JP2019119131A - Thermally conductive molded article and its manufacturing method - Google Patents

Thermally conductive molded article and its manufacturing method Download PDF

Info

Publication number
JP2019119131A
JP2019119131A JP2018000553A JP2018000553A JP2019119131A JP 2019119131 A JP2019119131 A JP 2019119131A JP 2018000553 A JP2018000553 A JP 2018000553A JP 2018000553 A JP2018000553 A JP 2018000553A JP 2019119131 A JP2019119131 A JP 2019119131A
Authority
JP
Japan
Prior art keywords
film
thermally conductive
meth
curable composition
conductive molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018000553A
Other languages
Japanese (ja)
Other versions
JP7085843B2 (en
Inventor
智昭 打矢
Tomoaki Uchiya
智昭 打矢
鳥海 尚之
Naoyuki Chokai
尚之 鳥海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to JP2018000553A priority Critical patent/JP7085843B2/en
Priority to PCT/IB2019/050027 priority patent/WO2019135178A1/en
Publication of JP2019119131A publication Critical patent/JP2019119131A/en
Application granted granted Critical
Publication of JP7085843B2 publication Critical patent/JP7085843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/007Using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/16Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/266Auxiliary operations after the thermoforming operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a new manufacturing method, etc. for manufacturing a thermally conductive molded article superior in thermal conductivity.SOLUTION: A manufacturing method of a thermally conductive molded article comprises: a step of preparing a first film which is arranged on a mold so as to follow a three-dimensional shape of the mold having the three-dimensional shape and has a shape corresponding to the three-dimensional shape; a step of arranging a curable composition containing a thermal conductive material and (meth) acrylic monomer on the first film; a step of arranging a second film on the curable composition to sandwich the curable composition with the first film and the second film; and a step of radical-polymerizing the (meth) acrylic monomer in the curable composition to form a cured product of the curable composition between the first film and the second film. Both of oxygen permeabilities of the first film and the second film are less than 1000 ml/m*24h*atm, and 50% expansion strength at the temperature 100°C of the first film is 100 N/25 mm or below.SELECTED DRAWING: Figure 2

Description

本発明は、熱伝導性成形体及びその製造方法に関する。   The present invention relates to a thermally conductive molded body and a method for producing the same.

電子機器等に搭載される発熱性部品(例えば、車載用バッテリパック等)の発熱を効率よく冷却するため、発熱性部品とヒートシンク等の放熱部品との間に熱伝導性成形体を適用して、発熱性部品の放熱性を向上させることが行われている。このような熱伝導性成形体は、例えば、樹脂母材と熱伝導性フィラーとを含有する組成物を構成する工程と、所望の形状に対応した形状を有する耐熱性トレーのトレー凹部に組成物を充填する工程と、トレー凹部に充填された状態の組成物を加熱硬化する工程とを含む方法によって製造される(特許文献1参照)。   In order to efficiently cool the heat generation of heat-generating components (for example, battery packs for vehicles etc.) mounted on electronic devices etc., apply a thermally conductive molded object between the heat-generating components and heat-radiating components such as a heat sink It has been carried out to improve the heat dissipation of heat-generating components. Such a thermally conductive molded product is produced, for example, by forming a composition containing a resin base material and a thermally conductive filler, and forming a composition in a tray recess of a heat resistant tray having a shape corresponding to a desired shape. And a step of heat curing the composition in a state of being filled in the tray recess (see Patent Document 1).

特開2016−92227号公報JP, 2016-92227, A

本発明は、熱伝導性に優れた熱伝導性成形体を製造するための新規な製造方法及び当該製造方法により得られる熱伝導性成形体を提供することを目的とする。   An object of the present invention is to provide a novel production method for producing a thermally conductive molded article excellent in thermal conductivity and a thermally conductive molded article obtained by the production method.

本発明の一側面は、三次元形状を有する型の当該三次元形状に追従するように型上に配置され、その三次元形状に対応した形状を有する第一のフィルムを準備する工程と、第一のフィルム上に、熱伝導性材料及び(メタ)アクリル単量体を含有する硬化性組成物を配置する工程と、硬化性組成物上に第二のフィルムを配置して、第一のフィルム及び第二のフィルムで硬化性組成物を挟む工程と、硬化性組成物中の(メタ)アクリル単量体をラジカル重合させて、第一のフィルム及び第二のフィルムの間に硬化性組成物の硬化物を形成する工程と、を備える、熱伝導性成形体の製造方法に関する。上記製造方法において、第一のフィルム及び第二のフィルムの酸素透過度は、いずれも1000ml/m・24h・atm未満であり、且つ第一のフィルムの温度100℃における50%伸張強度は、100N/25mm以下である。 One aspect of the present invention is to provide a first film disposed on a mold so as to follow the three-dimensional shape of the mold having a three-dimensional shape, and having a shape corresponding to the three-dimensional shape; Placing a curable composition containing a thermally conductive material and a (meth) acrylic monomer on one film, and placing a second film on the curable composition to obtain a first film And a step of sandwiching the curable composition with the second film, and radically polymerizing the (meth) acrylic monomer in the curable composition to form the curable composition between the first film and the second film. And the step of forming a cured product thereof. In the above manufacturing method, the oxygen permeability of the first film and the second film is both less than 1000 ml / m 2 · 24 h · atm, and the 50% elongation strength of the first film at a temperature of 100 ° C. is It is 100 N / 25 mm or less.

また、本発明の他の一側面は、三次元形状を有する第一の面を有し、熱伝導性材料及び(メタ)アクリル重合体を含有する樹脂成形体と、当該三次元形状に追従するように樹脂成形体の第一の面上に配置された第一のフィルムと、を備える、熱伝導性成形体に関する。上記熱伝導性成形体において、第一のフィルムの酸素透過度は、1000ml/m・24h・atm未満であり、且つ温度100℃における50%伸張強度が100N/25mm以下である。 Moreover, the other one side of this invention has a 1st surface which has a three-dimensional shape, and follows the said three-dimensional shape with the resin molding which contains a thermally conductive material and a (meth) acrylic polymer. And a first film disposed on the first surface of the resin molded body, and a thermally conductive molded body. In the thermally conductive molded article, the oxygen permeability of the first film is less than 1000 ml / m 2 · 24 h · atm, and the 50% tensile strength at a temperature of 100 ° C. is 100 N / 25 mm or less.

本発明によれば、熱伝導性に優れた熱伝導性成形体を製造するための新規な製造方法及び当該製造方法により得られる熱伝導性成形体を提供することが可能となる。   According to the present invention, it is possible to provide a novel manufacturing method for manufacturing a thermally conductive molded body excellent in thermal conductivity and a thermally conductive molded body obtained by the manufacturing method.

熱伝導性成形体の一実施形態を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing an embodiment of a thermally conductive molded body. 熱伝導性成形体の一実施形態を示す断面図である。It is a sectional view showing one embodiment of a thermally conductive compact. 熱伝導性成形体の製造方法の一実施形態を示す工程断面図である。It is process sectional drawing which shows one Embodiment of the manufacturing method of a heat conductive molded object.

以下、必要に応じて図面を適宜参照しながら本発明の好適な実施形態を詳細に説明する。しかし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as needed. However, the present invention is not limited to the following embodiments.

<熱伝導性成形体>
本実施形態に係る熱伝導性成形体は、三次元形状を有する第一の面を有する樹脂成形体と、三次元形状に追従するように樹脂成形体の第一の面上に配置された第一のフィルムと、を備える。
<Heat conductive molded body>
The thermally conductive molded body according to the present embodiment is a resin molded body having a first surface having a three-dimensional shape, and a first one disposed on the first surface of the resin molded body so as to follow the three-dimensional shape. And one film.

三次元形状は、熱伝導性成形体を適用する被着体(例えば、発熱製部品や放熱性部品など)の形状に応じて適宜設定することができる。例えば、被着体の表面形状に沿った形状であってよく、適用箇所への設置が容易となる形状であってよい。   The three-dimensional shape can be appropriately set in accordance with the shape of an adherend (for example, a heat-generating component, a heat-releasing component or the like) to which the thermally conductive molded object is applied. For example, it may be a shape along the surface shape of the adherend, and may be a shape that facilitates installation to the application site.

三次元形状は、特に制限されるものではないが、例えば、その少なくとも一部が、半球状、半円柱状などであってもよい。このような三次元形状を有することで、適用する被着体に対して、摺動させながら位置合わせを行いやすく、作業性に優れる。また、位置合わせ後は、被着体に押しつけられることで、三次元形状を変形させ、接触面積を確保することができる。   Although the three-dimensional shape is not particularly limited, for example, at least a portion thereof may be hemispherical, semi-cylindrical, or the like. By having such a three-dimensional shape, it is easy to perform position alignment, while sliding, with respect to the to-be-adhered body to apply, and it is excellent in workability. Moreover, after alignment, by pressing on the adherend, the three-dimensional shape can be deformed, and the contact area can be secured.

図1は、熱伝導性成形体の一実施形態を概略的に示す斜視図である。図1(a)〜(g)において、三次元形状部を有する熱伝導性成形体の具体的な一例を示す。三次元形状部を有する熱伝導性成形体としては、例えば、図1(a)及び(b)に示されるように、半球状、半円柱状などであってよい。また、熱伝導性成形体における三次元形状部の大きさ、個数、配置場所等については、熱伝導性成形体を適用する部品の形状、大きさ等を考慮して適宜設定することができ、例えば図1(c)〜(g)に示されるような、三次元形状部を複数、具体的には二つ以上、三つ以上又は五つ以上有する熱伝導性成形体であってよい。その他、半球状の三次元形状部と半円柱状の三次元形状部とが、同一の熱伝導性成形体において併存していてもよい。   FIG. 1 is a perspective view schematically showing an embodiment of a heat conductive molded body. In FIG. 1 (a)-(g), a specific example of the heat conductive molded object which has a three-dimensional-shaped part is shown. As a heat conductive molded object which has a three-dimensional-shaped part, as FIG. 1 (a) and (b) show, for example, hemispherical shape, semi-cylindrical shape etc. may be sufficient. In addition, the size, number, location, etc. of the three-dimensional shaped portion in the thermally conductive molded body can be appropriately set in consideration of the shape, size, etc. of the parts to which the thermally conductive molded body is applied, For example, as shown in FIG. 1 (c) to (g), it may be a thermally conductive molded body having a plurality of, specifically two or more, three or more or five or more three-dimensional shaped parts. In addition, the hemispherical three-dimensional shape portion and the semi-cylindrical three-dimensional shape portion may coexist in the same heat conductive molded body.

樹脂成形体は、熱伝導性材料及び(メタ)アクリル重合体を含有する。   The resin molding contains a thermally conductive material and a (meth) acrylic polymer.

熱伝導性材料は、樹脂成形体に実質的な熱伝導性を付与する成分である。熱伝導性材料としては特に限定されないが、例えば公知の熱伝導性フィラーを用いることができる。   The thermally conductive material is a component that imparts substantial thermal conductivity to the resin molded body. The heat conductive material is not particularly limited, and for example, known heat conductive fillers can be used.

熱伝導性材料としては、例えば、金属水和化合物、金属酸化物、金属窒化物、金属炭化物が挙げられる。   Examples of the heat conductive material include metal hydrate compounds, metal oxides, metal nitrides and metal carbides.

金属水和化合物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化バリウム、水酸化カルシウム、ドウソナイト、ハイドロタルサイト、ホウ酸亜鉛、アルミン酸カルシウム、酸化ジルコニウム水和物等が挙げられる。また、金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、酸化チタン、酸化ジルコニウム、酸化亜鉛等が挙げられる。また、金属窒化物としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素等が挙げられ、金属炭化物としては、炭化ホウ素、炭化アルミニウム、炭化ケイ素等が挙げられる。   Examples of the metal hydrate compound include aluminum hydroxide, magnesium hydroxide, barium hydroxide, calcium hydroxide, dawsonite, hydrotalcite, zinc borate, calcium aluminate, zirconium oxide hydrate and the like. Further, as the metal oxide, aluminum oxide, magnesium oxide, beryllium oxide, titanium oxide, zirconium oxide, zinc oxide and the like can be mentioned. Further, as the metal nitride, boron nitride, aluminum nitride, silicon nitride and the like can be mentioned, and as the metal carbide, boron carbide, aluminum carbide, silicon carbide and the like can be mentioned.

これらの熱伝導性材料は、通常、粒子の状態で添加される。なお、熱伝導性材料としては、その平均粒径が10〜100μmである比較的大きな粒子径群と、その平均粒径が10μm未満である比較的小さな粒子径群とを組み合わせて用いることで、添加量(充填量)を高めることができる。なお、平均粒径とは、レーザー回折散乱法によって求めた粒度分布における積算値50%での粒径を指す。   These heat conductive materials are usually added in the form of particles. As the thermally conductive material, a relatively large particle size group having an average particle size of 10 to 100 μm and a relatively small particle size group having an average particle size of less than 10 μm are used in combination. The addition amount (filling amount) can be increased. In addition, an average particle diameter refers to the particle size in 50% of the integration value in the particle size distribution calculated | required by the laser diffraction scattering method.

熱伝導性材料(熱伝導性フィラー)は、シラン系カップリング剤、チタネート系カップリング剤、脂肪酸等の表面処理剤などにより表面処理されていてもよい。このような表面処理を施された熱伝導性材料を用いることで、熱伝導性成形体の強度(例えば、引張強度)を向上させることができる。また、上記表面処理は、後述する硬化性組成物の粘度を低下させる効果が大きいため、製造工程上好ましい。なお、熱伝導性材料には予め表面処理を施していてもよいが、カップリング剤又は表面処理剤を、熱伝導性材料とともに後述する硬化性組成物中に添加させることで、表面処理の効果を得ることもできる。   The thermally conductive material (thermally conductive filler) may be surface-treated with a silane coupling agent, a titanate coupling agent, a surface treatment agent such as a fatty acid, or the like. By using the thermally conductive material subjected to such surface treatment, the strength (for example, tensile strength) of the thermally conductive molded body can be improved. Moreover, since the effect of reducing the viscosity of the curable composition mentioned later is large, the said surface treatment is preferable on a manufacturing process. Although the heat conductive material may be subjected to surface treatment in advance, the effect of the surface treatment can be obtained by adding the coupling agent or the surface treatment agent together with the heat conductive material to the curable composition described later. You can also get

樹脂成形体における熱伝導性材料の含有量は、樹脂成形体全量基準で、55〜95体積%であることが好ましく、65〜85体積%であることがより好ましい。熱伝導性材料の含有量が上記範囲であると、十分な熱伝導性が得られるとともに、熱伝導性材料が多すぎて樹脂成形体が脆くなったり製造が困難になることを防ぎ、十分な強度及び柔軟性を有する熱伝導性成形体を容易に得ることができる。   The content of the thermally conductive material in the resin molding is preferably 55 to 95% by volume, and more preferably 65 to 85% by volume, based on the total amount of the resin molding. When the content of the thermally conductive material is in the above range, sufficient thermal conductivity is obtained, and the resin molded product is prevented from becoming brittle or difficult to manufacture due to too much thermally conductive material, which is sufficient. A thermally conductive molded body having strength and flexibility can be easily obtained.

(メタ)アクリル重合体は、(メタ)アクリル単量体を含む単量体成分を重合して得られる重合体である。重合は、後述するように、ラジカル重合により行うことができる。ここで、「(メタ)アクリル単量体」とは、アクリル酸、アクリル酸エステル等のアクリル系単量体、及び/又は、メタアクリル酸、メタアクリル酸エステル等のメタアクリル系単量体を示す。すなわち、(メタ)アクリル重合体は、アクリル系単量体及びメタクリル系単量体からなる群より選ばれる少なくとも一種の単量体を含む単量体成分を重合して得られる重合体、ということもできる。   The (meth) acrylic polymer is a polymer obtained by polymerizing a monomer component containing a (meth) acrylic monomer. The polymerization can be carried out by radical polymerization as described later. Here, “(meth) acrylic monomer” means acrylic monomers such as acrylic acid and acrylic esters, and / or methacrylic monomers such as methacrylic acids and methacrylic esters. Show. That is, the (meth) acrylic polymer is a polymer obtained by polymerizing a monomer component containing at least one monomer selected from the group consisting of acrylic monomers and methacrylic monomers. You can also.

(メタ)アクリル単量体としては、一般的な(メタ)アクリル重合体を形成するために用いられる単量体であればよく、特に限定されるものではない。また、(メタ)アクリル単量体は、一種を単独で使用してもよく、二種以上を併用して使用してもよい。   The (meth) acrylic monomer is not particularly limited as long as it is a monomer used to form a general (meth) acrylic polymer. Moreover, a (meth) acrylic monomer may be used individually by 1 type, and may be used in combination of 2 or more types.

上記単量体成分は、(メタ)アクリル単量体として、少なくとも単官能(メタ)アクリル単量体を含有することが好ましい。なお、単官能(メタ)アクリル単量体とは、(メタ)アクリルロイル基を一つ有する単量体である。   It is preferable that the said monomer component contains an at least monofunctional (meth) acrylic monomer as a (meth) acrylic monomer. The monofunctional (meth) acrylic monomer is a monomer having one (meth) acryloyl group.

単官能(メタ)アクリル単量体としては、(メタ)アクリル酸、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、(メタ)アクリルアミド、エポキシアクリレート、ウレタンアクリレート等が挙げられる。   Examples of the monofunctional (meth) acrylic monomer include (meth) acrylic acid, alkyl (meth) acrylate, aryl (meth) acrylate, (meth) acrylamide, epoxy acrylate, urethane acrylate and the like.

これらのうち、単官能(メタ)アクリル単量体としては、炭素数12〜20のアルキル基を有するアルキル(メタ)アクリレートが好ましい。なお、ここでアルキル基は、鎖状であってもよく、分岐状であってもよく、環状であってもよい。   Among these, as a monofunctional (meth) acrylic monomer, the alkyl (meth) acrylate which has a C12-C20 alkyl group is preferable. Here, the alkyl group may be linear, branched or cyclic.

また、単官能(メタ)アクリル単量体としては、炭素数の異なる二種以上のアルキル(メタ)アクリレートを用いることが好ましい。この場合、各アルキル(メタ)アクリレートの含有量を調整することで、得られる樹脂成形体の柔軟性をその用途に応じて適宜調整することができる。   Moreover, as a monofunctional (meth) acrylic monomer, it is preferable to use 2 or more types of alkyl (meth) acrylate from which carbon number differs. In this case, by adjusting the content of each alkyl (meth) acrylate, the flexibility of the resulting resin molded product can be appropriately adjusted according to the application.

上記単量体成分は、(メタ)アクリル単量体として、さらに多官能(メタ)アクリル単量体を含有していてもよい。なお、多官能(メタ)アクリル単量体とは、(メタ)アクリロイル基を二つ以上有する単量体である。上記単量体成分が多官能(メタ)アクリル単量体を含有すると、(メタ)アクリル重合体が架橋構造を有するものとなるため、樹脂成形体の強度が向上する。   The monomer component may further contain a polyfunctional (meth) acrylic monomer as the (meth) acrylic monomer. In addition, a polyfunctional (meth) acrylic monomer is a monomer which has two or more (meth) acryloyl groups. When the monomer component contains a polyfunctional (meth) acrylic monomer, the (meth) acrylic polymer has a crosslinked structure, so that the strength of the resin molded product is improved.

多官能(メタ)アクリル単量体としては、例えば、1,6−ヘキサンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリ(ブタンジオール)ジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリイソプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート等の二官能(メタ)アクリル単量体;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールモノヒドロキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート等の三官能(メタ)アクリル単量体;ペンタエリトリトールテトラ(メタ)アクリレート、ジ−トリメチロールプロパンテトラ(メタ)アクリレート等の四官能(メタ)アクリル単量体;ジペンタエリトリトール(モノヒドロキシ)ペンタ(メタ)アクリレート等の五官能(メタ)アクリル単量体;などが挙げられる。   As a polyfunctional (meth) acrylic monomer, for example, 1,6-hexanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate ) Acrylate, tetraethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, poly (butanediol) di (meth) acrylate, 1,3-butylene glycol di (meth) 2.) Bifunctional (meth) monomers such as acrylate, triethylene glycol di (meth) acrylate, triisopropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, bisphenol A di (meth) acrylate Trimeric (meth) acrylic monomers such as ryl monomers; trimethylolpropane tri (meth) acrylate, pentaerythritol monohydroxy tri (meth) acrylate, trimethylolpropane triethoxy tri (meth) acrylate; pentaerythritol tetra (meth) acrylate Tetrafunctional (meth) acrylic monomers such as meta) acrylate and di-trimethylolpropane tetra (meth) acrylate; pentafunctional (meth) acrylic monomers such as dipentaerythritol (monohydroxy) penta (meth) acrylate; Etc.

上記単量体成分における多官能(メタ)アクリル単量体の含有量は、単官能(メタ)アクリル単量体100質量部に対して、0.01〜5質量部であることが好ましい。このような含有量であると、架橋構造による樹脂成形体の強度向上効果が十分に得られるとともに、過度の架橋による柔軟性の低下が避けられ、高い柔軟性を有する熱伝導性成形体が得られる。   The content of the polyfunctional (meth) acrylic monomer in the monomer component is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the monofunctional (meth) acrylic monomer. With such a content, the strength improvement effect of the resin molded product due to the crosslinked structure is sufficiently obtained, and the decrease in flexibility due to excessive crosslinking is avoided, and a thermally conductive molded product having high flexibility is obtained. Be

樹脂成形体における(メタ)アクリル重合体の含有量は、樹脂成形体全量基準で、0.05〜30質量%であることが好ましく、0.5〜15質量%であることがより好ましい。   The content of the (meth) acrylic polymer in the resin molded body is preferably 0.05 to 30% by mass, and more preferably 0.5 to 15% by mass, based on the total amount of the resin molded body.

樹脂成形体は、上記以外の成分を含有していてもよい。例えば、樹脂成形体は、酸化防止剤、粘着付与剤、可塑剤、難燃剤、難燃助剤、沈降防止剤、増粘剤、超微粉シリカ等のチクソトロピー剤、界面活性剤、消泡剤、着色剤、静電気防止剤、金属不活性化剤等の添加剤を含有していてもよい。これらの添加剤は、一種を単独で使用してもよく、二種以上を併用して使用してもよい。   The resin molding may contain components other than the above. For example, the resin molded product may be an antioxidant, a tackifier, a plasticizer, a flame retardant, a flame retardant auxiliary, an antisettling agent, a thickener, a thixotropy agent such as ultrafine silica, a surfactant, an antifoamer, You may contain additives, such as a coloring agent, an antistatic agent, and a metal deactivator. One of these additives may be used alone, or two or more thereof may be used in combination.

本実施形態に係る熱伝導性成形体において、第一のフィルムの酸素透過度は、1000ml/m・24h・atm未満であることが必要である。第一のフィルムの酸素透過度が1000ml/m・24h・atm未満であることにより、後述する熱伝導性成形体の製造において、(メタ)アクリル単量体をラジカル重合して(メタ)アクリル重合体を製造する際に、酸素によりラジカル重合が阻害されることを防ぐことができる。このような観点から、第一のフィルムの酸素透過度は、好ましくは200ml/m・24h・atm以下であり、より好ましくは150ml/m・24h・atm以下であり、更に好ましくは100ml/m・24h・atm以下である。第一のフィルムの酸素透過度の下限は、特に制限されるものではないが、例えば0.01ml/m・24h・atm以上である。なお、本明細書において、酸素透過度とは、MOCON社製酸素透過率測定装置OX−TRAN、Model2/21を用いて測定される酸素透過度を意味する。なお、酸素透過度が200ml/m・24h・atmを超える場合には、テストセルの一部にマスクをして測定を行うものとする。 In the heat conductive molded body according to the present embodiment, the oxygen permeability of the first film needs to be less than 1000 ml / m 2 · 24 h · atm. When the oxygen permeability of the first film is less than 1000 ml / m 2 · 24 h · atm, the (meth) acrylic monomer is subjected to radical polymerization to produce (meth) acrylic acid in the production of a heat conductive molded body described later When manufacturing a polymer, it can prevent that radical polymerization is inhibited by oxygen. From this point of view, the oxygen permeability of the first film is preferably 200 ml / m 2 · 24 h · atm or less, more preferably 150 ml / m 2 · 24 h · atm or less, still more preferably 100 ml / m. m 2 · 24 h · atm or less. The lower limit of the oxygen permeability of the first film is not particularly limited, and is, for example, 0.01 ml / m 2 · 24 h · atm or more. In addition, in this specification, the oxygen permeability means the oxygen permeability measured using MOCON company oxygen permeability measuring apparatus OX-TRAN, Model 2/21. When the oxygen permeability exceeds 200 ml / m 2 · 24 h · atm, measurement is performed by masking a part of the test cell.

また、第一のフィルムの温度100℃における50%伸張強度は、100N/25mm以下であることが必要である。第一のフィルムの温度100℃における50%伸張強度が100N/25mm以下であれば、第一のフィルムの柔軟性を十分に確保することができ、後述する熱伝導性成形体の製造において、型への追従性を良好に保つことができる。このような観点から、第一のフィルムの温度100℃における50%伸張強度は、例えば、50N/25mm以下、又は25N/25mm以下であってよい。なお、本明細書において、温度100℃における50%伸張強度とは、ISO 527−3(JIS K 7172:1999)に準拠した方法で測定される伸張強度を意味する。   Further, the 50% tensile strength of the first film at a temperature of 100 ° C. needs to be 100 N / 25 mm or less. If the 50% tensile strength at a temperature of 100 ° C. of the first film is 100 N / 25 mm or less, the flexibility of the first film can be sufficiently secured, and in the production of a heat conductive molded body described later, Good followability can be maintained. From such a point of view, the 50% tensile strength at a temperature of 100 ° C. of the first film may be, for example, 50 N / 25 mm or less, or 25 N / 25 mm or less. In the present specification, 50% tensile strength at a temperature of 100 ° C. means tensile strength measured by a method in accordance with ISO 527-3 (JIS K 7172: 1999).

第一のフィルムの動摩擦係数は、第一のフィルムの優れたすべり性を与え、熱伝導性成形体を被着体に適用する際の作業性を向上させる観点から、好ましくは0.7以下であり、より好ましくは0.5以下であり、更に好ましくは0.3以下である。第一のフィルムの動摩擦係数の下限は、特に制限されることはないが、例えば0.05以上である。なお、本明細書において、動摩擦係数とは、ISO 8295:1995(JIS K7125:1999)に準拠した方法に基づき、銅に対する動摩擦係数として測定される値を意味する。すなわち、重りの底面に両面粘着テープ(スリーエムジャパン製ST−416)で銅箔を貼り付け、荷重200g及び引張速度100mm/分の条件で測定した値を意味する。   The dynamic friction coefficient of the first film is preferably 0.7 or less from the viewpoint of giving excellent slip properties of the first film and improving the workability when applying the thermally conductive molded article to an adherend. More preferably, it is 0.5 or less, More preferably, it is 0.3 or less. The lower limit of the dynamic friction coefficient of the first film is not particularly limited, and is, for example, 0.05 or more. In addition, in this specification, a kinetic friction coefficient means the value measured as a kinetic friction coefficient with respect to copper based on the method based on ISO 8295: 1995 (JISK7125: 1999). That is, a copper foil is stuck on the bottom of the weight with a double-sided adhesive tape (ST-416 manufactured by 3M Japan), which means a value measured under a load of 200 g and a tensile speed of 100 mm / min.

本実施形態に係る熱伝導性成形体において好適に用いられる第一のフィルムとしては、例えば、ポリビニルアルコール、エチレン−ビニルアルコール共重合体(EVOH)、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル、二軸延伸ポリエチレンテレフタレート(二軸延伸PET)、無延伸ナイロン及び無延伸PETからなる群より選ばれる少なくとも一種を含むフィルムが挙げられる。これらの中でも、深絞り性、すべり性、樹脂成形体に対する剥離性、及び後述する第二のフィルムに対する剥離性等の観点から、EVOH、PVDF、無延伸ナイロンからなる群より選ばれる少なくとも一種を含むフィルムであることが好ましく、EVOHを含むフィルムは、多層フィルムであることがより好ましい。   As a first film suitably used in the heat conductive molded body according to the present embodiment, for example, polyvinyl alcohol, ethylene-vinyl alcohol copolymer (EVOH), polyvinylidene fluoride (PVDF), polyacrylonitrile, biaxial Films containing at least one selected from the group consisting of stretched polyethylene terephthalate (biaxially stretched PET), non-stretched nylon and non-stretched PET can be mentioned. Among these, at least one selected from the group consisting of EVOH, PVDF, and non-oriented nylon from the viewpoints of deep drawability, slipperiness, removability to a resin molded product, releasability to a second film described later, etc. The film is preferably a film, and the film containing EVOH is more preferably a multilayer film.

第一のフィルムの厚さは、熱伝導性成形体の用途及びフィルムの種類に応じて、本発明の効果を著しく阻害しない範囲において適宜設定することができる。第一のフィルムの厚さは、例えば、3〜200μm、5〜150μm、又は10〜130μmであってよい。第一のフィルムの厚さが上記範囲内であれば、酸素透過度及び強度をより十分に確保できる一方、熱抵抗を抑制でき成形性も確保することができる。   The thickness of the first film can be appropriately set according to the application of the thermally conductive molded product and the type of the film, in the range that the effects of the present invention are not significantly impaired. The thickness of the first film may be, for example, 3 to 200 μm, 5 to 150 μm, or 10 to 130 μm. If the thickness of the first film is within the above range, the oxygen permeability and the strength can be sufficiently secured, while the thermal resistance can be suppressed and the formability can be secured.

また、第一のフィルムは、一層で構成されていてもよいし、二層以上で構成されていてもよい。第一のフィルムが二層以上で構成される場合、そのうちの少なくとも一層が上記本実施形態に係る第一のフィルムの特性を有していてもよく、すべての層が上記本実施形態に係る第一のフィルムの特性を有していてもよい。第一のフィルムが二層以上で構成される場合、それぞれの層は適宜接着層等を介して積層されていてもよい。   In addition, the first film may be composed of one layer or may be composed of two or more layers. When the first film is composed of two or more layers, at least one of the layers may have the characteristics of the first film according to the present embodiment, and all the layers according to the present embodiment It may have the characteristics of one film. When the first film is composed of two or more layers, each layer may be laminated via an adhesive layer or the like as appropriate.

本実施形態に係る熱伝導性成形体は、上述した樹脂成形体の第一の面とは反対側の面上に配置された第二のフィルムを更に備えていてもよい。図2は、熱伝導性成形体の一実施形態を示す断面図である。図2に示されるように、熱伝導性成形体100は、第一のフィルム1と、第二のフィルム2と、樹脂成形体3とを備えており、樹脂成形体3は、三次元形状を有する第一の面3a及び第一の面とは反対側の面3bを有している。第一のフィルム1は、樹脂成形体3の第一の面3aの三次元形状に追従するように配置され、第二のフィルム2は、樹脂成形体3の第一の面とは反対側の面3b上に配置されている。   The thermally conductive molded product according to the present embodiment may further include a second film disposed on the surface opposite to the first surface of the resin molded product described above. FIG. 2 is a cross-sectional view showing an embodiment of a heat conductive molded body. As shown in FIG. 2, the heat conductive molded body 100 includes a first film 1, a second film 2, and a resin molded body 3, and the resin molded body 3 has a three-dimensional shape. It has a first surface 3a and a surface 3b opposite to the first surface. The first film 1 is disposed to follow the three-dimensional shape of the first surface 3 a of the resin molding 3, and the second film 2 is on the opposite side of the first surface of the resin molding 3. It is arranged on the surface 3b.

熱伝導性成形体が第二のフィルム2を更に備える場合、第二のフィルム2の酸素透過度は、1000ml/m・24h・atm未満である。第二のフィルム2の酸素透過度が1000ml/m・24h・atm未満であることにより、後述する熱伝導性成形体の製造において、(メタ)アクリル単量体をラジカル重合して(メタ)アクリル重合体を製造する際に、酸素によりラジカル重合が阻害されることをより効果的に防ぐことができる。このような観点から、第二のフィルム2の酸素透過度は、好ましくは200ml/m・24h・atm以下であり、より好ましくは150ml/m・24h・atm以下であり、更に好ましくは100ml/m・24h・atm以下である。第二のフィルム2の酸素透過度の下限は、特に制限されるものではないが、例えば0.01ml/m・24h・atm以上である。 When the thermally conductive green body further comprises the second film 2, the oxygen permeability of the second film 2 is less than 1000 ml / m 2 · 24 h · atm. When the oxygen permeability of the second film 2 is less than 1000 ml / m 2 · 24 h · atm, radical polymerization of (meth) acrylic monomer is carried out in the production of a heat conductive molded body described later (meth) When manufacturing an acrylic polymer, it can prevent more effectively that radical polymerization is inhibited by oxygen. From such a viewpoint, the oxygen permeability of the second film 2 is preferably 200 ml / m 2 · 24 h · atm or less, more preferably 150 ml / m 2 · 24 h · atm or less, further preferably 100 ml / M 2 · 24h · atm or less. The lower limit of the oxygen permeability of the second film 2 is not particularly limited, and is, for example, 0.01 ml / m 2 · 24 h · atm or more.

このような第二のフィルムとしては、例えば、ポリビニルアルコール、エチレン−ビニルアルコール共重合体(EVOH)、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル、二軸延伸ポリエチレンテレフタレート(二軸延伸PET)、二軸延伸ポリエチレンナフタレート(二軸延伸PEN)、無延伸ナイロン及び無延伸PETからなる群より選ばれる少なくとも一種を含むフィルムが挙げられる。これらの中でも、樹脂成形体に対する剥離性、及び第一のフィルムに対する剥離性、並びに酸素透過率をより十分に抑制する等の観点から、二軸延伸PET、二軸延伸PEN及び無延伸ナイロンからなる群より選ばれる少なくとも一種を含むフィルムであることが好ましい。なお、後述するように、熱伝導性成形体の使用に際して、第二のフィルムを剥離して使用する場合には、剥離を容易にする観点から、第二のフィルムの硬化性組成物が接触する側の面に、シリコーン等の剥離剤を塗布しておいてもよい。   As such a second film, for example, polyvinyl alcohol, ethylene-vinyl alcohol copolymer (EVOH), polyvinylidene fluoride (PVDF), polyacrylonitrile, biaxially stretched polyethylene terephthalate (biaxially stretched PET), biaxial A film containing at least one selected from the group consisting of stretched polyethylene naphthalate (biaxially stretched PEN), non-stretched nylon and non-stretched PET can be mentioned. Among these, biaxially stretched PET, biaxially stretched PEN, and non-stretched nylon are preferable from the viewpoint of sufficiently suppressing the releasability to the resin molded product, the removability to the first film, and the oxygen permeability. It is preferable that it is a film containing at least one selected from the group. In addition, when using a heat conductive molded object, as mentioned later, when using by peeling a 2nd film, the curable composition of a 2nd film contacts from a viewpoint of making peeling easy. A release agent such as silicone may be applied to the side surface.

第二のフィルム2の厚さは、熱伝導性成形体100の用途及びフィルムの種類に応じて、本発明の効果を著しく阻害しない範囲において適宜設定することができる。第二のフィルム2の厚さは、例えば、5〜200μm、10〜100μm、又は20〜75μmであってよい。   The thickness of the second film 2 can be appropriately set according to the application of the heat conductive molded body 100 and the type of the film, as long as the effects of the present invention are not significantly impaired. The thickness of the second film 2 may be, for example, 5 to 200 μm, 10 to 100 μm, or 20 to 75 μm.

また、第二のフィルムは、一層で構成されていてもよいし、二層以上で構成されていてもよい。第二のフィルムが二層以上で構成される場合、そのうちの少なくとも一層が上記本実施形態に係る第二のフィルムの特性を有していてもよく、すべての層が上記本実施形態に係る第二のフィルムの特性を有していてもよい。第二のフィルムが二層以上で構成される場合、それぞれの層は適宜接着層等を介して積層されていてもよい。   In addition, the second film may be composed of one layer or may be composed of two or more layers. When the second film is composed of two or more layers, at least one of the layers may have the characteristics of the second film according to the present embodiment, and all the layers may be according to the present embodiment It may have the characteristics of two films. When the second film is composed of two or more layers, each layer may be laminated via an adhesive layer or the like as appropriate.

また、熱伝導性成形体100は、第二のフィルム2及び樹脂成形体3の間、又は樹脂成形体3中に、編物、織物、不織布等の補強基材(図示せず)を備えていてもよい。補強基材を備えることにより、熱伝導性成形体100の平面方向への延伸性が抑制され、型から熱伝導性成形体を引き剥がす際に割れ等の不具合を生じる可能性を抑え、取り扱い性を向上させることができる。中でも不織布は、後述する硬化性樹脂組成物の含浸性に優れるため好ましい。補強基材の材料としては、ガラス、ビニロン、アラミド、ナイロン、ポリオレフィン、ポリエステル、アクリル等を使用することができるが、難燃性も付与し得るため、ガラスが好ましい。補強基材の厚さとしては、例えば、20μm以上又は40μm以上であってよく、例えば、0.2mm以下又は0.1mm以下であってよい。   Further, the thermally conductive molded body 100 is provided with a reinforcing base (not shown) such as a knitted fabric, a woven fabric, a non-woven fabric or the like between the second film 2 and the resin molded body 3 or in the resin molded body 3 It is also good. By providing the reinforcing substrate, the stretchability of the heat conductive molded body 100 in the plane direction is suppressed, and the possibility of causing a defect such as a crack when peeling the heat conductive molded body from the mold is suppressed, and the handleability is improved. Can be improved. Among them, non-woven fabrics are preferable because they are excellent in the impregnation property of the curable resin composition described later. As a material of the reinforcing substrate, glass, vinylon, aramid, nylon, polyolefin, polyester, acrylic and the like can be used, but glass is preferable because it can impart flame retardancy. The thickness of the reinforcing substrate may be, for example, 20 μm or more or 40 μm or more, and may be, for example, 0.2 mm or less or 0.1 mm or less.

<熱伝導性成形体の製造方法>
続いて上記熱伝導性成形体の製造方法について説明する。本実施形態に係る熱伝導性成形体の製造方法は、三次元形状を有する型の当該三次元形状に追従するように型上に配置され、三次元形状に対応した形状を有する第一のフィルムを準備する工程(第一工程)と、第一のフィルム上に、熱伝導性材料及び(メタ)アクリル単量体を含有する硬化性組成物を配置する工程(第二工程)と、硬化性組成物上に第二のフィルムを配置して、第一のフィルム及び第二のフィルムで硬化性組成物を挟む工程(第三工程)と、硬化性組成物中の(メタ)アクリル単量体をラジカル重合させて、第一のフィルム及び第二のフィルムの間に硬化性組成物の硬化物を形成する工程(第四工程)と、を備える。
<Method of manufacturing thermally conductive molded body>
Then, the manufacturing method of the said heat conductive molded object is demonstrated. The method of manufacturing a thermally conductive molded body according to the present embodiment is a first film disposed on a mold so as to follow the three-dimensional shape of the mold having a three-dimensional shape, and having a shape corresponding to the three-dimensional shape. Preparing a curable composition containing a thermally conductive material and a (meth) acrylic monomer on a first film (a second step); Placing a second film on the composition, sandwiching the curable composition with the first film and the second film (third step), and (meth) acrylic monomer in the curable composition And radically polymerizing to form a cured product of the curable composition between the first film and the second film (fourth step).

図3は、熱伝導性成形体の製造方法の一実施形態を示す工程断面図である。以下、図面を適宜参照しながら、上記各工程について説明する。   FIG. 3: is process sectional drawing which shows one Embodiment of the manufacturing method of a heat conductive molded object. The respective steps will be described below with reference to the drawings as appropriate.

(第一工程)
第一工程は、三次元形状を有する型の当該三次元形状に追従するように型上に配置され、三次元形状に対応した形状を有する第一のフィルムを準備する工程である。型に対応した三次元形状を有する第一のフィルムを準備する方法としては、例えば、真空加熱圧着法、真空成型法、フィルムインサート成型法等が挙げられる。
(First step)
The first step is a step of preparing a first film having a shape corresponding to the three-dimensional shape, which is disposed on the mold so as to follow the three-dimensional shape of the mold having a three-dimensional shape. As a method of preparing the first film having a three-dimensional shape corresponding to the mold, for example, a vacuum heating pressure bonding method, a vacuum forming method, a film insert molding method and the like can be mentioned.

以下、真空加熱圧着法の具体的な方法を例示的に説明する。まず、図3(a)に示されるような、所定の三次元形状を有する型20を用意する。図3(b)に示すように、例示的な真空加熱圧着装置30は、上下に第一真空室31及び第二真空室32をそれぞれ有しており、上下の真空室の間に型20に貼り付ける第一のフィルム10をセットする治具が備えられている。また、下側の第一真空室31には、上下に昇降可能な昇降台35(図示せず)の上に仕切り板34及び台座33が設置されており、型20はこの台座33の上にセットされる。このような真空加熱圧着装置30としては、市販のもの、例えば両面真空成型機(布施真空株式会社製)等を使用することができる。   Hereinafter, a specific method of the vacuum heating and pressing method will be exemplarily described. First, a mold 20 having a predetermined three-dimensional shape as shown in FIG. 3A is prepared. As shown in FIG. 3 (b), the exemplary vacuum heating and pressing apparatus 30 has a first vacuum chamber 31 and a second vacuum chamber 32 at the top and bottom respectively, and a mold 20 is provided between the upper and lower vacuum chambers. A jig for setting the first film 10 to be attached is provided. Further, in the lower first vacuum chamber 31, the partition plate 34 and the pedestal 33 are installed on a lift table 35 (not shown) which can move up and down vertically, and the mold 20 is mounted on the pedestal 33. Is set. As such a vacuum heating and pressure-bonding device 30, a commercially available one, for example, a double-sided vacuum forming machine (manufactured by Cloth Application Vacuum Co., Ltd.) can be used.

図3(b)に示すように、まず、真空加熱圧着装置30の第一真空室31及び第二真空室32を大気圧に開放した状態で、上下の真空室の間に第一のフィルム10をセットする。第一真空室31において台座33の上に型20をセットする。   As shown in FIG. 3 (b), first, with the first vacuum chamber 31 and the second vacuum chamber 32 of the vacuum heating and pressure bonding apparatus 30 open to the atmospheric pressure, the first film 10 is interposed between the upper and lower vacuum chambers. Set The mold 20 is set on the pedestal 33 in the first vacuum chamber 31.

次に、図3(c)に示すように、第一真空室31及び第二真空室32を閉鎖し、それぞれ減圧し、各室の内部を真空にする。その後又は真空にするのと同時に第一のフィルム10を加熱する。次いで、図3(d)に示すように、昇降台35を上昇させて型20を第二真空室32まで押し上げる。加熱は、例えば第二真空室32の天井部に組み込まれたランプヒータ(図示せず)で行うことができる。加熱温度は特に限定されるものではないが、通常50℃以上又は130℃以上であり、180℃以下又は160℃以下である。減圧雰囲気の真空度は、大気圧を1atmとして、例えば、0.10atm以下、0.05atm以下、又は0.01atm以下とすることができる。   Next, as shown in FIG. 3C, the first vacuum chamber 31 and the second vacuum chamber 32 are closed, the pressure is reduced, and the inside of each chamber is evacuated. Thereafter, or simultaneously with the application of vacuum, the first film 10 is heated. Next, as shown in FIG. 3D, the lift table 35 is raised to push the mold 20 up to the second vacuum chamber 32. The heating can be performed, for example, by a lamp heater (not shown) incorporated in the ceiling of the second vacuum chamber 32. The heating temperature is not particularly limited, but is usually 50 ° C. or more or 130 ° C. or more, and is 180 ° C. or less or 160 ° C. or less. The degree of vacuum of the reduced pressure atmosphere can be, for example, 0.10 atm or less, 0.05 atm or less, or 0.01 atm or less, where the atmospheric pressure is 1 atm.

加熱された第一のフィルム10は型20の表面に押しつけられて延伸される。その後又は延伸と同時に、図3(e)に示すように、第二真空室32内を適当な圧力(例えば、1atm〜3atm)に加圧する。圧力差により加熱された第一のフィルム10は、型20の露出表面に密着し、露出表面の三次元形状に追従して延伸し、型20の表面に剥離可能に密着した状態の被覆を形成する。図3(c)の状態で減圧及び加熱を行った後、そのまま第二真空室32内を加圧して第一のフィルム10で型20の露出表面を被覆することもできる。   The heated first film 10 is pressed against the surface of the mold 20 and stretched. Thereafter or simultaneously with the drawing, as shown in FIG. 3 (e), the inside of the second vacuum chamber 32 is pressurized to an appropriate pressure (for example, 1 atm to 3 atm). The first film 10 heated by the pressure difference is in close contact with the exposed surface of the mold 20, is drawn following the three-dimensional shape of the exposed surface, and forms a coating in a state of being peelably in contact with the surface of the mold 20 Do. After performing pressure reduction and heating in the state of FIG. 3C, the inside of the second vacuum chamber 32 can be pressurized as it is to cover the exposed surface of the mold 20 with the first film 10.

その後、上下の第一真空室31及び第二真空室32を再び大気圧に開放して、第一のフィルム10で被覆された型20を取り出す。図3(f)に示すように、型20の表面に密着した第一のフィルム10のエッジをトリミングし、第一のフィルム10と型20とを備える一体品40を得ることができる。なお、以下では、一体品40を用いて、第二の工程を実施する方法について記載するが、本実施形態では、一体品40から型20を剥離して、三次元形状に成型された第一のフィルム10を用いて第二の工程を実施することもできる。   Thereafter, the upper and lower first vacuum chambers 31 and the second vacuum chamber 32 are again opened to atmospheric pressure, and the mold 20 coated with the first film 10 is taken out. As shown in FIG. 3F, the edge of the first film 10 in close contact with the surface of the mold 20 can be trimmed to obtain an integral product 40 including the first film 10 and the mold 20. In addition, although the method to implement a 2nd process is described below using the integral product 40, in this embodiment, the type | mold 20 is peeled from the integral product 40, and the 1st shape | molded by three-dimensional shape is carried out. The second step can also be carried out using the film 10 of

(第二工程)
第二工程は、第一のフィルム上に、熱伝導性材料及び(メタ)アクリル単量体を含有する硬化性組成物を配置する工程である。第二工程の一例を、図3を用いて以下で説明する。
(Second step)
The second step is a step of arranging a curable composition containing a thermally conductive material and a (meth) acrylic monomer on a first film. An example of the second step is described below with reference to FIG.

図3(g)に示すように、一体品40の空洞部11に、熱伝導性材料及び(メタ)アクリル単量体を含有する硬化性組成物を充填し、必要に応じてブレード等を使用して平坦化処理を行い、充填部12を形成することにより硬化性組成物を配置する。硬化性組成物の充填に際しては、特に限定されるものではないが、空気の混入を防ぐため脱気したものを適用することが好ましい。   As shown in FIG. 3 (g), the hollow portion 11 of the one-piece product 40 is filled with a curable composition containing a thermally conductive material and a (meth) acrylic monomer, and a blade or the like is used if necessary. Then, a flattening process is performed to form the filling portion 12 and the curable composition is disposed. There is no particular limitation on the filling of the curable composition, but it is preferable to apply a degassed one in order to prevent the mixing of air.

(第三工程)
第三工程は、硬化性組成物上に第二のフィルムを配置して、第一のフィルム及び第二のフィルムで硬化性組成物を挟む工程である。
(Third step)
The third step is a step of disposing a second film on the curable composition and sandwiching the curable composition with the first film and the second film.

図3(g)では、上記工程で形成された充填部12上に、更に第二のフィルム13を適用する構成を例示する。この態様では、第二のフィルム13が、第一のフィルム10と充填部12とを覆うように配置して一体品50を得ることができる。なお、第三工程においては、充填部12及び第二のフィルム13の間に不織布等の補強基材を配置する場合、例えば第二のフィルム13上に補強基材を適用し、補強基材と充填部12とが接するように配置してもよいし、充填部12中に補強基材を配置する場合、硬化性組成物に予め補強基材を含浸させておいてもよい。   FIG. 3G illustrates a configuration in which the second film 13 is further applied on the filling portion 12 formed in the above-described process. In this aspect, the second film 13 can be disposed so as to cover the first film 10 and the filling portion 12 to obtain the integral product 50. In the third step, in the case of arranging a reinforcing base such as a non-woven fabric between the filling portion 12 and the second film 13, for example, a reinforcing base is applied on the second film 13 It may be disposed so as to be in contact with the filling portion 12, or when the reinforcing base material is disposed in the filling portion 12, the curable composition may be previously impregnated with the reinforcing base material.

(第四工程)
第四工程は、硬化性組成物中の(メタ)アクリル単量体をラジカル重合させて、第一のフィルム10及び第二のフィルム13の間に硬化性組成物の硬化物(樹脂成形体)12aを形成する工程である。これにより、硬化性組成物の硬化物(樹脂成形体)12aを有する一体品50aが得られる。
(Fourth step)
In the fourth step, the (meth) acrylic monomer in the curable composition is radically polymerized to form a cured product of the curable composition between the first film 10 and the second film 13 (resin molding) It is a process of forming 12a. Thereby, the integral product 50a which has hardened | cured material (resin molding) 12a of a curable composition is obtained.

ラジカル重合は、例えば、紫外線重合、電子線重合、γ線照射重合、イオン化線照射重合等により行うことができる。紫外線重合は、例えば、光重合開始剤を適当量含有する硬化性組成物を上記空洞部11に充填させて充填部12を形成した後、紫外線を照射することにより行うことができる。なお、電子線重合を始めとする粒子エネルギー線を用いて重合する場合には、通常、重合開始剤は不要である。   The radical polymerization can be performed by, for example, ultraviolet polymerization, electron beam polymerization, γ-ray irradiation polymerization, ionizing ray irradiation polymerization, and the like. The ultraviolet polymerization can be performed, for example, by filling the curable composition containing an appropriate amount of a photopolymerization initiator in the hollow portion 11 to form the filling portion 12, and then irradiating the ultraviolet portion. In the case of polymerization using particle energy rays such as electron beam polymerization, a polymerization initiator is usually unnecessary.

光重合開始剤としては、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインエーテル類;アニソインエチルエーテル、アニソインイソプロピルエーテル、ミヒラーケトン(4,4’−テトラメチルジアミノベンゾフェノン)、2,2−ジメトキシ−2−フェニルアセトフェノン(例えば、商品名:KB−1(サルトマー社製)、商品名:イルガキュア651(Irgacure651)(チバスペシャルティーケミカルズ社製))、2,2−ジエトキシアセトフェノン等の置換アセトフェノン類;2−メチル−2−ヒドロキシプロピオフェノン等の置換α−ケトール類;2−ナフタレンスルホニルクロリド等の芳香族スルホニルクロリド類;1−フェノン−1,1−プロパンジオン−2−(o−エトキシカルボニル)オキシム等の光活性オキシム化合物;ビス(2,4,6−トリメチルベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィノキサイド等のアシルフォスフィンオキサイド化合物;等が挙げられる。なお、上記光重合開始剤は、一種を単独で使用してもよく、二種以上を併用して使用してもよい。   Photoinitiators include benzoin ethers such as benzoin ethyl ether and benzoin isopropyl ether; anisoin ethyl ether, anisoin isopropyl ether, Michler's ketone (4,4'-tetramethyldiaminobenzophenone), 2,2-dimethoxy-2 -Phenylacetophenone (eg, trade name: KB-1 (Saltomer), trade name: Irgacure 651 (Irgacure 651 (Ciba Specialty Chemicals)), substituted acetophenones such as 2, 2-diethoxyacetophenone; 2 Substituted α-ketols such as -methyl-2-hydroxypropiophenone; aromatic sulfonyl chlorides such as 2-naphthalenesulfonyl chloride; 1-phenone-1,1-propanedione-2- (o-ethoxycarbonyl) Photoactive oxime compounds such as oximes; bis (2,4,6-trimethylbenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphinocide etc Acyl phosphine oxide compounds; and the like. In addition, the said photoinitiator may be used individually by 1 type, and may be used in combination of 2 or more types.

硬化性組成物に配合される光重合開始剤の含有量は、特に制限はないが、通常、上記(メタ)アクリル単量体等の単量体成分100質量部に対して0.05〜2.0質量部である。   The content of the photopolymerization initiator to be added to the curable composition is not particularly limited, but generally 0.05 to 2 parts by weight with respect to 100 parts by weight of the monomer component such as the (meth) acrylic monomer. .0 parts by mass.

第四工程を経て得られた一体品50aは、任意に冷却した後、型20から取り出すことにより、図3(h)に示すような熱伝導性成形体60を得ることができる。なお、必要に応じて、第一のフィルム10及び/又は第二のフィルム13を除去してもよく、適当な大きさに打ち抜いて個別の三次元形状を有する熱伝導性成形体を得ることもできる。第一のフィルム10を除去せずに製品として使用する場合、バッテリー等の隙間に押し込まれる際に第一のフィルム10の表面での滑り性や製品としての強度が上がるという利点がある。   The one-piece product 50a obtained through the fourth step can be optionally cooled and then taken out of the mold 20 to obtain a thermally conductive compact 60 as shown in FIG. 3 (h). In addition, if necessary, the first film 10 and / or the second film 13 may be removed, and punching to an appropriate size to obtain a thermally conductive molded product having an individual three-dimensional shape is also possible. it can. When used as a product without removing the first film 10, there is an advantage that the slipperiness on the surface of the first film 10 and the strength as a product increase when the first film 10 is pushed into a gap of a battery or the like.

本実施形態に係る製造方法によって得られた熱伝導性成形体は、車輌、リチウムイオンバッテリー(例えば、車載用リチウムイオンバッテリパック)、家電製品、コンピュータ機器等で使用される、例えば、ICチップ等の発熱性部品と、ヒートシンク又はヒートパイプ等の放熱性部品との間の間隙を充填するように配置して、発熱性部品から発生した熱を放熱性部品に効率よく熱伝達し得る、放熱用部材として使用することができる。特に、本実施形態に係る熱伝導性成形体は、形状、大きさを自由に設計できるため、例えば回路基板のポッティング材の代替として使用することができ、コイル等の複雑形状の発熱性部品に対しても使用することができる。   The thermally conductive molded body obtained by the manufacturing method according to the present embodiment is used in vehicles, lithium ion batteries (for example, lithium ion battery packs for vehicles), home appliances, computer devices, etc., for example, IC chips etc. Are disposed so as to fill the gap between the heat-generating component and the heat-releasing component such as the heat sink, so that the heat generated from the heat-generating component can be efficiently transferred to the heat-dissipating component It can be used as a member. In particular, since the thermally conductive molded product according to the present embodiment can be designed freely in shape and size, it can be used, for example, as a substitute for a potting material of a circuit board, and can be used as a heat generating component of complex shape such as a coil. It can also be used against.

以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to the examples.

実施例で用いた各成分について、その略称と詳細を以下に説明する。   The abbreviations and details of each component used in the examples are described below.

<硬化性組成物の調製>
表1に示す各成分を表1に記載の配合割合(質量比)でプラネタリーミキサーに仕込み、減圧下(0.01MPa)、30分混練することによって脱気及び混合して、硬化性組成物を得た。なお、下記硬化性組成物において、熱伝導性フィラーの体積割合は、67.4体積%であった。
<Preparation of a curable composition>
Each component shown in Table 1 is charged in a planetary mixer at a blending ratio (mass ratio) described in Table 1 and deaerated and mixed by kneading under a reduced pressure (0.01 MPa) for 30 minutes to obtain a curable composition. I got In the following curable composition, the volume ratio of the thermally conductive filler was 67.4% by volume.

Figure 2019119131
Figure 2019119131

表1に示す各略称は、それぞれ以下を意味する。   Each abbreviation shown in Table 1 means the following, respectively.

((メタ)アクリル単量体)
・LA:ラウリルアクリレート
・ISTA:イソステアリルアクリレート
・HDDA:1,6−ヘキサンジオールジアクリレート
((Meth) acrylic monomer)
· LA: lauryl acrylate · ISTA: isostearyl acrylate · HDDA: 1, 6-hexanediol diacrylate

(光重合開始剤)
・IRGACURE819:BASF社製、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド
(Photopolymerization initiator)
-IRGACURE 819: manufactured by BASF, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide

(可塑剤)
・T10:花王株式会社製、トリメリテート系可塑剤、トリメックス T−10
(Plasticizer)
・ T10: Kao Corp., trimellitate plasticizer, trimex T-10

(酸化防止剤)
・IRGANOX1010:BASF社製、ペンタエリトリトールテトラキス(3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート)
・AO503:ADEKA社製「アデカスタブAO503」、ジトリデシルチオジプロピオネート
(Antioxidant)
-IRGANOX 1010: manufactured by BASF, pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate)
· AO 503: "ADEKA STAB AO 503" manufactured by ADEKA, ditridecylthiodipropionate

(熱伝導性フィラー)
・B53:日本軽金属社製、水酸化アルミニウム(平均粒径50μm)
・BF083:日本軽金属社製、水酸化アルミニウム(平均粒径8μm)
(Heat conductive filler)
・ B53: Nippon Light Metal Co., Ltd., aluminum hydroxide (average particle size 50 μm)
· BF 083: Nippon Light Metal Co., Ltd., aluminum hydroxide (average particle size 8 μm)

(分散剤)
・BYK−145:ビックケミー・ジャパン株式会社製、湿潤分散剤DISPERBYK−145
(Dispersant)
· BYK-145: manufactured by Big Chemie Japan Ltd., wetting and dispersing agent DISPERBYK-145

<熱伝導性成形体の作製>
表2に示す各フィルムを準備し、図3(b)に示されるように、真空加熱圧着装置30として、両面真空成型機(布施真空株式会社製)を採用し、真空加熱圧着装置30内に設置した樹脂製の型20上にフィルムを固定した。該フィルムの表面温度が120℃になるように加熱条件を設定し、上述した図3(c)〜図3(e)で示されるような手順に従って、加熱したフィルムをエアーが巻き込まれないように型20の表面に積層し、図3(f)に示されるような一体品40を作製した。フィルムの追従性については、目視にて確認した。ここで、型20は、図3(f)に示されるような、23.5mm×90.0mm×4.0mmの半円柱状の三次元形状が得られるような形状を備える。用いたフィルムの各性状を表2に示す。
<Production of a heat conductive molded body>
Each film shown in Table 2 is prepared, and as shown in FIG. 3 (b), a double-sided vacuum forming machine (made by Fusaku Vacuum Co., Ltd.) is adopted as the vacuum heating and pressing device 30. The film was fixed on the resin mold 20 installed. The heating conditions are set such that the surface temperature of the film is 120 ° C., and the heated film is prevented from being entrained in accordance with the procedure shown in FIG. 3 (c) to FIG. 3 (e) described above. It laminated | stacked on the surface of the type | mold 20, and produced the integral product 40 as shown by FIG.3 (f). The followability of the film was visually confirmed. Here, the mold 20 has a shape such that a semicircular three-dimensional shape of 23.5 mm × 90.0 mm × 4.0 mm as shown in FIG. 3F is obtained. Each property of the used film is shown in Table 2.

Figure 2019119131
Figure 2019119131

なお、表2におけるフィルムA〜Iは、それぞれ以下のものである。
フィルムA:シュペレン 35E−LL(株式会社宇部フィルム製、PE/EVOH/LLDPEの3層フィルムであり、各層は接着樹脂を介して積層しているフィルム)
フィルムB:シュペレン 35E−LL(株式会社宇部フィルム製、PE/EVOH/LLDPEの3層フィルムであり、各層は接着樹脂を介して積層しているフィルム)
フィルムC:ハイトロンBX(タマポリ株式会社製、ポリアクリロニトリルフィルム)
フィルムD:ダイアミロンC(三菱ケミカル株式会社製、塩化ビニリデンコート無延伸ナイロン−6フィルム)
フィルムE:ダイアミロンMF F001(三菱ケミカル株式会社製、PP/EVOH/PPの3層フィルムであり、各層は接着樹脂を介して積層しているフィルム)
フィルムF:ダイアミロンMF V442(三菱ケミカル株式会社製、EVOH/Nylon/PP/LLDPHの4層フィルムであり、一部の層は接着樹脂を介して積層しているフィルム)
フィルムG:UB−OB(タマポリ株式会社製、直鎖状低密度ポリエチレンフィルム)
フィルムH:V−1(タマポリ株式会社製、低密度ポリエチレンフィルム)
フィルムI:エンブレットS50(ユニチカ株式会社製、PETフィルム)
The films A to I in Table 2 are as follows.
Film A: Spellen 35E-LL (manufactured by Ube Film Co., Ltd., a three-layer film of PE / EVOH / LLDPE, each layer being a film laminated via an adhesive resin)
Film B: Spellen 35E-LL (manufactured by Ube Film Co., Ltd., a three-layer film of PE / EVOH / LLDPE, each layer being a film laminated via an adhesive resin)
Film C: Hytron BX (manufactured by Tamapoly Corporation, polyacrylonitrile film)
Film D: Diamilon C (Mitsubishi Chemical Corporation, vinylidene chloride-coated non-stretched nylon-6 film)
Film E: Diamilon MF F 001 (manufactured by Mitsubishi Chemical Corporation, PP / EVOH / PP three-layer film, each layer being a film laminated via an adhesive resin)
Film F: Diamilon MF V 442 (manufactured by Mitsubishi Chemical Corporation, EVOH / Nylon / PP / LLDPH four-layer film, with some layers laminated via an adhesive resin)
Film G: UB-OB (made by Tamapoly Corporation, linear low density polyethylene film)
Film H: V-1 (manufactured by Tamapoly Co., Ltd., low density polyethylene film)
Film I: Emblet S50 (manufactured by Unitika Co., Ltd., PET film)

一体品40の空洞部11に、上記で得られた硬化性組成物を充填し、次いで、充填した硬化性組成物上に、エアーが巻き込まれないように第二のフィルム13(ポリエステルフィルムライナー、帝人フィルムソリューションズ株式会社製、商品名「ピューレックスA50」、厚さ50μm、酸素透過度16)を積層した。第二のフィルム13が型20に均一に密着するように、第二のフィルム13上にゴムローラーを適用して一体品50を作製した。ブラックライトランプを用いて、一体品50の第二のフィルム13側5.5cmの距離から15分間UV照射を行い、硬化性組成物に含まれるアクリル単量体を重合させ(照射条件:UV−A(波長315〜380nm)、7.46mW/cm)、続いて、型20から熱伝導性成形体60を脱型した。 The second film 13 (polyester film liner, or the like) is filled with the curable composition obtained above in the cavity 11 of the one-piece product 40, and then the air is not caught on the filled curable composition. Teijin Films Solutions Co., Ltd., trade name "Purex A50", thickness 50 μm, oxygen permeability 16) was laminated. A rubber roller was applied onto the second film 13 so that the second film 13 was uniformly adhered to the mold 20, to produce an integral product 50. Using a black light lamp, UV irradiation is performed for 15 minutes from a distance of 5.5 cm on the second film 13 side of the integrated product 50 to polymerize the acrylic monomer contained in the curable composition (irradiation conditions: UV- A (wavelength 315 to 380 nm), 7.46 mW / cm 2 ), and subsequently the heat conductive molded body 60 was removed from the mold 20.

<熱伝導性成形体の硬化状態>
得られた熱伝導性成形体から第一のフィルムを剥離し、硬化性組成物の硬化状態を目視と指触で確認した。重合阻害が起こった場合は熱伝導性成形体の頂上部分及びフィルム表面には未硬化の硬化性組成物がうっすらと残って白濁していたが、重合阻害が起こらなかった場合にはフィルムは透明なままであった。また、重合阻害が起こらなかった場合の熱伝導性成形体の表面は、指触によりタックの存在を確認することができた。
Cured state of thermally conductive molded body
The first film was peeled off from the obtained heat conductive molded product, and the cured state of the curable composition was confirmed visually and with a finger. If polymerization inhibition occurred, the uncured curable composition slightly remained on the top of the thermally conductive molded product and on the film surface and was cloudy, but if polymerization inhibition did not occur, the film was transparent. It remained as it was. Moreover, the surface of the heat conductive molded object when superposition | polymerization inhibition did not occur was able to confirm presence of tack | tuck by finger touch.

1…第一のフィルム、2…第二のフィルム、3…樹脂成形体、3a…第一の面、3b…第一の面とは反対側の面、100…熱伝導性成形体。   DESCRIPTION OF SYMBOLS 1 ... 1st film, 2 ... 2nd film, 3 ... Resin molded object, 3a ... 1st surface, 3b ... surface on the opposite side to 1st surface, 100 ... heat conductive molded object.

Claims (7)

三次元形状を有する型の前記三次元形状に追従するように前記型上に配置され、前記三次元形状に対応した形状を有する第一のフィルムを準備する工程と、
前記第一のフィルム上に、熱伝導性材料及び(メタ)アクリル単量体を含有する硬化性組成物を配置する工程と、
前記硬化性組成物上に第二のフィルムを配置して、前記第一のフィルム及び前記第二のフィルムで前記硬化性組成物を挟む工程と、
前記硬化性組成物中の(メタ)アクリル単量体をラジカル重合させて、前記第一のフィルム及び前記第二のフィルムの間に前記硬化性組成物の硬化物を形成する工程と、
を備え、
前記第一のフィルム及び前記第二のフィルムの酸素透過度がいずれも1000ml/m・24h・atm未満であり、且つ前記第一のフィルムの温度100℃における50%伸張強度が100N/25mm以下である、熱伝導性成形体の製造方法。
Providing a first film disposed on the mold so as to follow the three-dimensional shape of the mold having a three-dimensional shape, and having a shape corresponding to the three-dimensional shape;
Placing on the first film a curable composition comprising a thermally conductive material and a (meth) acrylic monomer;
Placing a second film on the curable composition and sandwiching the curable composition with the first film and the second film;
Radically polymerizing a (meth) acrylic monomer in the curable composition to form a cured product of the curable composition between the first film and the second film;
Equipped with
The oxygen permeability of each of the first film and the second film is less than 1000 ml / m 2 · 24 h · atm, and the 50% tensile strength at a temperature of 100 ° C. of the first film is 100 N / 25 mm or less A method for producing a thermally conductive molded article.
前記第一のフィルムの厚さが3〜200μmである、請求項1に記載の熱伝導性成形体の製造方法。   The manufacturing method of the thermally conductive molded object of Claim 1 whose thickness of said 1st film is 3-200 micrometers. 前記第一のフィルムの動摩擦係数が0.7以下である、請求項1又は2に記載の熱伝導性成形体の製造方法。   The manufacturing method of the thermally conductive molded object of Claim 1 or 2 whose dynamic friction coefficient of said 1st film is 0.7 or less. 三次元形状を有する第一の面を有し、熱伝導性材料及び(メタ)アクリル重合体を含有する樹脂成形体と、
前記三次元形状に追従するように前記樹脂成形体の前記第一の面上に配置された第一のフィルムと、
を備え、
前記第一のフィルムの酸素透過度が1000ml/m・24h・atm未満であり、且つ温度100℃における50%伸張強度が100N/25mm以下である、熱伝導性成形体。
A resin molded product having a first surface having a three-dimensional shape and containing a thermally conductive material and a (meth) acrylic polymer;
A first film disposed on the first surface of the resin molding so as to follow the three-dimensional shape;
Equipped with
The thermally conductive molded article, wherein the oxygen permeability of the first film is less than 1000 ml / m 2 · 24 h · atm, and the 50% tensile strength at a temperature of 100 ° C. is 100 N / 25 mm or less.
前記第一のフィルムの厚さが3〜200μmである、請求項4に記載の熱伝導性成形体。   The heat conductive compact according to claim 4, wherein the thickness of the first film is 3 to 200 m. 前記第一のフィルムの動摩擦係数が0.7以下である、請求項4又は5に記載の熱伝導性成形体。   The thermally conductive molded body according to claim 4, wherein a dynamic friction coefficient of the first film is 0.7 or less. 前記樹脂成形体の前記第一の面とは反対側の面上に配置された第二のフィルムを更に備え、
前記第二のフィルムの酸素透過度が1000ml/m・24h・atm未満である、請求項4〜6のいずれか一項に記載の熱伝導性成形体。
And a second film disposed on the surface of the resin molding opposite to the first surface,
The heat conductive molded object according to any one of claims 4 to 6, wherein the oxygen permeability of the second film is less than 1000 ml / m 2 · 24 h · atm.
JP2018000553A 2018-01-05 2018-01-05 Thermally conductive molded product and its manufacturing method Active JP7085843B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018000553A JP7085843B2 (en) 2018-01-05 2018-01-05 Thermally conductive molded product and its manufacturing method
PCT/IB2019/050027 WO2019135178A1 (en) 2018-01-05 2019-01-02 Thermally conductive molded article and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018000553A JP7085843B2 (en) 2018-01-05 2018-01-05 Thermally conductive molded product and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019119131A true JP2019119131A (en) 2019-07-22
JP7085843B2 JP7085843B2 (en) 2022-06-17

Family

ID=67143838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018000553A Active JP7085843B2 (en) 2018-01-05 2018-01-05 Thermally conductive molded product and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7085843B2 (en)
WO (1) WO2019135178A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238754A (en) * 2006-03-08 2007-09-20 Kyodo Giken Kagaku Kk Protection sheet for information display face, and its production method
US20080290504A1 (en) * 2007-05-22 2008-11-27 Centipede Systems, Inc. Compliant thermal contactor
JP2012168708A (en) * 2011-02-14 2012-09-06 Lintec Corp Ic tag
WO2013094395A1 (en) * 2011-12-22 2013-06-27 日東電工株式会社 Semiconductor device, optical semiconductor device, and heat-dissipating member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238754A (en) * 2006-03-08 2007-09-20 Kyodo Giken Kagaku Kk Protection sheet for information display face, and its production method
US20080290504A1 (en) * 2007-05-22 2008-11-27 Centipede Systems, Inc. Compliant thermal contactor
JP2012168708A (en) * 2011-02-14 2012-09-06 Lintec Corp Ic tag
WO2013094395A1 (en) * 2011-12-22 2013-06-27 日東電工株式会社 Semiconductor device, optical semiconductor device, and heat-dissipating member

Also Published As

Publication number Publication date
WO2019135178A1 (en) 2019-07-11
JP7085843B2 (en) 2022-06-17

Similar Documents

Publication Publication Date Title
US7709098B2 (en) Multi-layered thermally conductive sheet
TWI472571B (en) Sheet formable monomer composition, heat conductive sheet and production method of the heat conductive sheet
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
TW201336662A (en) Thermal conductive sheet
JP6575123B2 (en) Release film and method for producing molded product
WO2020040240A1 (en) Release film and method for producing molded article
JP2012233099A (en) Heat conductive sheet
WO2014157378A1 (en) Thermally conductive sheet
JP7085843B2 (en) Thermally conductive molded product and its manufacturing method
US20220020663A1 (en) Thermally conductive molding, production method for the same, structure, and multilayer film
KR101602290B1 (en) Back sheet for solar cell module and solar cell module including the same
JP5879782B2 (en) HEAT CONDUCTIVE COMPOSITE SHEET, PROCESS FOR PRODUCING THE SAME, AND HEAT DISSULATING DEVICE
KR101782441B1 (en) Back sheet for solar cell module and solar cell module including the same
WO2016121990A1 (en) Sealing material sheet for solar battery module and solar battery module
JP6540054B2 (en) Solar cell module
WO2014103327A1 (en) Thermally conductive pressure-sensitive adhesive sheet and manufacturing method therefor
JP2023094612A (en) resin sheet
TW202235274A (en) Release film
JP2022108853A (en) release film
JP2006316119A (en) Thermally conductive sheet and method for producing the same
JP2017204572A (en) Adhesive heat-conducting sheet, method for manufacturing adhesive heat-conducting sheet, and heat radiator
JP2016143746A (en) Encapsulant sheet for solar cell module and solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7085843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150