない大きな断面係数が必要となる。固定部材6の貫通孔6aを挟み込むように2つの連結部材8を設けることにより、上記のようなねじりモーメントの発生を抑制できるため、2つの連結部材8を設けることが望ましい。   Although two connecting members 8 are used in the flying object 100 according to the first embodiment, one connecting member 8 may be used instead of the two connecting members 8. In this case, for example, one connecting member 8 may be provided between the surface of the fixing member 6 on the tip end side and the through hole 6a, or between the surface on the rear end side of the fixing member 6 and the through hole 6a. One connecting member 8 may be provided. Even when configured in this manner, the radome-side coupling portion 21 can be coupled to the projectile body 1 via the one coupling member 8 and the fixing member 6. However, when configured in this manner, a twisting moment according to the axial length from the axial center of the through hole 6a of the fixing member 6 to the axial center of the connecting member 8 is the radome side joint portion 21 and the second cylindrical portion 11c. Occurs between Therefore, a large section coefficient is required so that the connection member 8 and the countersunk screw 7 are not deformed even if the twisting moment acts on the connection member 8 and the countersunk screw 7. By providing the two connecting members 8 so as to sandwich the through holes 6 a of the fixing member 6, it is desirable to provide the two connecting members 8 because the generation of the twisting moment as described above can be suppressed.

実施の形態2.
図9は本発明の実施の形態2に係る飛しょう体の部分拡大図である。図9の上側には、実施の形態2に係る飛しょう体100Aが備える飛しょう体用レドーム2Aを径方向外側から見た図が示される。図9の下側には、飛しょう体100Aが備える飛しょう体用レドーム2Aの断面図が示される。飛しょう体用レドーム2Aには、図2に示す2つの挿入孔21aの代わりに、挿入孔21a1と挿入孔21aとが形成されている。その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
Second Embodiment
FIG. 9 is a partially enlarged view of a flying object according to Embodiment 2 of the present invention. The figure which looked at the radome 2A for flight bodies with which the flight object 100A which concerns on Embodiment 2 with which FIG. 9 is equipped from the radial direction outer side is provided. On the lower side of FIG. 9, a cross-sectional view of a flying object radome 2A included in the flying object 100A is shown. An insertion hole 21a1 and an insertion hole 21a are formed in the flying object radome 2A instead of the two insertion holes 21a shown in FIG. The other configuration is the same as or equivalent to the configuration of the first embodiment, and the same or equivalent components are denoted by the same reference numerals and redundant description will be omitted.

飛しょう体用レドーム2A及び固定部材6のそれぞれは、熱膨張係数の異なる材料で製作される場合がある。また、固定部材6がレドーム側結合部21の内側に設けられているため、固定部材6及びレドーム側結合部21のそれぞれが受ける空力加熱の総量が異なる。従って、軸方向へのレドーム側結合部21の変化量は軸方向への固定部材6の変化量と異なり、固定部材6に設けられる連結部材8と飛しょう体用レドーム2Aとの接触部に生じる熱応力が大きくなる可能性がある。実施の形態2に係る飛しょう体用レドーム2Aは、このような変化量の違いを考慮して、挿入孔21a1が挿入孔21aの形状と異なる形状に加工されている。   Each of the flying object radome 2A and the fixing member 6 may be made of materials having different thermal expansion coefficients. In addition, since the fixing member 6 is provided inside the radome side coupling portion 21, the total amount of aerodynamic heating received by the fixing member 6 and the radome side coupling portion 21 is different. Therefore, the amount of change of the radome side joint portion 21 in the axial direction is different from the amount of change of the fixing member 6 in the axial direction, and occurs in the contact portion between the connecting member 8 provided on the fixing member 6 and the radome 2A for the flying object. Thermal stress may increase. In the radome 2A for a flying object according to the second embodiment, the insertion hole 21a1 is processed into a shape different from the shape of the insertion hole 21a in consideration of the difference in the amount of change.

挿入孔21a1及び挿入孔21aのそれぞれは、レドーム側結合部21の外周面からレドーム側結合部21の内周面に向かって貫通し、かつ、径方向に伸びる穴である。挿入孔21a1及び挿入孔21aの組みは、周方向に配列される複数の固定部材6のそれぞれに対応する位置に、周方向に互いに離れて複数形成される。挿入孔21a1及び挿入孔21aは、挿入孔21bを挟み込むように、軸方向に互いに離れて形成される。図9では、挿入孔21bよりも飛しょう体100Aの先端側に挿入孔21a1が形成されている。   Each of the insertion hole 21a1 and the insertion hole 21a is a hole which penetrates from the outer peripheral surface of the radome side coupling portion 21 toward the inner peripheral surface of the radome side coupling portion 21 and extends in the radial direction. A plurality of sets of the insertion holes 21a1 and the insertion holes 21a are formed separately in the circumferential direction at positions corresponding to the plurality of fixing members 6 arranged in the circumferential direction. The insertion holes 21a1 and the insertion holes 21a are formed apart from each other in the axial direction so as to sandwich the insertion holes 21b. In FIG. 9, an insertion hole 21a1 is formed on the tip end side of the flying object 100A than the insertion hole 21b.

挿入孔21aは、図2に示す挿入孔21aと同一形状の穴である。挿入孔21a1は、幅W1が幅W2より広い楕円形状の長穴である。幅W1は、挿入孔21a1の軸方向の幅であり、連結部材8の直径よりも広い。挿入孔21a1に挿入される連結部材8の形状は円柱状である。幅W1の値は、飛しょう体100Aの飛しょう時における、固定部材6及び飛しょう体用レドーム2Aのそれぞれの軸方向への変化量の差分を考慮して設定される。幅W2は、挿入孔21a1の周方向の幅である。幅W2は、連結部材8の直径と等しく、又は連結部材8の直径よりも僅かに大きい値に設定される。なお、実施の形態2では、挿入孔21a1が飛しょう体用レドーム2Aの先端寄りに形成されているが、挿入孔21a1を飛しょう体用レドーム2Aの後端寄りに形成し、かつ、挿入孔21aを飛しょう体用レドーム2Aの先端寄りに形成してもよい。   The insertion hole 21a is a hole having the same shape as the insertion hole 21a shown in FIG. The insertion hole 21a1 is an elliptical long hole having a width W1 larger than the width W2. The width W1 is a width in the axial direction of the insertion hole 21a1, and is wider than the diameter of the connecting member 8. The shape of the connecting member 8 inserted into the insertion hole 21a1 is cylindrical. The value of the width W1 is set in consideration of the difference in the amount of change in the axial direction of the fixed member 6 and the flying object radome 2A when the flying object 100A is flying. The width W2 is a width in the circumferential direction of the insertion hole 21a1. The width W2 is set to a value equal to the diameter of the connecting member 8 or slightly larger than the diameter of the connecting member 8. In the second embodiment, although the insertion hole 21a1 is formed near the tip of the flying object radome 2A, the insertion hole 21a1 is formed near the rear end of the flying object radome 2A, and the insertion hole 21a may be formed near the tip of the flying object radome 2A.

以上に説明したように、実施の形態2に係る飛しょう体100Aでは、連結部材8が挿入される2つの貫通孔の内の一方が、軸方向に伸びる楕円形状であるため、レドーム側結合部21及び固定部材6のそれぞれの軸方向の変化量が異なる場合でも、飛しょう体用レドーム2Aに生じる熱応力を緩和させることができる。従って、連結部材8及び固定部材6が破損するリスクをより一層低減できる。   As described above, in the flying object 100A according to the second embodiment, one of the two through holes into which the connecting member 8 is inserted has an elliptical shape extending in the axial direction, so the radome side coupling portion Even when the amount of change in the axial direction of each of the fixing member 21 and the fixing member 6 is different, the thermal stress generated in the flying object radome 2A can be alleviated. Therefore, the risk of breakage of the connecting member 8 and the fixing member 6 can be further reduced.

実施の形態3.
図10は本発明の実施の形態3に係る飛しょう体の飛しょう体用レドーム及び飛しょう体本体の連結部を拡大視した断面図である。図10に示す実施の形態3に係る飛しょう体100Bは、固定部材6から第2の円筒部11cへ伝わる熱の伝達量を低減するための熱伝達抑制部40を備える。熱伝達抑制部40は、固定部材6の径方向内側の面60と第2の円筒部11cの外周面との間に設けられる。熱伝達抑制部40は、耐熱温度が高く、かつ、熱伝導率が固定部材6の熱伝導率よりも低い材料を用いて製造してもよいし、飛しょう体用レドーム2又は飛しょう体本体1と同様の材料を用いて製造してもよい。その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
Third Embodiment
FIG. 10 is a cross-sectional view enlarging a connecting portion of a flying object radome of a flying object and a flying object body according to a third embodiment of the present invention. The flying object 100B according to the third embodiment shown in FIG. 10 includes a heat transfer suppressing portion 40 for reducing the amount of heat transferred from the fixing member 6 to the second cylindrical portion 11c. The heat transfer suppressing portion 40 is provided between the radially inner surface 60 of the fixing member 6 and the outer peripheral surface of the second cylindrical portion 11 c. The heat transfer suppressing portion 40 may be manufactured using a material having a high heat resistant temperature and a thermal conductivity lower than the thermal conductivity of the fixing member 6, and the radome 2 for a flying object or the flying object main body You may manufacture using the material similar to 1. The other configuration is the same as or equivalent to the configuration of the first embodiment, and the same or equivalent components are denoted by the same reference numerals and redundant description will be omitted.

図11は図10に示す固定部材を径方向内側から見た状態を示す図である。図11に示すように、熱伝達抑制部40は、複数の熱伝達抑制部材41によって構成される。複数の熱伝達抑制部材41は、それぞれが周方向に伸びて、軸方向に互いに離れて配列される。複数の熱伝達抑制部材41は、固定部材6を第2の円筒部11cに向かって投影してなる領域内に設けられる。このように、複数の熱伝達抑制部材41によって構成される熱伝達抑制部40の径方向と直交する断面の第1の断面積は、固定部材6の径方向と直交する断面の第2の断面積よりも小さい。   FIG. 11 is a view showing the fixing member shown in FIG. 10 as viewed from inside in the radial direction. As shown in FIG. 11, the heat transfer suppressing portion 40 is configured of a plurality of heat transfer suppressing members 41. The plurality of heat transfer suppressing members 41 extend in the circumferential direction and are arranged to be separated from each other in the axial direction. The plurality of heat transfer suppressing members 41 are provided in a region formed by projecting the fixing member 6 toward the second cylindrical portion 11 c. Thus, the first cross-sectional area of the cross section orthogonal to the radial direction of the heat transfer suppressing portion 40 constituted by the plurality of heat transfer suppressing members 41 is the second cross section of the cross section orthogonal to the radial direction of the fixing member 6 Smaller than the area.

なお、熱伝達抑制部40の形状は、図11に示す形状に限定されず、例えば、熱伝達抑制部40を構成する複数の熱伝達抑制部材41は、それぞれが軸方向に伸びて、周方向に互いに離れて配列されていてもよい。また、熱伝達抑制部40は、径方向に貫通する複数の穴を有する網の目状のシートであってもよい。   The shape of the heat transfer suppressing portion 40 is not limited to the shape shown in FIG. 11. For example, each of the plurality of heat transfer suppressing members 41 constituting the heat transfer suppressing portion 40 extends in the axial direction, and the circumferential direction May be arranged apart from one another. The heat transfer suppressing portion 40 may be a net-like sheet having a plurality of holes penetrating in the radial direction.

図12は実施の形態3の第1変形例に係る飛しょう体の断面図である。図12に示す第1変形例に係る飛しょう体100B1には、熱伝達抑制部6bが設けられる。熱伝達抑制部6bは、固定部材6と同じ材料を用いて、ダイカストにより一体成型で製造したものでもよいし、固定部材6の第2の円筒部11cと向き合う面、すなわち固定部材6の径方向内側の面60を切削加工することによって固定部材6上に形成したものでもよい。熱伝達抑制部6bは、図11に示す熱伝達抑制部40と同様に、複数の熱伝達抑制部材によって構成される。熱伝達抑制部6bを構成する複数の熱伝達抑制部材は、それぞれが軸方向に伸びて、周方向に互いに離れて配列されていてもよい。また、熱伝達抑制部6bを構成する複数の熱伝達抑制部材は、それぞれが周方向に伸びて、軸方向に互いに離れて配列されていてもよい。また、熱伝達抑制部6bは、径方向に貫通する複数の穴を有する網の目状のシートであってもよい。このように、複数の熱伝達抑制部材によって構成される熱伝達抑制部6bの径方向と直交する断面の第1の断面積は、固定部材6の径方向と直交する断面の第2の断面積よりも小さい。   FIG. 12 is a cross-sectional view of a flying object according to a first modification of the third embodiment. The heat transfer suppressing portion 6b is provided in the flying object 100B1 according to the first modified example shown in FIG. The heat transfer suppressing portion 6b may be manufactured integrally by die casting using the same material as the fixing member 6, or the surface facing the second cylindrical portion 11c of the fixing member 6, that is, the radial direction of the fixing member 6 It may be formed on the fixing member 6 by cutting the inner surface 60. The heat transfer suppressing portion 6b is configured by a plurality of heat transfer suppressing members, as in the heat transfer suppressing portion 40 shown in FIG. The plurality of heat transfer suppressing members constituting the heat transfer suppressing portion 6b may extend in the axial direction and may be arranged apart from each other in the circumferential direction. Further, the plurality of heat transfer suppressing members constituting the heat transfer suppressing portion 6b may extend in the circumferential direction and may be arranged separately from each other in the axial direction. The heat transfer suppressing portion 6b may be a net-like sheet having a plurality of holes penetrating in the radial direction. Thus, the first cross-sectional area of the cross section orthogonal to the radial direction of the heat transfer suppressing portion 6 b constituted by the plurality of heat transfer suppressing members is the second cross-sectional area of the cross section orthogonal to the radial direction of the fixing member 6 Less than.

図13は実施の形態3の第2変形例に係る飛しょう体の断面図である。図13に示す第2変形例に係る飛しょう体100B2には、熱伝達抑制部11c2が設けられる。熱伝達抑制部11c2は、第2の円筒部11cと同じ材料を用いて、ダイカストにより一体成型で製造したものでもよいし、第2の円筒部11cの固定部材6と向き合う面、すなわち第2の円筒部11cの外周面11c3を切削加工することによって第2の円筒部11c上に形成したものでもよい。熱伝達抑制部11c2は、図11に示す熱伝達抑制部40と同様に、複数の熱伝達抑制部材によって構成される。熱伝達抑制部11c2を構成する複数の熱伝達抑制部材は、それぞれが軸方向に伸びて、周方向に互いに離れて配列されていてもよい。また、熱伝達抑制部11c2を構成する複数の熱伝達抑制部材は、それぞれが周方向に伸びて、軸方向に互いに離れて配列されていてもよい。また、熱伝達抑制部11c2は、径方向に貫通する複数の穴を有する網の目状のシートであってもよい。このように、複数の熱伝達抑制部材によって構成される熱伝達抑制部11c2の径方向と直交する断面の第1の断面積は、固定部材6の径方向と直交する断面の第2の断面積よりも小さい。   FIG. 13 is a cross-sectional view of a flying object according to a second modification of the third embodiment. The heat transfer suppressing portion 11c2 is provided to the flying object 100B2 according to the second modified example shown in FIG. The heat transfer suppressing portion 11c2 may be integrally manufactured by die casting using the same material as the second cylindrical portion 11c, or may be a surface facing the fixing member 6 of the second cylindrical portion 11c, that is, the second It may be formed on the second cylindrical portion 11c by cutting the outer peripheral surface 11c3 of the cylindrical portion 11c. The heat transfer suppressing portion 11c2 is configured by a plurality of heat transfer suppressing members, similarly to the heat transfer suppressing portion 40 shown in FIG. The plurality of heat transfer suppressing members constituting the heat transfer suppressing portion 11c2 may extend in the axial direction and may be arranged apart from each other in the circumferential direction. Further, the plurality of heat transfer suppressing members constituting the heat transfer suppressing portion 11c2 may extend in the circumferential direction and may be arranged to be separated from each other in the axial direction. The heat transfer suppressing portion 11c2 may be a net-like sheet having a plurality of holes penetrating in the radial direction. Thus, the first cross-sectional area of the cross section orthogonal to the radial direction of the heat transfer suppressing portion 11c2 configured by the plurality of heat transfer suppressing members is the second cross-sectional area of the cross section orthogonal to the radial direction of the fixing member 6 Less than.

実施の形態3に係る飛しょう体100B,100B1,100B2によれば、熱伝達抑制部を設けることによって、熱伝達抑制部を設けていない場合に比べて、固定部材6の第2の円筒部11cへの接触面積が小さくなり、固定部材6から第2の円筒部11cへ伝わる熱の伝達量が低減され、飛しょう体本体1の温度上昇をより一層抑制できる。   According to the flying objects 100B, 100B1 and 100B2 according to the third embodiment, by providing the heat transfer suppressing portion, the second cylindrical portion 11c of the fixing member 6 is provided as compared with the case where the heat transfer suppressing portion is not provided. The contact area to the surface is reduced, the amount of heat transferred from the fixing member 6 to the second cylindrical portion 11c is reduced, and the temperature rise of the vehicle body 1 can be further suppressed.

また図10に示す飛しょう体100Bでは、固定部材6及び飛しょう体本体1とは別に製造される熱伝達抑制部40を利用できるため、飛しょう体100Bの想定される飛しょう距離及び飛しょう速度によって、熱伝達抑制部40を取付け、又は熱伝達抑制部40を省くなどの対応が可能である。従って、飛しょう体100Bの用途に合わせた最小限の構成にすることができる。   Further, in the flying object 100B shown in FIG. 10, since the heat transfer suppressing portion 40 manufactured separately from the fixing member 6 and the flying object main body 1 can be used, the assumed flying distance and distance of the flying object 100B are Depending on the speed, it is possible to attach the heat transfer suppressing portion 40 or omit the heat transfer suppressing portion 40. Therefore, it can be made the minimum composition according to the use of flying object 100B.

また図12に示す飛しょう体100B1では、固定部材6の製造時に熱伝達抑制部6bを同時に製作できるため、固定部材6と第2の円筒部11cとの間に熱伝達抑制構造が設けられているか否かを確認する手間を省くことができるため、飛しょう体100B1の管理コストを低減できる。   Further, in the flying object 100B1 shown in FIG. 12, since the heat transfer suppressing portion 6b can be simultaneously manufactured at the time of manufacturing the fixing member 6, a heat transfer suppressing structure is provided between the fixing member 6 and the second cylindrical portion 11c. Since it is possible to save time and effort to check whether or not there is, it is possible to reduce the management cost of the flying object 100B1.

また図13に示す飛しょう体100B2では、第2の円筒部11cの製造時に熱伝達抑制部11c2を同時に製作できるため、固定部材6と第2の円筒部11cとの間に熱伝達抑制構造が設けられているか否かを確認する手間を省くことができるため、飛しょう体100B2の管理コストを低減できる。   Further, in the flying object 100B2 shown in FIG. 13, since the heat transfer suppressing portion 11c2 can be simultaneously manufactured at the time of manufacturing the second cylindrical portion 11c, a heat transfer suppressing structure is provided between the fixing member 6 and the second cylindrical portion 11c. Since it is possible to save time and effort to check whether or not provided, the management cost of the flying object 100B2 can be reduced.

なお、実施の形態3に係る熱伝達抑制部6b,11c2,40は、実施の形態2にも適用可能である。   The heat transfer suppressing portions 6b, 11c 2 and 40 according to the third embodiment are also applicable to the second embodiment.

実施の形態4.
図14は本発明の実施の形態4に係る飛しょう体の飛しょう体用レドーム及び飛しょう体本体の連結部を拡大視した断面図である。実施の形態4に係る飛しょう体100Cは、皿ねじ7の代わりに皿ねじ7Aが用いられる。皿ねじ7Aは、皿ねじ7よりも長尺のねじである。また飛しょう体100Cでは、フローティングナット50が用いられている。その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
Fourth Embodiment
FIG. 14 is a cross-sectional view enlarging a connecting portion of a flying object radome and a flying object body of a flying object according to a fourth embodiment of the present invention. In the flying object 100C according to the fourth embodiment, a countersunk screw 7A is used instead of the countersunk screw 7. The countersunk screw 7A is a screw longer than the countersunk screw 7. In the flying object 100C, the floating nut 50 is used. The other configuration is the same as or equivalent to the configuration of the first embodiment, and the same or equivalent components are denoted by the same reference numerals and redundant description will be omitted.

フローティングナット50は、例えば、軸方向及び周方向の中央にねじ孔を有するナット板51と、ナット板51を支持する支持板52とを有す。支持板52の軸方向両端及び周方向両端が折り返されて、ナット板51が保持される。支持板52に保持されるナット板51は、軸方向及び周方向に移動可能である。このように構成されるフローティングナット50は、第2の円筒部11cの径方向内側の面に取付けられる。そして、皿ねじ7Aの雄ねじ部7bがナット板51のねじ孔にねじ込まれる。例えば、飛しょう体100Cの組立の際、第2の円筒部11cの貫通孔11c1の加工誤差があるために、雄ねじ部7bの軸中心に対して貫通孔11c1の軸中心がずれている場合でも、フローティングナット50を用いることにより、レドーム側結合部21を第2の円筒部11cに連結することができる。   The floating nut 50 has, for example, a nut plate 51 having a screw hole at the center in the axial direction and circumferential direction, and a support plate 52 for supporting the nut plate 51. The axial direction both ends and the circumferential direction both ends of the support plate 52 are folded back, and the nut plate 51 is held. The nut plate 51 held by the support plate 52 is movable in the axial direction and the circumferential direction. The floating nut 50 configured in this manner is attached to the radially inner surface of the second cylindrical portion 11c. Then, the male screw portion 7 b of the flathead screw 7 A is screwed into the screw hole of the nut plate 51. For example, even when the axial center of the through hole 11c1 deviates from the axial center of the male screw portion 7b due to the processing error of the through hole 11c1 of the second cylindrical portion 11c when assembling the flying object 100C. By using the floating nut 50, the radome side coupling portion 21 can be coupled to the second cylindrical portion 11c.

なお実施の形態4に係るフローティングナット50の形状は、ナット板51が軸方向及び周方向に移動可能な形状であればよく、図示例に限定されない。また実施の形態4に係るフローティングナット50は、実施の形態2及び実施の形態3にも適用可能である。   The shape of the floating nut 50 according to the fourth embodiment is not limited to the illustrated example as long as the nut plate 51 can move in the axial direction and the circumferential direction. The floating nut 50 according to the fourth embodiment is also applicable to the second embodiment and the third embodiment.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   The configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

1 飛しょう体本体、2,2A 飛しょう体用レドーム、3 第1の断熱部、4 第2の断熱部、5 電子機器、6 固定部材、6a,11c1 貫通孔、6a1 ザグリ加工部、6b,11c2,40 熱伝達抑制部、7,7A 皿ねじ、7a 頭部、7b 雄ねじ部、8 連結部材、9 穴埋部材、10 筐体、11 本体側結合部、11a 第1の円筒部、11b 張り出し部、11c 第2の円筒部、11d 機器設置部、11c3 外周面、20 第1のレドーム、21 レドーム側結合部、21a,21a1,21b 挿入孔、41 熱伝達抑制部材、50 フローティングナット、51 ナット板、52 支持板、60 面、100,100A,100B,100B1,100B2,100C 飛しょう体、G1,G2 隙間。   DESCRIPTION OF SYMBOLS 1 flight body main body, 2, 2A radome for projectiles, 3 1st heat insulation part, 4 2nd heat insulation part, 5 electronic devices, 6 fixing member, 6a, 11c1 through hole, 6a1 countersunk part, 6b, 11c2, 40 heat transfer suppressing portion 7, 7A flat head screw, 7a head, 7b male screw portion, 8 connecting member, 9 hole filling member, 10 case, 11 main body side connecting portion, 11a first cylindrical portion, 11b overhang Part, 11c Second cylindrical part, 11d Equipment installation part, 11c3 Outer peripheral surface, 20 First radome, 21 Radome side joint part, 21a, 21a1, 21b Insertion hole, 41 Heat transfer suppressing member, 50 Floating nut, 51 nut Plates, 52 support plates, 60 planes, 100, 100 A, 100 B, 100 B 1, 100 B 2, 100 C Flying object, G1, G2 gap.

Claims (7)

目標に向けて電波誘導により飛しょうする円筒状の飛しょう体本体と、
前記飛しょう体本体の先端側に固定される柱状の第1の連結部材と、
前記第1の連結部材に設けられ、前記第1の連結部材から前記径方向外側に伸びる柱状の第2の連結部材と、
前記第2の連結部材が挿入される挿入孔が形成され、前記第2の連結部材と前記第1の連結部材とを介して前記飛しょう体本体の先端側に連結される飛しょう体用レドームと、
を備え、
前記飛しょう体用レドームの内周面と、前記第1の連結部材の前記径方向外側の面との間に隙間が形成されることを特徴とする飛しょう体。
A cylindrical flight body that flies by radio induction toward the target,
A columnar first connection member fixed to the tip end side of the flight body main body;
A columnar second connection member provided on the first connection member and extending radially outward from the first connection member;
An insertion hole is formed in which the second connection member is inserted, and the flying rod radome is connected to the tip end side of the flight body through the second connection member and the first connection member. When,
Equipped with
A space is formed between the inner peripheral surface of the radome for the flying object and the radially outer surface of the first connecting member.
前記第1の連結部材には、前記飛しょう体本体に向けて挿入されるねじを挿入する貫通孔が形成され、
前記第1の連結部材には、前記第2の連結部材が前記貫通孔を挟み込むように前記飛しょう体本体の軸方向に互いに離れて2つ設けられ、
前記飛しょう体用レドームには、前記挿入孔が前記軸方向に互いに離れて2つ形成されることを特徴とする請求項1に記載の飛しょう体。
The first connection member is formed with a through hole into which a screw inserted toward the spacecraft body is inserted.
In the first connection member, two second connection members are provided so as to be separated from each other in the axial direction of the body so as to sandwich the through hole.
The flying object according to claim 1, wherein two insertion holes are formed apart from each other in the axial direction in the radome for flying object.
前記第2の連結部材は、円柱状の部材であり、
2つの前記挿入孔の内、一方の前記挿入孔は、前記軸方向の幅が周方向の幅よりも広い楕円形状であることを特徴とする請求項2に記載の飛しょう体。
The second connection member is a cylindrical member,
The flying object according to claim 2, wherein one of the two insertion holes has an elliptical shape in which the width in the axial direction is wider than the width in the circumferential direction.
前記第1の連結部材と前記飛しょう体本体との間に設けられ、前記第1の連結部材から前記飛しょう体本体へ伝わる熱の伝達量を低減する熱伝達抑制部を備えることを特徴とする請求項1から請求項3の何れか一項に記載の飛しょう体。   The heat transfer suppressing portion is provided between the first connecting member and the body of the flying object, and reduces the amount of heat transferred from the first connecting member to the body of the flying object. The flying object according to any one of claims 1 to 3, wherein 前記第1の連結部材と一体に設けられ、前記第1の連結部材から前記飛しょう体本体へ伝わる熱の伝達量を低減する熱伝達抑制部を備えることを特徴とする請求項1から請求項3の何れか一項に記載の飛しょう体。   The heat transfer suppressing portion is provided integrally with the first connection member, and reduces a transfer amount of heat transferred from the first connection member to the projectile body. The flying body as described in any one of 3). 前記飛しょう体本体と一体に設けられ、前記第1の連結部材から前記飛しょう体本体へ伝わる熱の伝達量を低減する熱伝達抑制部を備えることを特徴とする請求項1から請求項3の何れか一項に記載の飛しょう体。   The heat transfer suppressing portion is provided integrally with the projectile main body, and reducing a transfer amount of heat transferred from the first connection member to the projectile main body. The flying body as described in any one of the above. 前記飛しょう体本体の先端側に前記第1の連結部材を固定するねじの先端部がねじ込まれるフローティングナットを備えることを特徴とする請求項1から請求項6の何れか一項に記載の飛しょう体。   The flying nut according to any one of claims 1 to 6, further comprising: a floating nut to which a tip portion of a screw for fixing the first connection member is screwed on a tip end side of the flying body main body. Shobo.
JP2017254558A 2017-12-28 2017-12-28 Flying body Active JP6914187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017254558A JP6914187B2 (en) 2017-12-28 2017-12-28 Flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254558A JP6914187B2 (en) 2017-12-28 2017-12-28 Flying body

Publications (3)

Publication Number Publication Date
JP2019120442A true JP2019120442A (en) 2019-07-22
JP2019120442A5 JP2019120442A5 (en) 2020-07-02
JP6914187B2 JP6914187B2 (en) 2021-08-04

Family

ID=67306119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254558A Active JP6914187B2 (en) 2017-12-28 2017-12-28 Flying body

Country Status (1)

Country Link
JP (1) JP6914187B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203095A (en) * 1992-01-24 1993-08-10 Natl Space Dev Agency Japan<Nasda> Heat protecting system
JP2000335500A (en) * 1999-05-31 2000-12-05 Nec Eng Ltd Heat insulating structure
JP2000345810A (en) * 1999-05-18 2000-12-12 General Electric Co <Ge> Inner shell radial direction pin shape and mounting structure
JP2015169361A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 Missile radome

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203095A (en) * 1992-01-24 1993-08-10 Natl Space Dev Agency Japan<Nasda> Heat protecting system
JP2000345810A (en) * 1999-05-18 2000-12-12 General Electric Co <Ge> Inner shell radial direction pin shape and mounting structure
JP2000335500A (en) * 1999-05-31 2000-12-05 Nec Eng Ltd Heat insulating structure
JP2015169361A (en) * 2014-03-06 2015-09-28 三菱電機株式会社 Missile radome

Also Published As

Publication number Publication date
JP6914187B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP2017139522A (en) Flight body radome
US9711845B2 (en) Aerial vehicle radome assembly and methods for assembling the same
US4520364A (en) Attachment method-ceramic radome to metal body
EP3015735A2 (en) Cylindrical bearing with thermally conductive members
JP6727151B2 (en) Radome for flying objects
JP2019120442A (en) Flying object
CN106568354B (en) A kind of heat-preservation cylinder with temperature control function
JP2016174200A (en) Radome, radome ring, flying object
JP2015169361A (en) Missile radome
JP6278924B2 (en) Method for manufacturing flying radome
RU2337437C1 (en) Missile nose cone
RU2536361C1 (en) Antenna dome
JP2016173189A (en) Missile radome
JP7154182B2 (en) flying body
RU2316088C1 (en) Flying vehicle antenna fairing
JP2016161270A (en) Radome ring for flying body
JP6971906B2 (en) Flying body
CN205583111U (en) Waveguide subassembly
JP2017138072A (en) Missile radome
JP6727150B2 (en) Radome for flying objects
JP6996814B2 (en) Radome assembly structure
JP2016527128A (en) System and method for blade mounting
RU2258283C1 (en) Attachment point between ceramic fairing and flying-vehicle body
JP7243428B2 (en) Radome for flying objects
RU2730901C1 (en) Antenna dome

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210713

R150 Certificate of patent or registration of utility model

Ref document number: 6914187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150